
Binary Embedding-based Retrieval at Tencent
Yukang Gan∗

brucegan@tencent.com
ARC Lab, Tencent PCG

Yixiao Ge∗
yixiaoge@tencent.com
ARC Lab, Tencent PCG

Chang Zhou∗
chanzhou@tencent.com
Tencent Video, PCG

Shupeng Su
pennsu@tencent.com
ARC Lab, Tencent PCG

Zhouchuan Xu
atuerxu@tencent.com
Tencent Search, PCG

Xuyuan Xu
evanxyxu@tencent.com
Tencent Video, PCG

Quanchao Hui
andrewshui@tencent.com

Tencent Search, PCG

Xiang Chen
joshuaxchen@tencent.com

Tencent Search, PCG

Yexin Wang
yexinwang@tencent.com

Tencent Video, PCG

Ying Shan
yingsshan@tencent.com
ARC Lab, Tencent PCG
Tencent Search, PCG

ABSTRACT
Large-scale embedding-based retrieval (EBR) is the cornerstone
of search-related industrial applications. Given a user query, the
system of EBR aims to identify relevant information from a large
corpus of documents that may be tens or hundreds of billions in
size. The storage and computation turn out to be expensive and
inefficient with massive documents and high concurrent queries,
making it difficult to further scale up.

To tackle the challenge, we propose a binary embedding-based
retrieval (BEBR) engine equipped with a recurrent binarization algo-
rithm that enables customized bits per dimension. Specifically, we
compress the full-precision query and document embeddings, for-
mulated as float vectors in general, into a composition of multiple
binary vectors using a lightweight transformation model with resid-
ual multilayer perception (MLP) blocks. The bits of transformed
binary vectors are jointly determined by the output dimension of
MLP blocks (termed𝑚) and the number of residual blocks (termed
𝑢), i.e.,𝑚 × (𝑢 + 1). We can therefore tailor the number of bits for
different applications to trade off accuracy loss and cost savings.
Importantly, we enable task-agnostic efficient training of the bi-
narization model using a new embedding-to-embedding strategy,
e.g., only 2 V100 GPU hours are required by millions of vectors
for training. We also exploit the compatible training of binary em-
beddings so that the BEBR engine can support indexing among
multiple embedding versions within a unified system. To further
realize efficient search, we propose Symmetric Distance Calculation
(SDC) to achieve lower response time than Hamming codes. The
technique exploits Single Instruction Multiple Data (SIMD) units
widely available in current CPUs.

We successfully employed the introduced BEBR to web search
and copyright detection of Tencent products, including Sogou, Ten-
cent Video, QQ World, etc. The binarization algorithm can be seam-
lessly generalized to various tasks with multiple modalities, for
instance, natural language processing (NLP) and computer vision
(CV). Extensive experiments on offline benchmarks and online A/B

∗The authors contributed equally to this work.

tests demonstrate the efficiency and effectiveness of our method,
significantly saving 30% ∼ 50% index costs with almost no loss of
accuracy at the system level1.

CCS CONCEPTS
• Information systems→Retrievalmodels and ranking; Search
index compression;Retrieval efficiency; •Computingmethod-
ologies→Learning latent representations; Learning paradigms;
Visual content-based indexing and retrieval.

KEYWORDS
embedding-based retrieval, embedding binarization, backward com-
patibility

1 INTRODUCTION
With the development of deep learning, embedding-based retrieval
(EBR) achieves great advances in real-world applications, such as
web search [50], social search [25], e-commerce search [31], etc.
Generally speaking, a typical industrial search-related system is
composed of a “recall-rerank” architecture (as demonstrated in
Figure 1), in which the efficiency of the recall module with EBR
algorithms is the bottleneck of the whole system as it needs to
process massive documents. Unlike conventional inverted index-
based term matching [42] that measures similarity through lexical
analysis, EBR represents queries and documents as dense feature
vectors. Given a query, EBR retrieves a set of relevant documents
according to their embedding similarities in the latent space. The
enormous scale of documents and high concurrent queries pose
great challenges to an industrial EBR system, including retrieval
latency, computation cost, storage consumption, and embedding
upgrades.

There are previous attempts to develop more efficient EBR sys-
tems with advanced ANN (Approximate Nearest Neighbor) algo-
rithms, e.g., HNSW [35]. Though the achievements in saving com-
putations, they need elaborate designs to be adapted and plugged
1Code is publicly available at https://github.com/ganyk/BEBR.

ar
X

iv
:2

30
2.

08
71

4v
1

 [
cs

.I
R

]
 1

7
Fe

b
20

23

https://github.com/ganyk/BEBR

into existing systems. Given the large number and variety of EBR
systems for Tencent products, the development costs of upgrad-
ing all the existing ANN algorithms are non-negligible and even
unaffordable. Toward this end, we focus on the most fundamental
component of EBR, that is, embedding, also known as representa-
tion learning in the deep learning community. Properly compressed
embeddings are compatible with mainstream ANN algorithms and
can be seamlessly integrated into existing EBR systems.

In this work, we propose a binary embedding-based retrieval
(BEBR) engine that has several appealing benefits: (i) customizable
embedding compression rates to receive a trade-off between ac-
curacy and costs; (ii) a task-agnostic and modal-agnostic efficient
training paradigm for easy generalization and data security protec-
tion; (iii) a free embedding upgrading mechanism with backward
compatibility, i.e., no need to refresh the index. BEBR has been well
deployed on multiple Tencent products equipped with various ANN
algorithms (e.g., IVF [37], HNSW [35]) with almost no accuracy loss
and 30∼50% cost savings at the system level.

Specifically, inspired by recurrent binary embeddings [44] that
progressively refine a base binary vector with binary residual vec-
tors to meet task accuracy, BEBR develops a universal binarization
algorithm with state-of-the-art performances across modalities.
Rather than the simple linear transformations used in [44], BEBR
adopts multilayer perception (MLP) blocks with non-linear layers
(i.e., ReLU [1]) for both binarization (float→binary) and reconstruc-
tion (binary→float) in the recurrent learning paradigm. As illus-
trated in Figure 3, the binarization, reconstruction, and residual
blocks together form the recurrent binarization module with a cus-
tomized number of loops, i.e., bits per dimension. The recurrent
binary embeddings with richer representations are much more
discriminative than ordinary hash vectors [10].

In previousworks, the binarization (or hashing)module is usually
optimized end-to-end with the backbone network, e.g., CNNs [47]
for vision, and Transformers [40] for text. The training is expensive
considering the heavy backbone models for accurate retrieval. We,
therefore, introduce an efficient training paradigm that requires
only floating-point vectors as input. The lightweight binarization
module is trained individually without accessing the backbone
models, forming a universal training procedure for all themodalities
and tasks. To enable effective representation learning in such an
embedding-to-embedding paradigm, we use contrastive learning
with queue-based hard negative mining as the training objectives.

Besides the index costs, large-scale EBR systems heavily suffer
from the computational overhead required by embedding model
upgrades. In particular, all the embeddings in the index need to be
re-extracted before the deployment of a new model, which may
take weeks or even months for industrial applications. Thanks to
the pioneering work in compatible representation learning [24,
45], we take the first step to investigate compatible training of
binary embeddings. Equipped with backward-compatible learning,
our BEBR engine is able to harvest the benefit of the new model
immediately, i.e., the queries encoded by the new model can be
directly indexed among the old index.

