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ABSTRACT
The rapid increase in demand for wireless controlled Smart
Lighting has created a need to automate the mapping be-
tween the identifiers for individual light sources and their
physical locations. To control Smart Lights, their IDs and
physical locations relative to each other must be determined.
Nowadays, skilled technicians perform this process manu-
ally, which requires a lot of effort, is time-consuming, and
incurs high costs, particularly with non-stationary lights.
Visible Light Communication has been presented as a possi-
ble solution to this problem. This paper presents an approach
based on Visible Light Communication that leverages Ma-
chine Learning to automate the mapping process between
the identifiers and the relative physical location of Smart
Lights. We show that our approach provides a better location-
mapping performance compared to existing methods.
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•Computingmethodologies→ Image processing; •Net-
works→ Location based services.
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1 INTRODUCTION
As light-emitting diodes (LEDs) become increasingly ubiq-
uitous in commercial environments due to their energy ef-
ficiency, there has been a growing demand for wirelessly
controlled Smart Lights. The Smart Lighting market was val-
ued at $11 billion in 2020 and is expected to reach $18 billion
worldwide by 2028 [1]. Aside from the clear advantages of
remotely controllable lighting, Smart Lights can also enable
location-based services through localisation techniques [5].
In order for LED-based Smart Lights to be integrated with
control systems, their relative physical locations need to be
known. In other words, a mapping between the identifier
for each light and its actual location is needed. Currently,
this process is carried out manually and is time-consuming,
costly, and prone to human error. One solution to automate
this process can be provided by Visible Light Communica-
tion (VLC), which uses the light in the visible spectrum to
transmit information. With VLC, light can be used to encode
and transmit the identification information to the camera
system, which uses Machine Learning (ML) in order to map
the identifiers to the actual light source location. VLC-based
localisation has benefits over radio-based approaches, in-
cluding robustness to interference and multi-path fading [9].
VLC generally uses LED as transmitters and photodiodes or
cameras as receivers. LED-to-Camera communication is a
more recent form of VLC that uses a CMOS (Complementary
Metal Oxide Semiconductor) camera as a receiver rather than
a more traditional photodiode. CMOS cameras are commonly
available on a range of devices, making it possible to use com-
mercial off-the-shelf devices to build a VLC receiver that can
collect data from one or several sources simultaneously. The
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Figure 1: LiTalk: VLC-based collection & mapping of
light IDs.

rolling shutter effect of a traditional CMOS camera can also
be exploited in order to decode data that is being transmitted
by the light sources [5, 7].
Camera-based VLC can be used to build a system that allows
the mapping of new lights to their physical location. Subse-
quently, this information can be used to determine relative
locations by other VLC receivers; it should be noted that
most of the work done in state-of-the-art VLC localization
approaches is based on the assumption of such prior knowl-
edge. This paper focuses on the initial determination of the
relative locations of the lights to enable lighting control and
support other location-based services.

LiTalk is an initial step in this direction to explore the
use of VLC to automate the process of simultaneous map-
ping and localisation for Smart Lights by predicting the link
distance between light sources and camera receivers using
Machine Learning. Based on the predicted link distance, the
location coordinates of the light sources can be assigned,
eliminating the assumption that light source positions are
known a priori. With LiTalk, we show that the use of Ma-
chine Learning can provide benefits compared to existing
VLC decoding methods. Figure 1 depicts the LiTalk mech-
anism, where with the deployment of LiTalk solution, the
technician or autonomous guided vehicles (AGVs) can point
a camera towards the installed Smart Lights, which illumi-
nates/transmits their ID. The camera will decode those IDs
and further assign the location coordinates to the lights based
on the determined link distance. In a nutshell, this paper
makes the following contributions:
(1) A reliable many-to-one VLC link that can simultane-

ously decode the ID of multiple lights.
(2) A fast decoding pipeline for the above-mentioned VLC

link, reducing the computation time to an average of
500 ms to determine the identifier of the lights com-
pared to existing methods.

