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Abstract

Myerson’s regularity condition of a distribution is a standard assumption in economics. In
this paper, we study the complexity of describing a regular distribution within a small statistical
distance. Our main result is that Θ̃(ε−0.5) bits are necessary and sufficient to describe a regular
distribution with support [0, 1] within ε Lévy-distance. We prove this by showing that we can
learn the regular distribution approximately with Õ(ε−0.5) queries to the cumulative density
function. As a corollary, we show that the pricing query complexity to learn the class of regular
distribution with support [0, 1] within ε Lévy-distance is Θ̃(ε−2.5). To learn the mixture of two
regular distributions, Θ̃(ε−3) pricing queries are required.

1 Introduction

A Myerson-regular distribution is a distribution with CDF F such that the revenue curve in quantile
space R(q) = q ·F−1(1− q) is concave. For distributions that can be represented by a PDF f (i.e.,
have no point masses) this is equivalent to the (non-decreasing) monotonicity of the virtual value
function

φ(v) = v − 1− F (v)

f(v)
. (1)

Myerson-regularity (or simply regularity) is a standard condition in Economics that was origi-
nally introduced by Myerson in his seminar paper on optimal auctions [Mye81]. Since then it has
played a fundamental role in the design and analysis of various economic setups such as: bilateral
trade [MS83], prior-independent mechanism design [BK96, HR09, RTCY12, FHH13, SS13, AB20],
auctions from samples [DRY10, CR14, FILS15, HMR15, MR15], approximation in mechanism de-
sign and revenue management [CLMN14, PLPV16, AHN+19, GLMN21], ...

Besides being widely used in Economics, they also encompass various important distributions:

• distributions with log-concave PDF, i.e. distributions where the PDF is of the form f(x) =
exp(−g(x)) for a convex function g, such as uniform, exponential and normal.

• distributions satisfying the monotone hazard rate conditions (MHR) condition which is a
notion from reliability theory. If a random variable measures the time until a certain failure
event happens (e.g. a light bulb goes out) then MHR means that the probability that the
failure happens at any given moment conditioned it hasn’t yet happened weakly increases
over time.
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• equal-revenue distributions where pricing at each point of the support leads to the same
revenue. As an example, consider the distribution supported on [1,∞) with CDF F (x) =
1 − 1/x. Those are known to be extremal regular distributions and are often used to derive
lower bounds in revenue management.

• certain distributions arising from machine learning, for example: let x be a random feature
vector in Rd which is sampled from a uniform or Gaussian distribution restricted to a d-
dimensional convex set K and let w ∈ Rd be a fixed vector of weights w ∈ Rd. Then the
distribution of the dot product 〈w, x〉 is regular by the Prekopa-Leidner Theorem [Pré73].

Describing Regular Distributions In this paper we ask how many bits of information we
need to describe a regular distribution. We obtain a sharp bound and apply to derive new tight
guarantees for learning regular distributions.

Since a regular distribution is a continuous object with possibly unbounded support, we need
to make a few assumptions to make the problem well-defined.

• Bounded support: We will assume that the distribution has support in [0, 1]. Without this
assumption, even representing the subclass of uniform distributions supported on [n, n + 1]
requires infinitely many bits.

• Lévy-distance approximation We will allow for ε-error in the representation measured in
Lévy distance, which allows an ε error both in values and probabilities. Formally:

Lévy(F,G) := inf{ε s.t. F (v − ε)− ε ≤ G(v) ≤ F (v + ε) + ε,∀v} (2)

Now we can state our main question formally:

Definition 1. We say that it is possible to describe a class of distributions C with b bits and ε
error, if there is a class of distributions C′ with |C′| ≤ 2b such that for every distribution F ∈ C
there exists F ′ ∈ C′ such that Lévy(F, F ′) ≤ ε.

Our main theorem is:

Theorem 1.1. It is possible to describe the class of regular distributions bounded in [0, 1] within ε
Lévy-distance using Õ(1/ε0.5) bits. Moreover, this is tight up to polylog factors.

It is useful to contrast this with the class of general distribution supported in [0, 1] for which
Ω(1/ε) bits are necessary and Õ(1/ε) bits sufficient. For the sufficient part, we can represent a CDF
F by the numbers bF (kε)/εc for k = 0, 1, . . . , d1/εe. Given those, we can construct a distribution
with CDF:

F̂ (x) = εbF (kε)/εc for x ∈ [kε, (1 + k)ε)

which is ε-close to F in Lévy-distance. To see that Ω(1/ε) bits are necessary, it is enough to
construct a set of 2Ω(1/ε) distributions such that each pair differ by at least ε in Lévy-distance.
Given bits b0, . . . , bk ∈ {0, 1} for k = 1/(2ε) construct a distribution such that:

Fb(x) = 2(k + bk)ε for x ∈ [2kε, 2(1 + k)ε), k = 0, 1, . . . , 1/(2ε)

For regular distributions, we will be able to construct a more succinct representation, using only
square root of the number of bits. However, we will need a more sophisticated sampling procedure.
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Beyond Regular Distributions While regular distributions are common in auction theory,
many distributions encountered in practice are irregular. To generalize our results beyond regularity
we define a notion of an irregularity coefficient, which measures how close to regular a distribution
is:

IrregCoeff(F ) = inf

{
β ≥ 0 s.t. qF−1(1− q) + β

∫ 1

1−q
F−1(x)dx is concave

}
(3)

A 0-irregular distribution is a regular distribution in the usual sense and an ∞-irregular dis-
tribution is a general distribution. The β-irregular class for β > 0 contains irregular distributions
that are close enough to regularity to afford a low description complexity:

Theorem 1.2. It is possible to describe the class of O(1)-irregular distributions bounded in [0, 1]
within ε Lévy-distance using Õ(1/ε0.5) bits.

The notion of β-irregularity coincides with the notion of α-strong regularity of Cole and Rough-
garden [CR14] when the sign is negative. The definition was originally intended to interpolate
between regular and MHR distributions for positive values of α. When one considers negative
values for α, we obtain a measure of how close a certain distribution is to regularity. A distribution
is α-strongly-regular in the sense of [CR14] whenever:

f ′(v) · (1− F (v)) ≥ −(2− α)f2(v)

and hence it is β-irregular when it is (−β)-strongly-regular, i.e.:

f ′(v) · (1− F (v)) ≥ −(2 + β)f2(v) (4)

Application: Pricing Query Complexity Our first application is to settle the pricing query
complexity of learning a regular distribution with ε-error in Lévy-distance. The pricing query
complexity model was introduced in [PLSTW23] with the goal of learning in economic settings
where the only viable mechanism is posted prices. In such settings, we only observe if prices posted
for different agents led to a sale or no sale. This notion is also useful when the auction of choice
is a first-price auction, since we don’t have access to truthful bids, but we still know if the bidder
chose to bid above the reserve or not. In such settings, we use the binary sale/no-sale outcomes
observed from previous periods to optimize the price in future auctions.

In this model a learning algorithm is able to interact with a distribution F via pricing queries:
in each query, the algorithm chooses a price pt, a sample vt is drawn from F and the algorithm
only learns the sign {+1,−1} of vt − pt. The goal of the algorithm is to estimate some parameters
of the distribution such as the mean, median or monopoly price for a given class of distributions.
Paes Leme, Sivan, Teng and Worah [PLSTW23] give matching upper and lower bounds for several
parameters of interest, but the leave a gap in estimating the pricing query complexity of learning
the CDF of a regular distribution. They give provide a Õ(1/ε3) upper bound and a Ω(1/ε2.5) lower
bound.

