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ABSTRACT
With the great popularity of Graph Neural Networks (GNNs), their

robustness to adversarial topology attacks has received significant

attention. Although many attack methods have been proposed, they

mainly focus on fixed-budget attacks, aiming at finding the most

adversarial perturbations within a fixed budget for target node.

However, considering the varied robustness of each node, there is

an inevitable dilemma caused by the fixed budget, i.e., no successful

perturbation is found when the budget is relatively small, while if

it is too large, the yielding redundant perturbations will hurt the

invisibility. To break this dilemma, we propose a new type of topol-

ogy attack, named minimum-budget topology attack, aiming to

adaptively find the minimum perturbation sufficient for a success-

ful attack on each node. To this end, we propose an attack model,

named MiBTack, based on a dynamic projected gradient descent

algorithm, which can effectively solve the involving non-convex

constraint optimization on discrete topology. Extensive results on

three GNNs and four real-world datasets show that MiBTack can

successfully lead all target nodes misclassified with the minimum

perturbation edges. Moreover, the obtained minimum budget can

be used to measure node robustness, so we can explore the relation-

ships of robustness, topology, and uncertainty for nodes, which is

beyond what the current fixed-budget topology attacks can offer.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; •
Networks→ Network reliability.
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1 INTRODUCTION
Graph is commonly used to model many real-world relationships,

such as social networks, citation networks, and e-commerce net-

works. Recently, there has been a surge of interest in Graph Neural

Networks (GNNs) for representation learning of graphs, which

combine node feature and topology with neural networks and have

achieved outstanding performance in various application areas [44].

Despite the great success, GNNs have been proved to often suf-

fer from adversarial attacks [7, 47], especially for topology attacks

where the attacker tries to slightly manipulate topology to mod-

ify the decision of GNNs. Recent research has developed stronger

topology attack methods [9, 29, 33, 38, 43] to explore the robustness

of GNNs. Specifically, existing works all belong to the fixed-budget

topology attacks, i.e., for each node, the attacker finds the most

adversarial perturbations within a given budget (i.e., a fixed number

of perturbed edges). Usually, the budget of each node is heuristically

specified as the same value or based on the node degree, and then

it will keep unchanged once specified.

However, in the real-world graph, each node has unique feature

and topology, and thus has varying adversarial robustness. It natu-

rally raises a fundamental question: Are the previous fixed-budget
topology attacks truly suitable for evaluating the robustness of GNNs?
On the one hand, usually, an effective topology attack should lead

to the misclassification of the target node and keeps it invisible, e.g.,

the topology cannot be modified too much. On the other hand, con-

sidering varied distribution of each node, evaluating the robustness

of GNNs on node level can help better understand the robustness.

Unfortunately, the fixed-budget perturbation cannot satisfy the

above requirements. First, for each node, the heuristically specified

budget is usually not optimal: no successful perturbation can be

foundwhen the specified budget is too small, while for the large one,

the redundant perturbations will hurt the invisibility. As illustrated

in Fig. 1, given blue (class 𝑐1) target node 𝑣 , existing fixed-budget

topology attacks aim to maximally change the prediction (color) of

𝑣 by modifying a fixed number of edges. Only perturbing one edge
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Existing Fixed-Budget Attack
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Figure 1: Illustrations of the existing fixed-budget topology
attacks which may fail to cross decision boundary or cross
too much, and our MiBTack can exactly cross the closest
green decision boundary B𝑐3 with no waste.

(budget Δ1 = 1), the attacker fails to find a successful perturbation

𝜹1 to cross purple (class 𝑐2) or green (class 𝑐3) decision boundary.

While perturbing four edges (Δ2 = 4) will cross the boundary too

much, hurting the invisibility of the attack. The above analysis

shows that there is a dilemma between a fixed budget and an effec-

tive attack. Second, given the fixed budget, the total accuracy of all

target nodes under attacks can be used to evaluate the robustness

of GNNs, while evaluating the adversarial robustness of a sample

(e.g., a node) amounts to finding the minimum perturbation for

misclassification of it [25].

Clearly, the fixed budget restricts the potential of attack methods

due to the different robustness of each node. Henceforth, we pro-

pose a new orthogonal minimum-budget topology attack, which

aims at adaptively finding the minimum budget that is sufficient for

a successful attack for each node. Thus the attacker can adapt to the

robustness of each node as the green dotted line in Fig. 1. Moreover,

if we can adaptively find the budget for each node, we can pro-

vide a better understanding or more insights on node robustness,

uncertainty, etc.

In essence, the minimum-budget attacks are inherently different

from the fixed-budget. The attacker with a fixed budget in Fig. 1

aims to flip Δ2 edges to maximally cross the decision boundary.

Obviously, this is a combinatorial optimization problem constrained

by Δ2. To solve it, exiting topology attacks often greedily flip edges

for Δ2 times [5, 47, 48]. Further, some works use Projected Gradient

Descent (PGD) to project the combination of perturbed edges within

the Δ2-limited space (grey dotted circle) [27, 38, 41]. While the

attacker with an adaptive budget will learn a minimum perturbation

(green dotted circle Δ★𝑣 ) for crossing the decision boundary, which is
challenging. With misclassification guarantee of non-convex GNN,

the minimum-budget topology attack is essentially a non-convex

constrained optimization problem, where PGD-based model can

not be directly used [23]. And the greedy-based model is too myopic

to find a good solution [20]. Grid search or binary search on budget

for each node is also unbearable in practice.

In this paper, we propose a novelMinimum-Budget Topology
attack method for GNNs named MiBTack based on dynamic pro-

jected gradient descent, in order to solve the above challenges.

Specifically, we decouple the budget and perturbation, turning the

non-convex constrained optimization to alternatively solve the

easier convex constrained optimization and update the budget sepa-

rately. In each iteration, we search for the most adversarial topology

attacks under the current budget with PGD and then the budget

is enlarged or reduced based on whether these attacks succeed.

Through repeatedly crossing the green decision boundary, MiB-

Tack can find the optimal budget Δ★𝑣 , namely the green dotted circle

centered at node 𝑣 as shown in Fig. 1, which is tangent to the green

decision boundary. Finally, our MiBTack can successfully attack (0

ACC) all target nodes with minimum budget.

The contributions of this paper are summarized as follows:

•We highlight the inherent bottleneck of existing fixed-budget

topology attacks, then we propose an orthogonal type of topology

attack for GNN, which aims to adaptively find minimum budget for

a successful attack. The proposed attacks are highly threatening

and can be used to quantify the node-level adversarial robustness.

•We propose an effective minimum-budget attack model MiB-

Tack based on a differentiable dynamic projected gradient descent

module, in order to solve the involving non-convex constraint on

discrete topology.

• Extensive experiments on four real-world datasets and three

GNNs show that our MiBTack can produce successful attacks with

minimum perturbed edges. With the obtained minimum budgets,

we also explore the relationships between robustness, topology and

uncertainty.