We further propose Symmetric Distance Calculation (SDC) of
recurrent binary embeddings, a novel technique that achieves signif-
icant speedup over the conventional Hamming-based distance cal-
culation in [44]. SDC leverages the in-register cache to perform fast

re-rank
post-process

Document
Corpus

query

Binary doc
embedding

Binary query
embedding

index

recall Documents
billions thousands dozens

Figure 1: A brief structure of the Tencent search system,
composed of the introduced binary embedding-based re-
trieval (BEBR) engine for recall and a re-rank post-process
layer.

SIMD (Single Instruction Multiple Data) look-up instructions and
is especially in favor of CPU-based computation platforms. Com-
prehensive experiments on public benchmarks, internal datasets,
and online A/B tests on Tencent products fully demonstrate the
effectiveness of our BEBR engine. It has been successfully deployed
on almost all ranges of index-based applications in Tencent PCG,
including web search (Sogou), video search, copyright detection,
video recommendation, etc.

The contributions are four-fold.
• We propose a binary embedding-based retrieval (BEBR) en-
gine that efficiently indexes among tens of billions of doc-
uments in Tencent products. The proposed method can be
equipped with various ANN algorithms and integrated into
existing systems seamlessly.

• BEBR drastically reduces both the memory and disk con-
sumption while achieving superior retrieval performance
with the benefit of tailored recurrent binarization and sym-
metric distance calculation.

• BEBR develops a universal training paradigm for all modali-
ties without accessing the raw data and backbone networks,
i.e., the binary embeddings are trained efficiently in a task-
agnostic embedding-to-embedding manner.

• BEBR enables backward-compatible upgrades of embedding
models, that is, the new model can be immediately deployed
without refreshing the index embeddings. We for the first
time study compatible learning on binary embeddings.

2 RELATEDWORK
2.1 Embedding-based Retrieval in Search
Representation learning for embedding-based retrieval has attracted
much attention in academia and industry given its great success in
various domains. For example, as a social search engine, Facebook
learns semantic embeddings for personalized search, which serves
an EBR system with ANN parameter tuning [25]. For e-commerce
search, Taobao proposes a Multi-Grained Deep Semantic Product
Retrieval (MGDSPR) [31] system to capture the relation between
user query semantics and his/her personalized behaviors. JD pro-
poses Deep Personalized and Semantic Retrieval (DPSR)[52] to com-
bine text semantics and user behaviors. Amazon develops a Siamese

2

𝜙!"#

𝜓$%&

Full precision
doc embedding

Document
Corpus

Binary doc
embedding

𝜑!"#

𝜑$%&query

Backward
Compatible

Training

Backward
Compatible

Search

query embedding
(full precision)

query embedding
(binary)

query

Search Search

𝜓!"# 𝜑!"#

binary modelbase model

Embedding upgrade

Embedding based retrieval Embedding binarization

Identical

query embedding
(full precision) query embedding

(binary)

Figure 2: Our binary embedding-based retrieval (BEBR) framework. The full-precision float embeddings, extracted by the
backbone networks, are transformed to recurrent binary vectors using a parametric binarization module 𝜑 in a task-agnostic
embedding-to-embeddingmanner. BEBR enables backfill-free upgrades for the binarizationmodel, that is, the newmodel can
be immediately deployed for encoding better query embeddings without refreshing the index.

network to address the semantic gap problem for semantic product
retrieval [38]. For web search, Google adopts zero-shot heteroge-
neous transfer learning in the recommendation system to improve
search performance [50]. While none of the aforementioned meth-
ods studies the trade-off between performance and costs in EBR
implementation, this paper discusses the binary embedding-based
retrieval system, which can achieve near-lossless performance with
significant cost reduction.

2.2 ANN Methods
Plenty of research has been devoted to developing efficient ANN
algorithms. Some of them build graphs from datasets to avoid the
exhaustive search where each vertex in the graph is associated with
a data point. Others encode the embeddings into compact codes to
reduce memory consumption and speed up distance calculation.

Specifically, the graph-based methods generally leverage the
k-Nearest Neighbor graph to allow fast navigation in the index.
For example, [34] proposes a proximity graph algorithm called
Navigable Small World (NSW), which utilizes navigable graphs.
Hierarchical NSW [35] offers a much better logarithmic complexity
scaling with a controllable hierarchy. More recently, Navigating
Spreading-out Graph (NSG) [18] proposes a novel graph structure
that guarantees very low search complexity. It strongly outperforms
previous state-of-the-art approaches. Although these graph-based
algorithms achieves high search performance at high precision,
they need more memory space and data-preprocessing time than
product quantization and hashing-based methods. Therefore, in
frequent updating scenarios, building the index from the graph-
based algorithm on the large dataset is impractical.

Product quantization (PQ) [27] decomposes the space into a
Cartesian product of low dimensional subspaces and quantizes
each subspace separately. Cartesian K-means (CKM) [39] and Op-
timized Product Quantizers (OPQ) [20] extends the idea of space
decomposition and optimizes the sub-space decomposition by arbi-
trarily rotating and permutating vector components. In addition,
variants of quantization models [5, 6, 53] inspired by PQ have been
proposed. These models offer a lower quantization error than PQ or
OPQ. Recently, PQ Fast Scan [4] pioneers the use of SIMD for Asym-
metrical Distance Calculation (ADC) evaluation, and later works
[3] [7] [2] are proposed to optimize the quantization scheme for
achieving lower search latency for indexed databases. Inspired by
the ADC techniques, we propose a symmetrical distance calculation
(SDC) to enable efficient search in BEBR retrieval.

Hashing-based algorithms have recently gained popularity due
to their advantages in computing and storage. Existing hashing-
based algorithms can be organized into two categories: locality-
sensitive hashing [11, 26] and learning to hash. Locality-sensitive
hashing (LSH) maps the original data into several hash buckets
where similar items are more likely to fall into the same bucket.
Despite the fact that tremendous efforts [8, 19, 26, 28, 30] have
been exerted to improve the performance of LSH. It still requires
multiple hash tables to maintain the recall rate of search, which
limits its application on large-scale datasets. Learning to hash is a
data-dependent approach that learns hash functions from a specific
dataset. With the development of deep learning, many methods [10,
17, 32, 33, 47] adopt the powerful capabilities of deep neural network
(DNN) to learn the complex hash functions and obtain binary codes
through an end-to-end manner. Instead of converting data into
normal binary vectors, [44] proposes recurrent binary embedding

3

to achieve a balanced goal of retrieval performance, speed, and
memory requirement. Specifically, it progressively adds a residual
binary vector to the base binary vector. A GPU-based k-nearest
neighbor (K-NN) selection algorithm is also implemented, enabling
exhaustive real-time search on billion-scale data sets. In this paper,
towards the goal of efficient and low-cost embedding quantization,
we use the off-the-shelf float-point-based embeddings as input to
learn recurrent binary embeddings. Furthermore, we provide an
efficient method to calculate the distance between recurrent binary
embeddings using CPUs, the most common computing devices in
the industrial retrieval system.