(3) A method to determine the link distance between the
light and the camera based on the LED image captured
by the camera. More specifically, we train a model to
predict the link distance given the captured LED size
within the camera frame.

2 LITALK OVERVIEW
In this section, we will first present the modulation scheme
we use in LiTalk for the transmission of the light IDs and
further discuss the image processing steps needed to decode
those IDs from multiple lights simultaneously.

2.1 Transmitter
In order to transmit data at a relatively high frequency, any
transmitter must be capable of switching its light state at rel-
atively high speeds. Most LEDs can support this fast switch-
ing as long as they are connected to a suitable driver cir-
cuit. VLC can also be carried out using an LED display as a
transmitter[8]. Data in VLC is most commonly transmitted
by modulating the state of light to on or off depending on
the binary data being transmitted.

2.1.1 Modulation Scheme. In LiTalk, basic On-Off Key-
ing (OOK) is used as the modulation scheme for the data.
OOK works by representing a binary ‘0’ by turning the light
off and a binary ‘1’ by turning it on. Using this method with-
out any additional data manipulation will cause noticeable
flickering if many consecutive ‘0’ or ‘1’ symbols were to ap-
pear in the data. In order to overcome this, we combine OOK
with Manchester encoding of the data. Manchester encoding
uses two bits to represent one symbol from the original data.
In our case, a ‘0’ is represented by the sequence ‘10’ and a ‘1’
is represented by the sequence ‘01’. This encoding strategy
creates a balanced amount of ones and zeros in the trans-
mitted data that keeps the light at a constant intensity. As it
is not possible to have more than two consecutive symbols,
this technique results in the absence of any noticeable flicker.
We use packets with a fixed preamble size and variable

payload size. We use 5 symbols ‘10001’ as the preamble (the
use of 3 consecutive zeros makes it distinguishable from the
rest of the data). A start frame delimiter of ‘01’ is also used
after the preamble before the payload.

The total size of the packet is calculated using the size of
the preamble and the size of the payload. The size of a packet
carrying 𝑁 bits of data is given by Equation 1.

Packet Size = 𝑀 + 𝑆 + 𝑁 ∗ 𝑛symbol (1)

where “M” represents the size of the preamble, “S” is the
size of the start frame delimiter and “N” is the number of
data bits in the payload. “𝑛symbol” is the number of symbols
that represent a single data bit after encoding (in our case
𝑛symbol = 2).
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2.1.2 Modulation Frequency&Packet Size. For success-
ful detection of information bits when using the camera as
a receiver, the amount of information encoded in a packet
also depends on the transmission frequency. We tested vari-
ous transmitter frequencies in order to determine the most
suitable frequency that maximises the amount of informa-
tion encoded without creating too much decoding difficulty.
Theoretically, there is a maximum transmitter frequency of
that, which is half the camera scan rate. This theoretical up-
per bound would cause a band to have a width of only one
pixel on the image. This would make it difficult to decode. In
LiTalk, the chosen frequency value is 2.5 kHz, this produces
a band width,𝑊 of 12 pixels. Modulating at this frequency
causes no perceivable flicker and allows for easy decoding
of the data. It is calculated that the maximum expected band
of the preamble will have a width of 36 pixels. Given this
pixel width and our calculated packet size from Equation 1,
we can determine the total length in pixels of a packet in a
frame.

Packet Length in Pixels = 12 ∗ 23 = 276 pixels. (2)

