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Unsupervised hashing has attracted much attention for binary representation learning due to the requirement
of economical storage and efficiency of binary codes. It aims to encode high-dimensional features in the
Hamming space with similarity preservation between instances. However, most existing methods learn
hash functions in manifold-based approaches. Those methods capture the local geometric structures (i.e.,
pairwise relationships) of data, and lack satisfactory performance in dealing with real-world scenarios that
produce similar features (e.g. color and shape) with different semantic information. To address this challenge,
in this work, we propose an effective unsupervised method, namely Jointly Personalized Sparse Hashing
(JPSH), for binary representation learning. To be specific, firstly, we propose a novel personalized hashing
module, i.e., Personalized Sparse Hashing (PSH). Different personalized subspaces are constructed to reflect
category-specific attributes for different clusters, adaptively mapping instances within the same cluster to
the same Hamming space. In addition, we deploy sparse constraints for different personalized subspaces to
select important features. We also collect the strengths of the other clusters to build the PSH module with
avoiding over-fitting. Then, to simultaneously preserve semantic and pairwise similarities in our proposed
JPSH, we incorporate the proposed PSH and manifold-based hash learning into the seamless formulation. As
such, JPSH not only distinguishes the instances from different clusters, but also preserves local neighborhood
structures within the cluster. Finally, an alternating optimization algorithm is adopted to iteratively capture
analytical solutions of the JPSH model. We apply the proposed representation learning algorithm JPSH to
the similarity search task. Extensive experiments on four benchmark datasets verify that the proposed JPSH
outperforms several state-of-the-art unsupervised hashing algorithms.
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1 INTRODUCTION
Representation learning has attracted extensive research attention in affective applications, such
as affective image retrieval [50, 51, 54], emotion classification [1, 37, 38] and facial recognition
[40]. Traditional representation learning usually bases on real-valued features, which will cause a
waste of time and space. Recently, hashing representation also known as binary representation
has been popular and achieved promising performances [16, 41, 48]. Furthermore, unsupervised
hashing refers to the technology that maps high-dimensional features to compact binary codes
without label information [8, 10, 26, 34, 52], and the similarity relationship between instances can
be approximated by the Hamming distance. Therefore, unsupervised hashing with the low storage
and efficient computation can be widely used in representation learning tasks, especially in the
image similarity search tasks, which aims to retrieve some related samples from the dataset [17, 55].

Existing unsupervised hashing methods can be categorized into data-independent and learning-
based hashing. Previous works mainly focus on finding suitable projections to produce optimal
binary codes, e.g., Locality Sensitive Hashing (LSH) [3] and Min-wise Hashing (Min-Hash) [12].
Such methods model learning processes without using any data structure and distribution in the
original space, and require long hash bits to achieve satisfactory results.
In contrast, learning-based hashing methods are gaining popularity in recent years. These

methods preserve similarity relationships between instances via different viewpoints. For example,
Iterative Quantization with Principal Component Analysis (PCA) (PCA-ITQ) [6] imposes a rotation
matrix to iteratively reduce quantization errors between low-dimensional features and binary codes.
Sparse Projections (SP) [47] incorporates a sparse regularizer to reduce the number of parameters
and computational cost. Ordinal Embedding Hashing (OEH) [32] and Ordinal Constraint Hashing
(OCH) [31] preserve the ranking information by embedding the ordinal relation among data points.
Concatenation Hashing (CH) [46] encourages that any two instances close to the same center
point are close, whilst maintaining relative positions in the Hamming space. Recovery of Subspace
Structures Hashing (RSSH) [42] preserves the semantic similarity in the Hamming space via an
unsupervised multi-stage hashing model.

In addition, some manifold-based hashing methods have been proposed to capture the complex
structures of data based on graph learning. Spectral Hashing (SH) [45] converted the binary code
learning to the graph partitioning. Zhu et al. proposed the Sparse Embedding and Least Variance
Encoding (SELVE) [57] to encode the sparse embedding vector over a learned dictionary. Anchor
Graph Hashing (AGH) [35] built an anchor graph [33], and it obtained the tractable low-rank
adjacency matrix. The matrix was used to measure the similarity between a pair of data points
and a small number of anchor points, which were the K-means clustering centers because of
the strong representation power of the category attributes. To preserve the underlying manifold
structure with the t-SNE [43] that is a modification of stochastic neighborhood embedding, Inductive
Manifold Hashing (IMH) [39] was propsed. Some researchers developed a tractable alternating
maximization algorithm to preserve the neighborhood structure inherent in the data, called Discrete
Graph Hashing (DGH) [34]. Jiang et al. implicitly computed the similarity graph matrix by feature
transformation, and then proposed the Scalable Graph Hashing (SGH) [15] method. Graph PCA
(gPCA) Hashing [56] simultaneously preserved local structures via manifold learning and global
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structures via PCA. Locally Linear Hashing (LLH) [13] reconstructed the locally linear structures
of manifolds in the binary Hamming space with locality-sensitive coding. Compared to LLH,
Discrete Locality Linear embedding Hashing (DLLH) [14] directly reconstructed binary codes by
maintaining the local linear relationship of data points. Considering the 𝑙2,1-norm term, Jointly
Sparse Hashing (JSH) [22] could minimize the information loss. Unsupervised Discrete Hashing
(UDH) [17] captured the semantic information by a balanced graph semantic loss for exploring both
the similar and dissimilar relationships among data. By considering the semantic information, Li et
al. proposed a weakly-supervised hashing method for image retrieval and achieved state-of-the-art
performance [28].

Fig. 1. The proposed JPSH framework. It constructs a seamless hash function, which consists of twofold
properties: semantic and pairwise similarities. JPSH accommodates the proposed PSH module to maintain
semantic similarity, and preserves pairwise similarity using a manifold-based hashing method. Thus, we learn
discriminative binary codes by combining the two similarities. In this figure, shapes including triangle, square
and star are used to describe semantic relationships except for circle, whilst colors are used to describe pairwise
relationships. (a) Some real-world instances with similar attributes have different semantic information. (b)
Preserving semantic similarity by the proposed PSH, adaptively mapping instances within the same cluster
to the same Hamming space. (c) Maintaining the pairwise similarity by a manifold-based hashing method. (d)
Jointly learning the above twofold properties in the same Hamming space, and obtaining the discriminative
hashing codes for the image binary representation.