2 RELATEDWORK
Graph Neural Networks. Graph analysis has attracted consider-

able attention as graphs exist in various complex systems [28, 30].

GNNs [12, 16, 17, 44] on graph structured data have shown out-

standing results in various tasks. A special form of GNNs is graph

convolutional networks (GCNs) [12], which learn on graph struc-

tures using convolution operations and achieve state-of-the-art

performance. To further improve GCNs, [13] derives an improved

propagation scheme based on personalized PageRank, which fur-

ther leverages a large, adjustable neighborhood for classification,

and [35] further simplifies GCN by removing the non-linearities be-

tween GCN layers, etc. In this paper, we mainly focus on attacking

GCN and its variants.

Topology Attacks. With the wide applications of GNNs, their

robustness to adversarial attacks has received increasing attention,

especially for topology attacks [5, 7, 9, 11, 21, 22, 29, 33, 38, 39, 42,

42, 47]. They try to find the most adversarial perturbations within a

fixed budget Δ. To avoid the combinatorial search in discrete space,

a basic solution is to greedily select perturbed edges with top-Δ
adversarial scores [36, 47]. The advanced works suggest utilizing

gradient to search for optimal combinations. Specifically, they often

use projected gradient descent (PGD) to project the updated per-

turbations into the Δ-constrained space [9, 27, 38]. However, they

mainly focus on fixed-budget topology attacks. We introduce the

first study on a new minimum-budget topology attack. In addition,

different from the previous simple convex constraint on budget, we

need to solve an intractable non-convex constraint on GNN which

cannot be directly solved by PGD [23].

Minimum-Norm Attacks. Adversarial attacks on machine

learning can be categorized into maximum-confidence attacks and
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minimum-norm attacks [23]. Given the target image, the former

tries to find the perturbation 𝜹 within a given bound of the 𝜹 ’s 𝐿𝑝
norm tomaximize the confidence ofmisclassification, e.g, FGSM [10].

Recently, the latter is proposed to find the perturbation with mini-

mum 𝐿𝑝 norm sufficient for misclassification [3, 23, 25]. In contrast

to the former attacks that can only be used to evaluate model ro-

bustness, the minimum-norm attacks can also be used to measure

an image’s robustness, i.e., the distance of the image to the decision

boundary. Intuitively, a more robust image requires a larger per-

turbation to cross the decision boundary [24]. Thus the minimum-

norm attacks are often used to better understand the adversarial

robustness and its inherent relations to underlying data distribu-

tion [2, 24]. However, there are no existing minimum-norm attacks

for discrete graph data, and this paper sheds the first light on this

important problem.

3 PRELIMINARIES
In this section, we briefly introduce the backgrounds and prelimi-

naries of GNNs and existing topology attacks. We summarize the

related works in Appendix 2.

3.1 Graph Neural Networks
We consider attacking GNNs on the semi-supervised node classifica-

tion task. Formally, we define an undirected graph as𝐺 = (V, E,𝑿 ),
whereV is the set of 𝑁 nodes, E represents the set of edges, and

𝑿 = [𝒙1; 𝒙2; · · · ; 𝒙𝑁 ] ∈ R𝑁×𝐷 is the node feature matrix. We de-

note 𝒂𝑣 = [𝑎𝑣1;𝑎𝑣2; · · · ;𝑎𝑣𝑁 ] ∈ {0, 1}𝑁 as the adjacency vector of

node 𝑣 . Let 𝑑𝑣 and N(𝑣) represent the degree and the neighbor-

hood set of 𝑣 , and the
˜𝑑𝑣 and ˜N(𝑣) are the ones including self-loop

(𝑣, 𝑣). In this paper, we focus on node classification, where each

node 𝑣 ∈ V𝐿 in training set V𝐿 ⊂ V has a label 𝑦𝑣 ∈ Y and

Y = {1, 2, · · · ,𝐶}. Given V𝐿 , the goal of node classification task

is to predict the class of node in unlabeled data V𝑈 . Taking the

representative GCN [12] as an example, GCN uses convolution

operations to aggregate neighboring nodes as follows:

𝒉(𝑙 )𝑣 = ReLU(𝑾 (𝑙 ) (
∑︁

𝑢∈ ˜N(𝑣)

˜𝑑
−1/2
𝑢

˜𝑑
−1/2
𝑣 𝒉(𝑙−1)𝑢 )), (1)

where 𝒉(𝑙 )𝑣 is the representation of node 𝑣 at the 𝑙−th layer, and

𝒉(0)𝑣 = 𝒙𝑣 for initialization. 𝑾 (𝑙 ) is the trainable weight matrix

in the 𝑙−th layer, and we set 𝜽 = {𝑾 (1) , · · · ,𝑾 (𝐿) } as all model

parameters. The output of node 𝑣 is 𝑓𝜽 (𝒂𝑣) = softmax(𝒉(𝐿)𝑣 ) ∈
[0, 1]𝐶 , where 𝑓𝜽 (𝒂𝑣)𝑐 indicates the probability of node 𝑣 being

classified into class 𝑐 , i.e., confidence. Then, the model parameters

𝜽 are learned by minimizing the cross-entropy loss on the outputs

of the training nodesV𝐿 as follows:

𝜽 ∗ = argmin

𝜽
−

∑︁
𝑣∈V𝐿

ln 𝑓𝜽 (𝒂𝑣)𝑦𝑣 . (2)

3.2 Adversarial Topology Attacks
Here we focus on adversarial topology attacks under the following

settings:

• Attack Goal. Our attacker’s goal is to lead GNN misclassify the

target node 𝑣 by manipulating its adjacency vector 𝒂𝑣 .

• Attack Type. We mainly focus on evasion attacks, where the

parameters of the trained model are assumed to be fixed when

being attacked. We also perform experiments for the challenging

poisoning case, where the model is retrained after the attack.

• Attack Knowledge. We consider the worst case, in which an

attacker can access the internal configurations (i.e., the learned

parameters) of the targeted GNN model. This assumption ensures

reliable vulnerability analysis in the worst case.

Formally, given a target node 𝑣 , the attackers under these set-

tings aim to decrease the performance of the well-trained GNN

𝑓𝜽 ∗ on node 𝑣 . They optimize a topology perturbation vector 𝜹𝑣 ∈
[𝛿𝑣1, 𝛿𝑣2, · · · , 𝛿𝑣𝑁 ] ∈ {0, 1}𝑁 for perturbing adjacency vector 𝒂𝑣 ,
where the 𝑢-th element 𝛿𝑣𝑢 = 1 means flipping the status of edge

(𝑣,𝑢) (adding or deleting). Specifically, we add perturbation to 𝒂𝑣
by 𝒂′𝑣 = 𝒂𝑣 +T (𝜹𝑣) = 𝒂𝑣 + (1−2𝒂𝑣) ⊙𝜹𝑣 , where ⊙ denotes element-

wise multiplication. So element 𝛿𝑣𝑢 = 1 indicates adding edge (𝑣,𝑢)
when 𝑎𝑣𝑢 = 0, deleting edge (𝑣,𝑢) when 𝑎𝑣𝑢 = 1.