2.3 Compatibility of Deep Neural Networks
Compatible representation learning aims at making embeddings
comparable across models. It has attracted increasingly extensive
attention in industry and academia due to its ability to reduce
computation costs in embedding upgrades. Specifically, there are
two types of compatibility: cross-model and backward compati-
bility. Cross-model compatibility learning usually trains transfor-
mation modules to map the embeddings from different models
into a common space. 𝑅3𝐴𝑁 [12] firstly introduces the problem
of cross-model compatibility in face recognition and tackles it by
learning a transformation that transforms source features into tar-
get features through a process of reconstruction, representation,
and regression. [48] strikingly ameliorates the cross-model com-
patibility performance by coming up with a unified representation
learning framework. In detail, they design a lightweight Residual
Bottleneck Transformation (RBT) module and optimize it with a
classification loss, a similarity loss, and a KL-divergence loss.

While cross-model compatibility handles embeddings from dif-
ferent models, backward compatibility fixes its attention on model
updates where new models are trained with additional compatibil-
ity constraints. In a sense, it enables compatibility between new
embeddings and old embeddings without any extra transformation
processes. [45] is the first work that utilizes backward compatibility
to conduct model upgrades. It introduces an influence loss when
training the new model to enable direct comparison between new
embeddings and old embeddings. Under this backward compati-
bility framework, several works make attempts to ameliorate the
performance of backward compatibility by leveraging hot-refresh
backward-compatible model upgrades [51], asymmetric retrieval
constraints [9], embedding cluster alignment loss [36], and neural
architecture search [16]. In this paper, we adopt backward compat-
ibility training to learn backward compatible binary embeddings.
To our best knowledge, this is the first time compatible learning
has been applied to binary embedding.

3 BINARY EMBEDDING-BASED RETRIEVAL
3.1 Preliminary
Given a query 𝑞 (generally a text in a web search or a video in
copyright detection), an embedding-based retrieval (EBR) system
aims to rank the documents {𝑑0, 𝑑1, · · · , 𝑑𝑛} according to their sim-
ilarities. There are two key factors in EBR, the embedding model(s)
and the distance calculation metric D(·, ·). The cosine similarity is
widely used as D(·, ·) for full precision embeddings (float vectors).

+-

𝑓"!"#𝑓 𝑏!

	𝑊! 𝑅"#$ 𝑊"

𝑏$ 𝑏!"#

𝜌 ∗

𝑟!"#

×
1
2

!𝜌 ∗norm

MLP block

FC BN Re
LU

𝐿×

MLP

𝜌 ∗ 	: binarization func.
	𝑢: recurrent times

Figure 3: The architecture of recurrent binary embedding
model𝜑 . ⊖ and ⊕ denoteminus and plus operations between
two input embeddings, respectively.

Formally, the similarity between a certain query and a document is

SEBR (𝑞, 𝑑𝑘) = D (𝜓 (𝑞), 𝜙 (𝑑𝑘)) , ∀𝑘 ∈ {1, · · · , 𝑛}, (1)

where𝜓 and 𝜙 are embedding models for queries and documents.
𝜓 and 𝜙 can be designed to be identical or distinct to handle differ-
ent retrieval tasks with homogeneous or heterogeneous input [21].
For example, we may have ResNet [23] for image data and Trans-
former [15] for text. Without loss of generality, we consider homo-
geneous architecture (i.e.,𝜓 and 𝜙 are identical and both denoted
as 𝜙) in the following cases. To tackle the billion-level indexing at
a moderate cost, we introduce binary embedding-based retrieval
(BEBR) engine with much more efficient similarity calculation be-
tween queries and documents, such as

SBEBR (𝑞, 𝑑𝑘) = D (𝜙 ◦ 𝜑 (𝑞), 𝜙 ◦ 𝜑 (𝑑𝑘)) , ∀𝑘 ∈ {1, · · · , 𝑛}, (2)

where 𝜑 (·) is the binarization process and is generally realized by
a parametric network. In the following sections, we will introduce
the detailed designs of 𝜑 (·) in Section 3.2 and D(·, ·) in Section 3.3.

3.2 Recurrent Binarization
3.2.1 Architecture. To tackle the problem of learning to binariza-
tion, the straightforward solution is to adopt hashing networks [54]
ended up with a binarization function 𝜌 , which plays an important
role in converting float vectors into binary ones composed of either
−1 or +1. In the forward pass, 𝜌 is formulated as

𝜌 (𝑥) ≡ sign(𝑥) =
{−1, 𝑥 ≤ 0

1, 𝑥 > 0

Since the gradient of the sign function vanishes and thus cannot
be back-propagated directly, [14] introduced a straight-through
estimator (STE) that takes the gradient of the identity function
instead, that is, 𝜌 ′(𝑥) = 1 when |𝑥 | ≤ 1 and 𝜌 ′(𝑥) = 0 otherwise.
Conventional hashing methods generally convert the float vectors
to binary embeddings once with some learnable layers and a bina-
rization function introduced above. However, such methods suffer
from unsatisfactory performance due to the limited representation
ability of the hash codes that only have −1 or +1 values, i.e., 1 bit
per dimension. Thanks to the pioneering work [44], binary embed-
dings are able to be progressively refined with customized bits per
dimension.

Specifically, following the insight of using residual operations
to gradually narrow the gap between original float vectors and the

4

learned binary ones, we introduce a recurrent binarization mod-
ule with customized loops, as demonstrated in Figure 3. There are
three main components, including binarization block, reconstruc-
tion block, and residual block. The binarization block performs
almost the same as conventional hashing networks, where a bi-
nary embedding 𝑏0 is encoded from the float vector 𝑓 as input:
𝑏0 = 𝜌 (𝑾0 (𝑓)) ∈ {−1, 1}𝑚 , where 𝜌 is the binarization function,
and 𝑾0 is the multi-layer perception (MLP) that consists of lin-
ear, batch normalization, and ReLU layers. The encoded binary
embedding 𝑏0 is then reconstructed back to float vectors, such as
𝑓0 = ∥𝑹0 (𝑏0)∥, where 𝑹0 is also multi-layer perception (MLP). The
residual between the original 𝑓 and reconstructed 𝑓0, therefore,
reflects the representation loss of the binarization process, which
can be further narrowed by repeating the above steps to binarize
the residual parts. The residual binary vector can be formulated
as 𝑟0 = 𝜌 (𝑾1 (𝑓 − 𝑓0)), which is further added to the base binary
vector 𝑏0 via 𝑏1 = 𝑏0 + 1

2𝑟0. The weight
1
2 is chosen to ease the

similarity calculation with only 𝑥𝑜𝑟 and 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 (find detailed
derivation from the original paper of [44]).

Until now, we have introduced the process of recurrent bina-
rization when the loop is set as 1, i.e., repeat once. In real-world
applications, the loop can be customized to trade off accuracy and
efficiency. Formally, the whole process of recurrent binarization
with 𝑢 ≥ 1 loops can be defined as

base binarization: 𝑏0 = 𝜌 (𝑾0 (𝑓)),

residual binarization loops:

𝑓𝑢−1 = ∥𝑹𝑢−1 (𝑏𝑢−1)∥,

𝑟𝑢−1 = 𝜌 (𝑾𝑢 (𝑓 − 𝑓𝑢−1)),
𝑏𝑢 = 𝑏𝑢−1 + 2−𝑢 𝒓𝑢−1 .

