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Debiased recommendation with a randomized dataset has shown very promising results in mitigating the

system-induced biases. However, it still lacks more theoretical insights or an ideal optimization objective

function compared with the other more well studied route without a randomized dataset. To bridge this gap,

we study the debiasing problem from a new perspective and propose to directly minimize the upper bound of

an ideal objective function, which facilitates a better potential solution to the system-induced biases. Firstly,

we formulate a new ideal optimization objective function with a randomized dataset. Secondly, according to

the prior constraints that an adopted loss function may satisfy, we derive two different upper bounds of the

objective function, i.e., a generalization error bound with the triangle inequality and a generalization error

bound with the separability. Thirdly, we show that most existing related methods can be regarded as the

insufficient optimization of these two upper bounds. Fourthly, we propose a novel method called debiasing

approximate upper bound with a randomized dataset (DUB), which achieves a more sufficient optimization of

these upper bounds. Finally, we conduct extensive experiments on a public dataset and a real product dataset

to verify the effectiveness of our DUB.
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1 INTRODUCTION

Recently, the bias issue in recommender systems has received more attention from both of the
research communities and industries [27, 28, 36, 44, 45, 50]. Intuitively, as shown in Figure 1, a
user will experience system-induced biases and user-induced biases when interacting with a rec-
ommender system. The system-induced biases are caused by the stochastic recommendation policy
deployed on a recommender system, and the selection and display order of each item is treated
differently by the policy, including popularity bias [2, 6, 53], selection bias [17, 29, 35] and position
bias [4, 39], etc. The user-induced biases depend on the user characteristics, such as trust bias and
conformity bias [3, 24, 25, 52]. These specific biases will eventually be coupled into the data bias

on the user feedback. In this paper we call this type of data non-randomized dataset.

Recommender System

Users
Recommendation

Model

Observed Feedback

Closed Loop

Data bias

Recommendation

policy

User-induced biases

Trust bias

Conformity bias

...

System-induced biases

Popularity bias

Selection bias

Position bias

...

Fig. 1. The feedback loop in a recommender system, where the observed feedback contains the data bias

coupled by the system-induced biases and the user-induced biases. The former is caused by the stochastic

recommendation policy deployed on a recommender system, and the la�er depends on the user character-

istics.

Since different biases may be coupled, mitigating a set of biases from a data perspective is an
important research route. In addition, it is easier to reduce the system-induced biases by control-
ling the recommendation policy than by intervening the user to reduce the user-induced biases.
For these reasons, previous works propose to use a special uniform policy to replace the stochas-
tic recommendation policy [5, 7, 20]. Using a uniform policy means that for each user’s request,
instead of using a recommendation model for item delivery, the system randomly selects some
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items from all the candidate items, and ranks the selected items with a uniform distribution. The
users’ feedback collected under such a uniform policy is called randomized dataset. A randomized
dataset can be regarded as a good unbiased agent, because it largely avoids the sources of the
system-induced biases. However, because the uniform logging policy does not take into account
each user’s preferences and tends to show the users a collection of the items that they are not
interested in, it will hurt the users’ experiences and the revenue of the platform. This means that
it is necessary to constrain a randomized dataset collection within a particularly limited network
traffic.
To utilize such a scarce and precious randomized dataset to help the model training on a non-

randomized dataset, the existing methods can be divided into three categories: 1) Use a randomized
dataset to re-weight the samples in a non-randomized dataset [35, 47], or to train an imputation
model for data augmentation of a non-randomized dataset [20, 48, 49]. In addition, the two can
be integrated as a doubly robust framework [7, 40]. 2) Design a multi-stage training framework
to alternately use a non-randomized dataset and a randomized dataset to learn debiased parame-
ters [7, 41]. 3) Use a randomized dataset and a non-randomized log dataset to train two models
jointly, and constrain them to be close in someway, so that themodel trained on a non-randomized
dataset can benefit from the model trained on a randomized dataset [5, 20]. Although these exist-
ing works have shown promising results in mitigating the system-induced bias, it is still weak in
theoretical insights or an ideal optimization objective function compared with the other more well
studied route, i.e., debiased recommendation without a randomized dataset [22, 33, 34, 42]. This
prevents theoretical analysis of the existing methods and a systematic guidance of this research
route.
To bridge this gap, we extend previous theoretical insights on debiased recommendation with-

out a randomized dataset [33]. Specifically, we first formulate a new ideal optimization objective
function considering a randomized dataset, and propose a new debiased perspective to facilitate
the introduction of some theoretical insights and a more sufficient solution to the system-induced
biases, i.e., the debiasing issue is equivalent to directly optimizing the upper bound of this objective
function. Then, we derive two upper bounds of the unbiased ideal loss function corresponding to
this objective function in practice, i.e., one generalization error bound with the triangle inequality
(in Sec. 4.1.1), and the other with the separability (in Sec. 4.1.2). The difference between the two
depends on the different prior constraints satisfied by the adopted loss function. We show that
most existing methods can be regarded as an insufficient optimization of our upper bound, and
propose a novel debiasing method called debiasing approximate upper bound (DUB). Our method
achieves a more sufficient optimization on the upper bound, which is expected to further improve
the performance. We then conduct extensive experiments on a public dataset and a real product
dataset to verify the effectiveness of the proposed method from five different aspects, including
unbiased testing scenarios, biased general testing scenarios, the ablation experiments, the distri-
bution of the recommendation lists, and some key factors that may affect the performance of the
proposed method.
The structure of this paper is organised as follows: we briefly introduce some related works

in Sec. 2; we present some necessary preliminaries in Sec. 3; we give a detailed description of
the proposed theoretical insights and method in Sec. 4, and discuss the relations to the existing
debiasing methods in Sec. 5; and we analyze and discuss extensive experimental results in Sec. 6,
and present a conclusion and some future directions in Sec. 7. The contributions of this paper are
summarized as follows:

• We propose a new debiased perspective and formulate a new ideal optimization objective
function with a randomized dataset, based on which a novel solution to the system-induced
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biases can be obtained by directly minimizing the upper bound of this ideal optimization
objective function.

• We give some theoretical insights on the upper bound of this ideal optimization objective
function, where the adopted loss functions satisfy the triangle inequality and separability,
respectively.

• We show that most existing solutions can be viewed as an insufficient optimization of the
two proposed upper bounds, and then propose a novel method called debiasing approximate
upper bound with a randomized dataset (DUB) for a more sufficient optimization of the
proposed upper bound.

• We conduct extensive experiments on a public dataset and a real product dataset to show the
effectiveness of the proposed method, including unbiased evaluation, biased general evalua-
tion, the ablation experiments of the model and the distribution of the recommendation lists,
as well as some key factors that may affect the performance of our DUB.

2 RELATED WORK

In this section, we briefly review some related works on two research topics, including debiased
recommendation without a randomized dataset and debiased recommendation with a randomized
dataset.

2.1 Debiased Recommendation without A Randomized Dataset

Due to the lack of such unbiased guidance information similar to a randomized dataset, the exist-
ing works on debiased recommendation without a randomized dataset require making some prior
assumptions about the biases, or checking and guaranteeing the unbiasedness of the model based
on some specific sophisticated techniques. The existing works on this research route can be further
subdivided into three classes, including heuristic-based methods, inverse propensity score-based
methods [35, 48], and theoretical tools-based methods, depending on the different techniques em-
ployed. A heuristic-based method links a user’s feedback with different specific factors to make
some prior assumptions about the generation process of some specific biases. For example, for
selection bias in the feedback data (also known as missing not at random mechanism), some pre-
vious works have assumed that a user’s feedback on an item is related to the user’s rating of the
item, and a user will only provide his or her own feedback when he or she is particularly satisfied
or dissatisfied with the item [26, 46]. In addition to linking with ratings, some subsequent works
further consider the different contributions of the user features and the item features in a user’s
feedback [9, 14, 18]. For conformity bias, some previous works assume that a user will use some
public opinion as a reference in the process of feedback decision-making, such as hiding or adjust-
ing his or her own feedback [19, 24, 25, 51]. Based on such prior assumptions, these works usually
construct a probabilistic graphical model or a polynomial mixture model containing feature infor-
mation for a specific bias problem, and then solve the model parameters based on a generalized
expectation maximization algorithm. An inverse propensity score-based method balances the dis-
tribution of the items in the observed feedback data by the propensity score estimated based on
some variable factors, so that a recommendation model trained on the adjusted non-randomized
dataset can avoid the interference of these variable factors as much as possible. For example, one of
the variable factors most often considered in the existing works is the relative exposure frequency
of each item in the feedback data, and with the adjustment of the propensity score based on the
relative exposure frequency, the exposure distribution of each item in the feedback data is close to
uniform [5, 18]. Moreover, a theoretical tool-based method integrates some theoretical tools from
other research fields with debiased recommendation. They usually derive an unbiased ideal loss
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function that can be directly optimized for a specific bias problem, or in a case where this unbi-
ased ideal loss function is intractable, further derive a generalization error upper bound for it as
a tractable alternative optimization objective. The common theoretical tools in the existing works
include information bottleneck [22, 23, 42], positive-unlabeled learning [34], upper bound mini-
mization [33], disentangled representation learning [52], and causal inference techniques [38, 43].
Our DUB adopts a similar upper boundminimization idea to provide some new theoretical insights,
but is quite different from the previous work [33]. We propose a new ideal optimization objective
function for debiased recommendation with a randomized dataset, whereas the existing works
only consider the ideal optimization objective functions defined on a non-randomized dataset. As
described in Sec. 3, this new ideal optimization objective function is more favorable for addressing
the system-induced biases. It can also be seen as an efficient extension of the existing theoretical
insights based on upper bound minimization when a randomized dataset is available. On the other
hand, we give more theoretical insights where the prior constraints beyond the triangle inequality
are employed to be compatible with more choices of loss functions in practice.

