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Massive open online courses (MOOCs), which offer open access and widespread interactive participation
through the internet, are quickly becoming the preferred method for online and remote learning. Several
MOOC platforms offer the service of course recommendation to users, to improve the learning experience
of users. Despite the usefulness of this service, we consider that recommending courses to users directly
may neglect their varying degrees of expertise. To mitigate this gap, we examine an interesting problem
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(a) The heterogeneous network in MOOCs
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(b) Studying progress
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Fig. 1. The motivation of concept recommendation. (a) The heterogeneous network in MOOCs. (b) and (c)
denote the progress of studying, and the speed of studying, respectively.

of concept recommendation in this paper, which can be viewed as recommending knowledge to users in a
fine-grained way. We put forward a novel approach, termed HinCRec-RL, for Concept Recommendation in
MOOCs, which is based on Heterogeneous Information Networks and Reinforcement Learning. In particular,
we propose to shape the problem of concept recommendation within a reinforcement learning framework to
characterize the dynamic interaction between users and knowledge concepts in MOOCs. Furthermore, we
propose to form the interactions among users, courses, videos, and concepts into a heterogeneous information
network (HIN) to learn the semantic user representations better. We then employ an attentional graph neural
network to represent the users in the HIN, based on meta-paths. Extensive experiments are conducted on a
real-world dataset collected from a Chinese MOOC platform, XuetangX, to validate the efficacy of our proposed
HinCRec-RL. Experimental results and analysis demonstrate that our proposed HinCRec-RL performs well
when compared with several state-of-the-art models.

Additional Key Words and Phrases: HIN, reinforcement learning, MOOCs, concept recommendation

ACM Reference Format:
Jibing Gong, Yao Wan, Ye Liu, Xuewen Li, Yi Zhao, Cheng Wang, Yuting Lin, Xiaohan Fang, Wenzheng Feng,
Jingyi Zhang, and Jie Tang. 2022. Reinforced MOOCs Concept Recommendation in Heterogeneous Information
Networks. J. ACM 37, 4, Article 1 (January 2022), 28 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Massive Open Online Courses (MOOCs), which seek to offer widespread interactive participation
and open access over the internet, are quickly becoming a reliable platform for online and remote
education. Coursera1, Udacity2, and edX3 are the three most well-known MOOC platforms, which
have provided online access to millions of users to study from anywhere in the world. As one of
China’s leading MOOC platforms, XuetangX 4 has more than 1,000 courses available and more than
6,000,000 users worldwide. In MOOCs, course concepts are used to describe the knowledge concepts
and related subjects covered in the course videos. This can make it easier for users to find the
information in the course videos more quickly.
Several approaches of data mining have been developed to discover user preferences and the

relationships among users, course topics, and course videos, to enable users to have a better learning
experience in MOOCs. These approaches have been used in various related tasks, e.g., behavior
prediction [58], course recommendation [31, 88], and user intention understanding [16]. The task
most similar to ours is course recommendation, which seeks to recommend relevant courses to
users based on their past behavior. From our investigation, we observe that a course is always
composed of a series of video lectures, each of which often conveys multiple specific knowledge

1 https://www.coursera.org
2 https://www.udacity.com
3 https://www.edx.org
4 https://www.xuetangx.com
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Fig. 2. A statistical analysis of XuetangX dataset.

concepts. Consequently, we argue that recommending courses to users directly ignores the various
knowledge levels of users. Figure 1a shows the heterogeneous information network existing in
MOOCs. For example, considering the Machine Learning course taught by different instructors, the
knowledge covered in each course will differ largely (e.g., some instructors will put more focus on
the theory of machine learning, whereas others will put more focus on the applications of machine
learning in the area of computer science). If a student has a background in statistics theory, he/she
may be familiar with several fundamental knowledge concepts, such as VC dimension and gradient
descent, so that he/she will be interested in further applications of machine learning. Additionally,
a student who is a beginner in machine learning, he/she may be interested in several fundamental
knowledge concepts of machine learning.

Based on this motivation, this paper examines an interesting problem of concept recommendation,
with the aim of recommending related topics to users to help them with their online studies. To
better illustrate the necessity of this research, we study the effects of clicked course concepts on
the progress and speed of studying, as shown in Figure 1b and Figure 1c. The progress of studying
is defined as the portion of videos the user has watched in a course, whereas the speed of studying
is defined as the number of videos the user has watched in one week. From these two figures, we
can see that the number of clicked concepts has a positive correlation with the progress and speed
of study. It confirms the fact that clicking relevant knowledge concepts can indeed help the users
with their online studies.

For the task of concept recommendation, one primary line of work is based on collaborative
filtering. The collaborative-filtering-based approaches provide recommendations according to the
historical interactions among users and items. However, this kind of approaches has two major
limitations. (1) Dynamic environment adaptation. The collaborative-filtering-based approaches
consider the procedure of recommendation as a static process, and are intended to maximize the
immediate reward of the recommendation, resulting in a fixed greedy recommendation strategy.
Therefore, this type of recommendation strategy is sub-optimal and cannot adapt to a dynamic
environment where the preferences of users are always dynamic. On the other hand, when repre-
senting the historical dynamic preferences of users, it is a challenge to handle the long dependency
issue existing in the past click history, as shown in Figure 2a. From Figure 2a, we can observe that
the length of concepts clicked by users is mainly between 10 and 30, which is a relatively long
sequential dependency when compared with traditional recommendation tasks, such as e-commerce
recommendation. (2) Data sparsity issue. The interactions among users and concepts are always
sparse, particularly as the number of users and concepts is increasingly large. Figure 2b shows the

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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distribution of user click count for each concept. This distribution follows the long-tail distribution.
That is, the majority of concepts are clicked by a few users, which confirms the necessity of concept
recommendation. To overcome this issue, several approaches are attempting to include additional
supplementary information, such as the social network [78, 96], user/item attributes [65, 79], and
contextual information [29, 42], as to enrich the interactions.
These aforementioned restrictions encourage us to develop a model to understand the intents

of users, with the ability to recommend personalized concepts in a dynamic interactive environ-
ment. We propose in this paper to shape the task of concept recommendation as a sequential
recommendation problem. To preserve the dynamic interactions between users and concepts, a
reinforcement-learning-based method is proposed by combining exploitation and exploration into
a unified framework. Our reinforcement-learning-based recommendation has two advantages: (1)
The recommendation agent can adaptively update the trial-and-error strategy during interaction
until convergence; (2) The reinforced strategy can produce more diverse recommended results,
recommending those items with substantial long-term benefits rather than short-term benefits
(i.e., small intermediate rewards). To overcome the data sparsity issue, we observe that there exist
heterogeneous relationships among users and concepts, which can be exploited to enrich the side
information and boost the performance of recommendation in the following two perspectives: (1)
Semantic relationships between knowledge concepts may be provided, which can aid in identifying
latent interactions; (2) Users’ interest can be understood by tracking the previous records of users
alongside these relationships.

This paper puts forward a novel approach (termed HinCRec-RL) for Concept Recommendation
in MOOCs, based on Heterogeneous Information Networks (HINs) and Reinforcement Learning.
We begin by shaping the concept recommendation as a Markov Decision Process (MDP). We
then form the interactions among users, courses, videos, and concepts, into an HIN. We carry out
extensive experiments on a real-world dataset obtained from a Chinese MOOC platform, XuetangX,
to validate the efficacy of the proposed model. Note that this paper is related to our previous work
ACKRec [19] for knowledge concept recommendation, which models the entities in MOOCs as an
HIN, and proposes an attentional graph convolutional neural network to represent the entities in
HIN. To enable the situations of online dynamic interaction, we extend ACKRec by modeling the
concept recommendation problem within a reinforcement learning framework.

The primary contributions of this paper include the following three aspects.

• Firstly, we investigate an interesting problem of concept recommendation, which can be
considered as a fine-grained recommendation task of course recommendation in MOOCs.
• Secondly, an end-to-end model based on reinforcement learning is proposed to cope with the
dynamic interaction among users and concepts, providing a more diverse recommendation.
To represent users with sparse data accurately, we propose a meta-path-based user embedding
approach with hierarchical graph attention networks.
• Thirdly, we validate the proposed model HinCRec-RL on a dataset collected from a popular
Chinese MOOC platform, XuetangX. Experimental results and analysis demonstrate the
effectiveness of HinCRec-RL when comparing it with several state-of-the-art models.