However, most of existing manifold-based hashing methods do not always produce satisfactory
results in practice because instances with similar features (e.g. color and shape) may have different
semantics. An example is shown in Figure 1 (a), where a cat (row 1, column 2) is visually similar to a
dog (row 2, column 2) instead of the other cat (row 1, column 1). On the other hand, there is a large
difference in color between the black horse (row 3, column 1) and the white horse (row 3, column 2),
which may be mistakenly treated as two different animals. Existing methods model the neighboring
graph in hash functions to reflect the pairwise relationship between two instances. For example,
SH constructs the Laplacian graph to describe the relationship between two instances. AGH creates
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a modified version of SH by introducing the anchor graph [33]. JSH uses a 𝑙2,1-regularized term
to minimize the information loss of low-dimensional features and binary codes on the basis of
AGH. Although the above methods can effectively preserve the local neighborhood structure from
the high-dimensional feature space (shown in Figure 2 (a)) to a low-dimensional space (shown in
Figure 2 (b)), such methods fail to consider semantics of instances that correspond to the intrinsic
geometric structures of data [5, 30, 49, 53].

Fig. 2. Comparison of the standardmanifold-basedmethod [22] and our JPSHmethod. (a) the data distribution
in the high-dimensional feature space; (b) the low-dimensional features generated by a standard manifold-
based hashing method [22]; (c) the low-dimensional features with discriminative achieved by our proposed
JPSH, and each cluster is transformed by a personalized weight produced by the PSH module. Different
from the standard scheme [22] that only preserves pairwise similarity, the proposed JPSH jointly preserves
semantic and pairwise similarities in the low-dimensional space, which allows us to effectively distinguish
different clusters, and preserve local intrinsic structures within each cluster.

To tackle the above problems, in this paper, we propose an effective unsupervised hashing
method, namely Jointly Personalized Sparse Hashing (JPSH), to learn the binary representation
for similarity search. Unlike existing manifold hashing methods that only preserve the pairwise
relationship, the proposed JPSH encodes both semantic and pairwise similarities into the Hamming
space, which can effectively distinguish different clusters while preserving local structures within
clusters, as illustrated in Figure 2 (c). The proposed JPSH framework is shown in Figure 1, and the
main contributions of our work can be summarized as follows:

• A novel Personalized Sparse Hashing (PSH) module is proposed to preserve the semantics of
instances that correspond to the intrinsic structures of data. It learns personalized subspaces
that reflect the special categorical characteristics, and then defines sparse constraints for each
personalized subspaces. Thus, the PSH can adaptively map instances within the same cluster
to the same Hamming space and learn more discriminative features. To our knowledge, this
is the first work that preserves semantic similarity in a personalized subspace.

• We incorporate PSH and a standard manifold-based hashing method JSH in a seamless
formulation to construct the proposed JPSH model, which simultaneously preserves semantic
and pairwise similarities in the Hamming space.

The rest of this paper is organized as follows. Section 2 introduces some related works. Section 3
presents the details of our JPSH including the proposed personalized sparse hashing, the overall
loss function, the discussions, the optimization algorithm, the out-of-sample extension. Section 4
shows experimental results and analyses, followed by the conclusion in Section 5.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Binary Representation via Jointly Personalized Sparse Hashing 111:5

2 RELATEDWORKS
In this section, we first define some used notations, and then introduce several related works,
including Spectral Hashing, Anchor Graph Hashing and Jointly Sparse Hashing.

2.1 Notations
In the following, we use bold uppercase letters (e.g. Z) for matrices, bold lowercase letters (e.g. z)
for vectors, and normal lowercase letters (e.g. z) for scalars. If there are no special instructions, we
define the 𝑖-th row of the matrix Z as Z𝑖∗, the 𝑗-th column of the matrix Z as Z∗𝑗 , the 𝑖-th element
of Z∗𝑗 or the 𝑗-th element of Z𝑖∗ as Z𝑖 𝑗 . We also denote the transpose of the matrix Z as Z𝑇 , and
the trace of the matrix Z as tr (Z) if it is a square matrix. ∥Z∥2, ∥Z∥2,1, and ∥Z∥𝐹 represent the
𝑙2-norm, 𝑙2,1-norm, and Frobenius norm of the matrix Z, respectively. Z ⊗ H denotes the Kronecker
product between matrices Z and H. In this paper, the training set is denoted as X = {x𝑖 }𝑛𝑖=1, x𝑖 ∈ R𝑑 ,
where 𝑛 is the number of training samples, and 𝑑 is the dimension of features. The binary codes
B = {b𝑖 }𝑚𝑖=1, b𝑖 ∈ R𝑙 , where 𝑙 ≪ 𝑑 , 𝑙 is the length of bits, and𝑚 ≪ 𝑛,𝑚 is the number of anchor
points. I is the identity matrix with the size of 𝑙-by-𝑙 .

2.2 Spectral Hashing
SH [45] aims to extract the discriminative information from the original space to learn binary codes
based on the graph theory. With this objective, it minimizes the errors of binary codes between
instances with Laplacian graph as follows:

min
H

𝑛∑︁
𝑖, 𝑗=1

∥h𝑖 − h𝑗 ∥22M𝑖 𝑗

𝑠 .𝑡 . H ∈ {−1, 1}𝑙×𝑛, lH = 0,HH𝑇 = 𝑛I

, (1)

where l ∈ 𝑅1×𝑙 is an all-ones vector, M𝑖 𝑗 = exp
(
−∥x𝑖 − x𝑗 ∥2/𝜂2

)
, M ∈ 𝑅𝑛×𝑛 is the affinity matrix, 𝜂

is a pre-defined parameter, and H = {h𝑖 }𝑛𝑖=1, h𝑖 ∈ R𝑙 is binary codes of the 𝑖-th training sample. It is
time-consuming to computeM for large-scale datasets. In addition, the information loss between
low-dimensional features and binary codes will increase due to the binarization operation.

2.3 Anchor Graph Hashing
To reduce the computational complexity in Eq. (1), AGH [35] designs a truncated similarity matrix
A ∈ R𝑛×𝑚 between all 𝑛 instances and𝑚 anchor points. The 𝑖-th element of A∗𝑗 is defined as:

A𝑖 𝑗 =


exp(−∥x𝑖 − c𝑗 ∥2/𝜃 )∑

𝑗 ′∈{𝑖 } exp(−∥x𝑖 − c𝑗 ′ ∥2/𝜃 )
,∀𝑗 ∈ {𝑖}

0 , otherwise
, (2)

where c𝑗 ∈ R𝑑 is the 𝑗-th anchor point; {𝑖} is the index set of 𝑘 neighboring anchor points of x𝑖 ,
and 𝜃 is a pre-defined parameter. Although AGH has the linear training time for the developed
model, it still fails to control the information loss between low-dimensional features and binary
codes in the binary representation learning.

2.4 Jointly Sparse Hashing
To minimize the information loss between low-dimensional feature vectors and binary codes, JSH
[22] presents 𝑙2,1-regularized regression formulation, and the objective function can be defined as
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follows:

min
B,W,V

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

∥b𝑗 − VW𝑇 x𝑖 ∥22A𝑖 𝑗 + 𝛼 ∥W∥2,1

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,V𝑇V = I

, (3)

where 𝛼 is the balance parameter, W ∈ R𝑑×𝑙 is the pairwise weight matrix; V ∈ R𝑙×𝑙 is the rotation
matrix. Although JSH effectively handles the pairwise projection from a high-dimensional space to
the Hamming space, the semantics of instances are unknown and motivate our work reported in
this paper.