We settle this question by providing a Õ(1/ε2.5), matching the lower bound up to polylogarith-
mic factors. This is obtained by computing the O(1/ε0.5) description using O(1/ε2) pricing queries
to evaluate each point using the Chernoff bound:

Theorem 1.3. There is a Õ(1/ε2.5) upper bound on the pricing query complexity of learning the
CDF of a regular distribution within ε Lévy-distance error. This result is tight up to polylogarithmic
factors.
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Application: Mixture Distributions We say that a distribution with CDF F is a mixture of
k distributions F1, . . . , Fk if there are weights w1, . . . , wk ≥ 0 with

∑
iwi = 1 such that F (v) =∑

iwiFi(v), ∀v. In various applications, it is useful to write distributions as mixtures of other
distributions. For example, Sivan and Syrgkanis [SS13] design auctions for mixtures of regular
distributions whose performance depends on the number of distributions in the mixture. One may
ask how many regular distributions are needed to represent a general distribution. The description
complexity bounds automatically imply the following corollary:

Corollary 1.4. There exist a irregular distribution that can’t be ε-approximated in Lévy-distance
by a mixture of o(1/ε0.5) regular distributions.

This follows directly from the fact that a mixture of k regular distributions can be described
by O(k/ε0.5) while a general distribution requires Ω(1/ε) bits to represent.

It is also useful in ML applications to represent distributions as mixtures of Gaussians. Our
result also implies that one may require many Gaussians to represent a regular distribution, since
a Gaussian distribution can be represented by Õ(1) bits.

Corollary 1.5. There exist a regular distribution that can’t be ε-approximated in Lévy-distance by
a mixture of o(1/ε0.5) Gaussian distributions.

Learning Mixtures of Regular Distributions A mixture of two regular distributions can be
described using Õ(1/ε0.5) bits since we need Õ(1/ε0.5) bits to describe each distribution and Õ(1)
bits more to describe the weights. Given that, one would guess that the pricing query complexity
of learning a mixture is also Õ(1/ε2.5). We conclude the paper with the following rather surprising
result:

Theorem 1.6. Let C be the class of distributions supported in [0, 1] that can be written as a mixture
of two regular distributions. To estimate the CDF of a distribution in that class within ε in Lévy-
distance we require at least Ω(1/ε3) pricing queries.

Why Levy Distance? There are different ways to measure the distance between two distribu-
tions such as Total Variation (TV), Wasserstein, Kolmogorov, and Lévy. We note that bounds
on the Lévy-distance automatically imply bounds on the Wasserstein. The Kolmogorov and TV
distances are stronger notions but it is impossible to obtain any approximation in either one using
pricing queries. This is discussed in detail in [PLSTW23]. The Kolmogorov distance between two
distributions F and G is given by:

Kol(F,G) := inf{ε s.t. F (v)− ε ≤ G(v) ≤ F (v) + ε,∀v} (5)

If a distribution is a deterministic value in [0, 1], to get any meaningful approximation in Kolmogorov
distance, one needs to estimate this value exactly, which is impossible using pricing queries.

Another reason to study Lévy-distance is that such a metric has been considered in the literature
on the sample complexity of learning revenue-optimal auctions, see Brustle et al [BCD20] and
Cherapanamjeri et al [CDIZ22] for examples. Better understanding on the complexity of estimating
a distribution within Lévy-distance can lead to improved results on the complexity of auction
learning.
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Related Work Our work is broadly situated in the theme of sample complexity in algorithmic
economics, where the goal is to understand what is the minimal amount of information to describe
or optimize a certain economic setup. There are several ways one can explore this question. For
example, Dhangwatnotai et al [DRY10] and Fu et al [FHH13] ask to what extent one can optimize
an auction using a single sample of a distribution. In the other extreme, we can ask how many
samples from a certain distribution are required to optimize an auction (Cole and Roughgarden
[CR14] and Morgenstern and Roughgarden [MR15]) or compute the optimal reserve price (Huang
et al [HMR15]).

Closest to our paper is the paper by Paes Leme at al [PLSTW23] which considers a restricted
query model. Instead of having access to samples of a distribution, we are only allowed to post a
price and observe for a fresh draw of that distribution whether the price was above or below the
posted price. This is motivated by learning in two important scenarios: (i) settings where posted-
price mechanisms are used and we only observe purchase/no-purchase decisions; (ii) learning in
non-truthful auctions (like first-price auctions) where the bid is not an unbiased sample of the
value but we can still observe whether a bidder decided to bid above the reserve price or not. In
this setting, Paes Leme at al [PLSTW23] provides tight bounds on how to learn the monopoly price
of MHR, regular and general distributions and shows that it requires strictly less samples to learn
the reserve than to learn the entire CDF of a regular distribution.

However, [PLSTW23] leaves a gap on the number of pricing queries required to learn the CDF
of a regular distribution: they show a lower bound of Ω(1/ε2.5) and an upper bound of Õ(1/ε3).
We settle this question by providing an algorithm with pricing query complexity Õ(1/ε2.5).

Our work is also related to the line of work on query complexity in Computer Science, which
asks what is the minimum number of queries to a black box required to perform a certain task. This
approach has been applied to learning theory, parallel computing, quantum computing, analysis
of Boolean functions, and optimization, among others. Since this literature is too broad to be
surveyed here, we refer the reader to the book by Kothari, Lee, Newman, and Szegedy [KL+23].

2 Description Complexity of Regular Distributions

An Ω(1/ε0.5) lower bound on the description complexity of regular distributions is implicit in the
Ω(1/ε2.5) lower bound on the pricing query complexity given in [PLSTW23]. We can even modify
their example to strengthen the result to work for the class of distributions with non-decreasing
PDF functions (which is a subclass of MHR distributions and regular distributions).

Theorem 2.1. There is a set of 2Ω(1/ε0.5) distributions with non-decreasing PDF supported on [0, 1]
such that for every given pair the Lévy-distance is at least Ω(ε).

Proof. Let n = 1/(4ε0.5) and let b = (b0, . . . , bn−1) ∈ {0, 1}n be a sequence of bits. Now define a
PDF fb(x) such that for v ∈ [4

√
εk, 4
√
ε(k + 1)] we have fb(v) = 2v if bk = 0 and

fb(v) =

{
2v, if v ∈ [v0 − 2

√
ε, v0 −

√
ε] ∪ [v0 +

√
ε, v0 + 2

√
ε];

2v0, if v ∈ (v0 −
√
ε, v0 +

√
ε).

for v0 = (4k + 2)
√
ε

if bk = 1 (see Figure 1). First, we observe that all such functions have non-decreasing PDFs. Now,
if two functions differ in a certain bit bt then the Lévy-distance must be at least Ω(ε) by comparing
their CDF around v0 = (4k+2)

√
ε. In particular, let b, b′ ∈ {0, 1}n be two sequences that only differs

at index k, with bk = 0 and b′k = 1. Let F,G be the CDFs of distributions constructed by sequence
b and b′ respectively. Then F and G have Ω(ε) Lévy-distance since F (v0) < G(v0−0.1ε)−0.1ε.
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v0 − 2
√
ε v0 + 2

√
ε

2v0 − 2
√
ε

2v0 − 4
√
ε

2v0

2v0 + 4
√
ε

2v0 + 2
√
ε

v0 − 2
√
ε v0 + 2

√
ε

Figure 1: The PDF fb in region [v0 − 2
√
ε, v0 + 2

√
ε] for bit bk = 0 (left) and bk = 1 (right).

The above theorem shows that to describe a regular distribution within ε Lévy-distance, Ω(ε−0.5)
bits are necessary. The main focus of the remaining section is to provide a matching upper bound
Õ(ε−0.5) on the description complexity.

2.1 Learning a smooth distribution

We will start with the assumption that the distribution is smooth, by which we mean that it has
no point masses and is described by a PDF of class C1, i.e., the derivative f ′(v) exists and is
continuous. Under this assumption, regularity can be written as the following condition:

f ′(v) · (1− F (v)) ≥ −2f2(v) (6)

which corresponds to the derivative of the virtual value function being non-negative. We start
proving Lemma 2.2 with sufficient conditions for learning a smooth distribution. In Section 2.2 we
describe a simplified version of our algorithm to learn a distribution with a convex PDF (f ′(v) ≥ 0).
After we describe our main ideas in this special case, we then turn to learn a smooth regular
distribution in Section 2.3. Finally, we drop the smoothness assumption in Section 2.4 by using a
regularity-preserving mollification argument.