2.2 Debiased Recommendation with A Randomized Dataset

The research on this route additionally introduces a randomized dataset that can act as a proxy
for the unbiased information. Most debiasing methods that fall into this route aim to mine the
unbiased knowledge from a randomized dataset by formulating some more sophisticated and ef-
ficient techniques, and then use them to guide the training process of a recommendation model
on a non-randomized dataset. The existing works on this research route can be further subdi-
vided into three classes, including inverse propensity score and imputation labels-based methods,
multi-stage training-based methods, and joint training-based methods, depending on the different
techniques employed. An inverse propensity score and imputation labels-based method utilizes
an additional randomized dataset to estimate the propensity score for each feedback [35, 47] or to
make the predictions of the imputation labels for unobserved feedback data [20, 21, 48, 49]. These
obtained propensity scores or imputation labels will be integrated into the model’s optimization
objective, i.e., transfer the unbiased knowledge into the model’s training process. Propensity score
recommendation learning is a representative work in this sub-route, and proposes two methods
for the propensity score estimation based on a randomized dataset, including a naive Bayes es-
timator and a regression model estimator [35]. Note that the propensity scores are used in both
debiased recommendation routes, and they differ in whether the propensity score is estimated
from a non-randomized dataset or a randomized dataset. In addition, some works also consider
estimating and using the propensity scores and imputation labels simultaneously to allow the
model to benefit more in a doubly robust framework [7, 40]. A multi-stage training-based method
designs some effective multi-stage training frameworks in which a non-randomized dataset and
a randomized data are used alternately, based on the synergy of which it learns better unbiased
parameters. AutoDebias [7] is one of the most representative methods on this research sub-line.
Its main idea is to introduce a meta-learning strategy into a doubly robust debiasing framework to
achieve better learning of the model. Specifically, in each iteration of training, the parameters of
the main network (i.e., the recommendation model) in the framework are first fixed, and a random-
ized dataset is used to better estimate the propensity scores and imputation labels in the auxiliary
meta-learning network. Then, the parameters of the auxiliary meta-learning network are fixed,
and a non-randomized dataset is used for unbiased model parameter learning in the main net-
work. This multi-stage training mode is repeated until the recommendation model converges to a
better feasible solution. Clearly, AutoDebias can be seen as an effective improvement on the train-
ing process towards a doubly robust debiasing framework, which is different from most existing
debiasing methods that aim to improve the model’s optimization objective. A joint training-based
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Fig. 2. An example of the difference between a non-randomized dataset (2 and a randomized dataset (C .

method trains a recommendation model and an auxiliary model for a non-randomized dataset and
a randomized dataset, respectively, and uses some custom alignment terms to directly constrain
the two models for joint training. CausE [5] is a pioneering work of this sub-route and introduces
an alignment term of model parameters to facilitate information fusion between the two models.
Since the parameter alignment term will increase the difficulty of model training in a practical ap-
plication, instead of aligning the two models on the model parameters, Bridge [20] constrains the
predicted labels of the two models to be as close as possible on an auxiliary set sampled from the
full set of feedback. Different from the existing works, we propose a new perspective on addressing
the system-induced biases from the upper bound of an unbiased ideal loss function, and provide
a theoretical objective function with a randomized dataset that can be directly optimized. This
means that we convert the task of reducing the system-induced biases to an optimization problem
that can be solved directly, which thus provides more guidance on the use of a randomized dataset
and the analysis of debiasing methods.

3 PRELIMINARIES

3.1 Notations

A typical recommender system usually takes a user D8 ∈ * as input, and selects an attractive item
E 9 ∈ + to be displayed to this user through a stochastic recommendation policy c2 deployed by the
system, i.e, E 9 ∼ c2 (·|D8 ). Then, the system will collect the user’s feedback on each displayed item
A28 9 ∼ '2

(
·|D8, E 9

)
∈ {0, 1}, where A28 9 = 1 denotes a positive feedback, A28 9 = 0 denotes a negative

feedback, and'2 is a complete feedbackmatrix under c2 . In this paper, we call this type of data non-
randomized dataset (2 . Based on the collected data (2 , the system will retrain a recommendation
model "2 , and update the recommendation policy. Similarly, under a uniform policy cC , we have
E 9 ∼ cC (·|D8) and A

C
8 9 ∼ 'C

(
·|D8 , E 9

)
. 'C is a complete feedback matrix under cC , the feedback of

users recorded under cC is called randomized dataset (C , and "C is the auxiliary model trained on
(C .

To facilitate understanding of the difference between a non-randomized dataset (2 and a ran-
domized dataset (C , we include an example shown in Figure 2, where the recommender system is
assumed to contain 8 users and 8 items, and a yellow square and a blue square indicate that the
corresponding user-item pair (D8 , E 9 ) is a positive feedback and a negative feedback, respectively.
Due to the restricted collection process, the scale and scope of (C are often much smaller than that
of (2 , where scale refers to the amount of data and scope refers to the coverage of users and items.
We can see from Figure 2 that in a randomized dataset (C , the number of colored squares is smaller,
and there are some users who do not have colored squares. Due to the nature of a uniform policy
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cC , a randomized dataset (C suffers from less bias than a non-randomized dataset (2 , especially the
system-induced biases. From Figure 2, we can see that this relative unbiasedness may be reflected
in that each item has a similar probability of getting feedback from different users (i.e., each item
has a similar number of colored squares), and each user has a preference distribution that is closer
to the ideal state (i.e., due to limited preferences, a user should have far more negative feedback
than positive feedback on all items [30]). In addition, we can also see from Figure 2 that a random-
ized dataset (C may reveal interests for a user that are not perceived in a recommendation policy
c2 , such as user 1 for item 8, and may correct for pseudo-negative feedback in a non-randomized
dataset (2 subject to the system-induced biases, such as user 8 for item 3. Note that in order to
ensure non-overlapping between (2 and (C , and because the feedback data in (C is more unbiased
and credible, we actually remove from (2 those feedback data that appear in (C , such as user 8 for
item 3.
Since a non-randomized dataset (2 and a randomized dataset (C are part of the complete feedback

matrix (i.e., '2 and 'C ) under a recommendation policy c2 and a uniform policy cC , respectively,
we can intuitively think that '2 and 'C inherit this difference in bias between (2 and (C , i.e., '

C

has a better unbiasedness than '2 . In particular, each element in 'C can be thought of as a user’s
feedback result after an item has been displayed in all possible ways. This is a result that can be
gradually achieved through the long-term deployment of a uniform policy cC . Unlike '

C , even if
we can obtain '2 , it can only alleviate some of the biases induced by the system, and still inevitably
suffers from the rest of these biases, especially pseudo-negative feedback.

