
Hawkeye: A PyTorch-based Library for Fine-Grained Image
Recognition with Deep Learning

Jiabei He
Nanjing University of Science and Technology

Nanjing, China
hejb@njust.edu.cn

Yang Shen
Nanjing University of Science and Technology

Nanjing, China
shenyang_98@njust.edu.cn

Xiu-Shen Wei
Southeast University

Nanjing, China
weixs.gm@gmail.com

Ye Wu
Nanjing University of Science and Technology

Nanjing, China
wuye@njust.edu.cn

ABSTRACT
Fine-Grained Image Recognition (FGIR) is a fundamental and chal-
lenging task in computer vision and multimedia that plays a crucial
role in Intellectual Economy and Industrial Internet applications.
However, the absence of a unified open-source software library
covering various paradigms in FGIR poses a significant challenge
for researchers and practitioners in the field. To address this gap, we
present Hawkeye, a PyTorch-based library for FGIR with deep learn-
ing. Hawkeye is designed with a modular architecture, emphasizing
high-quality code and human-readable configuration, providing
a comprehensive solution for FGIR tasks. In Hawkeye, we have
implemented 16 state-of-the-art fine-grained methods, covering 6
different paradigms, enabling users to explore various approaches
for FGIR. To the best of our knowledge,Hawkeye represents the first
open-source PyTorch-based library dedicated to FGIR. It is publicly
available at https://github.com/Hawkeye-FineGrained/Hawkeye/,
providing researchers and practitioners with a powerful tool to
advance their research and development in the field of FGIR.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies→ Computer vision.

KEYWORDS
Open-Source, Fine-Grained Image Recognition, Library, Deep Learn-
ing, Convolutional Neural Networks
ACM Reference Format:
Jiabei He, Yang Shen, Xiu-Shen Wei, and Ye Wu. 2023. Hawkeye: A PyTorch-
based Library for Fine-Grained Image Recognition with Deep Learning. In

This work was supported by National Key R&D Program of China (2021YFA1001100),
National Natural Science Foundation of China under Grant (62272231, 62201265),
Natural Science Foundation of Jiangsu Province of China under Grant (BK20210340).
Corresponding authors: X.-S. Wei and Y. Wu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0108-5/23/10. . . $15.00
https://doi.org/10.1145/3581783.3613461

Proceedings of the 31st ACM International Conference on Multimedia (MM
’23), October 29–November 3, 2023, Ottawa, ON, Canada. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3581783.3613461

1 INTRODUCTION
In recent years, significant advancements have been made in deep
learning design and training, leading to substantial improvements
in image recognition performance on large-scale datasets. Fine-
Grained Image Recognition (FGIR) is a specialized area of research
that focuses on the visual recognition of subcategories at a highly
granular level within a broader semantic category. Despite signifi-
cant progress with the help of deep learning [19], FGIR remains a
highly challenging task. Also, it has significant scientific and prac-
tical applications in various scenarios within the Intellectual Econ-
omy and Industrial Internet, such as smart city, public safety, eco-
logical protection, agricultural production and safety assurance, etc.
The main challenge in FGIR is to understand the subtle visual differ-
ences that are necessary to distinguish objects with highly similar
overall appearances but differing fine-grained features. The primary
methods of FGIR can be roughly grouped into three paradigms [19]:
(1) recognition by localization-classification subnetworks, (2) recog-
nition by end-to-end feature encoding, and (3) recognition with
external information.

Despite somemethods from these paradigms being open-sourced,
there is currently no unified open-source library available. New re-
searchers in the field face a significant hindrance in replicating new
approaches because different methods use distinct deep learning
frameworks and design architectures, requiring the researchers to
familiarize themselves with a new set of frameworks every time.
Moreover, the absence of a unified library often necessitates re-
searchers to develop the underlying code themselves, resulting in a
waste of valuable time. Additionally, it is challenging to compare
research results since each researcher/developer uses a distinct
framework and base setup, leading to less reproducible results. Con-
sequently, a unified open-source library is crucial for advancing the
field of FGIR. To address this need, we developed a PyTorch-based
library for FGIR, termed as Hawkeye.

The design of our work has the following advantages:
• To the best of our knowledge, this is the first dedicated

codebase designed specifically for FGIR. Our library encompasses
16 representative methods spanning 6 paradigms in FGIR, providing
researchers with a comprehensive understanding of the current

ar
X

iv
:2

31
0.