We structure the rest paper as follows. We first formulate the concept recommendation problem in
Sec. 2. We present the details of the proposed approach in Sec. 3. We analyze the XuetangX dataset
in Sec. 4, and show the experimental results with analyses in Sec. 5. We highlight some related
work with a comparison in Sec. 6. We have a discussion of the mechanism of our proposed model
in Sec. 7. Finally, Sec. 8 concludes this paper with some potential directions suggested.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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2 PROBLEM FORMULATION
InMOOCs, suppose thatwe have𝑈 users,𝐶 courses,𝑉 videos and𝐾 concepts. LetU = {𝑢1, 𝑢2, . . . , 𝑢𝑈 }
be the set of users, C = {𝑐1, 𝑐2, . . . , 𝑐𝐶 } be the set of courses, V = {𝑣1, 𝑣2, . . . , 𝑣𝑉 } be the set of
videos and K = {𝑘1, 𝑘2, . . . , 𝑘𝐾 } be the set of concepts. In reality, a course 𝑐𝑖 is always composed
of multiple videos, each of which consists of multiple knowledge concepts. From the perspective
of users, a user 𝑢 𝑗 will take a course, watch the videos of the course, and click several related
concepts to learn the knowledge presented in the course videos. Consequently, the aim of concept
recommendation is to enhance the learning experiences of users by automatically recommending
relevant concepts to users based on their preferences acquired from historical experience.

2.1 Recommendation as an MDP
As mentioned before, to adapt to the dynamic environment, we aim to learn a recommendation
agent that interacts with users by sequentially recommending knowledge concepts at each time
step. We formulate the problem of sequential recommendation as a Markov Decision Process (MDP)
consisting of a tuple of five items (S,A, 𝑃, 𝑅,𝛾):

• State space S denotes the space of user states. Specifically, the state 𝑆𝑡 denotes the past
preference of user 𝑢, observed until time step 𝑡 . In our scenario, the past preference of user 𝑢
are the historical learned courses and clicked concepts. More specifically, the state in our
scenario represents the user embedding in an HIN.
• Action space A denotes the set of concepts to be selected, i.e., A = K . Without loss of
generality, we sequentially recommend one concept to users at each time step. In each state
𝑠𝑡 , an action 𝑎𝑡 can be drawn from the available action set A(𝑠𝑡 ), recursively defined as
A(𝑠𝑡 ) = A(𝑠𝑡−1)\{𝑎𝑡−1}, for 𝑡 ≠ 0. This indicates that the agent is not permitted to select
those concepts that have been recommended in prior time steps.
• Reward 𝑅, formulated as 𝑅𝑎

𝑠𝑠′ = E[𝑟𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎, 𝑠𝑡+1 = 𝑠 ′], represents the expected
immediate reward produced by the environment when state 𝑠 changes to state 𝑠 ′ as a result
of action 𝑎. In our scenario, the immediate reward of performing an action 𝑎 is determined
by the operation of clicking or not, given by user 𝑢. Therefore, we define 𝑅𝑎

𝑠𝑠′ = 𝑅𝑢𝑎 .
• Transition function 𝑃 , formulated as 𝑃𝑎

𝑠𝑠′ = 𝑃 [𝑠𝑡+1 = 𝑠 ′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], denotes the
likelihood that the environment would transit from state 𝑠 to state 𝑠 ′ after performing an
action 𝑎.
• Discount factor𝛾 is used to measure the proportion of reward the reinforced agent considers
in the distant future versus those in the immediate future, with a range of [0, 1].

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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The concept recommendation task can be formally characterized as follows, using the aforemen-
tioned notations and terminologies. Given an MDP (S,A, 𝑃, 𝑅,𝛾), the aim of concept recommenda-
tion is to find a policy 𝜋 : 𝜋 → A that maximizes the cumulated reward from users, i.e., increasing
the clickthrough rate of concepts.

2.2 Construction of Heterogeneous Information Network
In order to model different types of entities (e.g., course, video, concept, and user) and their complex
relationships in MOOCs, we resort to considering the MOOC networks as typical heterogeneous
information networks (HINs). First, we introduce some preliminary concepts about HINs.

Heterogeneous information network (HIN). Let G = {V, E} denote a graph, which is composed of a
collection of nodesV and edges E. The edges in a graph can describe the relationships/connections
among nodes.We refer to the graph as an HINwhen the types of nodes and edges are not unique [67].
In our scenario, there are four entities of the HIN in XuetangX (i.e., course (C), video (V), user (U),
and knowledge concept (K)). The relationships among these entities include learn, click, watch, and
has. Figure 3 describes the schema of network existing in XuetangX MOOC. We can extract the
meta-path from the network schema, which has been frequently utilized to represent the semantic
paths between a pair of entities.

Meta-path. A meta-path is a specific path defined based on the network schema. That is a
sequence of relations between two node types, in the form of 𝐴1

𝑅1→ 𝐴2
𝑅2→ · · · 𝑅𝑙→ 𝐴𝑙+1, where 𝐴𝑖

denotes the node type [68]. In our scenario, we manually identify four meta-paths as follows to
connect users in XuetangX MOOC, which will also enrich the semantic representation of each user.

• MP1 (U1-K-U2) indicates that if two users click the same concept, they are considered to be
connected.
• MP2 (U1-K1-U2-K2-U3) indicates that the two concepts clicked by users 1 and 2, respectively,
are both clicked by user 3.
• MP3 (U1-C1-K-C2-U2) denotes that users who take the courses that contain the same concepts
will be connected.
• MP4 (U1-C1-V-C2-U2) shows that users are related through paths of courses sharing some
common videos.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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Table 1. A list of notations used in this paper.

Notation Description

G the heterogeneous information network
V the entity set
E the relationship set
SM the network schema
MP the meta-path set
P the set of paths sampled based on meta-paths
S the state of MDP
𝑅𝑎
𝑠𝑠′ the reward obtained when transferring state 𝑠 to 𝑠 ′ by taking action 𝑎
𝛾 the discount factor
𝜋 the recommendation policy
𝜆 the weight to regularize the entropy
Φ meta-path
N𝜙

𝑖
meta-path-based neighbors of node 𝑖

h the initial node feature
u the user embedding
c the concept embedding

We also show these four meta-paths in Figure 4. In Sec. 5.2, we will investigate the effect of each
meta-path and their combinations.

The notations used throughout this paper are listed in Table 1.

3 PROPOSED APPROACH
We describe our proposed methodology in depth in this section, beginning with an overview
of the entire framework. To learn the user embedding, we present our graph neural network to
represent the introduced HIN. Subsequently, we present our reinforcement learning strategy for
recommending concepts to users.

3.1 Overview
Figure 5 depicts the structure of our proposed neural network, which is composed of three sub-
modules. (a) Meta-path sampling (Sec. 3.2.1). In this module, we first build an HIN among users,
courses, and concepts. Subsequently, we sample meta-paths for each given user using a randomwalk
in the network. (b) Meta-path-based user embeddingwith a hierarchical attention network (Sec. 3.2.2
and Sec. 3.2.3). In this module, a hierarchical attention network is introduced to embed each math-
path into a hidden space. On the node-level, we employ a self-attention layer to represent the
user with its neighbors. On the path-level, we apply another attention layer to aggregate semantic
representations along each path to the user. (c) Reinforced concept recommendation (Sec. 3.3). In this
module, we propose to recommend concepts to users within a reinforcement learning framework.
Comparing with other HIN-based representation learning approaches for node classification and
recommendation, this is the first time that the HIN and reinforcement learning have been combined
to recommend concepts to users in MOOCs.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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3.2 Meta-Path Based User Embedding
We represent the user based on meta-paths. Our intuition is that the representation of users can
be enriched by the information aggregated from multi-hop neighbors along the meta-paths. For
a given user 𝑢𝑖 , we first collect multi-hop neighbors by meta-path sampling, starting from this
node. We then design a heterogeneous attention network to aggregate the information along each
sampled path.