3.2 Problem Formulation

The optimization objective of most existing recommendation methods is the average loss function
over the observed feedback under a policy c2 ,

Lℓ
>1B4A E43

(
'2 , '̂2

)
=

1

|O|

∑
(8, 9) ∈O

ℓ
(
'28, 9 , '̂

2
8, 9

)
, (1)

where O ∈ {(8, 9 )} denotes a set of observed feedback. '̂2 denotes the predicted label matrix of
"2 , and ℓ (·, ·) is an arbitrary loss function. Eq.(1) can be regarded as the simplest estimator of the
ideal optimization objective under policy c2 ,

Lℓ
c2−8340;

(
'2 , '̂2

)
=

1

|D|

∑
(8, 9) ∈D

ℓ
(
'28, 9 , '̂

2
8, 9

)
, (2)

where D denotes the complete set of feedback. Due to the system-induced biases, Eq.(1) is not an
unbiased estimation of Eq.(2) [26, 37]. Instead, some previous works on debiased recommendation
without a randomized dataset have shown that better performance can be obtained by optimizing
an unbiased estimation or a generalization error bound of Eq.(2) [33, 35].
However, as described in Sec. 3.1, even if we can obtain the complete feedback matrix '2 under

a recommendation policy c2 , '
2 can only alleviate some but not all of the biases induced by the

system. This means that an unbiased estimator for '2 is not necessarily equivalent to an ideal
unbiased evaluation. To further solve the system-induced biases, based on the analysis in Sec 3.1,
we argue that a better option is to use'C instead of'2 . This is because'C consisting of a randomized
data (C obviously contains better relative unbiasedness than '2 . Based on this idea, we formulate
a new ideal optimization objective function,

Lℓ
cC−8340;

(
'C , '̂2

)
=

1

|D|

∑
(8, 9) ∈D

ℓ
(
'C8, 9 , '̂

2
8, 9

)
. (3)
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This means that we can optimize Eq.(3) as a better solution to the system-induced bias problem,
and Eq.(3) can also be seen as an efficient extension of the existing ideal optimization objective
functions when a randomized dataset is available. However, it is very difficult to directly optimize
Eq.(3). On one hand, we only have a small part of the real feedback of 'C , i.e., (C . On the other hand,
although we have a non-randomized dataset (2 , we do not know the corresponding feedback in
'C for these feedback data, i.e., the state of a non-randomized dataset (2 in 'C is unknown. In
particular, we need to answer the following question: If the items in (2 are randomly displayed,
what will the feedback be like? This involves the concept of counterfactual, which is recognized as
a challenging problem [32]. To address this challenge, we will turn to deriving an upper bound of
Eq.(3), and propose a general debiasing framework based on upper boundminimization, where the
upper bound of Eq.(3) will be taken as a new optimization objective function to drive a tractable
solution.

4 THE PROPOSED METHOD

In this section, we first present some theoretical insights into debiased recommendation with a
randomized dataset. Specifically, our goal is to derive an upper bound of the ideal optimization

objective function in Eq.(3) by extending the theory in [33], and use it as an alternative objective
that can be directly optimized. Note that in practice, we need to specify the type of loss function ℓ
in this optimization objective, and we refer to the objective function having a specific form as the
unbiased ideal loss function in the following. Different types of loss functions satisfy different prior
constraints and have different effects on theoretical insights. Therefore, in order to be compatible
with as many types of loss functions as possible, we propose two corresponding upper bounds
when the adopted loss functions ℓ satisfy the triangular inequality (in Sec. 4.1.1) and separability
(in Sec. 4.1.2), respectively. Secondly, we discuss the generalization error bounds to clarify the key
factors. Finally, we give a detailed description of the proposed method, i.e., DUB. Note that unless

otherwise specified, we abbreviate Lℓ
cC−8340;

(
'C , '̂2

)
as L

(
'C , '̂2

)
in the following for brevity. For

ease of reference, the main notations in theoretical analysis are listed in Table 1.
In order to emphasize a confusing notation L(∗ (·, ·), we further describe the difference between

L(2

(
'2 , '̂2

)
,L(2

(
'2 , '̂C

)
andL(2

(
'C , '̂C

)
as an example. By definition, L(2

(
'2 , '̂2

)
denotes a loss

function defined on the set of user-item pair indices contained in the feedback data (2 . Therefore,
the true labels used in this loss function are the corresponding part of '2 on the specific user-item
pair index set �(2 . Obviously, the true labels at this time are the feedback labels of a non-randomized
dataset (2 . Similarly, the predicted labels used in the loss function are the predicted outputs of the

recommendation model"2 for each sample in a non-randomized dataset (2 . For L
(2

(
'2 , '̂C

)
, the

true labels used are also the feedback labels of a non-randomized dataset (2 , but the predicted labels

used are changed to the part of '̂C on the specific user-item pair index set �(2 , i.e., the predicted
outputs of the auxiliary model"C for each sample in a non-randomized dataset (2 . In particular, for

L(2

(
'C , '̂C

)
, the true labels used in the loss function are changed to the part of 'C on the specific

user-item pair index set �(2 . Obviously, as described in Sec. 3.1, we cannot know the true labels of
this part of the feedback data in practice, i.e., it cannot be optimized directly using the supervision
information.

4.1 Theoretical Analysis

4.1.1 A Generalization Error Bound with the Triangle Inequality. Similar to most works using the
upper bound minimization framework [8, 33], we first consider the case when the adopted loss
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Table 1. The main notations and explanations.

Symbol Meaning

(C a randomized dataset
(2 a non-randomized dataset
(D the unobserved data
D the whole set of data, i.e., D = (2 ∪ (C ∪ (D
"2 the recommendation model trained on a non-randomized dataset (2
"C the auxiliary model trained on a randomized dataset (C
'∗ the complete feedback matrix under c∗, c∗ ∈ {c2 , cC }

'̂∗ the predicted label matrix of"∗,"∗ ∈ {"2 ,"C }

�(∗
the set of user-item pair indices contained in the feedback data (∗,
where (∗ ∈ {(2 , (C , (D}

L
(
'C , '̂2

)
the unbiased ideal loss function when a randomized dataset is available

L(∗ (·, ·)

the loss function defined on the set of user-item pair indices contained in
the feedback data (∗ with the size of the whole set as the denominator, i.e.,
L(∗ (·, ·) = 1

|D |

∑
(D,E) ∈�(∗

ℓ (·, ·)

L
(∗
|(∗ |

(·, ·)
the average loss function defined on the set of user-item pair indices contained

in the feedback data (∗, i.e., L
(∗
|(∗ |

(·, ·) = 1
|(∗ |

∑
(D,E) ∈�(∗

ℓ (·, ·)

function ℓ satisfies the triangle inequality, e.g., the 0-1 loss and ;1-norm [13, 16]. In Proposition 4.1,
we first derive a simple upper bound on Eq.(3) based on this prior constraint.

Proposition 4.1. Assume that the loss function ℓ obeys the triangle inequality. Then, for any given

predicted label matrices '̂C and '̂2 , the following inequality holds.

L
(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
+ L(2

(
'C , '2

)
+ L(2

(
'2 , '̂2

)
+ L(D

(
'C , '̂C

)
+ L(D

(
'̂C , '̂2

)
.

Proof.

L
(
'C , '̂2

)
= L(C

(
'C , '̂2

)
+ L(2

(
'C , '̂2

)
+ L(D

(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
+ L(2

(
'C , '2

)
+ L(2

(
'2 , '̂2

)
+ L(D

(
'C , '̂C

)
+ L(D

(
'̂C , '̂2

)
.

where (D denotes the set of unobserved feedback, i.e.,D = (2∪(C∪(D ,L
(∗ (·, ·) = 1

|D |

∑
(D,E) ∈�(∗

ℓ (·, ·),

and (∗ ∈ {(2 , (C , (D}. We first divide Eq.(3) into a summation of three disjoint subsets, and apply the

triangle inequality to L(2

(
'C , '̂2

)
and L(D

(
'C , '̂2

)
. Note that as described in Sec. 3.1, the disjoint

properties of (2 and (C are ensured during the data collection phase. �

The fourth term in Proposition 4.1 is difficult to be solved because we only know the true labels
of a small part of 'C , i.e., (C , but not the true labels of 'C on the specific user-item pair index set �(D .
Therefore, through the Hoeffding’s inequality [12], we convert it into an easy-to-solve alternative,
and further analyze the generalization error bound of the unbiased ideal loss function.