3 JOINTLY PERSONALIZED SPARSE HASHING
In this section, we present the details of the proposed JPSH, including semantic-preserving Per-
sonalized Sparse Hashing (PSH), overall objective function of JPSH, discussions, optimization, the
out-of-sample extension.

3.1 Personalized Sparse Hashing
The semantic structure can reflect the intrinsic geometric relationship across different data points
within a specific category. The proposed PSH thinks that instances with similar semantic structures
should be adaptively projected to the same Hamming space, and vice versa, as shown in Figure 1
(b). For this purpose, one simple yet effective way is to build different personalized subspaces [44]
to capture different semantic structures. Retrieving label information is an expensive process in
terms of time, labor and human expertise, and we define semantic structures in a high-dimensional
space by pseudo labels produced by K-means. The instances with similar semantic information
likely share the same anchor point. Therefore, we derive a set of anchor points C = {c𝑗 }𝑚𝑗=1 as the
training set of PSH and obtaining the following objective function:

min
B,P,R

𝑚∑︁
𝑗=1

∥b𝑗 − RP𝑇𝑗 c𝑗 ∥22

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,R𝑇R = I

, (4)

where P𝑗 ∈ R𝑑×𝑙 is a personalized weight matrix for the anchor point c𝑗 and P = [P1; P2; . . . ; P𝑚] ∈
R𝑚𝑑×𝑙 . R ∈ R𝑙×𝑙 is a rotation matrix to minimize quantization errors, driven by ITQ [6].

Since the binarization operation for low-dimensional features RP𝑇𝑗 c𝑗 and binary codes b𝑗 helps
increase the information loss, we consider using the feature sparsity for personalized weight P𝑗 to
select important features. Exclusive group lasso (EGL) [18, 19] encourages intra-cluster competition
but discourages inter-cluster competition. Inspired by EGLwe first impose a 𝑙2,1-norm regularization
on personalized weight P𝑗 for pursuing the sparsity of intra-cluster features. Then, we create a
𝑙2-norm term to constrain the non-sparsity of inter-cluster features. This regularization term enables
us to perform optimal feature selection for each cluster. However, moderating the personalized
weight P𝑗 with a single anchor point c𝑗 may over-fit with a poor generalization ability. Therefore,
we force the anchor point c𝑗 to lend certain strengths from its neighboring anchors to learn the
personalized weight P𝑗 , motivated by the network lasso penalty [7]. Finally, we re-write the loss
function of PSH as follows:

min
B,P,R

𝑚∑︁
𝑗=1

∥b𝑗 − RP𝑇𝑗 c𝑗 ∥22 + 𝜆1

𝑚∑︁
𝑗=1

∥P𝑗 ∥22,1 + 𝜆2

𝑚∑︁
𝑖, 𝑗=1

S𝑖 𝑗 ∥P𝑖 − P𝑗 ∥𝐹

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,R𝑇R = I

, (5)
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where 𝜆1 and 𝜆2 are balance parameters, S ∈ R𝑚×𝑚 is the similarity matrix of anchors, and the 𝑖-th
element of S∗𝑗 is defined as follows:

S𝑖 𝑗 =


exp

(
−
∥c𝑖 − c𝑗 ∥22

𝛿2

)
, if c𝑖 ∈ 𝑁𝜓 (c𝑗 ) or c𝑗 ∈ 𝑁𝜓 (c𝑖 )

0 , otherwise
, (6)

where 𝛿 is a given parameter, and 𝑁𝜓 (c𝑖 ) is the index set of𝜓 nearest neighbors of the anchor point
c𝑖 .

3.2 Overall Objective Function of JPSH
As aforementioned, the PSH model shown in Eq. (5) can effectively preserve particular attributes of
each cluster from the high-dimensional space into the Hamming space. Instances within the same
cluster can be projected by the same personalized weight matrix, resulting in directly maintaining
the semantics of instances that correspond to intrinsic structures of data into the Hamming space.
To further improve the representation capacity of binary codes, we also hope to preserve the

local neighborhood structure within the cluster in the Hamming space. To this end, we maintain
the pairwise similarity via a manifold-based hashing learning method. Since JSH [22] can quantify
the similarity between each instance and its neighboring anchor points, and greatly reduce the time
complexity, we thereby joint Eqs. (3) and (5) to construct the Jointly Personalized Sparse Hashing
(JPSH) model. The overall objective function of JPSH is defined as:

min
B,P,W,
R,V

𝑚∑︁
𝑗=1

∥b𝑗 − RP𝑇𝑗 c𝑗 ∥22 +
𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

∥b𝑗 − VW𝑇 x𝑖 ∥22A𝑖 𝑗

+ 𝜆1

𝑚∑︁
𝑗=1

∥P𝑗 ∥22,1 + 𝜆2

𝑚∑︁
𝑖, 𝑗=1

S𝑖 𝑗 ∥P𝑖 − P𝑗 ∥𝐹 + 𝜆3∥W∥2,1

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,R𝑇R = V𝑇V = I

(7)

where 𝜆3 is the balance parameter for projected matrix W.

3.3 Discussions
In the following, we will discuss how our proposed JPSH learns the binary representation and
preserves discriminative information compared with other hashing methods from two aspects.
On the one hand, compared to existing manifold-based hashing methods, such as SH and JSH,

our proposed JPSH not only considers local pairwise similarity in the original feature space X,
but also the intrinsic semantic similarity of the data. In particular, Eq. (3) shows that JSH can
effectively reduce the computational complexity using truncated similarity matrix A, and avoid
information loss via ∥W∥2,1. Therefore, we maintain local neighborhood structures within each
cluster by JSH, as the local structure information in the two clusters (purple points and blue
points shown in the Figure 2 (b)). However, JSH has difficulty distinguishing instances with similar
features but different semantic information. Comparing Eq. (7) against Eq. (3), we learn a set of
personalized weights P𝑗 ( 𝑗 = 1, 2, . . . ,𝑚) for different anchors c𝑗 ( 𝑗 = 1, 2, . . . ,𝑚), and employ the
𝑙2,1-norm sparse constraint on each P𝑗 . So, instances with the same pseudo-label can be adaptively
mapped to the personalized subspace through the unique projection learning of personalized
weights. Therefore, the proposed JPSH can avoid misrepresenting instances of similar features with
different semantics by directly retaining the semantic relationship of the original feature space.