09
60

0v
2

 [
cs

.C
V

]
 2

4
N

ov
 2

02
3

https://github.com/Hawkeye-FineGrained/Hawkeye/
https://doi.org/10.1145/3581783.3613461
https://doi.org/10.1145/3581783.3613461

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jiabei He, Yang Shen, Xiu-Shen Wei, and Ye Wu

Save model
Visualization

…

Post-process

Pre-step of batch training

Batch training

Post-step of batch training

Batch validation

Training ProcessPre-process

Fine-Grained
Dataset

Augmentation

Resize
Crop
Flip
…

Class
Balanced
Sampling

(a)

ResNet
VGG
…

Backbone

PeerLearning
…

Label Noise
Processing

High-Order
Feature

Interactions

BCNN
CBCNN

iSQRT-COV
…

Loss

MAMC
PC
CIN

API-Net
…

OSME
AP-CNN

MGE-CNN
…

Part
Localization
and Enhance

Global
Feature
Enhance

CIN
API-Net

…

Descriptor
Interactions

S3N
IP

ProtoTree
…

(b)

Figure 1: (a)Workflow ofHawkeye, including three stages: data pre-process, model training process and post-process. (b) Modules
in Hawkeye. We present fine-grained methods involved in Hawkeye which mainly correspond to specific modules.

state-of-the-art techniques in the field. Furthermore, our modular
design allows researchers to easily integrate their own methods or
enhancements into the library, facilitating fair comparisons with
other approaches. We are committed to maintaining and updating
the open-source library to accommodate new advancements and
emerging fine-grained methods in the future.

• Modular Design: The fine-grained recognition training pipeline
is structured into multiple modules, which are subsequently in-
tegrated into a unified pipeline within the Trainer class. Users
have the flexibility to override specific modules by inheriting the
Trainer class, allowing for customization as per their requirements.
The implementation of most methods does not necessitate extensive
code modifications, ensuring that Hawkeye remains both flexible
and user-friendly.

• High Code Quality: Our library prioritizes code readability
in the pipeline implementation, emphasizing the simplification
of each module and ensuring the complete comprehensibility of
the pipeline process. This approach enables beginners to quickly
familiarize themselves with the training process of fine-grained
recognition and the functions of each part.

• Human-readable Configuration: Our library provides con-
figuration files in the YAML format for each method. These files
allow users to easily modify all the necessary hyperparameters for
training, including those related to the dataset, model, optimizer,
scheduler, and more. By focusing on a single configuration file,
users can conveniently customize their experiments and adjust
various settings to suit their specific needs.

2 DESIGN OVERVIEW
The workflow and composition modules of Hawkeye are illus-
trated in Figure 1. The pipeline of fine-grained image recognition is
grouped into several modules, shown in black blocks of Figure 1b.
Next, we will introduce the relationship of modules to paradigms
in [19], essential modules, and the architecture of Hawkeye.

2.1 Correspondence between Modules and
Learning Paradigms

Basically, the modules in Hawkeye correspond to the learning
paradigms of fine-grained recognition [19]. Specifically, the label
noise processing module corresponds to methods of the “recogni-
tion with web data” paradigm. The descriptor interactions module
corresponds to methods of the “recognition by utilizing deep filters”
paradigm. The part localization and enhancement module is mainly
composed of methods from “recognition by leveraging attention
mechanisms”. The high-order feature interactions module is made
up of methods from the “recognition by performing high-order fea-
ture interactions” paradigm. The loss function module corresponds
to “recognition by designing specific loss functions”.

2.2 Composition Modules in Hawkeye
We present the composition modules in Hawkeye as follows.

• Class Balanced Sampling: It samples data in the pre-
process stage. This module is essential for methods that compare
different classes of samples and require balanced sampling of mul-
tiple classes of samples in a single batch.

Hawkeye: A PyTorch-based Library for Fine-Grained Image Recognition with Deep Learning MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada.

• Backbone: This module provides basic feature extraction
networks, including ResNet and VGG.

• Label Noise Processing: It focuses on the process of han-
dling label noise in webly fine-grained images, leaving clean data
for subsequent modules.