2.2 Receiver
Any hardware that can detect the presence of light can be
used as a receiver. Traditionally, photodiodes are preferred
due to their fast response and high bandwidth. Some re-
searchers have investigated the use of an LED in reverse
bias mode [4] and others have used smartphone cameras [3].
Cameras have much better spatial resolution than photodi-
odes so can give advantages when decoding from multiple
transmitters or carrying out localization[5]. In LiTalk, we
use the Raspberry Pi Camera to decode the ID of multiple
lights simultaneously.
Rolling Shutter: Most traditional cameras contain either a
CMOS or a charged-coupled device (CCD). CCD-based cam-
eras most commonly use the global shutter method of captur-
ing images from a scene. This is when all pixels are captured
simultaneously so the frame taken represents a single in-
stant in time. On the other hand, most CMOS-based cameras
capture images with the rolling shutter method. This is an
alternative to a global shutter, where an image is taken by
scanning across the scene either horizontally or vertically. A
rolling shutter mechanism works by exposing each row or
column of pixels sequentially. Once all the rows have been
exposed, an image is created by merging them together. This
means that not all parts of the image are recorded at the
same instant in time. Predictable distortions can be produced
when capturing fast-moving objects or rapid flashes of light.
When building a system that exploits the rolling shutter
effect, it is important to carefully choose the camera param-
eters to obtain the correct exposure time as this has a signifi-
cant effect on the width of the light bands and, consequently,
on the ability to decode.

(a) Original Frame (b) Contrast increase
and 3x3 blur

(c) Adaptive threshold

Figure 2: Decoding pipeline. After the contrast in-
crease, we blur the image (b) and apply an adaptive
threshold to create a binary image (c); the red circle
shows the detected radius

2.2.1 Camera Parameters. When designing a receiver for
an LED-to-Camera system there is a range of aspects to con-
sider. This section describes the most important parameters
and how they should be set based on the design of the system.
Exposure Time: It is defined as the time that the camera
sensor is exposed to the light and is arguably the most im-
portant parameter. The exposure time closely relates to the
rolling shutter speed of the camera, as previously mentioned.
A shorter exposure time will create more definition between
the dark and light bands, making them easier to distinguish.
Kuo et al. [5] show that independent of film speed (ISO), the
best performance is achieved with the shortest exposure time.
In LiTalk, by using a camera connected to a single board
computer rather than a smartphone, we have more control
over the exposure time of the camera and can set a specific
value to reduce the setup needed before transmission.
Film Speed: It is a measure of the sensitivity of the image
sensor to light. It can be represented as the amount of pho-
tons needed to saturate a pixel. An increased film speed (high
ISO) will reduce the amount of photons needed to saturate
a pixel. Usually this is used in low light situations. In our
case, a slower film speed is preferred, because it increases
the definition between bands and reduces noise.
ScanRate andResolution:Due to the rolling shutter effect,
the frames are captured row by row in a sequential way. The
image resolution determines the number of rows in a frame.
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The scan rate is known as the total time it takes for the sensor
to scan all the rows of the frame. The camera scan rate can
also be thought of the sampling rate of the sensor. The total
scan rate of the camera is determined by the time it takes
to scan a single row of pixels. A resolution of 1280x720 px
was chosen for the images. It was decided not to use Full HD
(1920x1080) in order to reduce processing time and memory
requirements. The readout time𝑇𝑟 is the time it takes for the
sensor to read a single row of pixels. In [6], it is shown that
the width𝑊 of each band of light can be given by Equation
3, where 𝑓 is the frequency of modulation.

𝑊 =
1

2𝑓 𝑇𝑟
(3)

Equation 3 indicates that the width of the light bands does
not depend on either the size of the LED or the distance
from the transmitter. With the current parameters & using
Equation 3, the readout time calculated as 16.67𝜇s.

2.2.2 Image Processing. The receiver uses image process-
ing techniques in order to detect the transmitter and de-
code the data. We use the image processing pipeline as in
Luxapose[5]. An additional contrast increase is used as in
DynaLight [10].
Decoding: We adapt the method proposed in DynaLight-
Vasilakis [10] to decode the images captured by the camera.
This includes the steps of blurring with a 3x3 kernel and
then using an adaptive threshold to create a binary image.
In the center of the detected area, where the light is located,
the intensity is much higher than in other parts. This causes
some of the pixels in this location to become overexposed
and create bands that are larger than those expected, making
it harder to decode. In order to overcome this, we implement
a row offset method. Instead of selecting the center column
of pixels for decoding, a column offset of half of the circle
radius is used for selection.