On the other hand, compared against those multi-stage hashing methods, such as PCA-ITQ and
RSSH, we construct the seamless hash objective function Eq. (7). It can avoid suboptimal solutions
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generated by using multiple independent learning strategies. For example, PCA-ITQ first applies
PCA to perform linear dimensionality reduction, and then uses an alternating algorithm for refining
the initial orthogonal transformation to reduce quantization errors. RSSH preserves semantic
relationships on three subproblems: multi-subspace learning, similarity matrix construction, and
semantics preserved hashing. Different from the above methods, we construct personalized weight
matrix P, pairwise weight matrixW and two rotation matrices R and V in the seamless formulation
Eq. (7). Thus, our proposed JPSH can significantly avoid the suboptimal solution, and obtain
discriminative hash codes in binary representation learning.

3.4 Optimization
The optimization of Eq. (7) is intractable and non-convex w.r.t all parameters simultaneously.
Therefore, we adopt an alternating optimization algorithm to iteratively update all parameters till
the algorithm converges to an acceptable settlement.

Update Personalized Weight P: First, we update the personalized weight P whenW, R, V and
B are fixed. The subproblem of Eq. (7) w.r.t P is:

min
P

𝑚∑︁
𝑗=1

∥b𝑗 − RP𝑇𝑗 c𝑗 ∥22 + 𝜆1

𝑚∑︁
𝑗=1

∥P𝑗 ∥22,1 + 𝜆2

𝑚∑︁
𝑖, 𝑗=1

S𝑖 𝑗 ∥P𝑖 − P𝑗 ∥𝐹

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,R𝑇R = I

. (8)

For the convenience, we devide Eq. (8) into three functions: 𝐹1 (P) =
∑𝑚

𝑗=1 ∥b𝑗 −RP𝑇𝑗 c𝑗 ∥22, 𝐹2 (P) =
𝜆1

∑𝑚
𝑗=1 ∥P𝑗 ∥22,1, 𝐹3 (P) = 𝜆2

∑𝑚
𝑖,𝑗=1 S𝑖 𝑗 ∥P𝑖−P𝑗 ∥𝐹 . We denote Y = diag (c1, c2, . . . , c𝑚), and Y ∈ R𝑚𝑑×𝑚 ,

where diag (·) is a diagonal function. Since RR𝑇 = I, the derivative of 𝐹1 (P) w.r.t P can be computed
as follows:

𝜕𝐹1 (P)
𝜕P

= −2YB𝑇R + 2YY𝑇P. (9)

According to Refs. [24, 25], we have the derivative of 𝐹2 (P) w.r.t P as follows:

𝜕𝐹2 (P)
𝜕P

= 2𝜆1KP, (10)

where K ∈ R𝑚𝑑×𝑚𝑑 is a diagonal matrix, and the 𝑖-th diagonal element can be defined as:

K𝑖𝑖 =

𝑚∑︁
𝑗=1

I𝑖 𝑗 ∥P𝑗 ∥2,1
∥P𝑖∗∥2 + 𝜖

, (11)

where 𝜖 is a very small constant to ensure the derivative solvable, I (·) is an indicator function, and
I𝑖 𝑗 = 1 if P𝑖∗ belongs to P𝑗 , otherwise I𝑖 𝑗 = 0.

The derivative of 𝐹3 (P) w.r.t. P is computed as follows:

𝜕𝐹3 (P)
𝜕P

= 2𝜆2 (G ⊗ I𝑑 ) P. (12)

where I𝑑 ∈ R𝑑×𝑑 is an identity matrix. G ∈ R𝑚×𝑚 is square matrix, and the 𝑖-th element of G∗𝑗 can
be expressed as:

G𝑖 𝑗 =


𝑚∑︁
𝑘=1

S𝑖𝑘
| |P𝑖 − P𝑘 | |𝐹 + 𝜖

−
S𝑖 𝑗

| |P𝑖 − P𝑗 | |𝐹 + 𝜖
(𝑖 = 𝑗)

−S𝑖 𝑗
| |P𝑖 − P𝑗 | |𝐹 + 𝜖

(𝑖 ≠ 𝑗)
. (13)
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Combining 𝜕𝐹1 (P)/𝜕P, 𝜕𝐹2 (P)/𝜕P and 𝜕𝐹3 (P)/𝜕P together, and setting it to be zero, we have a
closed-form solution of the personalized weight P as follows:

P =

(
𝜆1K + 𝜆2 (G ⊗ I𝑑 ) + YY𝑇

)−1
YB𝑇R, (14)

Update Pairwise Weight W: We attempt to update the pairwise weight W when other four
parameters are fixed. Removing terms that are irrelevant to W, we have the following function as:

min
W

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

∥b𝑗 − VW𝑇 x𝑖 ∥22A𝑖 𝑗 + 𝜆3∥W∥2,1

𝑠 .𝑡 . B ∈ {−1, 1}𝑙×𝑚,V𝑇V = I

. (15)

According to Ref. [22], since the
∑

𝑖 A𝑖 𝑗 = 1 and VV𝑇 = I, the term between X and X𝑇 is an identity
matrix. So, the closed-form solution of W is:

W =

(
𝜆3Q + XX𝑇

)−1
XAB𝑇V, (16)

where Q ∈ R𝑑×𝑑 is a diagonal matrix, and the 𝑖-th element of Q𝑖∗ is:

Q𝑖𝑖 =
1

2∥w𝑖∗∥2
, (17)

where w𝑖∗ is the 𝑖-th row of the pairwise weight W.
Update Rotation Matrix R: To compute R, we fix P, W, V and B, and then solve the following

maximization problem:

max
R

tr
(
RP𝑇YB𝑇

)
, (18)

According to [27, 58], we compute P𝑇YB𝑇 = Û1D1V̂
𝑇

1 by Singular Value Decomposition (SVD), and
the updating scheme of R is described below:

R = V̂1Û
𝑇

1 . (19)

Update Rotation Matrix V: To derive the solution of V, we fix the other four parameters and
re-form the maximization problem as follows:

max
V

tr
(
VW𝑇XAB𝑇

)
. (20)

We use SVD to solve the problemW𝑇XAB𝑇 = Û2D2V̂
𝑇

2 , and then retain the solution of V as follows:

V = V̂2Û
𝑇

2 . (21)

Update Binary Codes B: Finally, we update the parameter B when others have been fixed and
solve the optimization problem as follows:

max
B

tr
(
RP𝑇YB𝑇 + VW𝑇XAB𝑇

)
(22)

Thus, the solution to B is:
B = sgn

(
RP𝑇Y + VW𝑇XA

)
(23)

where sgn (·) is a sign function.
With the above handling, the pseudo codes of our proposed JPSH method is summarized in

Algorithm 1.
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Algorithm 1 Jointly Personalized Sparse Hashing (JPSH)
Input: Training set X, balance parameters 𝜆1, 𝜆2, 𝜆3, the number of anchors 𝑚, 𝑘 neighboring

anchor points, the length of hash codes 𝑙 , and the iteration time 𝑇 .
Output: Binary codes B, personalized weight P, pairwise weight W, and two rotation matrices R

and V.
1: Obtain𝑚 anchor points by the K-means method.
2: Compute truncated similarity matrix A and similarity matrix S by Eqs. (2) and (6), respectively.
3: Initialize R and V as orthogonal matrices, D and Q as identity matrices, and B as a random

binary matrix.
4: while Loop until converge or reach iteration time 𝑇 do
5: Update P by Eq. (14);
6: Update W by Eq. (16);
7: Update Q by Eq. (17);
8: Update R by Eq. (19);
9: Update V by Eq. (21);
10: Update B by Eq. (23);
11: end while
12: return B, P, W, R and V.