Fixed-budget Topology Attacks. Existing topology attacks

mainly focus on fixed-budget topology attacks. Given a target node

𝑣 , they often specify the maximum amount of perturbation edges

in advance, then try to find a perturbation vector 𝜹𝑣 to maximally

degrade GNN’s performance on 𝑣 with a constraint of ∥𝜹𝑣 ∥0 ⩽ Δ𝑣

as follows:

𝜹★𝑣 = argmin

𝜹𝑣

L(𝒂′𝑣), (3)

𝑠 .𝑡 .∥𝜹𝑣 ∥0 ⩽ Δ𝑣, 𝜹𝑣 ∈ {0, 1}𝑁 ,

where the attack loss L is the Carlili-Wagner (CW) loss follow-

ing [38]:

L(𝒂′𝑣) = 𝑓𝜽 ∗ (𝒂′𝑣)𝑦𝑣 −max

𝑐≠𝑦𝑣
𝑓𝜽 ∗ (𝒂′𝑣)𝑐 , (4)

where the smaller L(𝒂′𝑣) indicates the stronger attacks. Clearly,

as the constraints in Eq. (3) showed, the fixed-budget attacks try

to search the most adversarial Δ𝑣 perturbation edges, which is

inherently a combinatorial optimization problem. Existing works

solve this problem mainly by two ways: (1) A straight solution is

greedy search: the attacker greedily flips the edge which degrades

loss L most and repeats it for Δ𝑣 times. Doubtless, the greedy

solver is myopic and will neglect some flipping actions that might

be better in the long run [20]. (2) So the recent works [20, 38] tend

to relax 𝜹𝑣 ∈ {0, 1}𝑁 to its convex hull 𝜹𝑣 ∈ [0, 1]𝑁 , yielding a

continuous optimization problem. Then they can optimize 𝜹𝑣 with

gradient-based solvers which are proved to be much better than

the classical greedy method. Specifically, they often use projected

gradient descent (PGD) to solve the convex constraint 𝜹𝑣 ∈ [0, 1]𝑁 .

As shown in the above objective, it is hard to generate both suc-

cessful and unnoticeable attacks by the fixed budget attacks. Given

a small budget, the perturbed target node may not be misclassi-

fied (L(𝒂′𝑣) < 0), while a large budget will hurt the invisibility of

attacks.

4 MINIMUM-BUDGET TOPOLOGY ATTACK
4.1 Attack Objective
Considering the mentioned inherent dilemma of existing fixed-

budget topology attacks, we first propose an orthogonal minimum-

budget topology attack for GNNs, which aims to adaptively find the
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minimum perturbation that is sufficient for the misclassification of

target node. Formally, the objective of our attacks can be formulated

as:

𝜹★𝑣 = argmin

𝜹𝑣

∥𝜹𝑣 ∥0,

𝑠 .𝑡 . L(𝒂′𝑣) < 𝛾, 𝜹𝑣 ∈ {0, 1}𝑁 ,
(5)

where L(𝒂′𝑣) is CW attack loss defined in Eq. (4) and 𝒂′𝑣 = 𝒂𝑣 +
T (𝜹𝑣). 𝛾 (𝛾 > 0) is the confidence level of misclassification, and a

higher 𝛾 will lead to crossing decision boundary more. In this paper,

we set 𝛾 = 0 by default, namely, generate the attacks which just

cross the decision boundary exactly. So we can break the dilemma

of fixed-budget about effectiveness and invisibility. Besides, 𝜹★𝑣 can

be used to evaluate the robustness of each node. Intuitively, if a

node requires more perturbations to be successfully attacked, the

node has a larger distance to the decision boundary and is more

robust for topology attacks. Here we define the robustness 𝜌𝑣 of

node 𝑣 as follows:

Definition 1. Node Robustness. Given a node 𝑣 and a graph
neural network 𝑓𝜽 ∗ , the node robustness 𝜌𝑣 is defined as the amount
of perturbed edges which are sufficient to make 𝑓𝜽 ∗ misclassify node
𝑣 with minimum perturbation.

Based on our attack objective, the node robustness can be calcu-

lated by 𝜌𝑣 = ∥𝜹★𝑣 ∥0. Then we can use it to explore the relationships
between robustness and data distribution, then provide a better

understanding or more insights on node robustness.

Unfortunately, effectively and efficiently optimizing 𝜹★𝑣 is chal-

lenging. Compared to the fixed-budget attack in Eq. (3), we can

observe that our attack objective has an extra non-convex constraint

L(𝒂′𝑣) < 𝛾 (the non-convexity of GNN model 𝑓𝜽 ∗
𝒗
). Solving such

non-convex constrained optimization problem is harder. The ad-

vanced PGD-based model can only solve the convex constraint like

∥𝜹𝑣 ∥0 ⩽ Δ𝑣 , and is not readily applied in our attacks. Doubtlessly,

the greedy-based model is too myopic to find a good solution.

4.2 The Proposed Model MiBTack
Next, we describe the proposed minimum-budget attack model,

MiBTack, which solves the non-convex constrained optimization

problem effectively. MiBTack is based on a dynamic PGD, which is

mainly a projected gradient descent (PGD) method with a dynamic

budget, so that the non-convex constrained optimization can be

turned to alternatively solving the easier convex constrained opti-

mization and updating budget separately. Fig. 2 shows the overall

framework of MiBTack, which consists of two components: (1) We

fix current budget Δ𝑣 and search for 𝜹𝑣 under Δ𝑣 which is a convex

constrained optimization and can be solved by PGD. (2) If 𝜹𝑣 can

lead to a misclassification of target node 𝑣 (i.e., L(𝒂′𝑣) < 0), the

current Δ𝑣 will be decreased for next iteration, otherwise increased.

Thus the dynamic PGD can converge to L(𝒂′𝑣) < 0 and lead to a

finer search of a minimal budget by repeatedly crossing the decision

boundary.

Updating Perturbation. In this step, we aim to keep the budget

fixed and update perturbation with the constraint of current budget.

Specifically, for 𝑖-iteration, we fix Δ
(𝑖 )
𝑣 as a constant and update

perturbations 𝜹 (𝑖−1)𝑣 by minimizing current attack loss L(𝒂′(𝑖−1)𝑣 )

within budget Δ
(𝑖 )
𝑣 :

min

𝜹 (𝑖 )𝑣

L
(
𝒂′(𝑖−1)𝑣

)
, (6)

s.t.