The recurrent binary embedding 𝑏𝑢 is the output of the binarization
process in Eq. (2), i.e., 𝑏𝑢 = 𝜑 (𝑓) given 𝑓 = 𝜙 (𝑞) or 𝑓 = 𝜙 (𝑑𝑘).
Given the output dimension of𝑾 as𝑚, the overall bits of 𝑏𝑢 can
be calculated as𝑚 × (𝑢 + 1).

3.2.2 Task-agnostic training. As shown in Eq. (2), the backbone
network 𝜙 and the binarization module 𝜑 are commonly jointly
optimized in an end-to-end manner in previous learning to hash
methods [17]. Though feasible, the training is not efficient given
the heavy backbone network for accurate representation learning,
and task-dependent as the raw data (e.g., text, images) must be
accessed for training end-to-end, rendering an inflexible solution,
especially for the data-sensitive applications. To tackle the chal-
lenge, we introduce a universal training solution that only requires
the float vectors as input, i.e., extracting the embeddings using
off-the-shelf backbone networks 𝜙 . The binarization module 𝜑 is
therefore trained alone in a task-agnostic and modality-agnostic
manner. The objective function of such embedding-to-embedding
training can be formulated as

argmin
𝜑

L(F ;𝜑), (3)

where F is the set of all float vectors for training.
Given the great success of contrastive loss [13] in representation

learning research, we adopt an NCE-form contrastive objective to

regularize the binarization module,

L(F ;𝜑) = 1

|F |
∑︁
𝑓 ∈F

− log
exp⟨𝜑 (𝑓), 𝜑 (𝑘+)⟩∑
𝑘∈B exp⟨𝜑 (𝑓), 𝜑 (𝑘)⟩ , (4)

where 𝑘 is the float features within the same batch B as the anchor
𝑓 . 𝑘+ is the positive sample constructed from another augmented
view of an image or the query-document pair from the web. ⟨·, ·⟩ is
cosine similarity between recurrent binary embeddings. Besides the
positive pairs collected by manual annotations or user behaviors,
we employ hard negative mining to further improve the discrimi-
nativeness of the learned binary embeddings.

Hard negative mining has proven to be a useful technique for
improving the accuracy of classification tasks [15, 43, 46] in the
deep learning community. Recent work [25, 31] on semantic re-
trieval has also successfully applied this technique to improve the
retrieval accuracies. There are online and offline hard negative
mining approaches to collect hard enough negative samples and
improve the model’s ability to identify similar but irrelevant query-
document pairs. Online hard negative mining is efficient as it is
conducted on the fly within mini-batches. Offline hard mining is
performed off-the-shelf before each training epoch and is extremely
time-consuming, even with the help of the ANN algorithm. How-
ever, offline mining is proven to be more effective as it can search
among the whole training set and discover the most difficult sam-
ples. How to enable global hard mining as the offline method while
at the same time maintaining the efficiency of online methods turn
out to be a challenging but critical problem.

Inspired by He et al. [22], we tackle this problem by maintaining
a queue Q ∈ R𝐿×𝑚 of negative sample embeddings. Specifically, we
extend the mini-batches with a fix-length (i.e., 𝐿) queue (about 16×
larger than the mini-batch) and mine hard samples in the queue on
the fly. At each training step, the binary embeddings of the current
mini-batch are added to the queue, and the oldest mini-batch in the
queue is removed if the maximum capacity is reached. Note that we
perform momentum updates of the binarization module to encode
embeddings for the queue in order to keep latent consistency among
different batches, following the practice in [22]. We select the top-𝑘
hardest negative samples in the queue for contrastive objectives in
Eq. (4), i.e., the samples that receive the highest similarity scores
with the anchor feature. Therefore, the set of training samples B in
Eq. (4) becomes

B = {𝑘+, 𝜅 (Q)}, (5)
where 𝜅 (Q) denotes the operation for selecting top-𝑘 hardest neg-
ative samples from Q.

Once 𝜑 is learned, the recurrent binary embeddings for queries
and documents can be produced in an efficient embedding-to-
embedding paradigm. Both training and deployment processes are
task-agnostic since only full-precision embeddings are needed as
input, which enables universal embedding binarization across all
the modalities and tasks.

3.2.3 Backward-compatible training. As illustrated in Figure 1, the
retrieval stage needs to process billions or trillions of documents.
The huge scale of data poses challenges in embedding upgrades
since all the index embeddings need to be re-extracted before the
deployment of a newmodel. Such a process is quite time-consuming
and computationally expensive. In this paper, we for the first time

5

investigate the potential of backward-compatible learning [45] with
binary embeddings. To be specific, compatible learning requires
the embeddings encoded by the old model and the new model to
be interchangeable in a consistent latent space. Embedding model
upgrades with backward compatibility can deploy the new model
immediately without refreshing the index, that is, the new query
embeddings can be directly compared with the old document em-
beddings. The upgrading objective can be formulated as

SBEBR-BC (𝑞new, 𝑑+old) ≥ SBEBR (𝑞old, 𝑑+old), (6)
SBEBR-BC (𝑞new, 𝑑−old) ≤ SBEBR (𝑞old, 𝑑−old), (7)

where 𝑑+ denotes relevant documents to user query 𝑞, and 𝑑− de-
notes the irrelevant ones. SBEBR-BC (·, ·) calculates the similarity
between the new binary embedding of query and old binary em-
bedding of the document, which is formulated as:

SBEBR-BC (𝑞, 𝑑𝑘) = D
(
𝜙 ◦ 𝜑new (𝑞), 𝜙 ◦ 𝜑old (𝑑𝑘)

)
∀𝑘 ∈ {1, · · · , 𝑛},

(8)

where 𝜑new (·) is the new version of the recurrent binary trans-
formation module and 𝜑old (·) is the old one, 𝜙 denotes a new or
identical float backbone model determined by specific applications.
BEBR-BC stands for backward compatible BEBR system.

The training objective can be formulated as
argmin

𝜑new
L(F ;𝜑new) + LBC (F ;𝜑new, 𝜑old), (9)

where L is the same as Eq. (4), and LBC is also in the form of an
NCE loss but across old and new models, i.e.,

LBC (F ; 𝜑new, 𝜑old)

=
1

|F |
∑︁
𝑓 ∈F

− log
exp⟨𝜑new (𝑓), 𝜑old (𝑘+)⟩∑
𝑘∈B exp⟨𝜑new (𝑓), 𝜑old (𝑘)⟩

. (10)

𝑓 is encoded by 𝜙 (·). 𝜑new is optimized individually with the other
parametric modules fixed. L maintains self-discrimination of the
new binarization model while LBC regularizes the cross-model
compatibility. Queue-based hard mining is also applied for LBC.