3 IMPLEMENTATION
To evaluate the performance of our LiTalk design, we imple-
ment a prototype system using a transmitter circuit with off
the shelf components and a commercially available single
board computer together with a camera module.
Transmitter: On the transmitter side, we use an Arduino
Uno R3 to perform modulation, control and encoding using
an LED and a custom circuit. We can achieve the desired
frequencies by using the built-in delay functions to create
time periods between the on and off states of the light. We
use this to achieve a modulation frequency of 2.5 kHz. The
transmitter always repeats the same packet on a loop until de-
activated. The only information transmitted is the hardware
identifier, so a simple solution is to repeat packet transmis-
sion until the receiver can carry out decoding to avoid the

Figure 3: Captured LEDs using rolling-shutter in a sin-
gle frame.

need for synchronisation across the link. The circuit used
has been adapted from the circuit used in DynaLight [10].
We employ the X-Lamp MC-E by Cree, which contains 4
LED dies on an integrated circuit. The maximum current for
each die is 700 mA.
Receiver: Originally, the implementation was started using
a specialised camera designed for machine vision applica-
tions, the OpenMV1. After some testing with the camera, we
realized that the built-in processor was not powerful enough
for the required image processing techniques. The final solu-
tion employs a Raspberry Pi 4Model B single board computer.
This is connected to the Raspberry Pi HQ camera2. The Rasp-
berry Pi contains a Broadcom Quad-core 1.5 GHz processor,
making it much more powerful than the OpenMV’s single
core 480 MHz processor. Using the Raspberry Pi allows us
to capture and process images on the same device, removing
the undesired USB serial latency that was occurring. The
Raspberry Pi runs its own operating system based on Debian,
which provides all the necessary software that is utilised in
the system.

3.1 Mapping Method
The first step for mapping the light ID to their physical
location coordinates, with respect to the camera, is to know
the elevation angle or the link distance between the camera
and light source. In LiTalk, we use the following approach
to calculate the link distance.
Method 1 - Conventional decoding: In rolling-shutter-
based LED-to-Camera communication, the number of bright
pixels that appear on the image depends on the link distance
between the light source and camera. Mathematically taken
from [2], the relation between distance, number of pixels

1https://openmv.io/products/openmv-cam-h7-plus
2https://www.raspberrypi.com/products/raspberry-pi-high-quality-
camera/
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Figure 4: Blob Size vs Distance and ISO. Each line rep-
resents a different ISO (film speed) value.

and camera factors can be represented as:

𝐷link = 𝑓𝐿 +
𝑆𝑟 𝑓𝐿

𝑆𝑖𝑝𝑆𝑝
(4)

where 𝐷link is the link distance between the camera and LED,
𝑓𝐿 is the focal length of the camera (equals to 0.28 mm in our
case). 𝑆𝑟 is the radius of the LED (taken as 10.9 mm in LiTalk),
𝑆𝑖𝑝 is the size of LED in terms of pixels and 𝑆𝑝 is the length
of a single pixel. In LiTalk, we use Equation 4 to determine
the link distance from two light sources simultaneously.
Method 2 - LiTalk: We employ a linear regression model
to calculate the 𝐷link to improve the link distance estima-
tion accuracy. We train the model for different sizes of LED
received on the image sensor and for different known link
distances. The training was performed in a dark room with
no ambient light sources. During the evaluation, we first
process the image of the received light (an example using
two LEDs is shown in Figure 3), calculate the blob size, i.e.
LED size appears on the image, and predict the distance.

Based on the calculated distance from two LEDs and with
the known camera location and separation between the two
LEDs, the location coordinates to LEDs can be calculated
and assigned to map the lights to their physical location. In
LiTalk, we have only implemented the former part, and the
latter part is left for future work. The results and evaluation
for distance estimation using two methods are described in
Section 4.

4 EVALUATION
In this section, after a discussion of how film speed can affect
transmissions over distance and how it can be best tuned,
we evaluate the distance estimation of the prototype system.

4.1 Transmitter
Duty Cycle: Our preliminary experiments showed that the
dark bands on the frame produced by the camera are much

thinner than the bright bands due to the extra time needed
to charge and discharge the LED. We addressed this issue by
making the off time slightly larger than the on time, i.e., by
changing the duty cycle of the signal to 40%.