𝜹 (𝑖 )𝑣 



0

⩽ Δ
(𝑖 )
𝑣 , 𝜹 (𝑖 )𝑣 ∈ [0, 1]𝑁 ,

where 𝒂′(𝑖−1)𝑣 = 𝒂𝑣 + T (𝜹 (𝑖−1)𝑣 ). Following [38], we also relax the

discrete 𝜹 (𝑖 )𝑣 ∈ {0, 1}𝑁 to continue [0, 1]𝑁 for ease of gradients. As

we can see, this is the easier convex constrained problem which

can be solved through PGD, which contains gradient descent and

projection. The idea of PGD is as follows: if the perturbation variable

after the gradient descent update is out of current budget Δ
(𝑖 )
𝑣 ,

PGD will project it back to the Δ
(𝑖 )
𝑣 -constrained space. In gradient

descent, we calculate the gradient 𝒈 of the attack loss w.r.t. 𝜹 (𝑖−1)𝑣 :

g← ∇
𝜹 (𝑖−1)𝑣

L(𝒂′(𝑖−1)𝑣 ). (7)

Given 𝒈, we update 𝜹 (𝑖−1)𝑣 with the normalized gradient descent:

˜𝜹
(𝑖 )
𝑣 ← 𝜹 (𝑖−1)𝑣 + 𝛼 · 𝒈/∥𝒈∥2, (8)

where 𝛼 is the step size of gradient descent. Once 𝜹 (𝑖−1)𝑣 is updated

to
˜𝜹
(𝑖 )
𝑣 , to keep ∥𝜹 (𝑖 )𝑣 ∥0 ⩽ Δ

(𝑖 )
𝑣 and 𝜹 (𝑖 )𝑣 ∈ [0, 1]𝑁 , we project

˜𝜹
(𝑖 )
𝑣

via a projection operator:

𝜹 (𝑖 )𝑣 ← Proj[0,1]𝑁 [ ˜𝜹
(𝑖 )
𝑣 − 𝜇1], (9)

where the perturbation vector
˜𝜹
(𝑖 )
𝑣 encodes the score of flipping

edges of 𝑣 . For 𝑢-th element, a larger value of
˜𝛿
(𝑖 )
𝑣𝑢 indicates a

stronger attack effect of flipping edge (𝑣,𝑢). To fulfill the constraint
of Δ

(𝑖 )
𝑣 , we denote the (Δ

(𝑖 )
𝑣 +1)-th largest value of

˜𝜹
(𝑖 )
𝑣 as a scalar

𝜇, so only the most Δ
(𝑖 )
𝑣 perturbation edges are kept non-negative

values in
˜𝜹
(𝑖 )
𝑣 − 𝜇1, otherwise negative. Then we use clip oper-

ation Proj[0,1]𝑁 to set these negative elements as zero. Thus, af-

ter projection, 𝜹 (𝑖 )𝑣 can fulfill the constraints




𝜹 (𝑖 )𝑣 



0

⩽ Δ
(𝑖 )
𝑣 and

𝜹 (𝑖 )𝑣 ∈ [0, 1]𝑁 in Eq. (6), and can be used to perturb the topology

of 𝑣 by 𝒂′(𝑖 )𝑣 ← 𝒂𝑣 + T (𝜹 (𝑖 )𝑣 ).
Updating Budget. In this step, based on the above updated per-

turbation 𝜹 (𝑖 )𝑣 , we will dynamically adjust the current budget Δ
(𝑖 )
𝑖

depending on whether the current perturbation can successfully

attack.

To identify whether the current perturbation can succeed, one

direct way is to test the predicted label of the perturbed adjacency

vector 𝒂′(𝑖 )𝑣 ∈ [0, 1]𝑁 . While the real-world graph topology and

its perturbations are discrete, so a more precise way is to project

𝒂′(𝑖 )𝑣 from continuous space to discrete space Proj{0,1}𝑁 [𝒂
′(𝑖 )
𝑣 ] ∈

{0, 1}𝑁 first. The projection method we use is straightforward: we

choose the non-zero cells in perturbation 𝜹 (𝑖 )𝑣 and turn them into 1.

Next, if the current perturbation 𝜹 (𝑖 )𝑣 is sufficient to cross decision

boundary (i.e., L(Proj{0,1}𝑁 [𝒂′
(𝑖 )
𝑣 ]) < 0), it can be determined that

the current budget is large enough, and the optimal budget must be

no more than Δ
(𝑖−1)
𝑣 , so we will decrease the budget Δ

(𝑖 )
𝑣 for next

iteration with step size 𝛽 by:

Δ
(𝑖+1)
𝑣 ← min(Δ(𝑖 )𝑣 − 1,Δ

(𝑖 )
𝑣 (1 − 𝛽)), (10)
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Figure 2: The overall framework procedure of our proposed MiBTack. In 𝑖-th iteration, MiBTack alternatively updates the
current perturbation 𝜹 (𝑖 )𝑣 and Δ

(𝑖 )
𝑣 with a dynamic PGD algorithm.

otherwise, we increase current Δ
(𝑖 )
𝑣 by:

Δ
(𝑖+1)
𝑣 ← max(Δ(𝑖 )𝑣 + 1,Δ

(𝑖 )
𝑣 (1 + 𝛽)). (11)

Thus the dynamic PGD can lead to a finer search of a minimal

budget by repeatedly crossing the decision boundary.

Initialization of 𝜹𝑣 . Here we point that the attack performance

of our MiBTack may rely on the initial status 𝒂′(0)𝑣 = 𝒂𝑣 +𝜹 (0)𝑣 = 𝒂𝑣
with 𝜹 (0)𝑣 = 0. Since the existing iterative attacks often add noises

monotonically along the direction of gradient [26], resulting in a

dependence of initial direction. While in multi-classification, the

initial attack direction may not be optimal: when minimize CW-

based loss L(𝒂′(0)𝑣 ), the yielded perturbation often move node to

the wrong class 𝑐 which has the largest confidence (max

𝑐≠𝑦𝑣
𝑓𝜽 ∗ (𝒂𝑣)𝑐 ).

We find that it often fails to indicate the closest decision boundary

in multi-class classification. Clearly, precisely estimating the clos-

est decision boundary beforehand and along its direction guiding

the later attack generation can help generate a more unnoticeable

attack. Here we solve this problem by performing topology attacks

with one-step towards each wrong class, and choose the class with

the largest descent of L, then use it to initialize 𝜹𝑣 . The details can

be found in Appendix A.

Convergence.We alternatively update perturbation and budget

until target node reaches the decision boundary, then we are only

allowed to iterate for a given patience 𝑃 times. To accelerate con-

vergence and dampen oscillations around the boundary in last 𝑃

iterations [23], we start to use cosine annealing to reduce the step

sizes, including step size 𝛼 for updating 𝜹 (𝑖−1)𝑣 in Eq.8 and 𝛽 for

updating Δ
(𝑖 )
𝑣 in Eq.10 and Eq.11. Finally, the perturbed target node

will reach a point where the (green) decision boundary is tangent

to the (dotted green) sphere of Δ★𝑣 as shown in Fig. 1, yielding the

optimal 𝜹★𝑣 with minimum budget Δ★𝑣 . We summarize the pseudo-

code in Appendix B for the whole process of MiBTack. Moreover,

the space consumption analysis is provided in Appendix C.