Lemma 2.2. For any unknown distribution F and m points x1 < x2 < · · · < xm, such that for
each i,

• we can identify Fi ∈ [0, 1] such that F (xi) ∈ [Fi − ε, Fi + ε], and

• either xi+1 − xi ≤ ε, or there exists f
i
≤ f i such that f(x) ∈ [f

i
, f i] for every x ∈ [xi, xi+1],

and satisfy (xi+1 − xi)(f i − f i) ≤ ε,

we can construct a distribution F̂ within O(ε) Lévy-distance from F on [x1, xm].

Proof. We can assume that F1 ≤ F2 ≤ · · · ≤ Fm. If not, we can sort the values of Fi in increasing
order and the properties in the lemma will continue to hold. To see that, first notice that if
Fi > Fi+1 then we have F (xi) and F (xi+1) are both in range [Fi − ε, Fi+1 + ε]. This happens
because F (xi) ≤ F (xi+1), and F (xi) ∈ [Fi − ε, Fi + ε], F (xi+1) ∈ [Fi+1 − ε, Fi+1 + ε]. Then
F (xi) ∈ [Fi − ε, Fi+1 + ε] ⊆ [Fi+1 − ε, Fi+1 + ε], and F (xi+1) ∈ [Fi − ε, Fi+1 + ε] ⊆ [Fi − ε, Fi + ε].
Therefore, if we switch Fi and Fi+1, the properties in the lemma still hold.
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Consider the following distribution F̂ : For each xi, F̂ (xi) = Fi and

F̂ (x) = Fi +
Fi+1 − Fi
xi+1 − xi

(x− xi) for x ∈ (xi, xi+1).

In other words, F̂ is defined by the estimation of F at some points, and filling the curve in between
by a linear function.

Now we show that F̂ is within O(ε) Lévy-distance from F on [x1, xm]. We prove this by showing
that this is true on every interval [xi, xi+1].

If xi+1−xi ≤ ε, then F and F̂ are within ε Lévy-distance on [xi, xi+1] since for any x ∈ [xi, xi+1]

F (x− ε)− ε ≤ F (xi)− ε ≤ Fi ≤ F̂ (x) ≤ Fi+1 ≤ F (xi+1) + ε ≤ F (x+ ε) + ε.

If xi+1−xi > ε, we show a stronger statement that F̂ is within O(ε) Kolmogorov distance from
F on [xi, xi+1], i.e., for any x ∈ [xi, xi+1], |F̂ (x) − F (x)| ≤ O(ε). By the lemma statement, this is

true for every xi. Now we show that this is also true for every x ∈ (xi, xi+1). Let f̂i = Fi+1−Fi
xi+1−xi be

the PDF of F̂ on (xi, xi+1). Then

|F̂ (x)− F (x)| =

∣∣∣∣(Fi + (x− xi)f̂i)− (F (xi) +

∫ x

xi

f(t)dt)

∣∣∣∣
≤ |Fi − F (xi)|+

∣∣∣∣(x− xi)f̂i − ∫ x

xi

f(t)dt

∣∣∣∣
≤ ε+

∫ x

xi

|f̂i − f(t)|dt ≤ ε+

∫ xi+1

xi

|f̂i − f(t)|dt. (7)

Here the first line is by the definition of the CDF and PDF; the second line is by |a+ b| ≤ |a|+ |b|
for any a, b; the third line is by the definition of Fi. Now we bound f̂i. As f(x) ≤ f i for every
x ∈ (xi, xi+1), we have

(xi+1 − xi)f̂i − 2ε = (Fi+1 − ε)− (Fi + ε) ≤ F (xi+1)− F (xi) =

∫ xi+1

xi

f(t)dt ≤ (xi+1 − xi)f i.

The same way, as f(x) ≥ f
i

for every x ∈ (xi, xi+1), we have

(xi+1 − xi)f̂i + 2ε = (Fi+1 + ε)− (Fi − ε) ≥ F (xi+1)− F (xi) =

∫ xi+1

xi

f(t)dt ≥ (xi+1 − xi)f i.

Combine the two inequalities above, we can bound f̂i by

f
i
− 2ε

xi+1 − xi
≤ f̂i ≤ f i +

2ε

xi+1 − xi
.

Thus for any t ∈ (xi, xi+1), as f(t) ∈ [f
i
, f i], we have |f̂i − f(t)| ≤ f i − f i + 2ε

xi+1−xi . Apply this

bound to (7), we get

|F̂ (x)− F (x)| ≤ ε+

∫ xi+1

xi

|f̂i − f(t)|dt

≤ ε+ (xi+1 − xi)
(
f i − f i +

2ε

xi+1 − xi

)
= 3ε+ (xi+1 − xi)(f i − f i) ≤ 4ε.
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2.2 Learning a smooth distribution with convex CDF

In this section, we assume we have a smooth distribution F and an oracle that allows us to sample
the value of its CDF F (·) and its PDF f(·). We start with a special case of convex CDF (f ′(v) > 0)
to describe a simplified version of our algorithm.

For a high-level intuition, it is useful to perform the following ‘heuristic’ calculation based
on Lemma 2.2: if ∆x is the distance between query points and ∆f is the variation of the PDF
between those points, our goal is to obtain ∆x ·∆f ≤ ε. Approximating ∆f ≈ f ′(x) ·∆x we obtain
∆x ≤

√
ε/f ′(x). Hence, we will try to sample points at a rate

√
f ′(x)/ε.

We make this formal in the following proof and bound the number of queries we need to
guarantee this sample rate. Note that our proof is algorithmic and will be easily converted later to
a pricing query complexity bound.

Theorem 2.3. Let F be a smooth distribution with a convex PDF. Then Õ(ε−0.5) oracle queries
to F and f are sufficient to learn the distribution within ε Lévy-distance.

Proof. We will show it is possible to find a set of O(1/ε0.5) points satisfying the conditions of
Lemma 2.2. We start by noticing that for a convex CDF, the PDF f is monotone.

Step 1 We set K = log(1/ε) and use binary search to identify points x0, x1, . . . , x2K+3 such that
for each k = 0, . . . ,K + 1 we have |x2k+1− x2k+2| ≤ ε and for the interval Ik = [x2k, x2k+1] it holds
that:

• f(v) ≤ 1 for v ∈ I0

• 2k−1 ≤ f(v) ≤ 2k for v ∈ Ik, k = 1, ...,K

• f(v) ≥ 2K for v ∈ IK+1

Identifying each point takes O(log(1/ε)) = Õ(1) queries to f(·). Given that we have Õ(1) such
points, we used a total of Õ(1) so far. We observe that the last interval IK+1 already satisfies the
conditions of Lemma 2.2 since its length |IK+1| is at most ε:

1 ≥
∫
v∈IK+1

f(v)dv ≥ 2K |IK+1| =
1

ε
|IK+1|.

Step 2 For each interval Ik with k = 0, ...,K, partition Ik to intervals Ik,1, Ik,2, · · · of length
1
2k
√
ε. The number of endpoints added is at most |Ik|√

ε/2k
= 2kε−1/2|Ik| for each interval Ik, and

sums up to at most

K∑
k=0

2kε−1/2|Ik| = ε−1/2|I0|+
K∑
k=1

2kε−1/2|Ik|

≤ ε−1/2 +
K∑
k=1

ε−1/2

∫
v∈Ik

2f(v)dv

≤ ε−1/2 + ε−1/2

∫
v∈[0,1]

2f(v)dv

= ε−1/2 + 2ε−1/2 = 3ε−1/2.