3.5 Out-of-Sample Extension
After having optimized the overall objective function of JPSH, we perform similarity prediction
based on four parameters P,W, R andV. More specifically, for each query instance x̂, we first find the
personalized weight P𝑗 corresponding to the anchor point c𝑗 using the minimum Euclidean distance,
for the query instance x̂. Then, we joint the personalized weight P𝑗 , pairwise weightW, and two
rotation matrices R and V to learn discriminative binary codes b̂, that is: b̂ = sgn

(
RP𝑇𝑗 c𝑗 + VW𝑇 x̂

)
.

Observing b̂ = sgn
(
RP𝑇𝑗 c𝑗 + VW𝑇 x̂

)
, we can find that each hash code b̂ is constrained by RP𝑇𝑗 c𝑗

and VW𝑇 x̂. The first term RP𝑇𝑗 c𝑗 transforms the anchor c𝑗 corresponding to x̂ by the personalized
weight matrix P𝑗 . Since the personalized weight matrices are different for different clusters, the
hash codes x̂ generated by the first trem have the semantic separability. From Eq. (7), we can
observe that the pairwise weight matrixW is produced under the constraints of pairwise similarity
matrix A. Thus, the second trem VW𝑇 x̂ reflects the local neighborhood structures among data.
Integrating the first term RP𝑇𝑗 c𝑗 and the second term VW𝑇 x̂ into the program of producing b̂, we
can obtain the binary codes fused the semantic and pairwise similarities.

4 EXPERIMENTALWORKS
To verify the effectiveness of the proposed binary representation algorithm JPSH, we use it in the
task of similarity search. We conduct extensive experiments on four widely-used benchmark image
datasets, and compare with several state-of-the-art hash algorithms.

4.1 Datasets
The proposed method and the comparative ones are evaluated on the following four datasets,
and some example images of each dataset are shown in Figure 3. MNIST [23] contains 70,000
handwritten digit images from 10 classes in total. Each image is re-shaped to a 784-dimensional
feature vector. We construct the testing set by randomly selecting 100 images per class, and the
remaining images are composed as the training set [29]. CIFAR-10 [20] consists of 60,000 tiny

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Binary Representation via Jointly Personalized Sparse Hashing 111:11

images of 10 classes. Following [9], 512-dimensional GIST features [36] are retrieved. We randomly
select 100 images per class to form the testing set, and the remaining 5900 images per class form
the training set. NUS-WIDE [2] is a real-world dataset containing 269,648 images related to 81
ground truth concepts. We pick the most 21 frequent concepts for evaluation. For each category,
100 images are randomly sampled to form the testing set, and 100,000 images from the remaining
images form the training set. 4096-dimensional CNN features [21] are firstly extracted, and then
1000-dimensional PCA features are generated to represent each image. FLICKR25K [11] is also a
real-world dataset including 25,000 images of 24 categories. We randomly select 1000 images to
form the testing set, and 19,015 images for the training set [4]. Following the setting of NUS-WIDE,
we extract 1000-dimensional PCA features to represent each image.

Fig. 3. Example images of the used datasets, including MNIST, CIFAR-10, NUS-WIDE and FLICKR25K.

4.2 Settings
For the proposed JPSH, the test range of parameters 𝜆1, 𝜆2 and 𝜆3 is {0, 1, . . . , 105, 106}, the test
range of parameter 𝑘 is [3, 5, 7, 10, 20], and the test range of parameter𝑚 is [100, 200, . . . , 1000].
Based on the test results, we empirically set 𝑘 = 7,𝑚 = 800, 𝜆1 = 𝜆2 = 1 and 𝜆3 = 10 on MNIST and
CIFAR-10, and set 𝑘 = 5, 𝜆1 = 𝜆2 = 10 and 𝜆3 = 105 on NUS-WIDE and FLICKR25K, while𝑚 = 1000
for NUS-WIDE, and𝑚 = 500 for FLICKR25K. In addition, we set 𝜓 = 7 in Eq. (6) for MNIST and
CIFAR-10 datasets, and set 𝜓 = 5 for FLICKR25K and NUS-WIDE datasets. We test the system
with different lengths of codes ranged in the set of [8, 16, 32, 64, 96, 128]. As for the evaluation,
five standard evaluation metrics, i.e. mean Average Precision (mAP), the mean average precision
of the top 100 testing samples (Pre@100), Precision-Recall curve, precision vs. top-N positions
(Precision@N) curve, and recall vs. top-N positions (Recall@N) curve, are used to evaluate the
performance. All results shown here are produced with Hamming radius 2, being the average of 10
run times. The baseline methods used in this evaluation are under no domain adaption assumption.
The baseline methods consist of 10 state-of-the-art unsupervised hashing methods: LSH [3], SH
[45], PCA-ITQ [6], SP [47], SGH [15], OEH [32], OCH [31], JSH [22], CH [46] and RSSH [42]. All
hashing methods are examined using Matlab on a PC with 3.6GHz and 64G RAM.
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4.3 Ablation Studies
To analyze the roles of pairwise and semantic similarities played in JPSH, we perform ablation
studies on the CIFAR-10 and FLICKR25K datasets. The experimental results are depicted in Table 1.
From this table, we have three clear observations: Firstly, JPSH achieves better performance than JSH
and PSH. The reason is that JPSH learns and creates a seamless hash function, jointly considering
pairwise and semantic similarities. Compared to JSH, the proposed JPSH considers further the
semantics of instances corresponding to the intrinsic geometric structures. In addition, the JPSH
retains the superior performance of the traditional manifold hashing method JSH comparsed with
the PSH. Secondly, closely looking at JSH and PSH, we observe that PSH performs worse than JSH.
One possible reason is that pseudo labels determined by K-means cannot accurately represent the
semantic information of the high-dimensional data, comparing to the ground truths. Third, only
taking PSH into consideration, we discover that PSH can achieve decent performance, especially
on real-world FLICKR25K dataset. This verifies that the proposed PSH can retain the semantic
similarity of the high-dimensional space into the Hamming space in a certain extent, without any
manually tagged labels. Overall, these well-designed studies exhibit the effectiveness of combining
JSH-based pairwise and PSH-based semantic similarity to a seamless formulation.