Theorem 4.2 (Generalization Error Bound of Unbiased Ideal Loss I). Assume that two pre-

dicted matrices '̂C and '̂2 are given, and a loss function ℓ obeys the triangle inequality and is bounded
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by a positive constant Δ. Then, for any finite hypothesis space of predictionsH =

{
'̂C1, · · · , '̂

C
|H |

}
, and

for any [ ∈ (0, 1), the ideal loss L
(
'C , '̂2

)
is bounded with probability 1 − [ by:

L
(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
︸         ︷︷         ︸

(0)

+L(2
(
'C , '2

)
︸        ︷︷        ︸

(1)

+L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+ L(D
(
'̂C , '̂2

)
︸         ︷︷         ︸

(3)

+L
(C
|(C |

(
'C , '̂C

)
︸          ︷︷          ︸

(4)

+180B
(
L

(C
|(C |

(
'C , '̂C

))

+
Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
, (4)

where 180B
(
L

(C
|(C |

(
'C , '̂C

))
= L(D

(
'C , '̂C

)
− E

[
L

(C
|(C |

(
'C , '̂C

)]
is the error term caused by using

E

[
L(C

|(C |

(
'C , '̂C

)]
to replace L(D

(
'C , '̂C

)
, and L(C

|(C |

(
'C , '̂C

)
=

1
|(C |

∑
(8, 9) ∈(C

ℓ
(
'C8, 9 , '̂

C
8, 9

)
.

Proof. Our goal is to use the easy-to-solve term (4) in Eq.(4) to replace the fourth difficult-
to-solve term in Proposition 4.1, and obtain the approximate error term corresponding to this
operation.
First, we have the following equation:

L(D
(
'C , '̂C

)
= L(D

(
'C , '̂C

)
− E

[
L(C

|(C |

(
'C , '̂C

)]
+ E

[
L(C

|(C |

(
'C , '̂C

)]
= E

[
L

(C
|(C |

(
'C , '̂C

)]
+ 180B

(
L

(C
|(C |

(
'C , '̂C

))
. (5)

Using the Hoeffding’s inequality and union bounds to make a uniform convergence argument, we
get:

%
(���E [

L(C
|(C |

(
'C , '̂C

)]
− L(C

|(C |

(
'C , '̂C

)��� ≤ n) ≥ 1 − [

⇐ %

(
max
'̂C

ℎ
∈H

���E [
L

(C
|(C |

(
'C , '̂Cℎ

)]
− L

(C
|(C |

(
'C , '̂Cℎ

)��� ≤ n
)
≥ 1 − [

⇔ %
©­­
«

⋃
'̂C

ℎ
∈H

���E [
L(C

|(C |

(
'C , '̂C

ℎ

)]
− L(C

|(C |

(
'C , '̂C

ℎ

)��� ≥ nª®®¬
≤ [

⇐

|H |∑
ℎ=1

%
(���E [

L(C
|(C |

(
'C , '̂C

ℎ

)]
− L(C

|(C |

(
'C , '̂C

ℎ

)��� ≥ n) ≤ [

⇐ |H | × 2 exp

(
−2 |(C |

2 n2

|D| Δ2

)
≤ [.

Solving for n yields the bound

���E [
L(C

|(C |

(
'C , '̂C

)]
− L(C

|(C |

(
'C , '̂C

)��� ≤ Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)

⇒ E
[
L

(C
|(C |

(
'C , '̂C

)]
≤ L

(C
|(C |

(
'C , '̂C

)
+

Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
. (6)
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By combining Eq.(5) and Eq.(6), we get the following inequality, which holds with a probability of
at least 1 − [:

L(D
(
'C , '̂C

)
≤ L(C

|(C |

(
'C , '̂C

)
+

Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
+ 180B

(
L(C

|(C |

(
'C , '̂C

))
. (7)

Then, by combining Proposition 4.1 and Eq.(7), the proof is completed. �

4.1.2 A Generalization Error Bound with the Separability. Note that in recommender systems,
some widely used loss functions do not satisfy the triangular inequality, e.g., the cross-entropy
loss and the mean square error. To further expand the optional range of the loss function, we
propose a new prior constraint on the loss function,

Definition 4.3. Separability: A loss is considered to satisfy the separability if and only if the

following inequality holds,

Lℓ (2, 0) ≤ Lℓ (1, 0) + Lℓ (2 − 1,0) .

Proof. As an example, we prove that the binary cross-entropy loss satisfies the separability, and
other loss functions can be checked in a similar process. Given a form of the binary cross-entropy
loss Lℓ (~, ~̂) = − [~ log ~̂ + (1 − ~) log(1 − ~̂)], where ~ ∈ {0, 1}, we can derive that

Lℓ (2, 0) − Lℓ (1, 0) = − [2 log0 + (1 − 2) log(1 − 0)] + [1 log0

+ (1 − 1) log(1 − 0)]

= − [(2 − 1) log0 − (2 − 1) log(1 − 0)]

≤ − [(2 − 1) log0 − (2 − 1) log(1 − 0)]

− log(1 − 0)

= − [(2 − 1) log0 + (1 − (2 − 1)) log(1 − 0)]

= Lℓ (2 − 1,0).

The inequality conversion in the process can be obtained because of the non-negativity of− log(1−
0), where 0 ≤ 0 ≤ 1. Then, the binary cross-entropy loss satisfies the separability. �

Based on the separability, similar to the proof process of Proposition 4.1 and Theory 4.2, we can
get Proposition 4.4 and Theory 4.5.

Proposition 4.4. Assume that the loss function ℓ obeys the separability. Then, for any given pre-

dicted label matrices '̂C and '̂2 , the following inequality holds.

L
(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
+ L(2

(
'C − '2 , '̂2

)
+ L(2

(
'2 , '̂2

)
+ L(D

(
'C − '̂C , '̂2

)
+ L(D

(
'̂C , '̂2

)
.

Proof.

L
(
'C , '̂2

)
= L(C

(
'C , '̂2

)
+ L(2

(
'C , '̂2

)
+ L(D

(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
+ L(2

(
'C − '2 , '̂2

)
+ L(2

(
'2 , '̂2

)
+ L(D

(
'C − '̂C , '̂2

)
+ L(D

(
'̂C , '̂2

)
.

where we apply the separability to L(2

(
'C , '̂2

)
and L(D

(
'C , '̂2

)
. �
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Theorem 4.5 (Generalization Error Bound of Unbiased Ideal Loss II). Assume that two

predicted matrices '̂C and '̂2 are given, and a loss function ℓ obeys the separability and is bounded by

a positive constant Δ. Then, for any finite hypothesis space of predictions H =

{
'̂21, · · · , '̂

2
|H |

}
, and

for any [ ∈ (0, 1), the ideal loss L
(
'C , '̂2

)
is bounded with probability 1 − [ by:

L
(
'C , '̂2

)
≤ L(C

(
'C , '̂2

)
︸         ︷︷         ︸

(0)

+L(2
(
'C − '2 , '̂2

)
︸                ︷︷                ︸

(1)

+L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+ L(D
(
'̂C , '̂2

)
︸         ︷︷         ︸

(3)

+L
(C
|(C |

(
'C − '̂C , '̂2

)
︸                 ︷︷                 ︸

(4)

+
Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
+ 180B

(
L

(C
|(C |

(
'C − '̂C , '̂2

))
. (8)

Proof. Our goal is to use the easy-to-solve term (4) in Eq.(8) to replace the fourth difficult-
to-solve term in Proposition 4.4, and obtain the approximate error term corresponding to this
operation.
First, we have the following equation:

L(D
(
'C − '̂C , '̂2

)
= L(D

(
'C − '̂C , '̂2

)
− E

[
L

(C
|(C |

(
'C − '̂C , '̂2

)]
+ E

[
L

(C
|(C |

(
'C − '̂C , '̂2

)]
= E

[
L

(C
|(C |

(
'C − '̂C , '̂2

)]
+ 180B

(
L

(C
|(C |

(
'C − '̂C , '̂2

))
. (9)

Using the Hoeffding’s inequality and union bounds to make a uniform convergence argument, we
get:

%
(���E [

L(C
|(C |

(
'C − '̂C , '̂2

)]
− L(C

|(C |

(
'C − '̂C , '̂2

)��� ≤ n) ≥ 1 − [

⇐ %

(
max
'̂2

ℎ
∈H

���E [
L

(C
|(C |

(
'C − '̂C , '̂2ℎ

)]
− L

(C
|(C |

(
'C − '̂C , '̂2ℎ

)��� ≤ n
)
≥ 1 − [

⇔ %
©­­
«

⋃
'̂2

ℎ
∈H

���E [
L(C

|(C |

(
'C − '̂C , '̂2

ℎ

)]
− L(C

|(C |

(
'C − '̂C , '̂2

ℎ

)��� ≥ nª®®¬
≤ [

⇐

|H |∑
ℎ=1

%
(���E [

L(C
|(C |

(
'C − '̂C , '̂2

ℎ

)]
− L(C

|(C |

(
'C − '̂C , '̂2

ℎ

)��� ≥ n) ≤ [

⇐ |H | × 2 exp

(
−2 |(C |

2 n2

|D| Δ2

)
≤ [.