Thus if we query f and F for all the endpoints of the intervals from the first two steps, the total
number of queries needed is at most O(ε−1/2).
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Step 3 For each interval Ik,j = [vk,j , vk,j + 2−k
√
ε] ⊆ Ik partitioned in Step 2, define f

k,j
=

f(vk,j) and fk,j = f(vk,j + 2−k
√
ε). If fk,j − f

k,j
= tk,j2

k√ε, then partition the interval to

t̃k,j := max(1, dtk,je) intervals of length 1
t̃k,j2k

√
ε, and query F for the newly added endpoints. As

any neighboring points v, v have distance v − v ≤ 1
t̃k,j2k

√
ε. Hence this interval satisfies the second

condition in Lemma 2.2 :

(v − v)(f − f) ≤ 1

t̃k,j2k
√
ε · tk,j2k

√
ε ≤ ε

which allows us to learn the distribution up to ε Lévy-distance.
Finally, we only need to bound the number of queries needed in this step. At most btk,jc are

needed in Ik,j which has length 2−k
√
ε. Now if Ik = [x2k, x2k+1] we have:

2k−1 ≥ f(x2k+1)− f(x2k) =
∑
j

(f(vk,j+1)− f(vk,j)) =
∑
j

tk,j2
k√ε,

which implies
∑

j tk,j ≤ 1/(2
√
ε). Thus in this step, for all k, the total number of queries on F is

Õ(ε−1/2).

2.3 Learning a smooth regular distribution

Unlike convex functions, the PDF of a regular distribution can increase or decrease, so we can’t
easily partition the interval as in the previous lemma. However, regularity imposes a rate at which
the PDF can decrease (equation (6)). Our first lemma shows that the PDF of a regular distribution
can’t decrease by a factor of 2 too many times. We make this intuition formal in the next lemma:

Lemma 2.4. Let F be a smooth regular distribution with PDF f . Fix an integer `. Now assume
S is a collection of disjoint intervals of the form [vi, v

′
i) such that:

• for each interval [vi, v
′
i) we have 2−` ≤ 1− F (v′i) ≤ 1− F (vi) < 2−`+1

• For each v ∈ [vi, v
′
i) we have f(v′i) ≤ f(v) ≤ f(vi) and f(v′i) ≤ 1

2f(vi)

Then the number of intervals is bounded by a constant |S| ≤ 32.

Proof. We will count the maximum number of intervals in S. We can assume w.l.o.g. that f(v′i) =
1
2f(vi) as we can always take a subinterval where the last condition holds with equality.

Consider an interval [vi, v
′
i) in the collection S with f(vi) ∈ [2k−1, 2k). As for any v ∈ [vi, v

′
i),

f ′(v) ≥ − 2f2(v)

1− F (v)
≥ − 2f2(vi)

1− F (v′i)
≥ −2 · (2k)2

2−`
= −22k+`+1. (8)

Here the first inequality is by the definition of regular distributions; the second and the third
inequalities are by f is bounded between f(v′i), thus f(v) ≤ f(vi) ≤ 2k, and 1−F (v) ≥ 1−F (vi) ≥
2−`. Therefore

− 1

2
· 2k−1 ≥ f(v′i)− f(vi) =

∫ v′i

vi

f ′(v)dv ≥ −22k+`+1(v′i − vi). (9)

Here the first inequality is by f(v′i) = 1
2f(vi) and f(vi) ≥ 2k−1; the second inequality is by inequality

(8). By inequality (9) we can lower bound the length of the interval by v′i − vi ≥ 1
22k−1−(2k+`+1) =

2−k−`−3. Thus the CDF change in the interval can be lower bounded as follows:

F (v′i)− F (vi) =

∫ v′i

vi

f(v)dv ≥ f(v′i)(v
′
i − vi) ≥ 2k−2 · 2−k−`−3 = 2−`−5. (10)

9



Here the first inequality is by f(v) ≥ f(vi) in the interval with a non-increasing PDF function, and
the second inequality is by f(v′i) = 1

2f(vi) ≥ 2k−2, and v′i−vi ≥ 2−k−`−3. Since the intervals [vi, v
′
i)

are disjoint, the sum of F (v′i) − F (vi) is at most 2−`+1 − 2−` = 2−` Therefore, there are at most
25 = O(1) such intervals.

Lemma 2.4 shows that in an interval with the quantile bounded by a factor of 2, the PDF can
decrease by a factor of 1

2 for at most 32 times. A useful corollary is that in this case the PDF can
decrease by a constant factor of at most 1− 2−33 between two points.

Corollary 2.5. Let F be a smooth regular distribution and ` an integer. For any two points x < x′

with 2−` ≤ 1− F (x′) < 1− F (x) ≤ 2−`+1 it holds that f(x′) > 2−33f(x).

Proof. If f(x) ≥ 233f(x′), as f is continuous, [x, x′) can be partitioned to 33 intervals [x, v1) =
[v0, v1), [v1, v2), [v2, v3), · · · , [v31, v32), [v32, x

′) = [v32, v33) such that for any interval [vi, vi+1),
f(vi+1) ≤ 1

2f(vi) which contradicts Lemma 2.4.

With Lemma 2.4 we can also obtain the following key component of the learning algorithm.

Lemma 2.6. Let F be a smooth regular distribution and ` an integer and ε > 0 a parameter. For
any interval [x, x] with 2−` ≤ 1 − F (x) < 1 − F (x) ≤ 2−`+1, using Õ(1) queries to f we can find
a sequence of points x = x1 ≤ x2 ≤ · · · ≤ xm = x in the interval, such that: for any sub-interval
[xi, xi+1), either

• xi+1 − xi ≤ ε;

• f(xi+1) < 2−33, which implies for any point x ∈ [xi, xi+1), f(x) ≤ 1;

• for any two points x, x′ ∈ [xi, xi+1), 2−36f(x) < f(x′) < 236f(x).

Proof. Consider the following binary search algorithm: For any interval [a, b] (begin with [a, b] =
[x, x− ε] and only x, x− ε, x in the output sequence),

1. If b− a ≤ ε, stop searching [a, b];

2. If f(b) < 4f(a), stop searching [a, b];

3. If f(b) < 2−33, stop searching [a, b];

4. Otherwise, add a+b
2 to the output sequence, then search both [a, a+b

2 ] and [a+b
2 , b].

We show that all the first three cases in the algorithm are valid stopping conditions.
In Case 1, we don’t need to search the interval [a, b] as the endpoints are close enough to satisfy

the required property of the lemma.
In Case 2, consider interval [a, b] with f(b) ≤ 4f(a), and any x < x′ in [a, b]. By Corollary 2.5

f(x′) < 236f(x). If f(x′) ≥ 236f(x), as f(b) < 4f(a), there exist at least 33 intervals [a, v1),
[v1, v2), · · · , [vj−2, vj−1), [vj−1, x), [x′, vj+1), [vj+1, vj+2), · · · , [v31, v32), [v32, b) such that for any
interval listed above, the PDF between the two endpoints decreases by at least a factor of 1

2 . This
also contradicts Lemma 2.4 that in [x, x] the PDF can only decrease by half for at most 32 times.
Similarly, f(x′) > 2−36f(x) otherwise there are at least 33 intervals between x and x′ where the
PDF decreases by half.

In Case 3, if f(b) < 2−33, by Corollary 2.5 there does not exist any x ∈ [a, b) such that
f(x) > 1 > 233f(b). Thus for any x ∈ [a, b), f(x) ≤ 1.
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Thus, all first 3 cases of the algorithm are valid stopping conditions. Now we analyze how many
points are added to the sequence. First notice that for any v ≤ x − ε, f(v) < 233

ε : otherwise if

f(v) ≥ 233

ε , as f(x) > 2−33f(v) ≥ 1
ε for every x ∈ [v, v+ε] by Corollary 2.5, we have F (v+ε)−F (v) =∫ v+ε

v f(t)dt > 1
ε ((v + ε)− v) = 1, which is impossible.