Table 1. mAP and Pre@100 of JSH, PSH and JPSH on the CIFAR-10 and FLICKR25K datasets with 16 bits.
Note that the best results are in bold and the second-best results are underlined.

Datasets CIFAR-10 FLICKR25K
mAP Pre@100 mAP Pre@100

JSH[22] 0.1561 0.3001 0.6667 0.8909
PSH 0.1133 0.1613 0.5632 0.8316
JPSH 0.1606 0.3275 0.6936 0.9176

4.4 Results and Discussions
For the MNIST dataset, the first two rows in Table 1 illustrate the mAP and Pre@100 of our proposed
JPSH and the baselines with different hash bits. Figure 4 (a, b, c) show the Precision-Recall curve,
Precision@N and Recall@N curves on 64 bits, respectively. Going through these results, we have
the following observations: (1) JPSH consistently outperforms all baselines in all cases on this
dataset with large gaps, demonstrating its effectiveness on the binary representation in dealing with
similarity search tasks. (2) Compared against the second-best method JSH, our proposed method
improves 23.76% and 8.63% at least for mAP and Pre@100, respectively. This shows that JPSH
outperforms the standard manifold-based hashing method JSH, and generates more discriminative
binary codes by jointly learning semantic and pairwise similarities in the Hamming space. (3)
RSSH shows better performance than manifold-based hashing methods in low hash bits but worse
than JPSH. This indicates that semantic preservation helps to learn the discriminative information,
especially that for our proposed method. (4) Figure 4 (a, b, c) show that JPSH achieves consistent
performance improvement in terms of Precision-Recall curve, Precision@N and Recall curves on
64 bits, indicating the effectiveness of our JPSH.

For the CIFAR-10 dataset, mAP and Pre@100 are reported in the third and fourth rows of Table 1,
and Figure 4 (d, e, f) show the Precision-Recall curve, Precision@N and Recall@N curves based on
64 bits, respectively. From these results, we have the observations similar to those of MNIST: (1)
Compared with all baselines, JPSH achieves the best results of 16 to 128 bits in terms of mAP and
Pre@100, demonstrating that JPSH can learn discriminative binary codes by maintaining semantic
structures in different personalized subspaces. (2) Of 8 bits, PCA-ITQ achieves the best performance.
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Table 2. mAP and Pre@100 for the JPSH and baselines on the MNIST, CIFAR-10, NUS-WIDE and FLICKR25K
datasets. Note that the best results are in bold and the second-best results are underlined.

Datasets Metrics Bits LSH[3] SH[45] PCA-ITQ[6] SP[47] SGH[15] OEH[32] OCH[31] JSH[22] CH[46] RSSH[42] JPSH

M
N
IS
T

m
A
P

8 0.1808 0.2651 0.3589 0.3404 0.3111 0.2920 0.2376 0.3204 0.3030 0.3940 0.4332
16 0.2094 0.2661 0.4042 0.3780 0.3526 0.3100 0.3073 0.4066 0.3688 0.4128 0.5561
32 0.2633 0.2606 0.4378 0.4178 0.3898 0.3497 0.3727 0.5118 0.4317 0.4183 0.6184
64 0.3199 0.2400 0.4490 0.4401 0.4180 0.3727 0.4107 0.5613 0.4112 0.4204 0.6548
96 0.3592 0.2367 0.4596 0.4472 0.4282 0.3889 0.4253 0.5675 0.4318 0.4222 0.6666
128 0.3757 0.2330 0.4627 0.4510 0.4358 0.4014 0.4339 0.5758 0.4401 0.4245 0.6659

Pr
e@

10
0

8 0.4372 0.4859 0.7165 0.7057 0.6835 0.6040 0.5581 0.7213 0.6644 0.7843 0.8635
16 0.4871 0.4904 0.7999 0.7630 0.7300 0.6523 0.6786 0.8112 0.7424 0.7122 0.9396
32 0.6102 0.4732 0.8468 0.8169 0.7828 0.7233 0.7461 0.8954 0.7954 0.6795 0.9614
64 0.7010 0.4416 0.8533 0.8451 0.8004 0.7470 0.7794 0.9279 0.7641 0.6750 0.9619
96 0.7565 0.4379 0.8685 0.8524 0.8111 0.7915 0.7931 0.9370 0.7914 0.6737 0.9646
128 0.7832 0.4370 0.8656 0.8501 0.8139 0.7945 0.8026 0.9447 0.8072 0.6768 0.9656

CI
FA

R-
10

m
A
P

8 0.1102 0.1232 0.1421 0.1234 0.1382 0.1408 0.1314 0.1290 0.1413 0.1342 0.1380
16 0.1134 0.1266 0.1472 0.1265 0.1497 0.1489 0.1494 0.1561 0.1447 0.1428 0.1606
32 0.1230 0.1252 0.1561 0.1281 0.1592 0.1561 0.1618 0.1607 0.1560 0.1485 0.1812
64 0.1306 0.1254 0.1485 0.1268 0.1684 0.1646 0.1705 0.1785 0.1658 0.1533 0.1848
96 0.1334 0.1250 0.1547 0.1308 0.1713 0.1671 0.1750 0.1845 0.1713 0.1544 0.1925
128 0.1373 0.1249 0.1576 0.1333 0.1734 0.1694 0.1765 0.1865 0.1738 0.1574 0.1895

Pr
e@

10
0

8 0.1517 0.1899 0.2612 0.2019 0.2382 0.2486 0.2157 0.2187 0.2601 0.2138 0.2413
16 0.1583 0.1906 0.2730 0.1961 0.2539 0.2652 0.2661 0.3001 0.2740 0.2443 0.3275
32 0.1915 0.1760 0.3063 0.1979 0.2839 0.2876 0.2989 0.3313 0.2894 0.2626 0.3672
64 0.2103 0.1771 0.2720 0.1942 0.3171 0.3118 0.3244 0.3657 0.3154 0.2819 0.3910
96 0.2120 0.1748 0.2988 0.2047 0.3263 0.3177 0.3371 0.3765 0.3318 0.2828 0.4109
128 0.2235 0.1754 0.3083 0.2047 0.3319 0.3247 0.3424 0.3846 0.3351 0.2949 0.4015

N
U
S-
W
ID
E

m
A
P

8 0.3427 0.4293 0.5260 0.5063 0.4725 0.4864 0.4152 0.4425 0.4321 0.3475 0.5521
16 0.3598 0.4067 0.5243 0.5032 0.4600 0.4780 0.4672 0.5511 0.4712 0.3614 0.6027
32 0.3873 0.3830 0.5230 0.5055 0.4601 0.4844 0.5046 0.5876 0.4783 0.3952 0.6200
64 0.4138 0.3689 0.5286 0.5133 0.4815 0.4903 0.5350 0.6138 0.4758 0.4126 0.6271
96 0.4346 0.3674 0.5344 0.5189 0.4971 0.4964 0.5431 0.6169 0.4855 0.4164 0.6293
128 0.4479 0.3769 0.5397 0.5224 0.5059 0.5019 0.5487 0.6224 0.4947 0.4211 0.6340