3.2.1 Meta-Path Sampling. To index the network structure of G, we propose to sample paths on
G based on random walk. Inspired by DeepWalk [57], we start random walk from each user in
our training dataset D for whom a concept will be recommended. Specifically, we first employ a
depth-first search, starting from the user node, to sample instances under the restrictive scheme
of each meta-path, and set a limited walk length 𝑙 determining at most how many neighbors
would be searched along the sampled path and controlling the size of its neighborhood. Then
we utilize a breadth search to repeat the aforementioned procedure 𝑁 times in parallel for each
meta-path, as each path potentially focuses on different input neighbors, which makes it possible
to capture rich semantics. Thus, for each user 𝑢𝑖 ∈ U, we sample |MP| × 𝑁 paths. In total, we
have |U| × |MP| × 𝑁 paths over the HIN. We denote the meta-path asMP = {Φ1,Φ2, . . . ,Φ𝑃 }
and denote the path corpus as P = {𝜌Φ1 , 𝜌Φ2 , . . . , 𝜌Φ𝑃

}, where 𝜌Φ𝑘
denotes a path set sampled based

on the meta-path Φ𝑘 .

3.2.2 Node-level Attention. In order to obtain the semantic-specific user embedding, we design a
module of node-level attention which first determines the weights of neighbors along a meta-path,
and then combines them. As the node types are heterogeneous and various node types have different
feature spaces, a simple semantic feature space alignment should be designed. We first project

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.
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the node features into a common space. For node 𝑖 , let h𝑖 denote its corresponding feature. The
projected feature h′𝑖 can be calculated as follows:

h′𝑖 = M𝜙𝑖 · h𝑖 , (1)

where M𝜙𝑖 is the projection matrix of type 𝜙𝑖 . We argue that different nodes for a given meta-path
should contribute different weights to the final user embedding. Thus, an attention mechanism is
designed to calculate the weight of node 𝑖 to its meta-path-based neighbors NΦ

𝑖 . Formally, for a
given meta-path Φ, the node-level attention weight aΦ between nodes 𝑖 and 𝑗 can be calculated as
follows:

𝛼Φ𝑖 𝑗 =

exp
(
𝜎

(
aTΦ ·

[
h′𝑖 ∥h′𝑗

] ))
∑
𝑘∈NΦ

𝑖
exp

(
𝜎

(
aTΦ ·

[
h′
𝑖
∥h′
𝑘

] )) , (2)

where | | denotes the concatenation operator, and 𝜎 denotes the activation function. Note that,
for the sake of simplicity, we randomly select one sampled path of meta-path-based neighbors
to calculate the node-level attention. Following [74], we then aggregate the node embedding u𝑖
for node 𝑖 along a meta-path Φ. Furthermore, the node-level attention is repeated 𝐿 times and the
attention embeddings are concatenated through a layer of linear projection. Consequently, the user
embedding uΦ𝑖 along a meta-path Φ is formulated as follows:

uΦ𝑖 = ∥𝐿
𝑙=1𝜎

©«
∑︁
𝑗 ∈NΦ

𝑖

𝛼Φ𝑖 𝑗 · h′𝑗
ª®¬ , (3)

where | |𝐿
𝑙=1 represents the concatenation operation. For a set of meta-paths {Φ1,Φ2, . . . ,Φ𝑃 }, we

denote the user embedding along the meta-path set as uΦ1
𝑖
, uΦ2
𝑖
, . . . , uΦ𝑃

𝑖
.

3.2.3 Path-level Attention. Similar to node-level attention, we use attention at the path level. We
assign different weights tometa-paths via path-level attention, to obtain the final user representation.
The importance of meta-path𝑤Φ𝑘

can be calculated as follows:

𝑤Φ𝑘
=

1
|P |

|P |∑︁
𝑝=1

qT · tanh
(
W · uΦ𝑘

𝑖
+ b

)
, (4)

where q represents the path-level attention vector and |P | denotes the number of meta-path-
based sampled paths. That is, we average all the sampled paths for one meta-path to calculate the
path-level attention, which expresses sophisticated functions beyond the simple meta-path-based
neighbors average. Consequently, the importance of meta-path 𝑤Φ𝑘

can be normalized using a

softmax layer, i.e., 𝛽Φ𝑘
=

exp(𝑤Φ𝑘 )∑|MP|
𝑘=1 exp(𝑤Φ𝑘 )

. The final embedding of user 𝑖 can be reformulated as the

following formula, according to the normalized importance of the meta-path.

u𝑖 =
|MP |∑︁
𝑘=1

𝛽Φ𝑘
· uΦ𝑘

𝑖
. (5)

The two hierarchical attention modules (i.e., node-level attention and path-level attention) to
assign different weights to the node neighbors and different paths have been verified in the node
classification task in [74, 75]. We have adopted them in this study with a slight modification. An
important difference is that the HIN in our scenario is dynamically updated according to the
feedback from the users. That is, a link will be assigned if a user clicks a recommended concept.
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3.3 Reinforced Concept Recommendation
As previously mentioned, to simulate the dynamic interactions between users and concepts, we
frame the concept recommendation within a reinforcement learning framework. Based on a prede-
termined loss function, we aim to develop a model to reduce the discrepancy between the model
predictions and immediate user responses.
We begin by introducing the simplified setting of concept recommendation within a typical

reinforcement learning framework, the goal of which is to find a recommendation policy 𝜋𝜃 that
maximizes the expected reward:

L𝑟𝑙 (𝜃 ) = E𝑐𝑡∼𝜋𝜃 ( · |u𝑡 )
𝑇∑︁
𝑡=1

𝑟 (𝑐𝑡 |u𝑡 ) , (6)

where 𝑟 (𝑐𝑡 |u𝑡 ) is the immediate reward. Note that, in contrast to the previous section, the dynamic
embedding of user 𝑢 at time step 𝑡 is indicated by the subscript 𝑡 in u𝑡 in this section. Given a
particular user 𝑢, if the predicted concept 𝑐𝑡 is true, then the reward will be set to 1, otherwise, it
will be -1. In particular, 𝑅(𝑐𝑡 |u𝑡 ) is the cumulated reward, which can be defined as follows:

𝑅(𝑐𝑡 |u𝑡 ) = 𝛾0𝑅(𝑐𝑡 |u𝑡 ) + · · · + 𝛾𝑇−𝑡𝑅(𝑐𝑇 |u𝑇 ) , (7)

where 𝛾 is the discount factor, which is set in the range from 0 to 1. If the recommended concept
𝑐𝑡 is correct, an edge will be established in the current HIN to connect the user and the correct
recommended concept. Therefore, we will obtain the new user embedding through the previous HIN
embedding step. If the recommended concept is correct, HinCRec-RL will continually recommend
a new concept, until it incorrectly recommends a concept or arrives at the max time step 𝑇 .
However, if the recommended concept is incorrect, no new relation is added, and the structure

of HIN G remains unchanged. Consequently, the user embedding will remain unchanged. As the
Q-learning network [70] requires the next step transition 𝑠𝑡+1 of current step 𝑠𝑡 to update, if the
recommendation is incorrect, then the predicted Q-value 𝑄𝑡+1 will be the same as the target 𝑄𝑡 ,
and consequently, Q-learning cannot be used in our setting. Therefore, we seek to use the policy
gradient to update the model.

We can then learn the optimal policy by using the policy gradient method called REINFORCE [69,
77], a popular learning approach in reinforcement learning. The gradient of the expected cumulative
reward can be determined using the following formula, according to the policy gradient method:

∇𝜃L𝑟𝑙 (𝜃 ) =
𝑇∑︁
𝑡=1
[∇𝜃 log𝜋𝜃 (𝑐𝑡 |u𝑡 )𝑅(𝑐𝑡 |u𝑡 )] . (8)

In practice, we often observed a collapse onto a suboptimal deterministic policy. To prevent the
model from not being able to explore new concepts that could lead to a better recommendation, we
add an entropy regularization term to the objective function, as follows:

H[𝜋𝜃 (𝑐 |u)] =
𝑇∑︁
𝑡=1

∑︁
𝑐𝑡 ∈C

log𝜋𝜃 (𝑐𝑡 |u𝑡 )𝜋𝜃 (𝑐𝑡 |u𝑡 ) . (9)

Therefore, the ultimate goal of our model is reformulated as follows:

J = E𝑐∼𝜋𝜃 ( · |u)L𝑟𝑙 (𝜃 ) + 𝜆H[𝜋𝜃 (𝑐 |u)] . (10)

Here, 𝜆 is the regularization weight. The policy gradient directly updates policy 𝜋𝜃 to increase the
probability of 𝑐𝑡 given state 𝑠𝑡 when the reward is positive, and vice versa.