5 EXPERIMENTS
5.1 Experimental Setup
Datasets. We employ the widely-used citation networks (Cora,

Citeseer, Pubmed) as in [47], and a social network Polblogs in [1].

We conduct the experiments with 250 randomly selected nodes in

the test set as the targeted nodes that are to be attacked follow-

ing [32]. More details of dataset are shown in Appendix D.1.

Baselines. Since existing topology attack methods are all fixed-

budget attacks, here we adapt the state-of-the-art baselines to

minimum-budget topology attack. For greedy-based attacks, Rand
randomly flips the edges in a𝑣 for target node 𝑣 . DICE [34] ran-

domly disconnects the links of 𝑣 to the neighbors with the same

label 𝑦𝑣 and connects the 𝑣 to the nodes with class 𝑐 ≠ 𝑦𝑣 . DICE-t
extends DICE by adding the edges (𝑣,𝑢) where 𝑢 belongs to the

target class 𝑐∗ and 𝑐∗ = argmax

𝑐≠𝑦𝑣

𝑓𝜽 ∗ (𝒂𝑣). FGA [9] flips one edge

at a time by performing gradient update along the direction of

the sign of gradients of loss function w.r.t. each adjacency matrix.

Nettack [47] generates perturbation edges greedily by exploiting

the properties of the linearized GCN surrogate. We can easily adapt

above greedy-based attacks by consistently adding perturbations

until target node 𝑣 is misclassified or the number of perturbed edges

is more than 1000. For PGD-based attacks, PGD [38] uses projected

gradient descent to project the perturbation edges into the space

of given budget Δ. PRBCD [9] generates Δ perturbation edges

for large-scale graph by projected randomized block coordinate

descent. Above PGD-based algorithms model the fixed budget at-

tacks as a convex constrained optimization, and cannot be directly

used for our minimum-budget attacks which is essentially a non-

convex constrained optimization problem. Following [9], we use

the degree of the target node that we currently attack as budget.

More implementation details of baselines and our MiBTack, e.g.,

hyperparameters, are provided in Appendix D.2 and D.3.

Target Models. To validate the generalization ability of our pro-

posed attacker, we choose three popular graph neural networks
1
:

(1) GCN [12] is a representative GNN and learns on graph structures

1
The code of GNNs can be found in https://github.com/BUPT-GAMMA/GammaGL.

https://github.com/BUPT-GAMMA/GammaGL
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Table 1: Attack performance. The lower classification accuracy (ACC) of all attacked target nodes indicates a better attack
performance. The lower total budget (TB) hints the better invisibility.

Datasets GNNs Metrics PGD PRBCD Rand DICE DICE-t FGA Nettack MiBTack

ACC 0.032 0.020 0.112 0.000 0.052 0.000 0.000 0.000
GCN

TB 765 779 10349 4057 1171 384 357 330
ACC 0.020 0.008 0.104 0.000 0.000 0.000 0.000 0.000

SGC

TB 787 792 6774 4927 1155 437 443 385
ACC 0.256 0.100 0.152 0.000 0.000 0.000 0.000 0.000

Cora

APPNP

TB 777 796 2919 2518 1237 683 679 507
ACC 0.100 0.092 0.132 0.000 0.000 0.000 0.000 0.000

GCN

TB 691 697 4290 4292 1343 484 438 444

ACC 0.048 0.028 0.144 0.000 0.000 0.000 0.000 0.000
SGC

TB 689 693 6362 3461 1002 411 414 386
ACC 0.172 0.136 0.064 0.000 0.016 0.000 0.000 0.000

Citeseer

APPNP

TB 650 696 7386 2201 949 494 551 412
ACC 0.000 0.004 0.380 0.000 0.000 0.000 0.000 0.000

GCN

TB 7112 7105 18891 7261 7261 2038 2011 1961
ACC 0.036 0.064 0.468 0.000 0.000 0.000 0.000 0.000

SGC

TB 7027 7062 19250 7304 7304 3518 3660 3328
ACC 0.396 0.132 0.528 0.000 0.000 0.000 0.000 0.000

Polblogs

APPNP

TB 7125 7125 14551 7543 7543 5619 5739 5494
ACC 0.108 0.016 0.292 0.000 0.000 0.000 0.000 0.000

GCN

TB 742 770 2935 4857 1386 357 354 348
ACC 0.196 0.020 0.284 0.000 0.000 0.000 0.000 0.000

SGC

TB 683 772 6740 2540 1346 368 364 359
ACC 0.296 0.148 0.284 0.000 0.000 0.000 0.000 0.000

Pubmed

APPNP

TB 720 744 2111 2340 1241 529 514 527

using convolution operations. We train a 2-layer GCN with learn-

ing rate 0.01, where the number of units in hidden layer is 16. In

addition, the dropout rate is 0.5, weight decay is 5𝑒-4. (2) SGC [35]

simplifies GCNs through successively removing nonlinearities and

collapsing weight matrices between consecutive layers. For SGC,

the learning rate is 0.01, the number of units is 16, the dropout rate

is 0.5, and weight decay is 5𝑒-6. (3) APPNP [13] improves GCN by

leveraging residual connection to preserve the information of raw

features. The learning rate of APPNP is 0.01, the number of units

in hidden layer is 64, the dropout rate is 0.5, weight decay is 5𝑒-6.

Metrics. Here we utilize two metrics to evaluate the minimum-

budget topology attacks. (1) Accuracy (ACC): We use the accuracy

of GNN model on all attacked target nodes to show whether the

attack models can make all nodes misclassification. The zero value

of ACC indicates 100% attack successful rate. (2) Total Budget (TB):

Total budgets is the amount of perturbation edges for attacking all

target nodes. A lower TB hints a more unnoticeable attack.

5.2 Attack Effectiveness
Here we evaluate the effectiveness of our model against all base-

lines for minimum-budget topology attacks, under four datasets

and three GNNs. The overall results are presented in Table 1, where

we have the following observations:

• Our MiBTack can outperform all baselines in most scenarios,

yielding minimum attacks with the guarantee of misclassification

of all nodes. First, the PGD-based attacks PGD and PRBCD are hard

to achieve 0 accuracy and need large budgets, since they predefine

the node budget by its degree, which is usually not optimal. Based

on random strategies, Rand, DICE and DICE-t, need large amounts

of perturbation edges. Then Nettack and FGA have better perfor-

mance than above methods, since they greedily flip the adversarial

edges with the highest gradient w.r.t. attack loss. Finally, our MiB-

Tack can generate the minimum attacks with the guarantee of 0

accuracy, averagely saving at least 60 perturbed edges. Compared

to myopic greedy search, MiBTack can search the better combina-

torial perturbed edges based on our dynamic PGD.