Pr
e@

10
0

8 0.6660 0.7121 0.8258 0.8173 0.7485 0.8033 0.7479 0.7588 0.7529 0.6644 0.8313
16 0.6875 0.6998 0.8243 0.8142 0.7408 0.7991 0.7805 0.8420 0.7796 0.6752 0.8636
32 0.7144 0.6805 0.8240 0.8105 0.7525 0.8026 0.8107 0.8695 0.7795 0.6935 0.8762
64 0.7357 0.6809 0.8265 0.8179 0.7729 0.8018 0.8342 0.8929 0.8024 0.6983 0.8841
96 0.7578 0.6865 0.8322 0.8225 0.7862 0.8001 0.8427 0.8877 0.8026 0.6947 0.8860
128 0.7638 0.6986 0.8362 0.8255 0.7935 0.8117 0.8439 0.8948 0.8060 0.6979 0.8885

FL
IC
KR

25
K

m
A
P

8 0.5802 0.6321 0.6949 0.6828 0.6539 0.6653 0.6360 0.6206 0.6711 0.5674 0.6790
16 0.5927 0.6174 0.6911 0.6818 0.6476 0.6677 0.6606 0.6667 0.6736 0.5792 0.6936
32 0.6100 0.6023 0.6907 0.6819 0.6539 0.6698 0.6859 0.6875 0.6735 0.6028 0.7138
64 0.6246 0.5923 0.6909 0.6834 0.6653 0.6687 0.7017 0.7011 0.6819 0.6420 0.7253
96 0.6403 0.5928 0.6923 0.6864 0.6742 0.6759 0.7070 0.7042 0.6838 0.6521 0.7313
128 0.6443 0.5928 0.6950 0.6884 0.6805 0.6799 0.7115 0.7085 0.6866 0.6546 0.7331

Pr
e@

10
0

8 0.8417 0.8701 0.9079 0.9027 0.8874 0.8991 0.8773 0.8603 0.8959 0.8361 0.9119
16 0.8487 0.8633 0.9055 0.9004 0.8754 0.8926 0.8920 0.8909 0.8930 0.8398 0.9176
32 0.8587 0.8590 0.9039 0.8998 0.8803 0.8941 0.9057 0.9077 0.8938 0.8482 0.9269
64 0.8684 0.8561 0.9036 0.8992 0.8836 0.8930 0.9127 0.9142 0.9008 0.8652 0.9291
96 0.8745 0.8565 0.9049 0.9014 0.8892 0.8957 0.9151 0.9167 0.9029 0.8688 0.9307
128 0.8789 0.8597 0.9060 0.9022 0.8932 0.8978 0.9181 0.9187 0.9050 0.8710 0.9305

However, the performance of JPSH and PCA-ITQ is very close, whilst JPSH is competitive to the
other methods. (3) In Figure 4 (d, e, f), JPSH matches the best baseline in terms of Precision-Recall
curve and Recall@N curve, but little low than RSSH on Precision@N. It is worth noting that JPSH
ourperforms JSH in terms of Precision@N and Recall@N curves. This indicates that PSH can help
to map instances within the same cluster to the same Hamming space in a certain extent.

For the NUS-WIDE dataset, we report the results of mAP and Pre@100 in the fifth and sixth rows
of Table 1. The Precision-Recall, Precision@N, and Recall@N curves are shown in Figure 4 (g, h, i).
Regarding those results, we have similar observations to the above cases: (1) JPSH also outperforms
all baselines in all cases in terms of mAP on this real-world dataset. It significantly surpasses all
baselines of low hash bits (8 to 32 bits) in terms of Pre@100, and little lower than JSH of high hash
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Fig. 4. Precision-Recall curve, Precision and Recall vs. the number of searched instances on the MNIST,
CIFAR-10, NUS-WIDE and FLICKR25K datasets with 64 bits.

bits (64 to 128 bits). As a whole, these results demonstrate the effectiveness and robustness of the
semantic- and pairwise-preserving scheme used in JPSH. (2) From Figure 4 (g, h, i), we witness that
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JPSH has a consistent improvement compared with all baselines. This justifies that our proposed
JPSH discovers more discriminative structural information in binary representation learning.

For the FLICKR25K dataset, the last two rows of Table 1 show results of mAP and Pre@100, and
curves of Precision-Recall, Precision@N and Recall@N are shown in Figure 4 (j, k, l). Again, we
have observations similar to the above three datasets: (1) JPSH obtains the best results compared
with all baselines in terms of mAP and Pre@100, demonstrating the effectiveness and robustness of
our proposed JPSH in the binary representation learning process. (2) Figure 4 (j, k, l) show that
our proposed JPSH outperforms all compared methods in terms of Precision-Recall and Recall@N
curves, slightly lower than some compared methods in terms of Precision@N curve. Furthermore,
JPSH is always better than JSH in Figure 4 (k). Therefore, our JPSH can learn better representative
binary codes for similarity search.

CIFAR-10

8 16 32 64 96 128

@ bits

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m
A

P

JPSH0

JPSH

(a)

NUS-WIDE

8 16 32 64 96 128

@ bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
A

P

JPSH0

JPSH

(b)

FLICKR25K

8 16 32 64 96 128

@ bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
A

P

JPSH0

JPSH

(c)

Fig. 5. Compared results of mAP between JPSH0 and JPSH on (a) CIFAR-10, (b) NUS-WIDE and (c) FLICKR25K
datasets.
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Fig. 6. Compared results of Pre@100 between JPSH0 and JPSH on (a) CIFAR-10, (b) NUS-WIDE and (c)
FLICKR25K datasets.

4.5 Semantic Analysis
In JPSH, we use pseudo labels to distinguish different clusters, and then map instances within the
same cluster to the same Hamming space. In order to verify that our JPSH indeed maintains a
certain semantic similarity, the training set of PSH is replaced by random samples called JPSH0. The
results of mAP and Pre@100 between JPSH0 and JPSH are shown in Fig 5 and Fig 6, respectively.
From those figures, we can observe that the mAP and Pre@100 of JPSH0 are obviously below that
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of JPSH, particularly in CIFAR-10 and NUS-WIDE datasets. These results indicate that K-means is
good for extracting discriminative information with exploring the semantic structures. Moreover,
our proposed JPSH successfully retains those structures into the Hamming space, and JPSH0 can
not be.
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Fig. 7. Visualization of personalized weight matrix P processed by sign function, (a) 16 × 784 matrix, (b)
32× 784matrix, and (c) 64× 784matrix on MNIST dataset. The green column indicates that the corresponding
features are zero and ignored during the projection operation.