• Descriptor Interactions: It leverages the locality and spa-
tiality of descriptors to detect parts of fine-grained objects.

• Part Localization and Enhancement: This module de-
tects the parts of a fine-grained object and constructs part-level
representations corresponding to those parts, considering the small
differences among fine-grained categories.

• Global Feature Enhancement: It explores interactions
between deep channels or pairs of images using image-level repre-
sentations.

• High-Order Feature Interactions: This module encodes
the second-order statistics derived from convolutional activations.

• Loss: This module directly drives classifier learning and
image representation learning through a loss function designed for
fine-grained recognition.

2.3 Architecture
Each method has a configuration file in the YAML format that can
be easily modified for specific parameters. The Trainer class im-
plements the core functions for training, such as batch training
methods, optimizers, hooks, and checkpoints. Users can implement
their customized methods by inheriting the Trainer class, and a
few lines of code require to be modified. A generic Dataset class
is implemented for different fine-grained datasets. With the meta-
data files provided in Hawkeye, users can easily apply and switch
between the eight fine-grained benchmark datasets in experiments.
The Model module includes the specific implementation of various
methods, as well as the special Loss required by some methods.
Users can easily add their own methods to Hawkeye. These mod-
ules are designed to be expandable, allowing users to implement
customized designs without modifying unnecessary code.

3 SUPPORTED METHODS
In this paper, we provide the following representative fine-grained
recognitionmethods of 6 different types according to [19], including
utilizing deep filters, leveraging attention mechanisms, performing
high-order feature interactions, designing specific loss functions,
recognizing with web data, as well as miscellaneous. We have cho-
sen 16 representative methods from these 6 types and implemented
them in the library. We will briefly introduce these methods.

• S3N [3] leverages class peak responses, i.e., local maximums,
as the basis of part localization, based on class response maps [22].

• IP [7] provides an interpretation of classification results
via the segmentation of object parts and the identification of their
contributions.

• ProtoTree [14] combines prototype learning with decision
trees, and thus results in an intrinsically interpretable model.

• MGE-CNN [21] promotes diversity among a mixture of
experts by combing an expert gradually-enhanced learning strategy
and a Kullback-Leibler divergence-based constraint.

• Sun et al. [15] incorporates channel attentions and metric
learning to enforce the correlations among attended regions.

• APCNN [2] integrates low-level information to obtain en-
hanced feature representation and accurately located discriminative
regions using a pyramidal hierarchy structure.

• Bilinear CNN [11] leverages bilinear pooling over the out-
puts of two CNNs to model local pairwise feature interactions in a
translationally invariant manner.

• CBCNN [5] utilizes two compact bilinear representations
with the same discriminative power as the full bilinear representa-
tion but with only a few thousand dimensions.

• Fast MPN-COV [10] (i.e., iSQRT-COV) proposes an itera-
tive matrix square root normalization method for fast end-to-end
training of global covariance pooling networks.

• PC [4] reduces overfitting by intentionally introducing con-
fusion in the activations.

• API-Net [23] attentively captures contrastive clues by pair-
wise interaction between two images.

• CIN [6] models the channel-wise interplay within and across
images to exploit the rich relationships between channels.

• PeerLearning [16] trains two deep neural networks simulta-
neously, both of which mutually communicate proper knowledge
from noisy web images.

• NTSNet [20] localizes informative regions with Navigator,
Teacher and Scrutinizer cooperating and reinforcing each other.

• Cross-X [12] exploits the relationships between different
images and between different network layers for robust multi-scale
feature learning.

• DCL [1] destructs and then reconstructs the fine-grained
image, for learning discriminative regions and features.

4 EXPERIMENTS
4.1 Benchmark Datasets
Eight representative fine-grained recognition benchmark datasets
are provided. We provide the meta-data file of the datasets, and the
train list and the val list are also provided according to the official
splittings of the dataset. Researchers can easily utilize these datasets
by following the examples provided in the library. Table 1 provides
a summary of the year of publication, meta-category, number of
images, and number ofcategories for each dataset.