3.3 Deployment
3.3.1 Dot product of recurrent binary embeddings: A revisit. In Shan
et al. [44], the cos similarity of recurrent binary embedding is de-
composed into the dot product of hash codes as in Eq. (11), where
the subscript 𝑞 and 𝑑 denote the query and documentation. Thus,
the calculation of hash codes can be implemented efficiently with
the bit-wise operation as in Eq. (12), where 𝑥 , 𝑦, are binary vectors
in {1,−1}𝑚 , 𝑝𝑜𝑝𝑐 , ∧ and >> are the population count, XOR, and
logical right shift operations.

D(𝑏𝑞𝑢 , 𝑏𝑑𝑢) ∝
1

| |𝑏𝑑 | |
(𝑏𝑞0 · 𝑏𝑑0 +

𝑢−1∑︁
𝑗=0

𝑢−1∑︁
𝑖=0

(1
2
) 𝑗+𝑖+2𝑟𝑞

𝑗
· 𝑟𝑑𝑖

+
𝑢−1∑︁
𝑗=0

(1
2
) 𝑗+1𝑏𝑞0 · 𝑟𝑑𝑗 +

𝑢−1∑︁
𝑖=0

(1
2
)𝑖+1𝑏𝑑0 · 𝑟𝑞

𝑖
)

(11)

𝑥 · 𝑦 = (𝑝𝑜𝑝𝑐 (𝑥 ∧ 𝑦) >> 1) +𝑚 (12)
Although the bit-wise operation is fast with population count,
the computation complexity grows rapidly with the increase of

𝑢. Hence, it relies on GPU to offer high performance, and an opti-
mized k-NN selection algorithm is developed.

3.3.2 Symmetric distance calculation (SDC). Unfortunately, the
GPU-Enabled NN search algorithm limits its usefulness and ap-
plicability in practical cases. In this paper, we develop a Symmetric
Distance Calculation (SDC) of recurrent binary embedding around
the CPU platform,which is applicable tomost scenarios. Specifically,
SDC allows computing the distance between the uncompressed
recurrent binary features. It relies on SIMD in-register shuffle oper-
ation to provide a high-performance calculation procedure, which
can be combined with inverted indexes. For simplicity’s sake, we
explain the SDC uses 128-bit SIMD in the following content.

Similar to [2],[3], and [7], SIMD registers and in-register shuffles
are used to store lookup tables and perform lookups. However, these
methods use sub-quantizers to obtain different centroids without
normalization during calculation. Therefore, algorithmic changes
are required to obtain the fixed centroids and magnitude of embed-
dings for normalization. More specifically, SDC relies on 4-bit code
as a basic unit and uses 8-bit integers for storing lookup tables. The
resulting lookup tables comprise 16 8-bits integers (128 bits). Once
lookup tables are stored in SIMD registers, in-register shuffles can
perform 16 lookups in 1 cycle, enabling large performance gains.

Memory layout. By setting 𝑢 ∈ {2, 4}, we first generate the
recurrent binary vectors and organize an inverted list of features
with the standard memory layout. As shown in the upper of Figure
4. 𝑎𝑖 is the 4-bit code, and 𝑎𝑛𝑜𝑟𝑚 is the quantized magnitude value of
the vector appended at the end. Notably, for𝑢 = 2, the 𝑎𝑖 represents
two adjacent dimensions of the feature. To efficiently shuffle lookup
tables, the standard memory layout of inverted lists needs to be
transposed because the transposed data are contiguous in memory,
and the SIMD register can be loaded in a single memory read. This
transition process is performed offline and does not influence the
search speed.

Lookup tables. As mentioned early, the centroids in SDC are
fixed with the setting of 𝑢, and it can uncompressed represent the
recurrent binary vectors. When 𝑢 = 4, the distance table in 128-bit
registers can be reconstructed directly because the centroids of SDC
are presented as 4-bit integers, and the inner product distance range
is 8-bit integers. When 𝑢 = 2, we use two adjacent dimensions
of recurrent binary vector to form 4-bit code, and the distance
can be calculated by adding the inner products result of two 2-bit
respectively.

SIMD computation. As the lookup tables and inverted list are
prepared, each inverted list is scanned block by block. We depicted
this process in Figure 4. First, the index codes are packed as 8-bit in
each cell of 128-bit registers, and we unpacked the subcodes using
shifts and masks. For each set of subcodes, the partial distances
are yielded using lookup implementation through a combination
of shuffle and blends. This process is repeated 𝑢 ¤𝑚/4 times, and
the distances are obtained by summing each partial distance with
saturated arithmetic. Lastly, each distance is normalized by dividing
its magnitude value. In practice, we multiply the distance by the
reciprocal of the magnitude value since the multiply operation is
fast in SIMD.

6

Figure 4: Symmetric distance calculation (SDC) using SIMD
calculation.

Figure 5: Overview of ANN systems equipped with BEBR.

3.3.3 ANN systems. We deployed a distributed search system based
on ANN search algorithms as in Figure 5. At run time, a query em-
bedding is generated on-the-fly by the embedding learning model.
Then, the proxy module dispatches the query to the leaf module,
where the main search process happens. Each leaf module equipped
various ANN indexes with symmetric distance calculation since
our work is orthogonal to ANN algorithms and compatible with
any type of index. Therefore, we can choose different algorithms
according to the different requirements of the product. For instance,
the inverted index (IVF) has two layers for embedding search, one
is the coarse layer quantizes embedding vectors into the coarse

cluster typically through the 𝐾-𝑚𝑒𝑎𝑛𝑠 algorithm, and the other is
the fine-grained layer does the efficient calculation of embedding
distances. Both layers can be supported by symmetric distance cal-
culation with recurrent binary embeddings used. Lastly, the result
from all leaves will be used to produce the top N result through the
selection merge process.

4 EXPERIMENTS
4.1 Implementation Details
The Adam optimizer [29] is employed with an initial learning rate
of 0.02. The temperature parameter 𝜏 of softmax is set to 0.07. We
also adopt gradient clipping when the norm of the gradient exceeds
a threshold of 5. When training on a server of 8 Nvidia V100 GPUs,
the batch size is set to 4096 for binary representation learning and
128 for compatible learning. The binarization experiments are based
on the PyTorch framework. We implemented 256-bit SDC in C++,
using compiler intrinsics to access SIMD instructions. g++ version
8.1 are selected and enables SSE, AVX, AVX2, and AVX512. Besides,
we use Intel MKL 2018 for BLAS. We carry our experiments on
Skylake-based servers, which are Tencent cloud instances, built
around Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50GHz.

4.2 Datasets
We evaluate the proposed BEBR on both public and industrial
datasets. For the public dataset, we use image and text data from
the MS COCO captioning dataset. For the industrial dataset, we
use data collected from two applications. One is web search which
returns relevant web pages given a user search query. The other
one is video copyright detection which identifies duplicated, repli-
cated, and/or slightly modified versions of a given video sequence
(query) in a reference video dataset. Offline datasets: For web
search, we collect search logs of user queries and clicks from Sogou
Search Engine. After data pre-processing, the training set contains
400 million samples and we use an additional 3 million samples for
evaluation. For video copyright detection, we use 8 million images
extracted from video sequences to train the model and manually
label 30k queries and 600k reference images for validation. Fur-
thermore, we use COCO captioning dataset which contains about
110k training images and 5k validation images. For each image in
the training and validation set, five independent human-generated
captions are provided. Online datasets:We deploy the proposed
BEBR in the production environment of the aforementioned two
applications. Web search documents are approximately 6 billion
in size, covering the most active web pages on the Internet. The
size of image embeddings extracted from video sequences in video
copyright detection is about 10 billion.