Consider the following set S containing all searched intervals [ai, bi] that are one level from
the leaves: in other words, the algorithm searches [ai,

ai+bi
2 ] and [ai+bi2 , b], but does not search

deeper into either interval. If we list all intervals in S in increasing order (of either endpoint)
[a1, b1], [a2, b2], · · · , [as, bs], then f increases by a factor of 4 from ai to bi, but decreases by at
least half from bi to ai+1 for at most 32 times due to Lemma 2.4. Therefore, f(bi+1) > 2f(bi) for
all but at most 32 times. Partition S to at most 32 subsequence of intervals Sd = ([ad+1, bd+1],
[ad+2, bd+2], · · · , [ad+j , bd+j ]) with f(bd+i+1) > 2f(bd+i) for every i ∈ [j − 1]. Since for every

[ai, bi] ∈ S, 2−33 ≤ f(bi) <
233

ε , Sd contains at most O(log 1
ε ) = Õ(1) intervals, thus S also contains

Õ(1) intervals.
Notice that each interval in the search tree satisfies one of the 4 conditions:

1. The interval is in S;

2. The interval is a child of an interval in S;

3. In the search tree, the interval is an ancestor of an interval in S;

4. In the search tree, the interval is a child of an ancestor of an interval in S.

Since the length of each searched interval is at least ε, the depth of the search tree isO(log 1
ε ) = Õ(1).

Therefore, each interval [ai, bi] ∈ S defined in the previous paragraph has Õ(1) ancestors in the
search tree. Thus each interval in S can define at most Õ(1) intervals in the above 4 conditions,
which means there are Õ(|S|) = Õ(1) intervals in the search tree. We conclude that the proposed
algorithm uses Õ(1) queries to f to output a sequence of points satisfying the conditions in the
lemma statement.

Now we are ready to generalize the algorithm for distributions with monotone PDF to arbitrary
regular distributions. The algorithm has almost the same structure, but we need to be more careful
in the analysis of query complexity.

Theorem 2.7. Let F be a smooth regular distribution. Then Õ(ε−0.5) oracle queries to F and f
are sufficient to learn the distribution within ε Lévy-distance.

Proof. Let L = log 1
ε . We describe the steps of the algorithm as follows. We start with “Step 0”

just to keep the correspondence of Steps 1, 2, and 3.

Step 0 Use binary search to identify 2(L+1) points zi such that for the intervals I(`) = [z2`−1, z2`]
the CDF satisfies 1−2−`+1 ≤ F (v) < 1−2−` and I(L+1) contains all values with 1−F (v) ≥ 1−2−L =
1− ε. And z2`+1 − z2` ≤ ε. Binary search requires O(log 1

ε ) = Õ(1) queries for each interval, thus

Õ(1) queries in total for all intervals as there are only Õ(1) intervals. We are going to run an
algorithm similar to the case with monotone PDF for each interval and show that Õ(ε−0.5) queries
to F and f are enough to learn the CDF for each I(`), thus Õ(ε−0.5) queries are enough in total.
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Step 1 All operations below are applied to interval I(`) with fixed `. We only focus on I(`) with
` ≤ L, as there is no need to learn I(L+1) with ε Levy distance. When there is no ambiguity, we
omit the superscript `.

For interval I(`) = [x, x], by Lemma 2.6 we can find a sequence of points x1 = x ≤ x2 ≤ · · · ≤
xm = x in the interval, such that: for any subinterval [xi, xi+1), either (a). xi+1 − xi ≤ ε; or (b).
f(xi+1) < 2−33, which implies for any point x ∈ [xi, xi+1), f(x) ≤ 1; or (c). for any two points
x, x′ ∈ [xi, xi+1), 2−36f(x) < f(x′) < 236f(x).

Construct interval collections I0, I1, · · · , IK , IK+1 for some K = Õ(1) as follows. For all subin-
tervals [xi, xi+1) satisfying (a), group them to an interval collection IK+1; for all subintervals sat-
isfying (b), group them to an interval collection I0; for all subintervals satisfying (c), add [xi, xi+1)
to interval collection Ik, if 2k−1 ≤ 233f(xi+1) < 2k. Different from the analysis for monotone non-
decreasing f , for any interval [xi, xi+1) in Ik, point x ∈ [xi, xi+1) satisfies f(x) < 236f(xi+1) < 2k+3,
and f(x) > 2−36f(xi+1) ≥ 2k−70. As the intervals in the collections are constructed by Lemma 2.6
which only uses Õ(1) queries, the total number of queries to f used in this step is Õ(1).

Step 2 For each interval collection Ik with 0 ≤ k ≤ K, partition all points in Ik to intervals
Ik,1, Ik,2, · · · of length 1

2k+`
√
ε. Denote by |Ik| the total length of all intervals in Ik. The number of

endpoints added is at most |Ik|√
ε/2k+`

= 2k+`ε−1/2|Ik| for each interval collection Ik, and sums up to
at most

K∑
k=0

2kε−1/2|Ik| = ε−1/2|I0|+
K∑
k=1

2k+`ε−1/2|Ik|

≤ ε−1/2 +
K∑
k=1

ε−1/2

∫
v∈Ik

270+`f(v)dv

≤ ε−1/2 + 270+`ε−1/2

∫
v∈I(`)

f(v)dv

= ε−1/2 + 270+`ε−1/2 · 2−` = O(ε−1/2).

Thus if we query f and F for all the endpoints of the intervals from this step, the total number of
queries needed is at most O(ε−1/2).

Step 3 For each interval Ik,j = [vk,j , vk,j + 2−k−`
√
ε] ⊆ Ik partitioned in Step 2, if f(vk,j +

2−k−`
√
ε) − f(vk,j) = tk,j · 2k+`√ε, we further partition the interval to t̃k,j := max(1, dtk,je) in-

tervals [vk,j,0, vk,j,1], [vk,j,1, vk,j,2], · · · , [vk,j,t̃k,j−1, vk,j,t̃k,j ] of length 1
t̃k,j2k+`

√
ε (with vk,j,0 = vk,j

and vk,j,t̃k,j = vk,j+1), and query F for the newly added endpoints. By the definition of regular

distribution, for any x ∈ [vk,j , vk,j+1],

f ′(x) ≥ − 2f2(x)

1− F (x)
>

2 · (2k+3)2

2−`
= −2`+2k+7

by f(x) < 2k+3 and F (x) < 1− 2`. Thus we can bound f(x) for x ∈ [vk,j , vk,j+1] as follows:

f(x) ≤ f(vk,j+1)− (−2`+2k+7) · (vk,j+1 − vk,j)
< f(vk,j) + tk,j · 2k+`√ε+ 2`+2k+72−k−`

√
ε

= f(vk,j) + tk,j · 2k+`√ε+ 2k+7√ε def= f,
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and

f(x) ≥ f(vk,j) + (−2`+2k+7) · (vk,j+1 − vk,j)
> f(vk,j)− 2`+2k+72−k−`

√
ε

= f(vk,j)− 2k+7√ε def= f,

Thus for any neighboring points vk,j,a, vk,j,a+1 in the partition with distance d = 1
t̃k,j2k+`

√
ε, if

x ∈ [vk,j,a, vk,j,a+1], we have f(x) ∈ (f, f) with f − f < tk,j · 2k+`√ε+ 2k+8√ε, and

(vk,j,a+1 − vk,j,a)(f − f) <
1

t̃k,j2k+`

√
ε(tk,j · 2k+`√ε+ 2k+8√ε)

=
tk,j

t̃k,j
ε+ 28−`ε = O(ε).

Figure 2: Illustration of the analysis on interval [vk,j , vk,j+1] with tk,j ≤ 1. The two black solid
lines have slope −2`+2k+7, which is a lower bound of f ′(v) in this range by the definition of regular
distribution. Given f(vk,j) and f(vk,j+1), the PDF function f of a regular distribution cannot go
beyond the two black lines. As the CDF of any distribution is the area below the PDF curve, the
CDF difference of any two regular distributions given the CDF and the PDF at the vk,j and vk,j+1

(for example, the red curve and the blue curve) is smaller than the area of the dashed rectangle,
which is (vk,j+1 − vk,j)(f − f).