• Specifically, we observe that our MiBTack has the largest improve-

ment on Polblogs. This is because that the topology connections in

Polblogs are much more dense than other datasets, thus the nodes

in Polblogs require significantly larger budget to successfully at-

tack, namely more iterations, where greedy based baselines will

accumulate more errors than gradient based methods.

•We also observe that, under most scenarios, APPNP needs higher

TB than GCN and SGC, indicating more adversarial robustness of

APPNP. The reason may be that APPNP, which leverages residual

connection to preserve the information of raw features, may be

less dependent on topology and thus have better robustness to

topology attacks. Besides, GNNs are more robust on Polblogs due

to the relatively more dense graph of Polblogs.
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To better evaluate how effective is our model, take the more

robust Polblogs dataset as an example, we plot the classification

margins of GCN and APPNP in Fig. 3. Each point in the plot

represents one target node 𝑣 . The classification margin of 𝑣 is

𝑓𝜽 (𝒂𝑣)𝑦𝑣 − max𝑐≠𝑦𝑣 𝑓𝜽 (𝒂𝑣)𝑐 where 𝑦𝑣 is the ground truth class,

𝑓𝜽 (𝒂𝑣)𝑦𝑣 is the probability of node 𝑣 being classified into class 𝑦𝑣 .

The positive classification margin value of node 𝑣 indicates a failed

attack, where 𝑣 fails to cross the decision boundary. For the negative

value, 𝑣 is misclassified and a lower value indicates that 𝑣 crosses the

decision boundary more. Compared to the clean scenario, we find

that PRBCD with node degree as budget, can strongly affect GNNs

most, but fail to lead the misclassification for all target nodes. On

the contrast, our MiBTack and the greedy-based attacks, FGA and

Nettack, affect more slightly but successfully attack all target nodes.

Most remarkably, our MiBTack achieves higher margin value than

FGA and Nettack, indicating that the nodes, attacked by MiBTack,

cross the decision boundary less. This is because that the dynamic

PGD in our MiBTack can converge to decision boundary and lead

to a finer search of a minimal combination of perturbation edges

by repeatedly crossing the decision boundary.
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Figure 3: The node classification margins on Polblogs. Our
MiBTack leads all target nodes misclassified and affects them
most slightly by finding minimum and successful attacks.

5.3 Transferability of Attacks
We mainly focus on evasion (test time) attacks against GNNs, but

we also evaluate the transferability of our MiBTack under poisoning

(train time) setting and defensed setting.

Poisoning Attacks. Following [9], we retrain GNNs on the

perturbed graph of an evasion attack for poisoning. Note that poi-

soning attack is a more challenging scenario since retraining GNNs

will introduce much uncertainty to attackers. Fortunately, our MiB-

Tack can handle such uncertainty by improving the confidence

level of misclassification 𝛾 . Take Cora and Citeseer as examples, we

gradually increase 𝛾 and present the ACC of attacked target nodes

in Fig. 4 (a) and (b). As seen, for each GNN model, the accuracy

of target nodes is close to 0 and shows the similar declining trend

with the increasing 𝛾 ∈ {0.00, 0.05, 0.10, 0.15, 0.20}. So MiBTack

with larger 𝛾 tends to generate stronger attack under poisoning

scenarios. But there is no free lunch: it is expected that the needed

total budget will grow, as showed in Fig. 4 (c) and (d). In conclu-

sion, our MiBTack can achieve powerful attacks under challenging

poisoning attacks.

Attacks against Defensed GNNs. Some countermeasures are

proposed to improve the robustness of GNNs [4, 6, 14, 15, 18, 19,

37, 40, 46]. Besides vanilla GNNs, we also consider these defensed

GNNs:RGCN [45] adopts a variance-based attention mechanism to

Table 2: The total budget of our attack models with/without
the proposed dynamic PGD and Initialization.

Dataset W/o DPGD W/o Init MiBTack

Cora 385 364 330
Citeseer 484 459 444
Polblogs 2038 1967 1961
Pubmed 357 353 348

remedy the propagation of adversarial attacks. JacGCN [36] filters

edges based on attribute Jaccard similarity (here threshold is 0.03).

With no surprise, directly transferring attacks from vanilla GNNs

to defensed GNNs will lead to a huge drop of attack performance as

shown in Fig. 5. The accuracy of target nodes attacked by Nettack,

FGA and our MiBTack significantly increase, e.g., from accuracy 0

of GCN to around 0.7 of JacGCN on Cora dataset. However, we can

easily extend MiBTack against defensed GNNs. For JacGCN, we

restrict the search space with Jaccard similarity when generating

perturbation edges, yielding MiBTack-J. For RGCN, we replace
the target GNN in the attack model by RGCN, named MiBTack-R.
As seen, the accuracy of JacGCN and RGCN (i.e., blue bars) under

MiBTack-J and MiBTack-R dramatically drop even reach 0, costing

only a little bit more budgets (i.e., pink bars). Doubtlessly, if the

defensed GNNs are complex even black-box, the gradient of adja-

cency matrix is unavailable, and the straight solution in MiBTack-J

or MiBTack-R is not feasible. We leave designing effective attack

models against black-box GNNs as our future work.

5.4 Model Analysis
Ablation Study. We conduct an ablation study to evaluate the

necessity of the components of our attack model. Take GCN as

example, we report the total budget of our dynamic projected gra-

dient descent and exploration operation as shown in Table 2 (ACC

are all 0). Specifically, we compare our full modelMiBTack with

the variant (W/o DPGD) using greedy method to replace the dy-

namic PGD and the model without initialization (W/o Init). One
can observe that full model MiBTack significantly behaves better

than W/o DPGD, suggesting that our dynamic PGD can improve

the combinatorial optimization problem and the challenge of non-

convex constraint optimization under PGD can be alleviated by our

designs. Meanwhile, compared to W/o Init, it can be seen that our

customized initialization also benefits the proposed MiBTack.

Impact of 𝑃 (patience). Fig. 6 demonstrates how the proposed

attack methods perform against three GNNs when patience 𝑃 in-

creases under three datasets. One can observe that the proposed

model obtains lower minimum budget with the increasing of pa-

tience 𝑃 , and only requires a few of the trials to converge. This is

because 𝑃 is the number of maximal iteration after crossing the

decision boundary, and a larger 𝑃 will lead to a better adjusting of

Δ𝑣 iteratively. Meanwhile, our model can quickly converge below

200 iterations, indicating the efficiency of our model.

Impact of 𝛼 . Hyperparameter 𝛼 is the step size for updating

𝜹𝑣 in Eq. 8. Take the datasets Cora and Citeseer as examples, the

results are reported in Fig. 7. As seen, there exists an optimal 𝛼

that delivers the minimum budget. This is because our methods

with too large step size 𝛼 may fail to converge to a good solution.

When step size 𝛼 is too small, the elements of flipping operation
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Figure 4: Performance of poisoning attacks on Cora and Citeseer.