4.3 Evaluation Metrics
Offline evaluation. We use the metric of Recall@k to evaluate
the offline performance of the proposed binary-based embedding
retrieval method. Specifically, given a query 𝑞, its relevant docu-
ments D+ = {𝑑+1 , · · · , 𝑑

+
𝑁
}, and the top-k candidates returned by

a model as the retrieval set D̂ = {𝑑1, · · · , 𝑑𝑘 }. 𝑘 ≫ 𝑁 in practice.
7

Table 1: Retrieval performance of different embedding
forms on MS COCO caption dataset.

Embedding Bits Recall@1 Recall@5 Recall@10
hash 1024 0.348 0.632 0.730
ours 1024 0.360 0.646 0.751
float 16384 0.361 0.649 0.744

Table 2: Retrieval performance of different embedding
forms on industrial dataset collected from web search and
video copyright detection applications.

Embedding Web search video copyright detection
Recall@10 Recall@20

hash 0.819 0.688
ours 0.853 0.727
float 0.856 0.734

Recall@k is defined as:

Recall@𝑘 =
|D+ ∩ D̂|

𝑁
(13)

Online Evaluation We use different metrics to evaluate the effec-
tiveness of our proposed BEBR system. For web search, we adopt
themetrics of click-through rate (CTR) and query rewrite rate (QRR)
which are believed to be good indicators of search satisfaction. For
video copyright detection, we conduct the human evaluation for
the performance of retrieved documents, Specifically, we ask hu-
man evaluators to label the relevance of results from the BEBR
system and baseline system. Apart from precision, we report the
ratio between the number of copied videos (positive results) and the
number of traffic (denoted as detection ratio) to analyze the model’s
effect on the entire system. A higher detection ratio indicates better
performance. Furthermore, to evaluate the efficiency of the BEBR
system, We calculate queries per second (QPS) by measuring the
amount of search traffic the retrieval stage receives in one second.
We also investigate the memory consumption of the search index
built in the retrieval stage.

4.4 Offline Evaluation
Effectiveness of recurrent binary embedding.We investigate
the effectiveness of recurrent binary embeddings on both public
(academic) and private (industrial) benchmarks. As demonstrated
in Tables. 1&2, we compare with the baseline hash [49] (1 bit per
dimension) and the oracle float (full precision embedding, 32 bits
per dimension).

For the academic dataset, we conduct image-to-text retrieval
experiments using the MS COCO caption dataset. Specifically, we
employ CLIP [41] model of ResNet101 to produce float embedding
for image and text data. The float embedding of size 16384 bits is
then compressed into recurrent binary embedding and hash vector
with a size of 1024 bits, achieving a 16x compression ratio. As shown
in Table 1, recurrent binary embedding surpasses hash embedding
and achieves comparable results with float embedding.

For industrial datasets, the vector size of float embeddings in
web search and video copyright detection are 8192 and 4096 bits

Table 3: Comparison with alternative options of binary
training pipeline. Experiments are conducted on a web
search dataset with 400 million training samples. 𝜑 denotes
recurrent binary model, 𝜙 and 𝜓 denote encoder model for
queries and documents.

Training pipeline Recall@10 Training time
end-to-end 0.855 125 GPU hours

train 𝜑 only (fixed 𝜙 ,𝜓) 0.853 125 GPU hours
embedding-to-embedding 0.853 11 GPU hours

Table 4: Comparison with alternative options of backward-
compatible training. (𝜑𝑛𝑒𝑤 , 𝜑𝑜𝑙𝑑) denotes using binary em-
beddings produced by the new binary model to search bi-
nary embeddings produced by the old binary model.

Learning strategy Comparison pair Recall@20
baseline (𝜑𝑜𝑙𝑑 , 𝜑𝑜𝑙𝑑) 0.727

normal bct (𝜑𝑛𝑒𝑤 , 𝜑𝑜𝑙𝑑) 0.765
two-stage bct (𝜑𝑛𝑒𝑤 , 𝜑𝑜𝑙𝑑) 0.783

ours (𝜑𝑛𝑒𝑤 , 𝜑𝑜𝑙𝑑) 0.801

respectively. We adopt the same compression ratio setting of 16x
by compressing them into binary embeddings with sizes of 512 and
256 bits respectively. The results are shown in Table 2, we achieve
comparable retrieval performance with float embedding in web
search and video copyright detection applications and surpass hash
embedding by 2.4% and 3.9% respectively.
Comparison with alternative options of binary training. To
investigate the effectiveness and efficiency of our task-agnostic
binary training pipeline, we compare it with two alternative options
of binary training pipeline. One is end-to-end training where the
recurrent binarization module is optimized end-to-end with the
backbone network (𝜓 and𝜙). The other one adopts a similar pipeline
to the end-to-end training but with parameters in 𝜓 and 𝜙 fixed.
The fixed𝜓 and 𝜙 models help improve the retrieval performance
by providing data augmentations. Results are shown in Table 3. Our
proposed task-agnostic embedding-to-embedding training pipeline
achieves comparable performance with the other two end-to-end
training pipelines while reducing training time by 91.2%.
Comparison with alternative options of backward compat-
ible training. We investigate the effectiveness of our proposed
backward-compatible training pipeline by comparing with two
other pipelines. We denote the first alternative pipeline as normal
bct where backward compatible training is conducted between new
query encoder 𝜓𝑛𝑒𝑤 and old document encoder 𝜙𝑜𝑙𝑑 . During de-
ployment, backward-compatible binary embeddings are obtained
by mapping full precision queries and document embeddings into
a common space using the old binary model 𝜑𝑜𝑙𝑑 . The second al-
ternative pipeline (denote as two-stage bct) contains a two-stage
training process where the first stage learns backward compatible
full precision embeddings, and the second stage learns backward
compatible recurrent binary embeddings based on the compatible
output of the first stage.

All experiments of compatible learning are conducted on an
offline dataset collected from video copyright detection applications.

8

Table 5: Latency for exhaustive search on CPU platform in
video copyright detection application.

Embedding Index type Bits Search(s)↓ QPS↑
hash code bitwise 256 0.0024 414
ours (𝑢 = 2) bitwise 256 0.0032 312
ours (𝑢 = 2) SDC 256 0.0020 480
ours (𝑢 = 4) bitwise 256 0.0054 185
ours (𝑢 = 4) SDC 256 0.0020 480

float flat 4096 0.05106 19

Figure 6: Comparison of retrieval efficiency before and after
the deployment of BEBR. Experiments are conducted on an
offline dataset collected from web search.