Figure 2 provides an illustrative example of the analysis. By Lemma 2.2 we can learn a dis-
tribution within ε Lévy-distance from F on

⋃
Ik,j for k ∈ [0,K]. As all intervals in IK+1,j have

length at most ε, we do not need to learn those intervals to satisfy ε Lévy-distance.
Now we analyze how many additional points (i.e. queries to F ) are needed in this step. t̃k,j−1 =

max(1, dtk,je) − 1 ≤ max(0, tk,j) additional queries are needed for each interval Ik,j . This means

that if f increases on Ii,j , i.e. f(vk,j+1) > f(vk,j), then at most tk,j =
f(vk,j+1)−f(vk,j)

2k+`
√
ε

additional

queries are needed; otherwise when f does not increase on Ii,j , no additional query is required.
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Let Ik,↑ = {x : f ′(x) ≥ 0, 2k−70 < f(x) < 2k+3} and Ik,↓ = {x : f ′(x) < 0, 2k−70 < f(x) < 2k+3}
be the sets of values such that f(x) are bounded in range (2k−70, 2k+3), while f is non-decreasing
and decreasing respectively. Notice that Ik is a subset of Ik,↑∪Ik,↓. Therefore, we can upper-bound
the total number of additional queries in Ik by∑

j

max(0, tk,j) ≤
∑
j

f(vk,j+1)− f(vk,j)

2k+`
√
ε

≤ 1

2k+`
√
ε

∫
Ik,↑

f ′(x)dx. (11)

As on Ik,↑∪ Ik,↓, f(x) can increase to at most 2k+3, we have
∫
Ik,↑

f ′(x)dx ≤ 2k+3−
∫
Ik,↓

f ′(x)dx.

Notice that for any x such that 2k−70 < f(x) < 2k+3, when f ′(x) < 0, f ′(x) > − 2f2(x)
1−F (x) > −22k+`+7.

Also by

2k−70|Ik,↓| <
∫
Ik,↓

f(x)dx ≤ 2−`

we have |Ik,↓| < 270−k−`. Therefore,∫
Ik,↑

f ′(x)dx ≤ 2k+3 −
∫
Ik,↓

f ′(x)dx < 2k+3 +

∫
Ik,↓

22k+`+7dx

< 2k+3 + 22k+`+7|Ik,↓| < 2k+3 + 22k+`+7 · 270−k−`

< 2k+3 + 2k+77 < 2k+78. (12)

Combine (11) and (12), we have the total number of additional query in Ik is at most

1

2k+`
√
ε

∫
Ik,↑

f ′(x) <
1

2k+`
√
ε
· 2k+78 = 278−`√ε.

Thus for every k, the number of queries in Step 3 is O(ε−1/2), which means that the total number
of queries in Step 3 is Õ(ε−1/2) since there are Õ(1) different values of k.

Discussion on β-irregular distributions. Observe that there is nothing special about the
factor of 2 in equation (6). By repeating the proof with a different irregularity coefficient we obtain
a proof of Theorem 1.2.

2.4 Description complexity of a general (non-smooth) regular distribution

When the regular distribution does not have a smooth CDF function, the PDF function may not
exist, and our algorithm for learning the CDF distribution using oracle queries to the PDF function
may not apply to general regular distributions. However, we show in the following lemma, that any
regular distribution F can be uniformly approximated by a smooth regular distribution F̃ within
arbitrarily small Lévy-distance δ. Thus, to describe F within ε Lévy-distance, it suffices to describe
F̃ within ε Lévy-distance, which is doable via the algorithm in previous subsections.

What we will describe above is a variation of the well-known mollification procedure in real
analysis, which replaces a function with its convolution with a very concentrated C∞-function.
The only specific detail below is that we argue we can do mollification in a way that is regularity-
preserving.

Lemma 2.8. Given any regular distribution F , for any δ > 0 there is another regular distribution
F̃ such that Lévy(F, F̃ ) ≤ δ and F̃ has no point-masses and has a C∞ CDF.
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Proof. Let R(q) = qF−1(1−q) be the revenue curve associated F . Since F is regular, the curve R is
concave, but it may not be C∞. There are different techniques to obtain a uniform approximation
of concave functions by C∞ concave functions, one of which is taking a convolution with a non-
negative mollifier (see [AM15] for example). For our purpose, it is enough that it exists a function
C∞-concave R̂(x) such that R̂(0) = 0 and |R(x) − R̂(x)| ≤ δ2/2, ∀x ∈ [0, 1]. Now, if we take
R̃(x) = R̂(x)+δ2x(1−x) we obtain a function that is C∞ strongly concave and |R(x)−R̃(x)| ≤ δ2.

Now, define F̃ such that R̃(q) = qF̃−1(1 − q). Because R̃ is strongly convex, F̃ has no point
masses. The function F̃ is strictly increasing and C∞, so f̃(v) > 0 in its domain. As a consequence,
F̃ (v) is also C∞.

Finally observe that for q ∈ [δ, 1− δ] we have |F̃−1(q)−F−1(q)| ≤ δ2/δ = δ. Now, for a given q,
let v = F−1(q). Then we know that: v−δ ≤ F̃−1(q) ≤ v+δ. Hence F̃ (v−δ) ≤ q = F (v) ≤ F̃ (v+δ)
which implies that Lévy(F, F̃ ) ≤ δ.

Putting it all together We can apply Theorem 2.7 to the smooth approximation from Lemma
2.8 and obtain a Õ(1/ε0.5) bound on the number of queries to F and f to learn any regular
distribution.

To complete the result, we still need to argue about the number of bits necessary to represent
the result since both the points x queried and the results F (x) and f(x) are in principle real
numbers. However, we can see each query to F (or f) as follows: query F (x) (or f(x)) where x is
an integer times ε, and an approximate answer within F (x) ± ε (or f(x) ± ε). All of the lemmas
and algorithms already accommodate ±ε errors both in x, F , and f . This automatically leads to a
Õ(1/ε0.5) bit complexity bound. Combined with the lower bound in Theorem 2.1, this proves our
main result (Theorem 1.1).

3 Pricing Query Complexity of Learning a Regular Distribution

In this section, we study the pricing query complexity of learning a regular distribution within ε
Lévy-distance. In particular, for each pricing query, we submit a price x, and a value v ∼ F is
realized. We cannot directly observe v, but can observe sign(v−x) ∈ {−1,+1}. By Chernoff bound,
Õ(1/ε2) pricing queries are sufficient to learn F (x) with ε additive error. However, the Õ(ε−0.5)
description complexity upper bound result is not sufficient to show that the pricing query complexity
of learning a regular distribution on [0, 1] within ε Lévy-distance. There are two problems remaining.
Firstly, the algorithms for showing description complexity upperbound results rely on queries to
not only the CDF, but also the PDF. Secondly, for non-smooth regular distributions, we prove the
description complexity result by learning a smooth regular distribution F̃ that is uniformly close
to F , but not exactly F . Thus when we query F (x), we are only able to get F̃ (x+ ε1) + ε2 where

|ε1| can be arbitrarily small (and we use the following bound |ε1| ≤ ε2

2 ), and |δ2| < ε. Thus, the
problem we want to solve is equivalent to the following theorem:

Theorem 3.1. For any regular distribution F with smooth PDF function, suppose that we have
perturbed oracle access to F that every time when querying x, the oracle F ∗ returns F ∗(x) =

F (x + ε1) + ε2 for some unknown ε1 ∈ [− ε2

2 ,
ε2

2 ], and ε2 ∈ [−ε, ε]. Then Õ(ε−0.5) queries to the
perturbed oracle F ∗ are sufficient to learn F within ε Lévy-distance.

3.1 Query complexity of distributions with convex F

Before proving Theorem 3.1 for general regular distributions, we first prove the theorem for a
distribution with convex F to give more intuition. The spirit of the general case is almost identical.
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Theorem 3.2. For any regular distribution F with smooth PDF function, suppose that we have
perturbed oracle access to F that every time when querying x, the oracle F ∗ returns F ∗(x) =

F (x + ε1) + ε2 for some unknown ε1 ∈ [− ε2

2 ,
ε2

2 ], and ε2 ∈ [−ε, ε]. Then Õ(ε−0.5) queries to the
perturbed oracle F ∗ are sufficient to learn F within ε Lévy-distance.