4.2 Implementation Details
In our implementation, we use a NVIDIA GeForce 3060 GPU to train
and infer the models of each method. We perform the training stage
mainly using the image size of 448 × 448. The batch size, learning
rate and epoch were set according to each method, using as many
settings as possible from the method’s corresponding paper, and
these settings are detailed in individual config files for each method.
We initializes the models with ResNet and VGG weights pre-trained
on ImageNet, except for ProtoTree [14], which uses weights pre-
trained on iNat2017 [17]. The optimisers are mainly Stochastic
Gradient Descent (SGD), Adaptive Moment Estimation (Adam) or
Adam with decoupled weight decay (AdamW). Most methods are
trained using cosine learning rate scheduler with warm-up function
to adjust the learning rate, while others use step learning rate
or multiple step learning rate, etc. Image augmentation methods
include random resized crop, random horizontal flip and random
erasing with a probability of 0.1.

MM ’23, October 29–November 3, 2023, Ottawa, ON, Canada. Jiabei He, Yang Shen, Xiu-Shen Wei, and Ye Wu

Table 1: Fine-grained benchmarks provided in Hawkeye.
Dataset Year Meta-class # images # categories
CUB-200 [18] 2011 Birds 11,788 200
Stanford Dog [8] 2011 Dogs 20,580 120
Stanford Car [9] 2013 Cars 16,185 196
FGVC Aircraft [13] 2013 Aircrafts 10,000 100

iNat2018 [17] 2018 Plants &
Animals 461,939 8,142

WebFG-bird [16] 2021 Birds 18,388 200
WebFG-car [16] 2021 Cars 21,448 196
WebFG-aircraft [16] 2021 Aircrafts 13,503 100

Table 2: Performence of fine-grained recognition methods
on the CUB-200 dataset. Except for the asterisked methods,
448 × 448 input images were used.

Methods Original Acc. Acc. in Hawkeye
Utilizing Deep Filters
S3N [3] 88.50 88.29
IP [7] 87.30 86.65
ProtoTree [14] 82.20* 82.94*
Leveraging Attention Mechanisms
MGE-CNN [21] 88.50 89.05
OSME+MAMC [15] 86.50 84.31*
APCNN [2] 88.40 87.84
Performing High-Order Feature Interactions
BCNN [11] 84.10 83.80
CBCNN [5] 84.00 84.13
Fast MPN-COV [10] 88.10 88.81
Designing Specific Loss Functions
Pairwise Confusion [4] 80.21 87.67
API-Net [23] 87.70 87.88
CIN [6] 87.50 85.34*
Recognition with Web Data
Peer-Learning [16] 76.48 77.85
Miscellaneous
NTS-Net [20] 87.50 88.19
CrossX [12] 87.70 87.65
DCL [1] 87.80 87.64

4.3 Results
We have conducted experiments on the methods implemented in
Hawkeye using CUB-200 [18] to prove the effectiveness of our li-
brary. By integrating these methods with different implementations
into a unified fine-grained recognition framework, some results
show slight fluctuations, but they are still within acceptable limits.

We categorized the results based on the paradigm in [19] for
easy observation and analysis, as presented in Table 2. Most of
our experiments are performed on 448 × 448 input images, and the
results marked with an asterisk use 224 × 224 input images.

5 AVAILABILITY
Hawkeye is released under the license of MIT and available at:
https://github.com/Hawkeye-FineGrained/Hawkeye/. We also pro-
vide documentation and training samples. Contributions from the
open-source community are welcome, via the GitHub issues/pull
request mechanism.

6 CONCLUSIONS
We developedHawkeye, the first open-source PyTorch-based library
for fine-grained recognition with deep learning. Featuring a mod-
ular design, our library ensures simplicity and ease of extension.
Each method is accompanied by training examples that require
only minor code modifications, showcasing the user-friendly and
highly adaptable nature of Hawkeye. We have implemented 16 fine-
grained methods in a unified framework. It facilitates researchers
in rapidly acquainting themselves with the cutting-edge advance-
ments in fine-grained recognition, and expediting their exploration
of novel ideas and enhancements We are dedicated to the ongoing
maintenance and refinement of Hawkeye as an open-source project.

REFERENCES
[1] Yue Chen, Yalong Bai, Wei Zhang, and Tao Mei. 2019. Destruction and construc-

tion learning for fine-grained image recognition. In CVPR. 5157–5166.
[2] Yifeng Ding, Zhanyu Ma, Shaoguo Wen, Jiyang Xie, Dongliang Chang, Zhongwei

Si, Ming Wu, and Haibin Ling. 2021. AP-CNN: Weakly supervised attention
pyramid convolutional neural network for fine-grained visual classification. IEEE
TIP 30 (2021), 2826–2836.