Algorithm 1 depicts the HinCRec-RL algorithm with reinforcement learning. Given the training
setU𝑡𝑟𝑎𝑖𝑛 , clicking data 𝑅, the number of time steps 𝑇 , the number of episodes 𝐸, discount factor
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Algorithm 1: HinCRec-RL
Input :Training setU𝑡𝑟𝑎𝑖𝑛 , clicking data 𝑅, number of time steps 𝑇 , number of episodes 𝐸,

discount factor 𝛾 , and 𝜖-greedy parameter 𝜖 .
Output :The learned recommendation policy 𝜋𝜃 .

1 Meta-path sampling
2 Initialize recommendation policy 𝜋𝜃 with random weights
3 for episode← 1 to 𝐸 do
4 Initialize the parameters of HIN G and user embeddingsU𝑡𝑟𝑎𝑖𝑛
5 Uniformly pick a user 𝑢0 ∈ U𝑡𝑟𝑎𝑖𝑛
6 Learn the user embedding u1 by Eq. 5
7 𝑡 ← 1
8 while 𝑐𝑡 is correct and 𝑡 ≤ 𝑇 do
9 Select the concept 𝑐𝑡 using 𝜖-greedy policy w.r.t 𝜋𝜃 , observe reward 𝑅(𝑐𝑡 |u𝑡 )

10 if 𝑐𝑡 is correct then
11 Add a new link between the user 𝑢𝑡 and concept 𝑐𝑡 on the HIN G
12 Recompute the user embedding u𝑡+1 by Eq. 5
13 end
14 𝑡 ← 𝑡 + 1
15 end
16 Update 𝜋𝜃 ’s weights 𝜃 according to Eq. 10
17 end

𝛾 , and 𝜖-greedy parameter 𝜖 , our goal is to learn the recommendation policy 𝜋𝜃 . We first conduct
meta-path sampling and initialize the recommendation policy 𝜋𝜃 , which will be used later. At the
reinforcement learning phase, for each episode, we first pick a user and learn the corresponding em-
bedding based on Eq. 5 (see line 4-6). We then dynamically update the policy through reinforcement
learning (line 8-15).

3.4 Time Complexity of HinCRec-RL
Here, we analyze the time complexity of HinCRec-RL, as shown in Algorithm 1. The total complexity
for a training episode is𝑂 (𝐿∑𝑣∈𝑉 𝐹𝑣𝐹1 +𝐿𝑇

∑ |MP |
𝑖=1 ( |𝐸Φ𝑖

|𝐹1 + |𝑉Φ𝑖
|𝐹1𝐹2)), where 𝐿 is the number of

attention heads, 𝑇 is the number of time steps of an episode, |MP| is the number of hand-crafted
meta-paths, and 𝐹𝑣 is the input dimension of the specific type node. 𝐹1 and 𝐹2 are the output
dimensions of node type projection and path-specific transformation, respectively. |𝐸Φ | and |𝑉Φ |
are the numbers of sampled-path-based node pairs and user nodes, respectively. More specifically,
the time complexity of a single node-level attention head can be expressed as 𝑂 ( |𝑉 | + |𝐸 |) =
𝑂 (∑𝑣∈𝑉 𝐹𝑣𝐹1 + |𝐸Φ |𝐹1), including input feature transformation, the computation of sampled path
attention coefficients, and node-level aggregation. The time complexity of the path-level attention
can be expressed as 𝑂 ( |𝑉 |) = 𝑂 ( |𝑉Φ |𝐹1𝐹2), including path-specific transformation and meta-path
based sampled path aggregation. Note that we only need to pick one user for each episode uniformly
and recompute its user embedding iteratively during sequential recommendation training with
reinforcement learning. Within an episode, the action space of 𝜖-greedy influences the number of
time steps, whereas the requirement to converge is correlated to the action space. Thus, HinCRec-RL
is highly computationally efficient, and the total complexity is linearly proportional to the number
of nodes and meta-path-based node pairs.
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Table 2. The description of XuetangX datasets.

Nodes Count Links Count

concept 2,527 concept-course 21,507
concept-video 11,732

user 3,111,637 user-course 15,045,219
user-video 53,481,869

course 7,327
course-concept 69,012
course-video 811,841
course-user 16,724,852

video 62,191
video-course 247,433
video-concept 11,732
video-user 53,971,707

Total 3,183,682 Total 140,096,904

4 EXPERIMENTAL SETUP
We carry out experiments by addressing the following research issues to assess the performance of
our proposed model HinCRec-RL.

• RQ1: How effective is the proposed model HinCRec-RL for concept recommendation when
compared with baseline methods?
• RQ2: How do various involved meta-paths and their combinations affect user embedding?
• RQ3: How dose the proposed model HinCRec-RL perform when the hyper-parameters are
changed?

4.1 Experimental Dataset
To conduct our experiments, we construct training and test datasets using the data from XuetangX
MOOC platform, where the training set spans from 1st October, 2016 to 30th December, 2017,
whereas the test set spans from 1st January, 2018 to 31st March, 2018. We pair a target course with
all historical enrolled courses to form a sequence which is further considered as an instance of our
datasets. For each instance when conducting the training phase, we consider the final course in the
sequence to be the target course and the remaining to be the historical courses. When conducting
the test process, for a user, a target concept in the test set indicates a concept that must be involved
in the enrolled courses, and historical concepts indicate the corresponding concepts to the same
user in the training set. On the other hand, the same concept label is usually clicked by a user, and
thus, multiple clicked concept records are generated. In our experiments, we serialize these records
into a single one. We then paired each positive instance with a random sample of 99 negative ones
in the test set.

Overall, the obtained dataset contains 62,191 videos, 7,327 courses, 3,111,637 users, 2,527 concepts
and 140,096,904 relations between these entities. The description of this dataset is presented in
Table 2.

4.2 Evaluation Metrics
We pick several metrics commonly used in recommender systems to evaluate the proposed model.
They are Mean Reciprocal Rank (𝑀𝑅𝑅), Normalized Discounted Cumulative Gain of top-K items
(𝑁𝐷𝐶𝐺@𝐾 ) and Hit Ratio of top-K items (𝐻𝑅@𝐾 ). We choose 5, 10 and 20 for𝐾 in our experiments.
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Table 3. Quantitative results (%) of experiments on XuetangX MOOCs datasets. (Best scores are in boldface.)

Model HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR AUC
BPR 41.50 56.28 72.12 28.95 33.74 37.76 28.68 84.34
MLP 32.75 52.66 69.88 17.67 25.32 30.71 18.34 82.73
FM 36.03 54.40 72.39 23.99 29.89 34.44 24.46 83.20
FISM 36.41 54.31 70.79 20.15 27.73 33.83 21.65 84.24
NAIS 36.47 57.92 77.99 21.93 28.10 34.12 22.15 86.76
NASR 38.67 53.21 67.13 21.19 27.84 32.93 19.69 79.90
HinCRec-SL 60.73 78.41 90.04 40.89 46.62 49.60 37.85 92.10
HinCRec-RL 66.21 81.53 88.74 46.21 51.35 53.22 42.82 89.64

𝐻𝑅@𝐾 is used to measure the proportion of ground-truth instances which are correctly recom-
mended among the top-𝐾 items. This is a recall-based metric and can be formulated as

𝐻𝑅@𝐾 =
#𝐻𝑖𝑡𝑠@𝐾
|𝐺𝑇 | , (11)

where |𝐺𝑇 | is the size of the test dataset.𝐻𝑅@𝐾 measures the percentage of successes in prediction
to the number of attempts. 𝑁𝐷𝐶𝐺 is usually applied to assess a retrieval syetem’s performance
when considering the graded relevance of retrieved entities. Thus, it is also used as another ranking
metric in our experiments and can be defined as

𝑁𝐷𝐶𝐺@𝐾 =
1
|𝑄 |

|𝑄 |∑︁
𝑞=1

𝑍𝑘𝑞

𝑘∑︁
𝑗=1

2𝑟 ( 𝑗) − 1
log(1 + 𝑗) , (12)

where 𝑟 ( 𝑗) denotes a relevance score calculated for a retrieved entity for query 𝑞. 𝑍𝑘𝑞 indicates a
normalization factor and is usually used to ensure that the 𝑁𝐷𝐶𝐺 for a perfect ranking at 𝑘 for
query 𝑞 is 1.𝑀𝑅𝑅 is used to measure the ranking of our searched results and can be defined as

𝑀𝑅𝑅 =
1
|𝑄 |

|𝑄 |∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

, (13)

where |𝑄 | indicates the size of a query set.
Moreover, we leverage Area Under the ROC curve (𝐴𝑈𝐶) to measure the quality of recommen-

dation ranking.