Proof. We first show how to define a (perturbed) query to f via the perturbed oracle. Suppose
that we want to query f . When we query x+ γ and x− γ to the perturbed oracle F ∗, we will get
F ∗(x+γ) = F (x+γ+ε1)+ε2, and F ∗(x−γ) = F (x−γ+ε3)+ε4 for some unknown ε1, ε3 ∈ [− ε2

2 ,
ε2

2 ],
and ε2, ε4 ∈ [−ε, ε]. Let

f∗γ (x) =
F ∗(x+ γ)− F ∗(x− γ)

2γ
.

By Lagrange mean value theorem, for smooth function F , there exists x∗ ∈ [x− γ + ε3, x+ γ + ε1]
such that

f(x∗) =
F (x+ γ + ε1)− F (x− γ + ε3)

(x+ γ + ε1)− (x− γ + ε3)

=
(F ∗(x+ γ)− ε2)− (F ∗(x− γ)− ε4)

2γ + ε1 − ε3

=
2γf∗γ (x)− ε2 + ε4

2γ + ε1 − ε3
.

Then we have

f∗γ (x) =
2γ + ε1 − ε3

2γ
f(x∗) +

ε2 − ε4
2γ

= (1 + δ1)f(x+ γ1) + δ2, (13)

for some δ1, δ2, γ1 where |δ1| ≤ ε2

2γ , |δ2| ≤ ε
γ , |γ1| < 2γ. Later, we will make perturbed queries to f

via f∗γ (x), and specify the accuracy parameter γ needed in each step of the learning algorithm.

Changes to Lemma 2.2. Suppose that we are only able to identify Fi ∈ [0, 1] such that F (xi +
εi) ∈ [Fi − ε, Fi + ε] for some unknown small εi ∈ [−ε2/2, ε2/2]. We show that Lemma 2.2 still
holds. Observe that the distribution constructed from input (x1, · · · , xm) and (F1, · · · , Fm) in
the proof of Lemma 2.2 is only O(ε) Lévy-distance from the distribution constructed from input
(x′1, x

′
2, · · · , x′m) = (x1 +ε1, x2 +ε2, · · · , xm+εm) and (F1, · · · , Fm). Furthermore, as either x′i+1−x′i

is O(ε), or (x′i+1 − x′i)(f i − f i) < 2(xi+1 − xi)(f i − f i) = O(ε) (since x′i+1 − x′i ≤ xi+1 − xi + ε2 <
2(xi+1 − xi)), the distribution constructed from input (x′1, · · · , x′m) and (F1, · · · , Fm) is within (ε)
Lévy-distance from F . Thus the distribution constructed from input (x1, · · · , xm) and (F1, · · · , Fm)
is within O(ε) Lévy-distance from F on [x1, xm]. To summarize, to apply Lemma 2.2, we do not
need Fi to be an estimate of F (x) with O(ε) error; letting Fi = F ∗(x) is good enough.

Changes to Theorem 2.3. We now describe in detail when F is convex (i.e. with monotone
f), how does the algorithm change.

Step 1 We set K = log(1/ε) and use binary search to identify points x0, x1, . . . , x2K+3 such that
for each k = 0, . . . ,K + 1 we have |x2k+1 − x2k+2| = O(ε) and for the interval Ik = [x2k, x2k+1] it
holds that:

• f(v) ≤ 2 for v ∈ I0

• 2k−2 ≤ f(v) ≤ 2k+1 for v ∈ Ik, k = 1, ...,K
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• f(v) ≥ 2K−1 for v ∈ IK+1

Notice that now we do not have access to f . Thus in order to perform the binary search, we query
f∗γ with γ = 4ε. By (13), for any query x, f∗γ (x) = (1 + δ1)f(x + γ1) + δ2 for some δ1, δ2, γ1 with

|δ1| ≤ ε2

2γ ≤
1
8 , |δ2| ≤ ε

γ = 1
4 , |γ1| ≤ 2γ = 8ε. Thus

7

8
f(x− 8ε)− 1

4
≤ f∗γ (x) ≤ 9

8
f(x+ 8ε) +

1

4
.

Therefore, when f∗γ (x) ≥ 2k−1, f(x+8ε) > 2k−2; when f∗γ (x) ≤ 2k, f(x−8ε) < 2k+1. Thus, suppose
we do binary search on f∗γ to find a sequence of points x′0, x

′
1, · · · , x′2K+3 such that for every k =

0, · · · ,K, f∗γ (x′2k+1) ≤ 2k, f∗γ (x′2k+2) ≥ 2k. Then if we set x2k+1 = x′2k+1 − 8ε, x2k+2 = x′2k+2 + 8ε,
the sequence x0, · · · , x2K+3 satisfies all the properties required for the step.

Identifying each point still takes O(log(1/ε)) = Õ(1) queries to f∗γ (·) (thus F (·)). Given that

we have Õ(1) such points, we used a total of Õ(1) queries. The last interval IK+1 again satisfies
the conditions of Lemma 2.2.

Step 2 For each interval Ik with k = 0, ...,K, partition Ik to intervals Ik,1, Ik,2, · · · of length
1
2k
√
ε. The number of endpoints added is at most |Ik|√

ε/2k
= 2kε−1/2|Ik| for each interval Ik, and

sums up to at most

K∑
k=0

2kε−1/2|Ik| = ε−1/2|I0|+
K∑
k=1

2kε−1/2|Ik|

≤ ε−1/2 +

K∑
k=1

ε−1/2

∫
v∈Ik

4f(v)dv

≤ ε−1/2 + ε−1/2

∫
v∈[0,1]

4f(v)dv

= ε−1/2 + 4ε−1/2 = 5ε−1/2.

The only change compared to the previous section is that 2k ≤ 4f(v) instead of 2f(v) in the second
line. Thus if we query F ∗ for all the endpoints of the intervals from the first two steps, the total
number of queries needed is at most O(ε−1/2).

Step 3 For each interval Ik,j = [vk,j , vk,j+1] = [vk,j , vk,j + 2−k
√
ε] ⊆ Ik partitioned in Step 2,

assume that 2−k
√
ε > 10ε, otherwise as |Ik,j | = O(ε), it already satisfies the condition of Lemma 2.2.

Define f
k,j

and fk,j as follows. Let γ∗ = 2−k−2√ε. If Ik,j is the leftmost interval in Ik, then

f
k,j

= 2k−2, otherwise f
k,j

= f∗γ∗(vk,j − 2−k−1√ε)− 2k+3√ε; if Ik,j is the rightmost interval in Ik,

then fk,j = 2k+1, otherwise fk,j = f∗γ∗(vk,j + 2−k
√
ε+ 2−k−1√ε) + 2k+3√ε. Notice that by (13), if

f
k,j
6= 2k−2, then

f∗γ∗(vk,j − 2−k−1√ε) = (1 + δ1)f(vk,j − 2−k−1√ε+ γ1) + δ2

for some δ1, δ2, γ1 where |δ1| ≤ ε
2γ∗ = 2k+3ε1.5, δ2 ≤ ε

γ∗ = 2k+2√ε, |γ1| < 2γ = 2−k−1√ε. This means

that vk,j − 2−k−1√ε + γ1 ∈ [vk,j − 2−k
√
ε, vk,j ]. Since f(vk,j) ≤ 2K+1 = 2

ε , we have f(vk,j)|δ1| ≤
2
ε · 2

k+1ε1.5 = 2k+2√ε. Then

f
k,j

= f∗γ∗(vk,j − 2−k−1√ε)− 2k+3√ε
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= (1 + δ1)f(vk,j − 2−k−1√ε+ γ1) + δ2 − 2k+3√ε
≤ (1 + δ1)f(vk,j) + 2k+2√ε− 2k+3 < f(vk,j).