Results are shown in Table 4. All three learning strategies achieve
solid backward compatibility by surpassing the baseline where
indexing is conducted between the old version of recurrent binary
embeddings, indicating the applicability of backward-compatible
training in binary embeddings. Among them, our proposed learning
paradigm learns better backward compatibility which outperforms
normal bct and two-stage bct by 3.6% and 1.8%.
Search latency on CPU platform. As mentioned in Section 3.3.1,
the standard search based on recurrent binary embedding [44] relies
on GPU to offer high performance. We implement the standard
distance calculation between recurrent binary embeddings on the
CPU by using the 𝑝𝑜𝑝𝑐𝑜𝑢𝑛𝑡 operation and carry exhaustive search
experiment on the offline video copyright detection dataset with
recall@20. The experiment loop is, by default, run on a single CPU
in a single thread. The comparison between bit-wise operation and
SDC results is shown in Table 5. We observe the bit-wise-based
method continues to decrease in QPS with an increase of 𝑢, and the
SDC is almost 2 times faster than the bit-wise operation at 𝑢 = 4.
Notably, SDC is slightly faster than hash code since the shuffle
instructions used in SDC are faster than 𝑝𝑜𝑝𝑐 .
Integration of BEBR into ANN algorithms. Besides the exhaus-
tive search experiments in Table 5, we also conduct experiments
that integrate BEBR into ANN algorithms. Specifically, we equip the
HNSW algorithm with the symmetric distance calculation compo-
nent and leverage recurrent binary embedding for search. Results
are illustrated in Figure 6. After deploying BEBR, HNSW achieves
significant improvements in retrieval efficiency.

Table 6: Online A/B tests of BEBR in web search.

CTR QRR Memory usage QPS
-0.02% -0.07% -73.91% +90%

Table 7: Online A/B tests of BEBR in video copyright detec-
tion.

Precision Detection ratio Memory usage QPS
-0.13% -0.21% -89.65% +72%

4.5 Online A/B Test
We deploy the binary embedding-based retrieval system to web
search and video copyright detection applications in Tencent and
compare them to strong baselines which utilize full precision embed-
ding for retrieval. Note that we substitute full precision embedding
with recurrent binary embedding only in the retrieval stage. The
subsequent re-rank stages are identical for both settings. Here, we
would like to focus on the balance of performance and efficiency,
where resource usage is recorded.

The live experiment is conducted over 30% of the service traffic
during one week. Table 6 and Table 7 show the great benefits of
resource and efficiency while retaining performance at the sys-
tem level. Specifically, BEBR conserves 73.91% memory usage and
increase the QPS of retrieval by 90%, while CTR and QRR of web
search application decrease slightly by 0.02% and 0.07% respectively.
In video copyright detection, memory usage is reduced by 89.65%,
and QPS is increased by 72%, while the precision and detection
ratio decreases slightly by 0.13% and 0.21%. The improvements in
retrieval efficiency and storage consumption lead to overall cost
reduction. After deploying BEBR, the overall costs of retrieval in
web search and video copyright detection are reduced by 55% and
31% respectively.

5 CONCLUSION
The paper presents binary embedding-based retrieval (BEBR) to
improve retrieval efficiency and reduce storage consumption while
retaining retrieval performance in Tencent products. Specifically,
we 1) compress full-precision embedding into recurrent binary
embedding using a lightweight transformation model; 2) adopt
a new task-agnostic embedding-to-embedding strategy to enable
efficient training and deployment of binary embeddings; 3) investi-
gate backward-compatible training in binary embeddings to enable
refresh-free embedding model upgrades; 4) propose symmetric
distance calculation equipped with ANN algorithms to form an
efficient index system. BEBR has been successfully deployed into
Tencent’s products, including web search (Sogou), QQ, and Tencent
Video. We hope our work can well inspire the community to effec-
tively deliver research achievements into real-world applications.

ACKNOWLEDGMENTS
We sincerely appreciate all the colleagues in the project of BEBR
development, including but not limited to Yang Li, Qiugen Xiao,

9

Dezhang Yuan, Yang Fang, Chen Xu, and Xiaohu Qie, for their valu-
able discussions, efforts, and support. We thank all the reviewers
and chairs for their time and constructive comments.

REFERENCES
[1] Abien Fred Agarap. 2018. Deep learning using rectified linear units (relu). arXiv

preprint arXiv:1803.08375 (2018).
[2] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2017. Acceler-

ated nearest neighbor search with quick adc. In Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval. 159–166.

[3] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2019. Quicker
adc: Unlocking the hidden potential of product quantization with simd. IEEE
transactions on pattern analysis and machine intelligence (2019), 1666–1677.

[4] Fabien André, Anne-Marie Kermarrec, and Nicolas Le Scouarnec. 2019. De-
rived codebooks for high-accuracy nearest neighbor search. arXiv preprint
arXiv:1905.06900 (2019).

[5] Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme
vector compression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 931–938.

[6] Artem Babenko and Victor Lempitsky. 2015. Tree quantization for large-scale
similarity search and classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 4240–4248.

[7] Davis W Blalock and John V Guttag. 2017. Bolt: Accelerated data mining with
fast vector compression. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 727–735.

[8] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. 1997.
Syntactic clustering of the web. Computer networks and ISDN systems 29, 8-13
(1997), 1157–1166.

[9] Mateusz Budnik and Yannis Avrithis. 2021. Asymmetric metric learning for
knowledge transfer. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8228–8238.

[10] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. 2017. Hashnet:
Deep learning to hash by continuation. In Proceedings of the IEEE international
conference on computer vision. 5608–5617.

[11] Moses S Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing. 380–388.

[12] Ken Chen, Yichao Wu, Haoyu Qin, Ding Liang, Xuebo Liu, and Junjie Yan. 2019.
R3 adversarial network for cross model face recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9868–9876.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[14] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2016. Binarized neural networks: Training deep neural networks with
weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830
(2016).

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[16] Rahul Duggal, Hao Zhou, Shuo Yang, Yuanjun Xiong, Wei Xia, Zhuowen Tu,
and Stefano Soatto. 2021. Compatibility-aware heterogeneous visual search. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10723–10732.

[17] Lixin Fan, Kam Woh Ng, Ce Ju, Tianyu Zhang, and Chee Seng Chan. 2020. Deep
Polarized Network for Supervised Learning of Accurate Binary Hashing Codes..
In IJCAI. 825–831.

[18] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate
nearest neighbor search with the navigating spreading-out graph. arXiv preprint
arXiv:1707.00143 (2017).

[19] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In Proceedings of the 2012
ACM SIGMOD international conference on management of data. 541–552.

[20] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product
quantization. IEEE transactions on pattern analysis and machine intelligence 36, 4
(2013), 744–755.

[21] Jiafeng Guo, Yinqiong Cai, Yixing Fan, Fei Sun, Ruqing Zhang, and Xueqi Cheng.
2022. Semantic models for the first-stage retrieval: A comprehensive review.
ACM Transactions on Information Systems (TOIS) 40, 4 (2022), 1–42.

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[24] Weihua Hu, Rajas Bansal, Kaidi Cao, Nikhil Rao, Karthik Subbian, and Jure
Leskovec. 2022. Learning Backward Compatible Embeddings. arXiv preprint
arXiv:2206.03040 (2022).

[25] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553–2561.

[26] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards
removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[27] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[28] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. 2012. Super-bit
locality-sensitive hashing. Advances in neural information processing systems 25
(2012).

[29] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[30] Ping Li, Trevor J Hastie, and Kenneth W Church. 2006. Very sparse random
projections. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining. 287–296.