4.6 Sparsity Analysis
As shown in Figure 7, to study the sparsity of JPSH, we depict the visualization of personalized
weight matrix P processed by sign function with size 16 × 784, 32 × 784 and 64 × 784. It can be seen
that each matrix contains some green columns that are equal to zero due to the sparsity constraint
of ∥P𝑗 ∥2,1. It means that those corresponding features are ignored in a projection operation. Thus,
we can eliminate some redundant features for binary representation learning. For example, the
first column of matrices in Figure 7 (a), (b) and (c) are all the zero vector, which means that the
first feature of data is malfunction to distinguish the differences between data. Another benefit
of sparsity lies in that it can increase the interpretability of the JPSH model. We can know that
which features provide the discriminative information, while those features do not. Therefore, the
sparsity of ∥P𝑗 ∥2,1 works in our JPSH model.

4.7 Sensitivity Analysis
We discuss the sensitivity of our JPSH over parameters 𝜆1, 𝜆2, 𝜆3, 𝑘 and𝑚. The setting ranges of the
corresponding parameters are described in Section 4.2. As an example, Figure 8 (a, b, c) show the
sensitivity of the 𝜆1, 𝜆2 and 𝜆3 on the FLICKR25K dataset with 64 bits. Figure 8 (a) and (b) show that
the mAPs are over 0.71 within a large wide ranges w.r.t 𝜆1 and 𝜆2. In addition, the mAPs fluctuated
within a certain range indicate the terms of

∑𝑚
𝑗=1 ∥P𝑗 ∥22,1 and

∑𝑚
𝑖,𝑗=1 S𝑖 𝑗 ∥P𝑖 − P𝑗 ∥𝐹 can influence

the performance of the JPSH. We set 𝜆1 and 𝜆2 as 10 for the FLICKR25K dataset because of the
relatively higher and more stable performance. From Figure 8 (c), mAPs exceed 0.69 in the range
of {0, 1, . . . , 105}, and when 𝜆3 equals to 105, the mAP surpasses 0.72. Therefore, we set the best
𝜆3 = 105 for the FLICKR25K dataset. In addition, Figure 8 (d) shows mAPs versus 𝑘 and𝑚 on the
FLICKR25K dataset with 64 bits, suggesting that the JPSH is not sensitive to 𝑘 and𝑚, either. The
sensitivity analysis of 𝜆1, 𝜆2, 𝜆3, 𝑘 and𝑚 on MNIST, CIFAR-10 and NUS-WIDE datasets is similar
with that on the FLICKR25K dataset.
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Fig. 8. Sensitivity analysis of 𝜆1, 𝜆2, 𝜆3, 𝑘 and𝑚 in terms of mAP on the FLICKR25K dataset with 64 bits, and
convergence curves of the JPSH on CIFAR-10 and FLICKR25K datasets with 32 bits.

4.8 Convergence Analysis
Figure 8 (e) and (f) show the convergence curves of our JPSH method on CIFAR-10 and FLICKR25K
datasets with 32 bits. The objective function of the JPSH is well converging, and quickly converges
to an optimal solution within 20 iterations in all datasets. From Figure 8 (e), we witness that the
objective loss function values settle after 4 iterations. Thus, we set the time iteration of our JPSH
for CIFAR-10 dataset as 𝑇 = 4. Analogously, based on Figure 8 (f), we set 𝑇 = 10 for FLICKR25K
dataset. For MNIST and NUS-WIDE datasets, we empirically set iteration times to be 𝑇 = 10 and
𝑇 = 5, respectively.

4.9 Time Complexity
The overall training time complexity of the JPSH is mainly composed by three parts: (1) the
building of matrix S, which the computational complexity is 𝑂 (𝑚𝑚); (2) the time-consuming of
computing matrix A is 𝑂 (𝑛𝑚); (3) For each iteration, the computational complexity of Eq. (14) is
𝑂
(
𝑚3𝑑3 +𝑚3𝑑2 +𝑚2𝑑𝑙 +𝑚𝑑𝑙2

)
; of Eq. (16) is 𝑂

(
𝑑3 + 𝑛𝑑2 +𝑚𝑛𝑑 +𝑚𝑑𝑙 + 𝑑𝑙2

)
; of performing SVD

on rotation matrices R and V both are 𝑂
(
𝑙3
)
; and of Eq. (23) is 𝑂

(
𝑚𝑑𝑙2 +𝑚2𝑑𝑙 + 𝑑𝑙2 + 𝑛𝑑𝑙 +𝑚𝑛𝑙

)
.

Generally, due to the length of binary codes 𝑙 and anchor points𝑚 are usually smaller, the total
computational complexity of our JPSH is 𝑂

(
𝑇𝑑3 +𝑇𝑛𝑑2

)
. It is linear with the number of training

samples. Note that the whole computational process is mainly based on matrix multiplications,
which can be computed in parallel for accelerations. It is reasonably efficient on the binary rep-
resentation learning. To quantitatively compare the computational complexity, we evaluate the
training time-consumation of OEH, RSSH and JPSH on CIFAR-10 dataset in terms of 32, 64 and 96
bits. Table 3 shows the time complexity and running times of OEH, RSSH and JPSH. Obviously, we
could find that JPSH needs much less time than the multi-stage hashing method RSSH while little
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higher than OEH. It is noted that the JPSH yields higher mAP values than OEH, which are shown
in Table 2. Therefore, the time cost of our proposed JPSH model is acceptable.

Table 3. Time complexity and running times of OEH, RSSH and JPSH on 32, 64 and 96 bits. Note that the
best results are in bold and the second-best results are underlined.

Methods Time Complexity Running Times (seconds)
32 bits 64 bits 96 bits

OEH[32] > 𝑂
(
𝑚2𝑙3𝑘

)
13.3385 21.9931 43.9122

RSSH[42] > 𝑂
(
𝑇𝑛𝑚2 +𝑇𝑛𝑚𝑙

)
75.3624 80.4510 86.0708

JPSH 𝑂
(
𝑇𝑑3 +𝑇𝑛𝑑2

)
45.0945 53.9658 62.6788

5 CONCLUSION
In this paper, we proposed an effective unsupervised hashing method for binary representation
learning, namely Jointly Personalized Sparse Hashing (JPSH), which jointly preserves semantic
and pairwise similarities in the Hamming space. Firstly, we developed a novel Personalized Sparse
Hashing (PSH) module that adaptively maps different clusters to corresponding personalized
subspaces to maintain the identical semantics. Then, we jointed PSH and the manifold-based
model JSH to construct JPSH, which can preserve semantic and pairwise similarities in a seamless
formulation. Finally, an alternating optimization method was adopted to iteratively solve one
variable by fixing the others. Extensive experiments on four benchmark image datasets had been
conducted. The results verified that our proposed JPSH outperforms the other state-of-the-art
unsupervised hashing methods in the similarity search task.
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