4.3 Implementation Details
The proposed model is trained on an Nvidia GeForce GTX1080Ti GPU with 11 GB of RAM. The
dataset is split into two portions for our evaluation tasks. The first portion contains 80% instances
for training and the second portion contains 20% instances for testing. We choose 64 as the
dimension size of the final user embedding. First, a cross-entropy loss function with 10,000 episodes
is leveraged to pre-train the model. The learning rate is set to 0.001, and the mini-batch size is set
to 8. Subsequently, the learning rate is reduced to 0.0001 and the loss function is adjusted to the
policy gradient. Furthermore, the weight of the regularization term 𝜆 is set to 0.08 to prevent the
model from overfitting. The sequence length of recommended concepts is automatically maintained
consistent with the mini-batch size. Through the entire training of the HinCRec-RL model, we
update the parameter using the Adam optimizer [37].
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Table 4. Different results (%) from different combinations of meta-paths. (Best scores are in boldface.)

Meta-Path HR@5 HR@10 HR@20 NDCG@5 NDCG@10 NDCG@20 MRR AUC
MP1 63.51 75.23 90.99 43.08 46.89 50.90 39.24 91.89
MP2 45.33 61.68 79.44 29.59 34.90 39.43 28.44 86.92
MP3 46.15 67.42 84.62 30.37 37.27 41.66 29.76 88.69
MP4 50.68 69.86 86.76 34.32 40.53 44.78 33.01 91.32
MP1 & MP2 63.47 77.17 89.04 44.33 48.83 51.81 41.04 93.15
MP1 & MP3 60.55 76.15 87.61 43.37 48.42 51.39 40.96 93.12
MP1 & MP4 65.02 78.48 88.34 45.69 50.02 52.48 42.15 89.69
MP2 & MP3 46.98 68.37 81.86 29.91 36.78 40.23 28.64 89.30
MP2 & MP4 53.02 73.02 89.30 35.68 42.09 46.20 33.94 92.09
MP3 & MP4 47.44 65.58 84.65 32.30 38.16 42.97 31.56 86.51
MP1 & MP2 & MP3 57.73 75.45 89.55 41.06 46.86 50.47 39.26 91.82
MP1 & MP2 & MP4 59.35 77.23 89.76 43.24 49.12 51.38 41.36 89.12
MP1 & MP3 & MP4 61.26 80.82 88.58 44.73 50.90 52.84 42.37 89.04
MP2 & MP3 & MP4 38.01 60.18 80.09 23.87 30.93 35.85 24.00 90.04
MP1 & MP2 & MP3 & MP4 66.21 81.53 88.74 46.21 51.35 53.22 42.82 89.64

5 EXPERIMENTAL RESULTS
In this section, we respond to the aforementioned research issues through conducting experiments
and analyzing the results.

5.1 Comparison with Baselines (RQ1)
We compare the proposed model with the following baselines in order to evaluate its performance.
• BPR [61] obeys a Bayesianmethod tominimize the pairwise ranking loss for recommendation
tasks.
• MLP [22] utilizes a multi-layer perceptron to compute the recommendation probability by
leveraging embedding pairs of user and concept.
• FM [60] is a typical matrix decomposition method that can easily address the problem of
feature combination. For fairness, we use only the embeddings of users and concepts in our
experiments.
• FISM [32] is a type of CF algorithm. It can utilize the average historical concept embedding
and the target one to perform recommendation tasks.
• NAIS [21] is another type of CF algorithm. It can differentiate among the importance of all
historical concepts by utilizing the attention mechanism.
• NASR [39] is considered an improved GRU model, and can calculate an attention coefficient
for each historical concept by using the corresponding hidden vectors produced by GRU.
• HinCRec-SL represents the proposed model that only applies an HIN for user embedding,
without reinforcement learning.
• HinCRec-RL represents the proposed model that combines the HIN for user embedding
and the reinforcement learning for better recommendation.

We conduct comparative experiments between our proposed HinCRec-RL model and several
baseline ones using offline datasets. According to the comparative experiments results reported in
Table 3, HinCRec-RL largely outperforms all other baselines in terms of 𝐻𝑅@𝐾 , 𝑁𝐷𝐶𝐺@𝐾 ,𝑀𝑅𝑅
and 𝐴𝑈𝐶 . We also compare the HinCRec-SL/RL model with these baselines and observe that the
proposed HIN contains more useful semantic information of users. When comparing HinCRec-SL
with HinCRec-RL, we can observe that the proposed reinforcement learning also has a positive
effect on the performance based on supervised learning. For example, in terms of 𝐻𝑅@5 and
𝑁𝐷𝐶𝐺@5, HinCRec-RL is more than 10% better than HinCRec-SL. This can be illustrated by the
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Fig. 6. Parameter sensitivity of HinCRec-RL over attention head 𝐿 in HIN embedding.

fact that the exploration mechanism in reinforcement learning can yield a better optimized result
with our model. More specifically, HinCRecRL achieves an 𝐻𝑅@5 of 66.21%, an 𝐻𝑅@10 of 81.53%,
an 𝐻𝑅@20 of 88.74%, an 𝑁𝐷𝐶𝐺@5 of 46.21%, an 𝑁𝐷𝐶𝐺@10 of 51.35%, an 𝑁𝐷𝐶𝐺@20 of 53.22,
and an𝑀𝑅𝑅 of 42.82% on the the dataset of XuetangXMOOCs. Although HinCRec-RL performs
slightly worse than HinCRec-SL in terms of 𝐻𝑅@20, it shows significant improvements when
compared with the baselines (i.e., 9.74%-27.54% increment in terms of 𝐻𝑅@5, 𝑁𝐷𝐶𝐺@5,𝑀𝑅𝑅 and
𝐴𝑈𝐶). We attribute such performance enhancements to the fantastic HinCRec-RL modeling: (1) The
technique based on the hierarchical graph attention aggregation guided by the user’s meta-paths is
capable of encoding the interrelationship between concepts and users, hence providing a richer
and more comprehensive representation learning of concepts and users. (2) Benefiting from the
representation learning, HinCRec-RL can preserve the user’s state information and collect more
informative rewards from the reinforcement learning process. (3) HinCRec-RL first combines the
HIN and reinforcement learning to recommend knowledge concepts for users’ course learning in
MOOC platforms. In contrast, all the baselines ignore this strategy.