This means that f
k,j

is indeed a lower bound of f(vk,j). Symmetrically, fk,j is indeed an upper

bound of f(vk,j+1).
If fk,j − fk,j = tk,j2

k√ε, then partition the interval to t̃k,j := max(1, dtk,je − 25) intervals of

length 1
t̃k,j2k

√
ε, and query F for the newly added endpoints. As any neighboring points v, v have

distance v − v ≤ 1
t̃k,j2k

√
ε. Hence this interval satisfies the second condition in Lemma 2.2 :

(v − v)(fk,j − fk,j) ≤
1

t̃k,j2k
√
ε · (t̃k,j + 25)2k

√
ε = O(ε)

which allows us to learn the distribution up to ε Lévy-distance.
Finally, we only need to bound the number of queries needed in this step. Observe that if Ik,j

is not the leftmost interval in Ik,

f
k,j

= (1 + δ1)f(vk,j − 2−k−1√ε+ γ1) + δ2 − 2k+3√ε

≥ (1− |δ1|)f(vk,j − 2−k
√
ε)− 2k+2√ε− 2k+3√ε

≥ f(vk,j−1)− 2k+4√ε.

Symmetrically, if Ik,j is not the rightmost interval in Ik, fk,j ≤ f(vk,j+2) + 2k+4√ε. Thus,

fk,j − fk,j ≤ f(vk,j+2)− f(vk,j−1) + 2k+5√ε.

Since the interval Ik,j is partitioned to max(1, dtk,je− 25) intervals, the number of queries to f∗γ∗ is

at most
f(vk,j+2)−f(vk,j−1)

2k
√
ε

. If we sum up
f(vk,j+2)−f(vk,j−1)

2k
√
ε

for every j, we get the total number of

queries to f∗γ∗ is at most1

∑
j

f(vk,j+2)− f(vk,j−1)

2k
√
ε

≤ 3

2k
√
ε
(2k+1 − 2k−2) = O(ε−0.5)

by simplifying the telescoping sum. Thus in this step, for each k, the number of queries on F ∗ for
added points is Õ(ε−1/2). Also, the number of queries on f∗γ∗ for Ik is twice the total number of

endpoints in Ik,j , which is O(ε−1/2) by Step 2. As there are only Õ(1) different values for k, the
total number of queries on F ∗ is Õ(ε−1/2).

To summarize, we have described how to modify the algorithm for learning a distribution with
smooth convex CDF with oracle queries to F and f , to an algorithm with only oracle queries to
F ∗. The query complexity is asymptotically the same, which is Õ(ε−1/2).

3.2 Query complexity of general regular distributions

Essentially the same modifications described for the convex CDF can be applied to the general
regular distributions, obtaining a proof of Theorem 3.1. We omit the details since it is essentially
a re-writing of the proof of Theorem 2.7 and instead describe the main modifications.

1To be more precise, for the rightmost interval in Ik, f(vk,j+2) is replaced by 2k+1; for the leftmost interval in Ik,
f(vk,j−1) is replaced by 2k−2.
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In Step 0, the partition of [0, 1] to intervals with quantile within a factor of 2 can also be done
via queries to F ∗. In Step 1 of the proof of Theorem 2.7, the partition is doable with queries to
f replaced by queries to f∗O(ε), as Lemma 2.6 only requires estimating f within a constant factor,
which is the same as Step 1 for Theorem 3.2. The only difference is that the value range of f
in each interval may get expanded by a constant factor. This leads to the number of queries in
Step 2 increasing by a constant factor. In the analysis of Step 3, similar to Step 3 of the modified
algorithm in Theorem 3.2 the accuracy needed for estimating f is O(2k+`√ε), which is achievable
via queries to f∗

O(2−k−`
√
ε)

.

A simple Chernoff bound shows that a query to F ∗ (defined in Theorem 3.1) can be simulated
by O(1/ε2) pricing queries. Combining Theorem 3.1 with Chernoff bound we obtain a proof of
Theorem 1.3, matching the lower bound established in [PLSTW23].

4 Mixture Distributions

Our second application is the analysis of mixtures of regular distributions. Corollaries 1.4 and 1.5
are straightforward from Theorem 1.1.

We end the paper with the proof of the more surprising result (Theorem 1.6) that even though
mixtures of O(1) regular distributions can be described with Õ(1/ε0.5) bits, they require Ω(1/ε3)
pricing queries to be learned within ε errors, the same asymptotic amount as a general distribution.

Theorem (Restatement of Theorem 1.6). Let C be the class of distributions supported in [0, 1] that
can be written as a mixture of two regular distributions. To estimate the CDF of a distribution in
that class within ε in Lévy-distance we require at least Ω(1/ε3) pricing queries.

Proof of Theorem 1.6. We will use Lemma 3.5 in [PLSTW23] which says that it takes Ω(1/ε2)
pricing queries to distinguish between any two distributions with CDFs F1 and F2 such that

1

1 + ε
≤ F1(v)

F2(v)
,
1− F1(v)

1− F2(v)
≤ 1 + ε, ∀v. (14)

Now, we will construct a set S of Ω(1/ε) distributions such that each of which is: (1) a mixture
of two regular distributions and (2) each follows Equation 14. Moreover, the Lévy-distance between
any two pairs is Ω(ε).

Construct a class of regular distributions parameterized by a < 2, δ > 0 as follows. For a
distribution with PDF fa,δ,

fa,δ(v) =


a, if v ∈ [0, 1−δ

a ],
a2

2δ (1+δ
a − v), if v ∈ (1−δ

a , 1+δ
a ),

0, if v ∈ [1+δ
a , 1].

In other words, fa is a distribution that is uniform with density a, until the point v = 1−δ
a where

the CDF reaches 1 − δ. Then fa,δ decreases linearly to 0, and remains 0 afterwards. We first
show that any distribution in this class is regular. We want to show that for any x ∈ [1−δ

a , 1+δ
a ],

f ′a,δ(x) ≥ − 2f2(x)
1−F (x) . Firstly, in this range, f ′a,δ(x) = −a2

2δ . Secondly, as in this range 1 − Fa,δ(x) =
1
2(1+δ

a − x)fa,δ(x), we have

−
2f2
a,δ(x)

1− Fa,δ(x)
= −

2fa,δ(x)
1
2(1+δ

a − x)
= −

2 · a22δ (1+δ
a − x)

1
2(1+δ

a − x)
= −2a2

δ
< −a

2

2δ
= f ′a,δ(x).
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Thus for any a, δ, fa,δ is the PDF of a regular distribution. Consider any distribution with PDF
ga,δ(v) = 2 − fa,δ(v) for every v ∈ [0, 1]. Then such a distribution is also regular, since its PDF is
monotone non-decreasing. Furthermore, the uniform mixture of fa,δ and ga,δ is a uniform distribu-
tion on [0, 1].

Let F be the uniform distribution on [0, 1]. Define the following class of distributions with CDF
Fa and PDF fa parameterized by a ∈ [1.5, 1.6] as follows. For any v ∈ [0, 1],

fa(v) = fa,ε/2(v) + ga,ε.

Then fa is a uniform distribution, except for v ∈ [1−ε
a , 1+ε

a ]. For any v ∈ [1−ε
a , 1+ε

a ], Fa,ε(v) and

Fa,ε/2(v) differs by at most ε, thus Fa(v) =
Fa,ε/2(v)+Ga,ε(v)

2 and F (v) =
Fa,ε(v)+Ga,ε(v)

2 differs by at
most ε. Furthermore, since Fa(v) and F (v) are both constant away from 1, thus (14) is satisfied
and Ω(1/ε2) pricing queries are needed to distinguish Fa and F .

Observe that for any a, Fa and the uniform distribution F has Lévy-distance at least Ω(ε), as

Fa,ε/2(1−ε/2
a ) − Fa,ε(1−ε/2

a ) = Ω(ε). Take S = {Fa|a = 1.5 + 4kε for k = 1, 2, · · · , 1
40ε}. As any

Fa ∈ S and the uniform distribution F differs only on [1−ε
a , 1+ε

a ], we know that Ω(1/ε2) pricing
queries are needed on [1−ε

a , 1+ε
a ] to distinguish Fa and F . Also since for every a′ < a, 1+ε

a < 1−ε
a′ for

a, a′ ∈ [1.5, 1.6] and small enough ε, we know that for different a, the interval where Fa and F differs
are non-overlapping. Thus given any distribution Fa where a = 1.5+4kε for some k = 1, 2, · · · , 1

40ε ,
Ω(1/ε3) queries are required to learn a distribution within o(ε) Lévy-distance from Fa.
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