FGA Nettack MiBTack MiBTack-J0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0

100

200

300

400

500

To
ta

l B
ud

ge
t

Accuracy Total Budget

(a) Cora, JacGCN.

FGA Nettack MiBTack MiBTack-J0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ac
cu

ra
cy

0
100
200
300
400
500
600

To
ta

l B
ud

ge
t

(b) Citeseer, JacGCN.

FGA Nettack MiBTack MiBTack-R0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Ac
cu

ra
cy

0

100

200

300

400

500

To
ta

l B
ud

ge
t

(c) Cora, RGCN.

FGA Nettack MiBTack MiBTack-R0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

Ac
cu

ra
cy

0

200

400

600

800

To
ta

l B
ud

ge
t

(d) Citeseer, RGCN.

Figure 5: Performance of attacks against defensed GNNs (i.e., JacGCN and RGCN). We report the total budget and the accuracy
of target nodes of defensed GNNs under FGA, Nettack, our MiBTack, our variants MiBTack-J and MiBTack-R.
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Figure 6: Impact of 𝑃 .
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Figure 7: Impact of 𝛼 .
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Figure 8: Impact of 𝛽 .
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Figure 9: Robustness versus degree.
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Figure 10: Robustness versus uncertainty.

vector have small values in continuous space and can only change

the adjacency vector 𝒂𝑣 slightly, which often leads to sub-optimal

results due to the discrete structure of graph data.

Impact of 𝛽 . We test the impact of hyperparameter 𝛽 , which is

the step size for updating budget 𝚫𝑣 . As shown in Fig. 8, we can

observe that, basically, our framework is stable when 𝛽 is within

the range from {0.005, 0.01, 0.05, 0.1, 0.5, 1}. This is because that the
step size of 𝚫𝑣 is expected to only affect the time of convergence.

5.5 Node Robustness Analysis
For each node 𝑣 , we use the minimum budget Δ★𝑣 generated by our

MiBTack as node robustness 𝜌𝑣 .
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Relationships of node robustness and degree.We analyze

how the structure of the target node, i.e., its degree, affects the

robustness. For each target node 𝑣 in Cora and Citeseer, we plot its

degree and the node robustness 𝜌𝑣 found by MiBTack, then plot the

corresponding linear regression line and equation as shown in Fig. 9.

There are some observations: First, there is a positive correlation

between degree and 𝜌𝑣 as expected in existing works [47]. The

high degree nodes are harder to be perturbed to cross decision

boundaries. Second, there exists a mass of nodes under regression

line, they only need the perturbation edges with fewer than half of

neighbors to mislead GCN, showing high vulnerability.

Relationships of node robustness and uncertainty. The un-
certainty of GNNs’ predictions, indicating how much we should

trust our GNN, is crucial for their deployment inmany risk-sensitive

applications. Existing works often use the predicted probability (i.e,

confidence) as the uncertainty indicator. Here we study the rela-

tionship between adversarial robustness and confidence together

with accuracy. Following [24], we rank the input node according

to their node robustness (𝜌𝑣 ) and then divide the dataset into 10

equally-sized subsets. For each adversarial robustness subset, we

compute accuracy and the average confidence score of the predicted

class as shown in Fig. 10. One can clearly see that both accuracy and

confidence increase with the adversarial robustness of the input

data. With the increase of adversarial robustness level, compared

to accuracy, the confidence becomes higher first then consistently

lower. This indicates that GCN tends to give over-confident pre-

dictions for the easily attacked nodes, but give under-confident

predictions otherwise, which fits nicely with the conclusion of ex-

isting work (GNNs are under-confident) [31]. Moreover, it makes a

new interesting observation: There may exist a turning point for

GNNs from over-confident to under-confident. This observation

may help improve the confidence calibration for GNNs.

6 CONCLUSIONS
In this paper, we introduce the first study on the minimum-budget

topology attack on GNNs, to find the smallest perturbation for suc-

cessful attack. We propose an effective attack model MiBTack based

on the differentiable dynamic projected gradient descent (PGD). Our

MiBTack can effectively find the minimum perturbations for cross

above decision boundary by differentiable dynamic PGD, solving

the inherent intractable non-convex constrained optimization. The

experimental results show that MiBTack can achieve 100% attack

success rate with minimum perturbation edges. Besides, we use

these obtained minimum budget to study the relationships between

robustness, topology and uncertainty. An interesting direction for

future work is to extend our MiBTack to black-box setting.
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A INITIALIZATION
The attack performance of our MiBTack may rely on the initial

status 𝒂′ (0)𝑣 = 𝒂𝑣 + 𝜹 (0)𝑣 . While in multi-classification, the initial

attack direction may not be optimal, namely dose not point to the

closest decision boundary. Specifically, in the first iteration, the

initial adjacency 𝒂′ (0)𝑣 = 𝒂𝑣 often has small and similar predic-

tion confidence on all wrong classes 𝑐 (𝑐 ≠ 𝑦𝑣), e.g., node 352 in

Cora dataset has 𝑓𝜃 ∗ (𝒂′
(0)
𝑣 ) [0.0133, 0.0039, 0.0215, 0.0361, 0.0130,

0.0550] for 𝑐 ≠ 𝑦𝑣 and 0.8571 for 𝑦𝑣 . The L will update the per-

turbation vector along the direction to the wrong class with the

largest prediction confidence max𝑐≠𝑦𝑣 𝑓𝜃 ∗ (𝒂′
(0)
𝑣 ). Obviously, the

wrong class with largest confidence (0.0550) may only have little

superiority than other wrong classes so it probably fails to indicate

the closest decision boundary in multi-class classification. Note

that the superiority of the wrong class picked in first iteration can

be inherited under L, guiding target node to cross a non-closest

decision boundary with more perturbation edges wasted.

However, it is time-consuming to precisely search the closest

decision boundary, since the attacker needs to compute the distance

(i.e., minimum budgets) of starting point to each decision boundary

B𝑐 for class 𝑐 ∈ {1, · · · ,𝐶} \ {𝑦𝑣}. Here we estimate the closest

decision boundary in multi-classification by a fast one-step attack

instead of the time-consuming brute force, to trade off performance

and efficiency. Then we initialize the staring point by slightly mov-

ing to the specified closest decision boundary, aiming to guide the

generated attack trajectory to cross this boundary.

Clearly, this reminds us that precisely estimating the closest

decision boundary beforehand and specifying it to guide the later

attack generation can help generate a more unnoticeable attack.