5.2 Effect of Different Meta-Paths (RQ2)
We examine various meta-paths and their combinations to demonstrate the effectiveness of these
heterogeneous graph patterns in improving the performance of HinCRec-RL.More specifically, to de-
scribe the relatedness among pairs of users, four kinds of meta-paths are chosen for our study. These
meta-paths are𝑀𝑃1:𝑈1-𝐾1-𝑈1,𝑀𝑃2:𝑈1-𝐾-𝑈2-𝐾-𝑈3,𝑀𝑃3:𝑈1-𝐶1-𝐾-𝐶2-𝑈2, and𝑀𝑃4:𝑈1-𝐶1-𝑉 -𝐶2-𝑈2.
The combination of some single or simple meta-paths (e.g.,𝑀𝑃1) may affect our model’s perfor-
mance. To illustrate this, we conduct related experiments and show the results in Table 4. Each
single meta-path (i.e., 𝑀𝑃1, 𝑀𝑃2, 𝑀𝑃3, 𝑀𝑃4) and the combinations thereof contribute different
performances to the proposed model. Thus, we can conclude that different single meta-paths
can result in nonnegligible effects on HinCRec-RL’s performance. It is apparent that the adjacent
combination of single or simple meta-paths has a positive correlation property. Among the four
meta-paths, 𝑀𝑃1 can achieve a high score in several metrics; thus, it can be considered the best
designed meta-path for user representation. This is appropriate since the interests of users are
usually affected by their neighbors. Moreover, the more meta-paths the combinations include, the
better is the model performance. The most convincing evidence to illustrate this aspect is that the
combination of all the four meta-paths causes the best performance of the proposed model.

5.3 Parameter Analysis (RQ3)
We study parameter sensitivity and present the results of HinCRec-RL for diverse parameters in
Figures 6-9.

5.3.1 Impact of Attention Head 𝐿 in HIN Embedding. We analyze the performance of HinCRec-RL
with varying numbers of attention heads, proving the validity of multi-head attention involved
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Fig. 7. Parameter sensitivity of HinCRec-RL over learning rate 𝑙𝑟 .
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Fig. 8. Parameter sensitivity of HinCRec-RL over embedding dimension 𝑑 in HIN embedding.

2 1 0 1
(log scale)

0.4

0.5

0.6

0.7

0.8

0.9

HR
@

K

HR@5 HR@10

2 4 6 8
0.6
0.8

×10 2

(a) 𝜆 on 𝐻𝑅@𝐾

2 1 0 1
(log scale)

0.35

0.40

0.45

0.50

0.55

ND
CG

@
K

NDCG@5 NDCG@10

2 4 6 8
0.4
0.5

×10 2

(b) 𝜆 on 𝑁𝐷𝐶𝐺@𝐾

2 1 0 1
(log scale)

0.36

0.38

0.40

0.42

M
RR

MRR

2 4 6 80.35

0.40

0.45

×10 2

(c) 𝜆 on𝑀𝑅𝑅

2 1 0 1
(log scale)

0.86

0.88

0.90

0.92

0.94

AU
C

AUC

2 4 6 80.85

0.90

0.95

×10 2

(d) 𝜆 on 𝐴𝑈𝐶

Fig. 9. Parameter sensitivity of HinCRec-RL over 𝜆.
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Fig. 10. Parameter sensitivity of HinCRec-RL over the probability of exploration 𝜖 .

in HIN embeddings. In sequence, there are 2, 4, 6, 8, 10 and 12 attention heads in our analytical
design. The experimental results are given in Figure 6. We can see that the increase of the number
of heads slightly elevates the model’s performance. Although the attention mechanism included in
our model requires slightly longer training time, the results prove that it can make our model more
reliable and robust.

5.3.2 Impact of Learning Rate 𝑙𝑟 . We tune 𝑙𝑟 to learn a recommendation policy better. The impact
of 𝑙𝑟 on HinCRec-RL is described in Figure 7. We can see that, when increasing the learning rate
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(a) Case 1

(b) Case 2

Fig. 11. A case of the diversity of concept recommendation, which contains a sequence of clicked concepts
within XuetangX’s dynamic learning environment.

from 10𝑒-6 to 10𝑒-5, the performance is improved in terms of the 𝐻𝑅@𝐾 , 𝑁𝐷𝐶𝐺@𝐾 , and 𝑀𝑅𝑅,
whereas the performance is degraded when increasing 𝑙𝑟 further. Therefore, we can conclude that
the learning rate affects HinCRec-RL. The best 𝑙𝑟 is approximately 10𝑒-5.

5.3.3 Impact of Embedding Dimension 𝑑 . Aiming to investigate the embedding dimension settings
of entities, we conduct experiments with various numbers of dimensions (i.e., 32, 64, 96 and 128).
The experiment results are shown in Figure 8. When increasing 𝑑 from 32 to 64, the performance is
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improved in terms of 𝐻𝑅@𝐾 , 𝑁𝐷𝐶𝐺@𝐾 , and𝑀𝑅𝑅, whereas the performance is degraded when
increasing 𝑑 further. Our final settings have the user and knowledge concept vector dimension set
to 64. In light of the experiment findings, we can conclude that a reasonable embedding dimension
is crucial to enhance recommendation performance in our task.

5.3.4 Impact of Regularization Rate 𝜆. We conduct experiments on entropy regularization to
investigate the efficacy of the parameter 𝜆. We set 𝜆 to 0.01, 0.1, 1 and 10, and show the corresponding
experimental results in Figure 9. In addition, for more fine-grained analysis, we set 𝜆 to 0.02, 0.04,
0.06 and 0.08, and present the results in a zoomed view. Figure 9 shows that, when increasing 𝜆
from 10𝑒-2 to 10𝑒-1, the performance is improved in terms of the 𝐻𝑅@𝐾 , 𝑁𝐷𝐶𝐺@𝐾 , 𝑀𝑅𝑅 and
𝐴𝑈𝐶 , whereas the performance is degraded when increasing 𝜆 further. Therefore, we can conclude
that 𝜆 affects the performance of HinCRec-RL, and the best 𝜆 is approximately 10𝑒-1.

5.3.5 Impact of Exploration Probability 𝜖 . We investigate the random action probability in an 𝜖-
greedy policy. We set the range of 𝜖 range from 0 to 1 in steps of 0.1, and present the corresponding
results in Figure 10. When increasing 𝜖 from 0 to 0.2, the performance is improved in terms of the
𝐻𝑅@𝐾 , 𝑁𝐷𝐶𝐺@𝐾 ,𝑀𝑅𝑅 and 𝐴𝑈𝐶 , whereas the performance is degraded when increasing 𝜖 from
0.2 to 1 further. The thumbnail of Figure 10 shows that HinCRec-RL performs optimally when 𝜖 is
approximately 0.18. Therefore, the exploration probability affects the performance of HinCRec-RL.

5.4 Case Study
Figure 11 shows a case study to examine the availability of HinCRec-RL, particularly its ability to
adapt to dynamic environments when providing personalized concept recommendations. User A
(ID: 6806276) and User B (ID: 8136117) are randomly chosen from the testing dataset. They have
different educational backgrounds and consequently experience different learning paths in the
XuetangX MOOC platform. Figure 11a first shows the clicked history of the two users and then
displays the concept lists recommended to them separately. From this figure, we can observe that
User A is learning a course named “Introduction to Algorithms”, whereas User B is learning a course
named “Natural Language Processing”. Both users selected distinct knowledge concepts pertaining
to the same target course “Operating System”. In this case, our model can still adaptively consider
the currently selected concepts, and creatively recommend the next one depending on the past. We
attribute it to the reinforcement learning mechanism we have adopted, i.e., the proposed approach
can dynamically interact with the environment.
On the other hand, we also show a case of recommending different concept lists for a given

user according to different meta-paths, as shown in Figure 11b. For User C with ID 8982675,
given his click history, we show the recommended results by meta-paths 𝑀𝑃1&𝑀𝑃2&𝑀𝑃3&𝑀𝑃4
and𝑀𝑃1, respectively. The result recommended by𝑀𝑃1&𝑀𝑃2&𝑀𝑃3&𝑀𝑃4 is more precise than
that recommended by 𝑀𝑃1. We attribute this to the fact that the meta-paths can aggregate the
information related to users from neighbors, as data augmentation. This also demonstrates that
introducing heterogeneous graph information into user embedding is effective.

6 RELATEDWORK
We will present the relevant studies from three aspects, namely, mining in MOOCs, HIN learning,
and recommender systems.