Solving for n yields the bound

���E [
L

(C
|(C |

(
'C − '̂C , '̂2

)]
− L

(C
|(C |

(
'C − '̂C , '̂2

)��� ≤ Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)

⇒ E
[
L(C

|(C |

(
'C − '̂C , '̂2

)]
≤ L(C

|(C |

(
'C − '̂C , '̂2

)
+

Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
. (10)
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By combining Eq.(9) and Eq.(10), we get the following inequality, which holds with a probability
of at least 1 − [:

L(D
(
'C − '̂C , '̂2

)
≤ L

(C
|(C |

(
'C − '̂C , '̂2

)
+

Δ

|(C |

√
|D|

2
log

(
2 |H |

[

)
+ 180B

(
L

(C
|(C |

(
'C − '̂C , '̂2

))
.

(11)

Then, by combining Proposition 4.4 and Eq.(11), the proof is completed. �

4.2 Analysis of the Generalization Error Bounds

As suggested in Theory 4.2 and Theory 4.5, we list the corresponding explanation for each term
in the generalization error bounds. For different terms in the two generalization error bounds, we
use indexes 1 and 2 to denote the upper bound of the triangle inequality and the upper bound of
the separability, respectively. The two generalization error bounds are the same in terms (0), (2),
and (3), but are different in terms (1) and (4).

(a) By definition, L(C

(
'C , '̂2

)
=

1
|D |

∑
(D,E) ∈�(C

ℓ
(
'C , '̂2

)
, i.e., the predicted loss of "2 with the

size of the whole set as the denominator w.r.t. the true feedback labels on (C .
(b.1) By definition, L(2

(
'C , '2

)
=

1
|D |

∑
(D,E) ∈�(2

ℓ
(
'C , '2

)
, i.e., the difference between the true

feedback labels of policy c2 and policy cC on the specific user-item pair index set �(2 .

(b.2) By definition, L(2

(
'C − '2 , '̂2

)
=

1
|D |

∑
(D,E) ∈�(2

ℓ
(
'C − '2 , '̂2

)
, i.e., the predicted loss of "2

w.r.t. the difference between the true feedback labels of policy c2 and policy cC on the specific
user-item pair index set �(2 .

(c) By definition, L(2

(
'2 , '̂2

)
=

1
|D |

∑
(D,E) ∈�(2

ℓ
(
'2 , '̂2

)
, i.e., the supervised loss of"2 with the

size of the whole set as the denominator w.r.t. the true feedback labels on (2 .

(d) By definition, L(D

(
'̂C , '̂2

)
=

1
|D |

∑
(D,E) ∈�(D

ℓ
(
'̂C , '̂2

)
, i.e., the unsupervised loss between"C

and"2 on the specific user-item pair index set �(D .

(e.1) By definition, L(C
|(C |

(
'C , '̂C

)
=

1
|(C |

∑
(D,E) ∈�(C

ℓ
(
'C , '̂C

)
, i.e., the supervised loss of"C w.r.t. the

true feedback labels on (C .

(e.2) By definition, L(C
|(C |

(
'C − '̂C , '̂2

)
=

1
|(C |

∑
(D,E) ∈�(C

ℓ
(
'C − '̂C , '̂2

)
, i.e., the predicted loss of"2

w.r.t. the prediction error of"C on the specific user-item pair index set �(C .

Intuitively, the three common terms (0), (2) and (3) can be viewed as the supervised loss of
"2 on (2 and (C , and the unsupervised alignment loss between "2 and "C on (D , respectively.
Since they all have the corresponding supervision information, all the three terms can be directly
optimized. Under the triangle inequality, term (1.1) can be seen as the difference between both (2
and ( ′2 when (2 ’s corresponding feedback ( ′2 in '

C is known. Therefore, term (1.1) is a constant
that can be used to estimate the degree of difference between the two policies, and is usually small
since the system-induced biases do not have an excessive effect on the user’s true preference. The
term (4.1) is the supervised loss of "C itself on (C , and thus can also be directly optimized. Under
the separability, term (1.2) and term (2) jointly adjust "2 ’s trade-off in the supervised loss on (2 .
Since we do not have the true feedback labels of 'C on the specific user-item pair index set �(2 , we
cannot directly optimize the term (1.2). Fortunately, our experiments show that our method still
has a significant advantage even in its absence, and we leave its further processing as future work.
Similarly, term (4.2) and term (0) jointly adjust "2 ’s trade-off in the supervised loss on (C . Since
the prediction error of "C on the specific user-item pair index set �(C is available, term (4.2) can
also be directly optimized. In short, no matter which generalization error bound is satisfied by the
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adopted loss function, we can improve the unbiased performance of the recommendationmodel by
simultaneously minimizing the terms (0), (2), (3), and (4) in the generalization error bound. Note
that the last two terms in the generalization error bound as shown in Eq.(4) are the error terms that
arise when we use the easy-to-solve term (4) in Eq.(4) to approximate the fourth difficult-to-solve
term in Proposition 4.1. Their values depend on the confidence of this approximation process
and are independent of the model. In particular, we can find that as the size of a randomized
dataset gradually increases, the values of these error terms gradually decrease, which means that
the approximation operation is more reliable. This is expected, that when a randomized dataset
is large, the training of the model can benefit more from more reliable unbiased information. The
last two terms of another generalization error bound shown in Eq.(8) have similar properties.

4.3 Debiasing Approximate Upper Bound with A Randomized Dataset

Based on the analysis for each term of the generalization error bound in Sec. 4.2, we propose a
novel method called debiasing approximate upper bound with a randomized dataset (DUB), which
aims to directly optimize the upper bound of the unbiased ideal loss function. Note that we use
the term “approximate upper bound” to distinguish it from the term “upper bound” since our
DUB considers the terms in Eq.(4) (or Eq.(8)) that can be directly optimized but not all the terms.
Specifically, depending on the types of the loss functions used, we have two types of objective
functions to be optimized. When the used loss function satisfies the triangular inequality, the
optimization goal is shown in Eq.(12), which is to minimize a proxy of the upper bound shown in
Eq.(4).

min
W2 ,WC

L(C
(
'C , '̂2

)
︸         ︷︷         ︸

(0)

+L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+L
(C
|(C |

(
'C , '̂C

)
︸          ︷︷          ︸

(4.1)

+W L(D
(
'̂C , '̂2

)
︸         ︷︷         ︸

(3)

+_2Reg (Wc) + _tReg (Wt) ,

(12)

where W is the weight parameter of L(D

(
'̂C , '̂2

)
, and W2 and WC denote the parameters of "2

and"C , respectively. Note that Reg (·) is the regularization term, and _2 and _C are the parameters
of the regularization. Recall from the analysis in Sec. 4.2 that all the terms that can be directly
optimized in the generalization error bound as shown in Eq.(4) include the terms (0), (2), (3), and
(4.1). This corresponds to each optimization term in Eq.(12). Note that since the unsupervised
loss of "C and "2 on (D may contain too much noise when the size of a randomized dataset (C is
small, we introduce a weight parameter W to control its influence. In addition, for the stability of
model training, we also additionally include two regularization terms for the model parameters.
An intuitive explanation of Eq.(12) is to use a non-randomized dataset (2 and a randomized dataset
(C for the trade-off learning of"2 , and to further provide the unbiased information for"2 through
the imputation labels provided by "C . Therefore, our DUB can be viewed as a combination of
sample-based debiasing distillation and label-based debiasing distillation defined in [20].
When the used loss function satisfies the separability, the optimization problem is shown in

Eq.(13), which is to minimize a proxy of the upper bound shown in Eq.(8).

min
W2

L(C
(
'C , '̂2

)
︸         ︷︷         ︸

(0)

+L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+L
(C
|(C |

(
'C − '̂C , '̂2

)
︸                 ︷︷                 ︸

(4.2)

+W L(D
(
'̂C , '̂2

)
︸         ︷︷         ︸

(3)

+_2Reg (Wc) .
(13)