However, given target node 𝑣 , the precise way to search the closest

decision boundary is to perform minimum-budget attacks towards

each decision boundary B𝑐 (𝑐 ∈ {1, · · · ,𝐶} \ {𝑦𝑣}), and choose

the boundary with minimal budget as the closest one B𝑐★ , which
is time-consuming. To trade off performance and efficiency, we

simplify the minimum-budget attack for each class 𝑐 by limiting

only flipping one edge, namely one-step attack, yielding a one-step

perturbation 𝜹𝑐𝑣 towards 𝑐 as:

𝜹𝑐𝑣 = argmin

𝜹𝑣

L𝐶𝑊 (𝒂𝑣 + T (𝜹𝑣), 𝑐), (12)

= argmin

𝜹𝑣

𝑓𝜽 ∗ (𝒂𝑣 + T (𝜹𝑣))𝑦𝑣 − 𝑓𝜽 ∗ (𝒂𝑣 + T (𝜹𝑣))𝑐 ,

𝑠 .𝑡 . ∥𝜹𝒗 ∥0 ≤ 1.

where 𝜹𝑐𝑣 ∈ [𝛿𝑐𝑣1, 𝛿
𝑐
𝑣2
, · · · , 𝛿𝑐

𝑣𝑁
] ∈ [0, 1]𝑁 can be found by mini-

mizing the difference of confidence between 𝑦𝑣 and 𝑐 . Then we

approximately choose the most potential class 𝑐★ by comparing the

decrease loss under each 𝑐:

𝑐★ = arg max

𝑐
L𝐶𝑊 (𝒂𝑣 + 𝜹𝑐𝑣, 𝑐) . (13)

Then we initialize the perturbation 𝜹 (0)𝑣 as 𝜹𝑐
★

𝑣 , leading to a bet-

ter starting point 𝒂′ (0)𝑣 = 𝒂𝑣 + T (𝜹 (0)𝑣 ) which tends to have a

significantly higher confidence on 𝑐★.

Table 3: Dataset statistics.

Polblogs Cora Citeseer Pubmed

#Nodes 1,222 2,485 2,110 19,717

#Edges 16,724 5,069 3,668 44,325

#Features - 1,433 3,703 500

#Classes 2 7 6 3

B ALGORITHM
Here we provide the pseudo-code in Algorithm 1 for the whole

process of MiBTack. Given a target node 𝑣 , we initialize the start-

ing adjacency vector 𝜶 ′(0)𝑣 by one-step attack for each class 𝑐 ∈
{1, · · · ,𝐶} in Line 2-3. The training procedure of the perturbation

vector 𝜹𝑣 is presented in Line 4-11, which learns 𝜹𝑣 with PGD (Line

5-7), then dynamically adjusts Δ𝑣 and other parameters (Line 8-11).

Lastly, we output the attacks when 𝑃 ≤ 0 or ∥𝜹★𝑣 ∥0 ≤ 1. Intuitively,

before attack, we first estimate the closest decision boundary, and

then use it to initialize the starting point to guide the attack tra-

jectory to cross the closest decision boundary. Then we search for

the most adversarial topology attacks under the current budget

with PGD and then the budget is enlarged or reduced based on

whether these attacks succeed. Through repeatedly crossing the

green decision boundary, MiBTack can find the optimal budget Δ★𝑣 ,
namely the green dotted circle centered at node 𝑣 , which is tangent

to the green decision boundary.

C SPACE CONSUMPTION ANALYSIS
With the burden of a dense adjacency matrix, the gradient-based

topology attacks, including our MiBTack, usually have the space

complexity 𝑂
(
𝑁 2

)
[9], where 𝑁 is the number of nodes. Fortu-

nately, there are several works overcome this limitation [8, 9]. For

example, PRBCD [9] based on Randomized Block Coordinate De-

scent (R-BCD) only has linear complexity w.r.t. the budget Δ. It
worth pointing out that the space complexity of our MiBTack can

be further reduced by combining with these methods. We leave ex-

tending our MiBTack with Randomized Block Coordinate Descent

as our future work.

D FUTURE DETAILS ON EXPERIMENT
D.1 Dataset
The dataset characteristics are shown in Table 3, and we only con-

sider the largest connected component as in [47]. We split the

network into labeled (20%) and unlabeled nodes (80%). We further

equally split the labeled nodes into training and validation sets to

train our surrogate model. The datasets used in this paper can be

found in https://github.com/DSE-MSU/DeepRobust.

D.2 Implementations of Attack Models
All baselines are initialized with same parameters suggested by

their papers and we also further carefully turn parameters to get

optimal performance. For the greedy-based baselines (i.e., Rand,

DICE, DICE-t, FGA and Nettack), we set the maximum epoch as

1000, where they can consistently add perturbations until target

node 𝑣 is misclassified or the number of perturbed edges is more

https://github.com/DSE-MSU/DeepRobust
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Algorithm 1MiBTack

Require: The target node 𝑣 , the trained GNN model 𝑓 , patience 𝑃 ,

the initial step size 𝛼 and 𝛽 .

Ensure: The minimal-budget adversarial perturbations 𝜹★𝑣 .

1: 𝑖 ← 1, Δ
(0)
𝑣 = 1.

2: Approximate the closet boundary 𝑐★ via Eq. 13, then initialize

𝜹 (0)𝑣 with 𝜹𝑐
★

𝑣 .

3: while 𝑃 ≤ 0 do
4: Update 𝜹 (𝑖−1)𝑣 to

˜𝜹
(𝑖 )
𝑣 with gradient descent with Eq. 7 and

8.

5: Project
˜𝜹
(𝑖 )
𝑣 for the constraint of ∥𝜹 (𝑖 )𝑣 ∥0 ≤ Δ

(𝑖 )
𝑣 by Eq. 9.

6: Obtain the perturbed adjacency vector by 𝒂′(𝑖 )𝑣 ← 𝒂𝑣 +
T (𝜹 (𝑖 )𝑣 ).

7: if L(Proj{0,1}𝑁 [𝒂′
(𝑖 )
𝑣 ]) < 0 then

8: Reduce budget to Δ
(𝑖+1)
𝑣 with Eq. 10.

9: if ∥𝜹 (𝑖 )𝑣 ∥0 < ∥𝜹★𝑣 ∥0 then
10: 𝜹★𝑣 ← 𝜹 (𝑖 )𝑣 .

11: end if
12: else
13: Enlarge budget to Δ

(𝑖+1)
𝑣 with Eq. 11.

14: end if
15: Reduce patience 𝑃 and step size 𝛼 and 𝛽 if the perturbed

node has reached decision boundary.

16: end while
17: return Minimum perturbation 𝜹★𝑣 and Δ★𝑣 = ∥𝜹★𝑣 ∥0.

than 1000. For our model, we set the patience 𝑃 as 800, where the

step size 𝛼 for updating 𝜹 (𝑖−1)𝑣 is 1.0 and 𝛽 for updating Δ
(𝑖 )
𝑣 is 0.1.

D.3 Experiments Settings
All experiments are conducted with following setting:

• Operating system: CentOS Linux release 7.7.1908(Core)

• CPU: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz

• GPU: GeForce RTX 2080 Ti

• Software versions: Python 3.8.5; Pytorch 1.8.0; Numpy 1.19.2;

SciPy 1.5.4; NetworkX 2.5; Scikit-learn 0.23.2; dgl 0.5.3; torch-

sparse 0.6.12;
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