6.1 Mining in MOOCs
MOOCs can be viewed as interactive systems containing large-scale multimedia objects, user
interaction records, and HINs. Several data mining techniques have been employed to mine these
plentiful resources, to improve the user experience on online learning platforms. These data can
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also be exploited to reveal, in detail, how students behave and how learning takes place. Existing
studies on MOOCs fall under two major categories. One line of work focused on the course content,
such as course concept extraction [45, 50], course concept expansion [84], and prerequisite relation
discovery [49, 83]. It is common to learn how the representations of entities leverage both context
information and content. In addition to the title and description of each course, other types of entities,
such as teachers, videos, and concepts, can be constructed into heterogeneous networks to explore
more corresponding beneficial semantic relationships. Pan et al. [49] explored the prerequisite
relations among concepts by leveraging the concept semantics of course , the video context of
course and the structure of course. The other line of work pays attention to the learning behavior
patterns of students [58]. For example, some studies [31, 88] recommended courses to students.
Additionally, some studies [16, 40] predicted dropouts, whereas other studies [33] predicted the
performances of students. Diverse students’ behaviors are essential for MOOC research because
they are meaningful to mine the motivations [16], cognitive abilities [8], and social activities [34]
of students static course research and contents. Yu et al. [85] collected student behaviors data from
MOOCs, which indicates the relationships between courses and concepts. These records include
student profiles, video watching behaviors, exercise behaviors, comments and replies.

Among the related studies, course recommendation is the task most relevant to ours. Our study
not only deploys concept recommendation in the dynamic interactive environment, but also puts
more focus on modeling the dynamic interaction among users and concepts, and enriching the
representation of users based on heterogeneous information networks. Another related work to ours
is [19], which proposed an attentional graph convolutional network for concept recommendation.
Different to [19], we resort to modeling the dynamic interactions among users and concepts by
reinforcement learning.

6.2 Learning with Heterogeneous Information Networks
Many applications, e.g recommender systems [24], social event detection systems [4, 53], etc,
capture the meaningful semantic and structural information by constructing an HIN in auxiliary
data. Specially, lots of entity types (e.g., users, courses, and knowledge concepts) and rich edges
among them which naturally constitute an HIN, can be easily found in E-commerce applications or
online platforms (e.g., Amazon, eBay and XuetangX MOOC).

HIN-based methods have outperformed the other previous methods in mining more meaningful
information owing to their excellent ability. Sun et al. [68] suggested using meta-paths to explore
the information network’s meta-structure which can systematically explore fruitful semantic
relationships across several kinds of objects. Metapath2vec [13] generated the meta-path by utilizing
skip-gram and randomwalk to represent the HIN. Cai et al. [3] proposed GAN-HBNRwhich is based
on generative adversarial bibliographic network module for citation recommendation. Cen et al.
[5] introduced an embedding method for the attributed multiplex heterogeneous network to boost
the behavior of the recommender system. Chen et al. [7] proposed a novel metric learning based
heterogeneous information network embedding model named PME which uses a unified technique
to capture 1st-order and 2nd-order proximities. HAN [74] introduced the attention mechanism
into an HIN and achieved a comparable performance in node classification and clustering. Sun
et al. [66] presented a heterogeneous hypergraph learning model based on graph neural networks
to characterize multiple non-pairwise relations. Furthermore, the attention mechanism has been
adopted in several approaches, such as HERec [63] and MCRec [25].

MOOCs are more typical for utilizing the emerging HINs because they contain richer links and
semantics in objects, and are thus a fresh direction for data mining. We construct a framework by
combining extended deep reinforcement learning with the representations of user status to provide
recommendations of relevant knowledge concepts in this study.
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6.3 Recommender System
Recent recommendation works can be grouped approximately into four categories [1, 43, 52]:
collaborative-filtering (CF) based recommendation, content-based (CB) recommendation, conven-
tional hybrid recommendation, and deep-learning-based recommendation.

6.3.1 CF-based Recommendation. CF has become one of the most efficient recommendation algo-
rithms because of its simplicity and efficiency. It aims to recommend items on the basis of historical
data of user–item interactions [1]. Recommender systems rely on either explicit or implicit feedback,
which contains abundant information about the interests of users [86]. There are two kinds of
algorithms deriving from CF, namely user-based CF (UserCF) and item-based CF (ItemCF) [18]. The
major challenges of CF approaches are data sparsity issues [82] and the cold-start problem [97].
In order to alleviate these problems in MOOC course recommendation, Pang et al. [51] proposed
MLBR, which uses learner-course vectors rather than a huge and sparse learner-course matrix.
Rabahallah et al. [59] combined ontology and CF to recommend personalized courses to online
students, where ontology can provide a semantic description of students to mitigate the cold-start
problem.

6.3.2 Content-based Recommendation. Compared with CF, CB prioritizes the ratings of the target
users and the attributes of items liked by them in the past. Currently, several CB approaches
have been proposed for course recommendations on MOOCs. Huang and Lu [27] utilized feature
modeling for items and user profiles constructing and matching the item features with the user’s
preferences. In comparison to CF, the CB suggestion does not require a substantial rating matrix
and offers the benefits of user independence and the capacity to suggest new goods. Although CB
approaches are significantly better at proposing new things, they cannot yet deliver services to
new system users.

6.3.3 Hybrid Recommendation. Hybrid models seek to get the best of both worlds by combining
both the basic and the enhanced methods [1]. They can incorporate the advantages of different
types of recommendation methods to create a unified method that is more robust in a wide range
of contexts. Typically, basic models contain CF and CB methods, whereas enhanced ones include
factorization machine (FM) [44, 46], GBDT [35], and other combined variants. Classical methods
include GBDT+LR [23] and LS-PLM [17]. The GBDT+LR model has the ability to perform higher-
order feature combination. It promotes the trend of feature engineering modeling. The LS-PLM
model is a three-layer neural networkwith an attentionmechanism, which has a stronger expression.
Several related studies leverage hybrid models for online course recommendation [9, 36]. Wan
and Niu [73] proposed an approach called SI-IFL for recommending courses to learners, which
integrates sequential pattern mining, the learner influence model, and self-organization-based
recommendation strategy. Although deep learning has demonstrated considerable potential for
learning effective representations, traditional recommendation models still retain irreplaceable
advantages owing to their strong interpretability and fast training speed. In general, there are
complicated relationships between traditional recommendation models and deep learning models.

6.3.4 Deep-learning-based Recommendation. Compared with traditional recommendation methods,
deep learning recommendation methods have deeper neural network layers, and hence, they can
explore more complex connections between users and items.
Graph neural networks (GNNs), particularly dynamic GNNs [54], graph convolutional net-

works (GCNs) [76], graph inductive representation learning (GraphSAGE) [20], graph attention
networks [71], and graph isomorphism networks [81], have gained considerable attention. The
main idea behind GNN is to aggregate the neighbor features of nodes by introducing convolution.

J. ACM, Vol. 37, No. 4, Article 1. Publication date: January 2022.



1:21

For example, MixGCF [28] introduces negative samples by using both positive mixing and hop
mixing methods, which leverages the information of several local graphs to train GNN-based CF
recommendation models. SHCF [38] is a novel sequence-aware graph-based CF method for recom-
mendation that combines both high-order collaborative messages and sequential patterns. Deng
et al. [12] predicted paper review rating via a hierarchical network (HabNet) that leverages a bidi-
rectional self-attention network. Fan et al. [14] proposed a heterogeneous graph network through
a meta-path-guided method to model complex entities and rich edges for intent recommendation.
Jin et al. [30] proposed an interaction model considering the information of neighborhoods for
recommendation in heterogeneous views. Another study [89] presented a comprehensive analysis
on network embedding methods for recommendation. Further, the interpretability [6] and privacy
of recommender systems [2, 47] have been investigated.