[31] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-based product retrieval in taobao search. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3181–3189.

[32] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2015. Feature learning based
deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855
(2015).

[33] Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. 2018.
Deep triplet quantization. In Proceedings of the 26th ACM international conference
on Multimedia. 755–763.

[34] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir Krylov.
2012. Scalable distributed algorithm for approximate nearest neighbor search
problem in high dimensional general metric spaces. In Similarity Search and
Applications: 5th International Conference, SISAP 2012, Toronto, ON, Canada, August
9-10, 2012. Proceedings 5. Springer, 132–147.

[35] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[36] Qiang Meng, Chixiang Zhang, Xiaoqiang Xu, and Feng Zhou. 2021. Learning
compatible embeddings. In Proceedings of the IEEE/CVF International Conference
on Computer Vision. 9939–9948.

[37] Alistair Moffat and Justin Zobel. 1996. Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems (TOIS) 14, 4 (1996), 349–379.

[38] Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Ding, Ankit
Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic product search.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2876–2885.

[39] Mohammad Norouzi and David J Fleet. 2013. Cartesian k-means. In Proceedings
of the IEEE Conference on computer Vision and Pattern Recognition. 3017–3024.

[40] Zijing Ou, Qinliang Su, Jianxing Yu, Ruihui Zhao, Yefeng Zheng, and Bang Liu.
2021. Refining BERT Embeddings for Document Hashing via Mutual Information
Maximization. arXiv preprint arXiv:2109.02867 (2021).

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[42] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[43] Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. Facenet: A
unified embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 815–823.

[44] Ying Shan, Jian Jiao, Jie Zhu, and JC Mao. 2018. Recurrent binary embedding for
gpu-enabled exhaustive retrieval from billion-scale semantic vectors. In Proceed-
ings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining. 2170–2179.

[45] Yantao Shen, Yuanjun Xiong, Wei Xia, and Stefano Soatto. 2020. Towards
backward-compatible representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 6368–6377.

[46] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. 2016. Training region-
based object detectors with online hard example mining. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 761–769.

[47] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. 2018. Greedy hash:
Towards fast optimization for accurate hash coding in cnn. Advances in neural
information processing systems 31 (2018).

[48] Chien-Yi Wang, Ya-Liang Chang, Shang-Ta Yang, Dong Chen, and Shang-Hong
Lai. 2020. Unified representation learning for cross model compatibility. arXiv

10

preprint arXiv:2008.04821 (2020).
[49] Xiaofang Wang, Yi Shi, and Kris M Kitani. 2017. Deep supervised hashing with

triplet labels. In Computer Vision–ACCV 2016: 13th Asian Conference on Computer
Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part I 13.
Springer, 70–84.

[50] Tao Wu, Ellie Ka-In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin,
Ritesh Agarwal, Li Zhang, John Anderson, Sarvjeet Singh, et al. 2020. Zero-shot
heterogeneous transfer learning from recommender systems to cold-start search
retrieval. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 2821–2828.

[51] Binjie Zhang, Yixiao Ge, Yantao Shen, Yu Li, Chun Yuan, Xuyuan Xu, YexinWang,
and Ying Shan. 2022. Hot-Refresh Model Upgrades with Regression-Alleviating
Compatible Training in Image Retrieval. arXiv preprint arXiv:2201.09724 (2022).

[52] Han Zhang, Songlin Wang, Kang Zhang, Zhiling Tang, Yunjiang Jiang, Yun Xiao,
Weipeng Yan, and Wen-Yun Yang. 2020. Towards personalized and semantic
retrieval: An end-to-end solution for e-commerce search via embedding learning.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 2407–2416.

[53] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite quantization for
approximate nearest neighbor search. In International Conference on Machine
Learning. PMLR, 838–846.

[54] Xiangtao Zheng, Yichao Zhang, and Xiaoqiang Lu. 2020. Deep balanced discrete
hashing for image retrieval. Neurocomputing 403 (2020), 224–236.

A APPENDIX
In this section, we provide detailed information about retrieval-
based applications at Tencent, to facilitate a better understanding
of the contributions of the proposed BEBR.

A.1 Products in Tencent PCG

Figure 7: Illustration of partial products at Tencent PCG.

Tencent is a world-leading internet and technology company that
develops innovative products and services to improve the quality of
life of people around the world. Our group, Tencent PCG (Platform
and Content Group), is a large business group running Tencent’s so-
cial media, information feed, search, and content platforms, taking
Sogou, Tencent Video, and QQ as examples (as demonstrated in Fig-
ure 7). Large-scale index-based information search (e.g., web/video
search) and copyright detection are two fundamental and essential
AI capabilities for these products.

A.2 Information Search
Almost all products at Tencent require searching for useful in-
formation that meets the needs of users. For example, the search

engine product, Sogou2, helps users to acquire information by pro-
viding relevant videos, news, and queries under different search
sessions. Video feeds product returns personalized results of rele-
vant videos to improve user experience. Large scale EBR system
has been developed as infrastructure at Tencent to provide support
to search-related applications. However, huge costs in computation
and storage as well as search efficiency still remain intractable due
to super-scale index and high concurrent queries.

Fortunately, after the deployment of BEBR, up to 73.91% reduc-
tion in both memory and hard disk consumption has been achieved
with almost no accuracy loss at the system level, taking one more
step towards Green AI. Furthermore, the search efficiency has also
been greatly improved with the help of symmetric distance cal-
culation. The released resources support further development of
emerging functions and sustainable development of the products.

A.3 Video Copyright Detection

Figure 8: Illustration of video fingerprint system used in
video copyright detection applications.

Tencent Video (also known as WeTV outside of china) is one of
China’s largest online video platforms. As of March 2022, Tencent
Video has over 1.268 billion monthly mobile active users and 123
million VIP subscribers. Therefore, there are huge traffic videos,
and a large number of videos are uploaded on Tencent video every
day. This poses great problems for the company in identifying the
illicit versions of the original data.

The video fingerprint system, which serves copyright detection
of Tencent Video, is developed to generate unique and robust iden-
tification of the uploaded videos. As shown in Figure 8, the system
consists of feature extraction, large-scale retrieval, and fine-grained
matching stages, in which the retrieval stage takes almost half of
the cost in data computation, memory, and disk storage. Upon the
deployment of BEBR, we considerably reduce the cost of the re-
trieval stage by around 60% and the overall cost by around 31%. In
addition, the fast computation of SDC enables a lower response
time, alleviating the pressure on the entire system and improving
the user experience.

2http://sogou.com/
11

http://sogou.com/

	Abstract
	1 Introduction
	2 Related work
	2.1 Embedding-based Retrieval in Search
	2.2 ANN Methods
	2.3 Compatibility of Deep Neural Networks

	3 Binary Embedding-based Retrieval
	3.1 Preliminary
	3.2 Recurrent Binarization
	3.3 Deployment

	4 Experiments
	4.1 Implementation Details
	4.2 Datasets
	4.3 Evaluation Metrics
	4.4 Offline Evaluation
	4.5 Online A/B Test

	5 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Products in Tencent PCG
	A.2 Information Search
	A.3 Video Copyright Detection