Similarly, based on the analysis in Sec. 4.2, all the terms that can be directly optimized in the
generalization error bound shown in Eq.(8) include the terms (0), (2), (3), and (4.2). This corre-
sponds to each optimization term in Eq.(13). For the same reason, we also additionally introduce a
weight parameter W and a regularization term for the model parameters. Note that no supervised
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loss related to "C is included in Eq.(13), so we only introduce a regularization term for "2 . An
intuitive explanation of Eq.(13) is similar to Eq.(12), except that Eq.(13) additionally includes an
optimization term (i.e., term (4.2)) to enhance"2 ’s learning of (C . This can make the model more
robust when the relative unbiasedness of a randomized dataset is not high, such as being affected
by some business rules. Regardless of whether Eq.(12) or Eq.(13) is used, the proposed method in-
cludes all the terms that can be directly optimized as analyzed in Sec. 4.2. Obviously, our method
is a more sufficient optimization of the upper bounds, which is expected to further improve the
performance.
However, in real applications, we observe an implied limitation of our method due to the large

difference in the number of non-uniform data (2 and the uniform data (C . Since the scale of (2 is
usually much larger than that of (C , this will lead to the inconsistency of training difficulty between
"2 and "C , i.e., "C will converge faster. This asynchrony will have an undesirable effect on the

prediction alignment term, i.e., L(D

(
'̂C , '̂2

)
. Finally, the overall training is unstable. To alleviate

this problem, we first pre-train "2 and "C . Subsequently, we refine the pre-trained models again
according to the above loss function. The pseudo code of DUB is shown in Algorithm 1.
Note that similar to most existing debiasing methods, our DUB does not depend on a specific

model architecture when deploying or applying it in practice. Specifically, the process of integrat-
ing our DUB into any recommendation model is as follows: 1) after collecting a non-randomized
dataset (2 and a randomized dataset (C , we pre-train a recommendation model"2 and an auxiliary
model"C based on a traditional optimization objective function and an arbitrary recommendation
model, respectively (lines 1 and 2 of Algorithm 1); and 2) in the model refinement stage, we only
need to modify the optimization objective function of these models to that of DUB in the training
stage, i.e., according to the type of loss function used, we choose Eq.(12) or Eq.(13) as the new
objective function (lines 4 to 6 of Algorithm 1).

Algorithm 1 Debiased Upper Bound with A Randomized Dataset (DUB)

Require: A non-randomized dataset (2 and a randomized dataset (C .
1: Train a pre-trained recommendation model"2 based on a backbone model on (2 .
2: Train a pre-trained auxiliary model"C based on a backbone model on (C .
3: repeat

4: An auxiliary set (0 with the same size as the training sample is randomly sampled from the
unobserved feedback (D ;

5: Based on (2 , (C and (0 , use the pre-trained"2 and"C to calculate each loss term in Eq.(12) or
Eq.(13) (according to the conditions satisfied by the adopted loss function);

6: Update the parameters of the recommendation model"2 .
7: until convergence

5 ANALYSIS OF EXISTING METHODS

In this section, we will introduce and analyze some existing methods. In particular, different from
the proposed method, we show that these methods only optimize some terms in the generaliza-
tion error bounds of the unbiased ideal loss function, or optimize some weak proxy of these terms,
i.e., an insufficient optimization of the generalization error bound. This means that these meth-
ods may only converge to a sub-optimal solution. Note that an insufficient optimization for the
generalization error bound is different from a more compact generalization error bound. The for-
mer means that the model only considers some optimization items and ignores the constraints on
some optimization items during the training process. This may lead to the fact that although some
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optimization terms are gradually minimized, the generalization error bound may be unchanged,
and even grow in reverse, due to the gradual increase in the loss of the neglected optimization
terms. The latter means that it is closer to the ideal optimization objective function than the other
generalization error bounds.

5.1 Causal Embeddings

Causal Embeddings (CausE) [35] is a pioneering work in counterfactual recommendation. By in-
troducing causal inference into the representation learning of recommendation, CausE is imple-
mented in a multi-task learning framework, including a treatment task loss (i.e., "2 ’s own super-
vised loss), a control task loss (i.e.,"C ’s own supervised loss), and a regularizer between tasks (i.e.,
the parameter alignment terms of "2 and "C ). In particular, the loss function of CausE can be
written as follows,

min
W2 ,WC

L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+L(C
(
'C , '̂C

)
︸         ︷︷         ︸

(4.1)

+_2Reg (Wc) + _tReg (Wt) + W
CausE
tc ‖WC −W2 ‖�︸           ︷︷           ︸

(d)

,
(14)

where W�0DB�C2 is the weight parameter of the alignment term between"2 and"C .
By comparing Eq.(14) with Theory 4.2, the objective function of CausE can be regarded as a

combination of term (2), term (4.1) and a proxy of term (3) (i.e., ‖WC −W2 ‖� ). Similarly, in
comparison with Theory 4.5, it can be regarded as a combination of term (2) and a proxy of term
(3). This means that CausE is an insufficient optimization of the generalization error bound. In
addition, we find that the parameter alignment term may not be a reasonable proxy for the term
(3): 1) The parameter alignment term restricts the parameters of "2 and "C to have the same
dimension. However, in view of the difference in data scale between (2 and (C , this constraint may
be too strong. 2) The alignment of the parameters will cause difficulty in training in case of high
dimensions and multi-layer networks. The lack of optimization for terms (0) and (4.2) will also
result in CuasE not being able to make "2 fully benefit from (C during training, especially when
(C has a particularly small scale.

5.2 Bridge Strategy

Recently, Liu et al. explain and resolve counterfactual recommendation from the perspective of
knowledge distillation [20]. They propose a general knowledge distillation framework for coun-
terfactual recommendation, and list some practical solutions as examples. The Bridge strategy is
one of these solutions with the best performance, which also best matches our focus. The Bridge
strategy first ensures the supervised loss of"2 and"C . In addition, an auxiliary set (0 is randomly
sampled from D in each iteration, and the predictions of "2 and "C in (0 are constrained to be
close. Note that most of (0 belong to (D because of the data sparsity in recommender systems. In
particular, the loss function of the Bridge strategy can be rewritten as follows,

min
W2 ,WC

L(2
(
'2 , '̂2

)
︸         ︷︷         ︸

(2)

+L(C
(
'C , '̂C

)
︸         ︷︷         ︸

(4.1)

+WL(0
(
'̂C , '̂2

)
︸   ︷︷   ︸

(3)

+_2Reg (Wc) + _tReg (Wt) .
(15)

By comparing Eq.(15) with Theory 4.2, the objective function of Bridge can be regarded as a com-
bination of terms (2), (4.1) and (3). Similarly, in comparison with Theory 4.5, it can be regarded
as a combination of terms (2) and (3). This means that the Bridge strategy is also an insufficient
optimization of the generalization error bound. But it directly optimizes term (3) instead of using
a weak proxy, and thus achieves a better performance in the experiments [20]. Similarly, the lack
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of optimization for terms (0) and (4.2) can also cause Bridge to fail to make"2 fully benefit from
(C in some cases.

5.3 Remarks

Note that our discussion does not include another recent method AutoDebias [7], where meta-
learning is introduced into a doubly robust (DR) framework to learn better unbiased parameters.
On one hand, it can be seen as an improvement in the training process rather than in the loss
function, which is different from our DUB as well as the existing methods mentioned above. On
the other hand, the DR framework is also a representative method in another route without a
randomized dataset [10, 40], i.e., a randomized dataset is not necessary. Therefore, it is difficult to
put it into a specific category. In addition, some theoretical insights on debiased recommendation
are also provided in [7], which is however quite different from our DUB. In particular, they aim
to analyze the theoretical generalization error bound of AutoDebias, while we directly optimize a
proxy of the upper bound derived from the unbiased ideal loss function in Eq.(3).

6 EMPIRICAL EVALUATION

In this section, we conduct experiments with the aim of answering the following five key questions.
Note that the source codes and results are available at https://github.com/dgliu/TOIS_DUB.

• RQ1: How does the proposed method perform against the baselines in an unbiased evaluation?
• RQ2: What is the role of the additional terms in the loss function of the proposed method (i.e.,
the ablation studies of our DUB)?

• RQ3: What impact does the proposed method have on the item distribution of the recommenda-
tion lists?

• RQ4: How do some key factors affect the performance of the proposed method?
• RQ5: How does the proposed method perform against the baselines in a general biased evalua-
tion?

6.1 Experimental Setup

6.1.1 Datasets. To evaluate the performance of the model in an ideal unbiased scenario, we need
to use a dataset containing a randomized subset. We thus use the following two datasets in the
experiments, where the statistics are shown in Table 2.