Recently, reinforcement learning has been widely utilized in several fields; for example, OpenAI’s
AlphaStar [72] defeated professional players in StarCraft II. Silver et al. [64] proposed a reinforce-
ment learning method to build a system for customer interaction. Peng et al. [56] employed a
multi-agent RL algorithm to select optimal aggregation strategies in a multi-relational GNN for
social event detection tasks. Especially in recommender systems, as a method that focuses on how
the agents act in the environment, reinforcement learning enables the recommender to capture
the real-time feedback of users effectively for learning optimal recommendation strategies. In
practice, several studies have begun to regard recommendation as a deep reinforcement learning
problem, and have achieved comparable performances in movie recommendation [41, 92], news
recommendation [62, 95], music recommendation [48], e-commerce [93], and health care [90].
More specifically, Zhou et al. [96] proposed a knowledge-graph-enhanced RL method on an

interactive recommender system to deal with the sample efficiency issues. Chen et al. [10] introduced
the attention method to aggregate the state vector of knowledge graphs and then calculated the Q
value in the user–item interest graph through graph convolution. Zou et al. [98] introduced a novel Q
network to explore user’s long-term interest. On this basis, they also proposed a RL framework [99]
to guarantee stable convergence and low time complexity. Huang et al. [26] proposed amethod using
RNN and RL to improve the accuracy of long-term recommendations. Yu et al. [87] designed VL-Rec,
a vision-language recommendation framework with an attribute-augmented RL, which provides
natural language feedback to perform effective interactions with the user. Zhao et al. [91] proposed
MaHRL based on hierarchical RL for recommendation. The low-level agents learn the short-term
preferences of users while the high-level agents focus on learning the uses’ long-term preferences
and guide the low-level agents. Xie et al. [80] addressed the integrated recommendation task which
also employed a hierarchical model. Zhang et al. [88] removed noisy courses from historical course
sequences and then performed hierarchical reinforcement learning. Feng et al. [15] and Zhao et al.
[94] combined two recommendation scenarios which contain the homepage and product detail page
into one recommendation target on an e-commerce platform. Peng et al. [55] proposed to address
the complexity of networks by designing a novel neighborhood-selection-guided multi-relational
GNN, which maintains relation-dependent representations simultaneously.

Different from existing recommendation methods based on reinforcement learning [11, 48], our
model leverages rich semantic meta-path-based context, which can learn better representations by
specific interactions for students, courses, concepts, items, etc.

7 DISCUSSION
In this section, we discuss our study from three aspects: comparison with our previous model,
verifying the effectiveness our model, and presenting the threats to validity.
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7.1 Comparison with Our Previous Work
We revisit our previous model ACKRec [19] for knowledge concept recommendation, and compare
it with HinCRec-RL.

Attention-based GCNs versus Hierarchical Attention Networks. By combining information from
neighbors based on meta-paths, our models can learn the node representation in heterogeneous
graphs. In node-level aggregation, we use information propagation in GCNs within meta-path-
based neighbors in ACKRec, which sets the symmetric normalization term between two nodes as
1/
√︁
|N𝑖 | |N𝑗 |. This encodes the prior that the intermediate representation of node 𝑗 ∈ NΦ𝑘

𝑖
to node 𝑖

under a single meta-path Φ𝑘 exploits the proximity structure of the graph. HinCRec-RL, in contrast
to GCN, uses self-attention to learn the importance of 𝛼Φ𝑘

𝑖 𝑗
among meta-path-based neighbors. By

assigning weights to the meta-path-based neighbors, HinCRec-RL may be applied to graph nodes
with varied degrees. Both of our models use the attention mechanism during path-level aggregation
to combine the representations of entities learnt while following various meta-paths and produce
the final attentional joint representation. Experimental results show that, in the representation
learning stage, both ACKRec and HinCRec-RL can both fully utilize the structure of HINs to learn
excellent node embeddings. This is useful for the further downstream recommendation task.

Extended Matrix Factorization versus REINFORCE. We feed both content and context information
into the basic matrix factorization model to form our previous, robust and explainable model,
ACKRec. It adopts gradient descent to obtain a scalar product of user latent vectors 𝑝𝑘 ∈ R𝑑
and knowledge concept ones 𝑞𝑢 ∈ R𝑑 plus users representations 𝑒𝑢 and knowledge concepts 𝑒𝑘
approximate original ratings 𝑟𝑢𝑘 . Although ACKRec only slightly alleviates the classic data sparsity
problem, it is no longer useful in incremental recommendation settings. The fundamental problem
with such a system is that it continuously welcomes new users and concepts. The recommender
system for top-K concepts used at XuetangX is implemented in practice by the HinCRec-RL model
presented in this paper. When the system is running, it may concurrently learn the interests of the
users and utilize those interests. This is distinct from the offline setting of ACKRec. In this study,
we apply REINFORCE to enable HinCRec-RL to adapt to the dynamic interaction environment
between users and concepts, where simultaneous exploration and exploitation of the search space
takes place. In the simplest case, the recommendation agent may have to decide the concept lists to
recommend. The agent would either earn a reward for the success of the recommendation or receive
a penalty when a user clicks the particular notion on the list. Thus, the online recommendation
policy network changes can be performed in real time. Experimental results show that HinCRec-RL
can perform well in dynamic environment. We will run HinCRec-RL stably in a live production
system in the future.

7.2 Why does HinCRec-RL Work?
Here we summarize three main features of HinCRec-RL that may explain its effectiveness in concept
recommendation in MOOCs.

Mining Latent Information in Heterogeneous Graphs. Traditional approaches aimed at solving
the data sparsity issue by supplementing information about the context and its own attributes
are not work effective in our scenario owing to sparse interactions between users and knowledge
concepts coupled with a lack of attributes. To enhance the relatedness between users and concepts,
we introduce course and video entities and build a heterogeneous graph as a bridge for message
passing from concepts to users. In addition to direct interactions between users and concepts, the
heterogeneous graph contains rich latent semantic information which is not easy to mine but is
crucial.
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Attentional Multiple Meta-path-based Node Aggregation Representations. HinCRec-RL learns user
embedding representation by integrating the representations of other adjacent nodes, which are
those nodes on a path selected based on a specific meta-path schema in the heterogeneous graph.
In the model, node weights and meta-paths are included in addition to node properties. Therefore,
it can capture the fine-grained connection between users and concepts better and interpret users’
preferences by tracking and tracing the users’ historical behaviors with the node relationships in
these meta-paths.

Dynamic Interaction through Reinforcement Learning. In several real-world scenarios, a user’s
interest always changes rapidly with time, which requires methods that can react quickly to such
changes. Traditional deep-learning-based methods, owing to their training and learning in a known
data context and static environment, have intuitive limitations in capturing dynamic changes. We
formulate the concept recommendation task as a sequential recommendation problem and model it
as an MDP. Every action taken by a reinforcement learning agent relies on a constantly changing
user embedding vector. Thus, HinCRec-RL can better adapt to the dynamic environment in MOOCs.

7.3 Threats to Validity
The validity of our assessment is mostly at risk from two factors.

• Generalizability of our framework. The main objective of our study is to improve the per-
formance of personalized recommendations in MOOCs through a fine-grained concept
recommendation approach. One threat is the differences between education scenes and other
scenes (e.g. e-commerce) in the real world. In our experiments, we used a large dataset,
containing 3,111,637 users and 2,527 concepts, to account for as many user behaviors as
possible. Moreover, we made the training and testing datasets as significantly different as
possible. In our future work, we will utilize even larger-scale datasets and datasets of other
scenarios to evaluate the effectiveness of HinCRec-RL.
• The returned recommendations may have low relevance scores.We consider only the top 20
returned results based on the ranking score. Increasing the scale and diversity of datasets
can avoid such low relevance threat. Moreover, we believe that it is reasonable to consider
the top 20 results. Users typically pay attention to the top 20 or even fewer items in the
recommended list in real-world recommender systems and disregard the other items. This
indicates that items starting from 𝑘 + 1 (𝑘=20) are not significant from the perspective of
users.

8 CONCLUSION
This paper presented HinCRec-RL, a novel reinforcement learning architecture that incorporates
HINs, for the task of concept recommendation in MOOCs. HinCRec-RL has a better ability to learn
user representations bymeta-path sampling over anHIN, and can also accommodate the interactions
between users and knowledge concepts in the dynamic context of MOOCs. From experimental
results, we can have a conclusion that the proposed HinCRec-RL model can considerably improve
both the precision and diversity of the recommended list. Our model can be applied in not only
MOOC platforms for knowledge concept recommendation, but also other practical scenarios, such
as user recommendation and commodity recommendation. In the future, we will deploy the concept
recommendation algorithm on the real-world MOOC platform XuetangX and provide a commercial
concepts recommendation service with personalized and dynamic characteristics. In addition, we
will explore how to apply inverse reinforcement learning into the recommender system and further
unleash the power of HinCRec-RL.
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