[3] Yao Ding, Yanzhao Zhou, Yi Zhu, Qixiang Ye, and Jianbin Jiao. 2019. Selective
sparse sampling for fine-grained image recognition. In ICCV. 6599–6608.

[4] Abhimanyu Dubey, Otkrist Gupta, Pei Guo, Ramesh Raskar, Ryan Farrell, and
Nikhil Naik. 2018. Pairwise confusion for fine-grained visual classification. In
ECCV. 70–86.

[5] Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor Darrell. 2016. Compact
bilinear pooling. In CVPR. 317–326.

[6] Yu Gao, Xintong Han, Xun Wang, Weilin Huang, and Matthew Scott. 2020. Chan-
nel interaction networks for fine-grained image categorization. In AAAI. 10818–
10825.

[7] Zixuan Huang and Yin Li. 2020. Interpretable and accurate fine-grained recogni-
tion via region grouping. In CVPR. 8662–8672.

[8] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. 2011.
Novel dataset for fine-grained image categorization: Stanford dogs. In CVPR
workshop.

[9] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 2013. 3D object repre-
sentations for fine-grained categorization. In ICCV workshop. 554–561.

[10] Peihua Li, Jiangtao Xie, Qilong Wang, and Zilin Gao. 2018. Towards faster
training of global covariance pooling networks by iterative matrix square root
normalization. In CVPR. 947–955.

[11] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear CNN
models for fine-grained visual recognition. In ICCV. 1449–1457.

[12] Wei Luo, Xitong Yang, Xianjie Mo, Yuheng Lu, Larry S Davis, Jun Li, Jian Yang,
and Ser-Nam Lim. 2019. Cross-X learning for fine-grained visual categorization.
In ICCV. 8242–8251.

[13] SubhransuMaji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi.
2013. Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151
(2013).

[14] Meike Nauta, Ron van Bree, and Christin Seifert. 2021. Neural prototype trees
for interpretable fine-grained image recognition. In CVPR. 14933–14943.

[15] Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. 2018. Multi-attention
multi-class constraint for fine-grained image recognition. In ECCV. 805–821.

[16] Zeren Sun, Yazhou Yao, Xiu-ShenWei, Yongshun Zhang, Fumin Shen, JianxinWu,
Jian Zhang, and Heng Tao Shen. 2021. Webly supervised fine-grained recognition:
Benchmark datasets and an approach. In ICCV. 10602–10611.

[17] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard,
Hartwig Adam, Pietro Perona, and Serge Belongie. 2018. The inaturalist species
classification and detection dataset. In CVPR. 8769–8778.

[18] CatherineWah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
2011. The Caltech-UCSD birds-200-2011 dataset. (2011).

[19] Xiu-Shen Wei, Yi-Zhe Song, Oisin Mac Aodha, Jianxin Wu, Yuxin Peng, Jinhui
Tang, Jian Yang, and Serge Belongie. 2022. Fine-grained image analysis with
deep learning: A survey. IEEE TPAMI 44, 12 (2022), 8927–8948.

[20] Ze Yang, Tiange Luo, Dong Wang, Zhiqiang Hu, Jun Gao, and Liwei Wang. 2018.
Learning to navigate for fine-grained classification. In ECCV. 420–435.

[21] Lianbo Zhang, Shaoli Huang, Wei Liu, and Dacheng Tao. 2019. Learning a
mixture of granularity-specific experts for fine-grained categorization. In ICCV.
8331–8340.

[22] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning deep features for discriminative localization. In CVPR. 2921–2929.

[23] Peiqin Zhuang, Yali Wang, and Yu Qiao. 2020. Learning attentive pairwise
interaction for fine-grained classification. In AAAI. 13130–13137.

https://github.com/Hawkeye-FineGrained/Hawkeye/

	Abstract
	1 Introduction
	2 Design Overview
	2.1 Correspondence between Modules and Learning Paradigms
	2.2 Composition Modules in Hawkeye
	2.3 Architecture

	3 Supported Methods
	4 Experiments
	4.1 Benchmark Datasets
	4.2 Implementation Details
	4.3 Results

	5 Availability
	6 Conclusions
	References