• Yahoo! R3 [26]: This is the most commonly adopted standard dataset in previous works, includ-
ing a user subset and a random subset. The former can be regarded as being collected under a
stochastic recommendation policy, while the latter corresponds to a uniform policy.We binarize
the ratings via a threshold n = 3, where a rating > n is considered as a positive feedback (i.e.,
'8 9 = 1); and otherwise, it is a negative feedback (i.e., '8 9 = 0). The user subset is used as a train-
ing set in a biased environment ((2 ). For the random subset, we randomly split the user-item
interactions into three subsets, including 10% for training in an unbiased environment ((C ), 10%
for validation to tune the hyper-parameters ((E0), and the rest 80% for test ((C4 ).

• Product: This is a large-scale dataset for CTR prediction, which includes two weeks of users’
click records from a real-world advertising system. The dataset contains two subsets: a subset
((2 ) logged by several traditional ranking policies and a subset ((C ) logged by a uniform policy
cC . To remove the effect of the position bias in our experiments, we filter out the samples at
positions 1 and 2. The dataset covers 217 displayed ads and more than two million users. To get
the training set, validation set and test set from the uniform subset, we randomly split the (C
subset using the same proportions as that for Yahoo! R3.
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Table 2. Statistics of the datasets. P/N denotes the ratio between the numbers of positive and negative

feedback.

Yahoo! R3 Product

#Feedback P/N #Feedback P/N

(2 311,704 67.02% 4,798,776 12.97%
(C 5,400 9.05% 34,755 0.99%
(E0 5,400 9.31% 34,755 0.75%
(C4 43,200 9.76% 278,043 0.88%

6.1.2 Backbones. The debiasing methods are usually model agnostic and are integrated into some
backbone models. To comprehensively evaluate the generalization ability, we use two representa-
tive shallow and deep models as the backbone models in the experiments, i.e., matrix factorization
(MF) [15] and neural collaborative filtering (NCF) [11]. Similar settings can be found in previous
works [5, 33, 35, 42].

6.1.3 Baselines. For the basic model, it can be regarded as three variants according to the differ-
ent data sources used, i.e., training only with a non-randomized dataset (2 , training only with a
randomized dataset (C , and training with both data (i.e., (2∪(C ). We call the latter two variants Unif
and Combine in the experiments. For debiased recommendation models, we choose the representa-
tive methods among the three lines summarized in Sec. 1. For the first line, the inverse propensity
score (IPS) [35] is one of the most classic methods, which thus also serves as one of our baselines.
We adopt the naïve Bayes estimator in [35] to estimate the propensity score. For the second line, a
recent method AutoDebias is introduced, in which the information of a randomized dataset is used
more effectively by combining meta-learning strategies in a doubly robust framework [7]. For the
third line, as described in Sec. 5, CausE [5] and Bridge [20] are two important baselines because
they are the state-of-the-art methods that best match our focus.

6.1.4 EvaluationMetrics. Weemploy four evaluationmetrics that arewidely used in recommender
systems, including precision (P@K), recall (R@K), the area under the ROC curve (AUC) and normal-
ized discounted cumulative gain (nDCG). We choose AUC as our main evaluation metric because
it is one of the most important metrics in industry and previous works on debiasing. We report
the results with  set to 5 and 10. The candidate items to be recommended for a user are from the
set of items that have not been interacted by the user.

6.1.5 Implementation Details. All the methods are implemented on TensorFlow 1.2 [1], except
AutoDebias referring to its official PyTorch [31] version. We use the Adam [14] optimizer and the
cross-entropy loss in the experiments, i.e., we choose Eq.(13) as the optimization objective of the
model. The learning rate is fixed as 14−3. By evaluating the AUC on the validation data (E0 , we
perform grid search to tune the hyper-parameters for the candidate methods. To avoid over-fitting,
we adopt an early stopping mechanism with the patience set to 5 times. The range of the values
of the hyper-parameters are shown in Table 3.

6.2 RQ1: Comparison Results of Unbiased Evaluation

We report the comparison results of the unbiased evaluation in Table 4 and Table 5. For the Ya-
hoo! R3 dataset, as shown in Table 4, the proposed method outperforms all baselines in most cases
except on P@5 and R@5whenNCF is used as the backbonemodel. Specifically, we have the follow-
ing observations: 1) The baselines based on the use of a randomized dataset usually have a better
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Table 3. Hyper-parameters tuned in the experiments.

Name Range Functionality

A0=: {50, 100, 200} Embedded dimension

_
{
14−5, 14−4 · · · 14−1

}
Regularization

W
{
14−5, 14−4 · · · 14−1

}
Loss weighting

performance than the basic model, but may suffer from a performance bottleneck in some cases.
2) The performance of the baseline AutoDebias depends on the backbone model used, which may
be because the designed meta-learning strategy is mainly for low-rank models. 3) On the contrary,
our DUB is relatively stable for different backbone models. For the Product dataset, as shown in
Table 5, the proposed method consistently outperforms all the baselines on AUC, and maintains
advantages on other metrics in most cases. We can get similar observations as that on Yahoo! R3.
Note that since the baseline AutoDebias has a prediction step for all the unobserved samples, it
requires far more memory than that of a single GPU (e.g., 32G) and a specific parallelization. This
weakens its scalability, and we do not report its results. In general, our DUB is relatively stable for
datasets of different sizes.

Table 4. Comparison results of unbiased testing on Yahoo! R3, where the best results are marked in bold.

AUC is the main evaluation metric. Note that ∗ indicates a significance level ? ≤ 0.05 based on two sample

t-test between the best and second best results.

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.7282 0.0434 0.0059 0.0051 0.0207 0.0332
Unif-MF 0.5625 0.0291 0.0049 0.0041 0.0135 0.0245

Combine-MF 0.7357 0.0489 0.0073 0.0061 0.0243 0.0401

IPS-MF 0.7300 0.0407 0.0052 0.0054 0.0171 0.0344
AutoDebias-MF 0.7502 0.0691 0.0119 0.0104 0.0403 0.0683

CausE-MF 0.7285 0.0445 0.0059 0.0058 0.0192 0.0372
Bridge-MF 0.7376 0.0557 0.0099 0.0076 0.0308 0.0478

DUB-MF 0.7578∗ 0.0727 0.0128 0.0112 0.0438 0.0770

NCF 0.7245 0.0279 0.0029 0.0031 0.0089 0.0199
Unif-NCF 0.6050 0.0275 0.0043 0.0037 0.0113 0.0204

Combine-NCF 0.7268 0.0327 0.0032 0.0033 0.0092 0.0189

IPS-NCF 0.7273 0.0304 0.0036 0.0031 0.0111 0.0210
AutoDebias-NCF 0.7140 0.0385 0.0052 0.0047 0.0188 0.0333

CausE-NCF 0.7284 0.0287 0.0029 0.0033 0.0089 0.0210
Bridge-NCF 0.7367 0.0439 0.0056 0.0056 0.0192 0.0371

DUB-NCF 0.7421∗ 0.0491 0.0051 0.0058 0.0164 0.0390

6.3 RQ2: Results of Ablation Studies

As described in Sec. 4, the proposed method further improves the performance by sufficiently
optimizing the upper bound of the unbiased ideal loss function. A key question is what the role of
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Table 5. Comparison results of unbiased testing on Product, where the best results are marked in bold. AUC

is the main evaluation metric. Note that ∗ indicates a significance level ? ≤ 0.05 based on two sample t-test

between the best and second best results.

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.7115 0.0434 0.0105 0.0103 0.0518 0.1017
Unif-MF 0.6372 0.0604 0.0148 0.0135 0.0737 0.1332

Combine-MF 0.7145 0.0526 0.0121 0.0113 0.0601 0.1111

IPS-MF 0.7274 0.0484 0.0115 0.0114 0.0568 0.1114
AutoDebias-MF - - - - - -

CausE-MF 0.7158 0.0470 0.0107 0.0114 0.0529 0.1119
Bridge-MF 0.7069 0.0438 0.0107 0.0104 0.0529 0.1022

DUB-MF 0.7374∗ 0.0729 0.0158 0.0155 0.0787 0.1537

NCF 0.7293 0.0616 0.0152 0.0131 0.0753 0.1299
Unif-NCF 0.6240 0.0557 0.0131 0.0132 0.0651 0.1307

Combine-NCF 0.7301 0.0674 0.0155 0.0142 0.0773 0.1410

IPS-NCF 0.7328 0.0616 0.0155 0.0126 0.0773 0.1249
AutoDebias-NCF - - - - - -

CausE-NCF 0.7351 0.0623 0.0158 0.0125 0.0789 0.1235
Bridge-NCF 0.7149 0.0628 0.0145 0.0126 0.0723 0.1255

DUB-NCF 0.7382∗ 0.0686 0.0165 0.0149 0.0851 0.1380

• Note: the placeholder ‘-’ means that the result is not reported because the
memory space required by this method exceeds that of the GPU used.

the additional optimization terms is in our method. To answer this question, we conduct ablation
studies of the proposed method by removing certain terms. The results are shown in Table 6 and
Table 7. Note that after removing terms (0) and (4), our DUB is equivalent to the Bridge strategy,
so we do not remove more terms in the experiments. We can see that removing any term will hurt
the performance in most cases, and removing more terms results in worse performance. There are
some unexpected cases in Table 6, i.e., when K takes a small value, the full version with NCF as the
backbone model has a slight disadvantage on a few metrics. This may be due to the noise caused
by only considering AUC as the evaluation metric in parameter tuning. In general, all terms in the
proposed method can synergistically produce the greatest gain.