4.2 Receiver
4.2.1 Effect of Film Speed onDistance. Our preliminary
experiments with the complete implementation showed that
the system found it more difficult to decode data at longer dis-
tances when using a fixed length packet. This is because, as
the distance between the transmitter and receiver increases,
the blob size provided by the detection pipeline decreases.
Therefore, there are fewer pixels to decode in an image, and
using a fixed length packet imposes a lower bound on the
blob size to enable decoding. The authors of Luxapose [5]
state that it is best to keep film speed to a minimum to en-
sure reliable decoding. They mention that increasing the
film speed can help the decoding process at longer distances
but is conducive to images with more noise. Therefore, it is
important to look into the relationship between film speed
(ISO), distance and the blob size.

To this end, we carry out an experiment using three differ-
ent ISO values; 100, 400 and 800. The distance between the
receiver and the transmitter is measured, and the diameter
of the blob is recorded. Figure 4 shows that, as the distance
is increased, the blob size decreases, making size estimation
less accurate. This decrease in blob size can be partially over-
come by increasing the film speed of the camera. It is seen
that using an ISO value of 800 results in the maximum blob
size at all distances. We can also calculate a lower bound of
the blob size due to the fixed packet size i.e., 276 pixels (using
Equation 2). The graph shows that when using an ISO value
of 100 or 400, the blob size becomes less than that value at
around 40 cm, whereas when using an ISO value of 800, this
point is not reached until around 70cm. As the performance
of LiTalk for distance estimation depends on the blob size,
optimising the camera parameters such as ISO evaluated in
this section is vital.

4.3 Performance Analysis
4.3.1 ComputationTime. Our experiments show thatLiTalk
takes between 0.3-1.3 seconds to decode a frame (containing
two LEDs) with an average time of 500 ms. This is much
lower than the total time taken by other systems such as
Luxapose [5]. The time to decode varies based on the sched-
uling methods of the kernel running on Raspberry Pi.

4.3.2 Distance estimation. Using conventional decoding
methods (Method 1 as described in Section 3.1) [2], our anal-
ysis shows that the error is minimized only at a specific
distance, i.e. when the received LED image has no blooming
effect and no blurriness. Further, the error is inconsistent
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(a) Error in link distance using conven-
tional mathematical method.

(b) ML predicted distances for given LED
size.

(c) Measured error in link distance using
regression.

Figure 5: LiTalk link distance analysis.

and increases with distance. For shorter link distances, the
average error is more than 2 cm and the pattern in the er-
ror plot for distance estimation is not linear, as illustrated
in Figure 5a. The mean squared error calculated with this
approach is greater than 10cm.

In Section 4.2.1, we have seen how the camera parameters
and link distance affect the blob’s size. This implies that it is
possible to estimate the link distance based on the blob size.
We employ our regression model (Method 2 as described
in Section 3.1) to perform the analysis at various distances
and predict the link distance based on the received blob
size while simultaneously decoding the light ID. The pink
curve in Figure 5b shows the predicted distance, and the
error in the predicted distance for various positions is shown
in Figure 5c. The mean squared error calculated using ML
model is 1.9734 cm, resulting in a five-fold improvement
compared to the existingmethod (see Figure 5a & 5c). Further,
performance comparison with the SOA work can only be
made after full implementation of LiTalk for localization
service as the estimation distance is the initial step. As part
of our future work, we plan to train the model to decode
the LED IDs, identify the link distance within a frame, and
provide location services.

5 CONCLUSION
With an increased demand for wireless LED control, camera-
based VLC proves to be a potential solution to the ID match-
ing problem. This is defined as the requirement to match
hardware identifiers of light fittings to their locations. In this
paper, we have proposed a way to address this problem using
off-the-shelf available cameras and a link distance estimation
regression model. Our results show a five-fold improvement
in the distance estimation mean squared error compared to
existing methods. Furthermore, we have developed a fast
decoding pipeline to reduce the frame decoding time to an
average of 500 ms.
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