6.4 RQ3: Item Distribution of the Recommendation Lists

An interesting question is about the difference between the distributions of the recommendation
lists of the proposed method and the baseline methods. To answer this question, we show in Fig-
ure 3 the item distribution of the recommendation lists generated by different methods, where
popular items are the 20%most frequent items in the training set, and the rest are unpopular items.
Figure 3(a) is the distribution of a randomized dataset, from which we can find that although the
probability of popular and unpopular items being recommended is even (e.g., popular items ac-
count for 20% of the total items, and the probability of being recommended also accounts for 20%),
the utility (i.e., the probability of hit divided by the probability of being recommended) brought
by popular items is higher. This means that a practical ideal recommendation strategy may not
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Table 6. Results of the ablation studies on Yahoo! R3, where the best results are marked in bold. AUC is the

main evaluation metric.

Method AUC nDCG P@5 P@10 R@5 R@10

DUB-MF 0.7578 0.0727 0.0128 0.0112 0.0438 0.0770

w/o term (4.2) 0.7500 0.0702 0.0113 0.0108 0.0377 0.0744

w/o terms (0) & (4.2) 0.7376 0.0557 0.0099 0.0076 0.0308 0.0478

DUB-NCF 0.7421 0.0491 0.0051 0.0058 0.0164 0.0390

w/o term (4.2) 0.7386 0.0438 0.0050 0.0051 0.0165 0.0320

w/o terms (0) & (4.2) 0.7367 0.0439 0.0056 0.0056 0.0192 0.0371

Table 7. Results of the ablation studies on Product, where the best results are marked in bold. AUC is the

main evaluation metric.

Method AUC nDCG P@5 P@10 R@5 R@10

DUB-MF 0.7374 0.0729 0.0158 0.0155 0.0787 0.1537

w/o term (4.2) 0.7091 0.0453 0.0115 0.0105 0.0571 0.1039

w/o terms (0) & (4.2) 0.7069 0.0438 0.0107 0.0104 0.0529 0.1022

DUB-NCF 0.7382 0.0686 0.0165 0.0149 0.0851 0.1380

w/o term (4.2) 0.7284 0.0648 0.0162 0.0132 0.0806 0.1313

w/o terms (0) & (4.2) 0.7149 0.0628 0.0145 0.0126 0.0723 0.1255

excessively pursue a balance between popular and unpopular items. Note that for the brevity of
the legend in the figure, we use the abbreviation Auto to refer to the baseline AutoDebias.
Combining Figure 3(b) and Figure 3(c), we can observe: 1) MF, IPS and CausE tend to capture

the recommendation patterns of popular and unpopular items similar to Figure 3(a), but unrea-
sonably displaying too many unpopular items may not bring much benefit, and will even cause
user distrust. 2) AutoDebias can capture the utility information of popular items, but it tends to
over-expose the popular items, which may also hurt the user experience. Note that our results
differ somewhat from those in [7]. As described in Sec. 6.1.1, during data processing, we set the
labels of positive and negative feedback to 1 and 0, respectively, to be compatible with the predic-
tion layers with a sigmoid activation. However, the labels for positive and negative feedback in [7]
are set to 1 and -1, respectively. 3) Our DUB keeps recommending popular items with high utility,
and carefully displays the unpopular items with a higher hit rate and achieves the highest utility
among unpopular items, i.e., the DUB can more effectively weigh the use of information between
a randomized dataset and a non-randomized dataset.

6.5 RQ4: Analysis Results of Key Factors

We further analyze some key factors that may affect the performance of the methods. The first
key factor is the difference in the ratio of positive and negative samples between (2 and (C . When
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Fig. 3. Item distribution and utility of a randomized dataset and different methods with Yahoo! R3.

(2 and (C are too different, the difficulty of training the model will greatly increase. However,
when (2 and (C are too close, the assimilation will seriously damage the guiding role of (C . In the
experiments, we fix the size of a subset sampled from (2 as 135,000 to include as many positive
samples as possible. Thenwe control this subset to contain a certain proportion of positive samples,
i.e., we randomly sample 135000∗A0C8> positive samples and 135000∗ (1−A0C8>) negative samples
from (2 . We set this ratio to 10%, 30%, 50% and 70%, respectively. Note that when 10% is taken, the
distribution of this subset is closest to that of (C . From Figure 4(a) and Figure 4(b), we can find that
our DUB consistently outperforms all the baselines in all cases.
The second key factor that may affect the performance of the model is the size of (C . As described

in Sec 3.1, the scale and scope of (C is much smaller than that of (2 . When the number of (C is
smaller than a certain value, it can hardly guide (2 . By observing the performance trend of the
model under different sizes of (C , we can have a preliminary understanding of this lower bound.
In the experiments, we keep the same data settings as the previous experiments, except that (C is
randomly sampled according to a certain proportion to obtain a subset. We set this ratio to 10%,
30%, 50% and 70%, respectively. From Figure 4(c) and Figure 4(d), we can find that our DUB is also
stable and accurate in all cases.
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Fig. 4. The analysis results of the key factors on Yahoo! R3, where (a) and (b) are considering that (2 has

different positive sample ratios, and (c) and (d) are considering that (C has different data sizes.

6.6 RQ5: Comparison Results of General Evaluation

Although using an unbiased data for verification and evaluation is a promising choice, it also has
some limitations because it may not cover all the users and items. Moreover, we are also interested
in the performance of the proposed method and baselines in general evaluation with biased but
high coverage, i.e., both validation and testing use the non-uniform data. In the experiments, we
randomly divide (2 according to the proportion of 5 : 2 : 3 to obtain a training set, a validation
set and a test set. (C is still used as the unbiased training set. We use the same settings in Sec 6.1.5
to search the best values, except that the reference metric becomes nDCG, because nDCG is one
of the most adopted metrics in general evaluation. We can see from Figure 5(a) that our DUB and
AutoDebias have a significant improvement over the other baselines. This is reasonable because
their ability to capture the utility of popular items (as shown in Figure 3) can play a greater role
in general evaluation. We show in Figure 5(b) the cumulative hit probability of different methods
at the user level (i.e., the sum of the hit probabilities of the first G users), and find that introducing
(C in general evaluation is beneficial to better learn the corresponding preferences of the users
involved in (C (i.e., the first 5400 users).
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Fig. 5. (a) Comparison results in general evaluation. (b) The cumulative hit probability of different methods

at the user level. Note that we use Yahoo! R3 in this study.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we propose a new debiased perspective based on directly optimizing the upper bound
of an ideal objective function to facilitate the introduction of some theoretical insights and a more
sufficient solution to the system-induced biases. We first formulate a new unbiased ideal loss func-
tion to more fully reduce the data bias when a small randomized dataset is available, and then give
some theoretical insights about its upper bound. Moreover, we point out that most existing meth-
ods can be regarded as an insufficient optimization of the upper bound. As a response, we propose
a novel method, i.e., debiasing approximate upper bound with a randomized dataset (DUB), for a
more sufficient optimization of the upper bound. Finally, we conduct extensive empirical studies
to show the effectiveness of the proposed method and explore the impact of some key factors that
may affect the performance.
For future works, we will work on obtaining different upper bounds of the unbiased ideal loss

function in different ways and comparatively evaluate them.We also plan to gain more theoretical
insights on other ways of using a randomized dataset in debiased recommendation. In addition,
we are also interested in exploring new techniques for debiased recommendation with only one
single non-randomized dataset or multiple non-randomized datasets.
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