
Analysis of modular CMA-ES on strict box-constrained problems
in the SBOX-COST benchmarking suite

Diederick Vermetten
LIACS, Leiden University
Leiden, The Netherlands

d.l.vermetten@liacs.leidenuniv.nl

Manuel López-Ibáñez
University of Manchester

Manchester, UK
manuel.lopez-

ibanez@manchester.ac.uk

Olaf Mersmann
TH Köln

Köln, Germany
olaf.mersmann@th-koeln.de

Richard Allmendinger
University of Manchester

Manchester, UK
richard.allmendinger@manchester.ac.uk

Anna V. Kononova
LIACS, Leiden University
Leiden, The Netherlands

a.kononova@liacs.leidenuniv.nl

ABSTRACT
Box-constraints limit the domain of decision variables and are com-
mon in real-world optimization problems, for example, due to phys-
ical, natural or spatial limitations. Consequently, solutions violating
a box-constraint may not be evaluable. This assumption is often
ignored in the literature, e.g., existing benchmark suites, such as
COCO/BBOB, allow the optimizer to evaluate infeasible solutions.
This paper presents an initial study on the strict-box-constrained
benchmarking suite (SBOX-COST), which is a variant of the well-
known BBOB benchmark suite that enforces box-constraints by
returning an invalid evaluation value for infeasible solutions. Specif-
ically, we want to understand the performance difference between
BBOB and SBOX-COST as a function of two initialization meth-
ods and six constraint-handling strategies all tested with modular
CMA-ES. We find that, contrary to what may be expected, handling
box-constraints by saturation is not always better than not han-
dling them at all. However, across all BBOB functions, saturation
is better than not handling, and the difference increases with the
number of dimensions. Strictly enforcing box-constraints also has
a clear negative effect on the performance of classical CMA-ES
(with uniform random initialization and no constraint handling),
especially as problem dimensionality increases.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics; Algorithm design techniques; • Computing method-
ologies → Continuous space search.

KEYWORDS
SBOX-COST benchmarking suite, strict box constraints, bound
constraint handling method, BBOB, CMA-ES

1 INTRODUCTION
Box-constraints impose limits on the domain of decision variables
and are perhaps the most typical type of constraint in black-box
continuous optimization. In real-world problems, the range of deci-
sion variables is often limited by physical, design, resource or policy
bounds that are known to the decision maker a priori. Solutions out-
side those bounds, i.e., violating the box-constraints, are not only
unacceptable, but it is impossible to evaluate the objective function

at these points. Unfortunately, many optimization algorithms ignore
this assumption and evaluate solutions violating box-constraints.
Moreover, benchmarking suites used for comparing algorithms,
such as COCO/BBOB [6], return the actual objective value for such
solutions, thus helping algorithms that violate box-constraints in-
form their search. Consequently, the algorithm insights gained on
such benchmarking suites may not hold when faced with a problem
where box-constraints are enforced.

Here, we consider a benchmark SBOX-COST that enforces box-
constraints by returning the same invalid value (∞) for any infeasi-
ble solution, thus the algorithm cannot use infeasible solutions to
inform the search. In practice, constraints that return an invalid or
even no value when violated can be found, for example, in expen-
sive optimisation where ephemeral resource constraints (ERCs) [1]
define availabilities of resources needed to carry out real-world
experiments (e.g. of physical, biological or chemical nature, or even
computational experiments requiring licenses, software or other
computational resources) hence a (potentially feasible) solution vi-
olating an ERC cannot be evaluated resulting no objective function
value; another example are safety constraints, which are defined
in the objective space and set (known or unknown) lower bounds
(assuming minimisation) on the objective function values [8] en-
capsulating scenarios where the evaluation of a very poor solution
(policy or strategy) causes an irrecoverable loss (e.g., breakage of
a machine or equipment, or life threat) and hence potentially no
objective function value.

We evaluate the effect that strict-box-constraints have on the
performance of some variants of the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES). CMA-ES [7] is a very popular heuris-
tic optimisation algorithm for continuous optimisation problems.
CMA-ES is considered state-of-the-art in evolutionary computation
and has been adopted as one of the standard tools for continuous
optimisation in many research labs. There are many variants of
CMA-ES developed through the years and different implementa-
tions of sub-components such as the sampling strategy and the
boundary correction method [14].

In recent works, the different modules and configurations of
CMA-ES are explored and analysed based on their performance [3].
In that research, a modular CMA-ES framework is presented, rep-
resenting a plethora of different CMA-ES configurations. In this
paper, the modular CMA-ES framework is used to analyze the effect

ar
X

iv
:2

30
5.

15
10

2v
1 

 [
cs

.N
E

] 
 2

4 
M

ay
 2

02
3

https://orcid.org/0000-0003-3040-7162
https://orcid.org/0000-0001-9974-1295
https://orcid.org/0000-0002-7720-4939
https://orcid.org/0000-0003-1236-3143
https://orcid.org/0000-0002-4138-7024


Vermetten, et al.

of enforcing box-constraints in standard BBOB problems, as done
in the newly proposed SBOX-COST benchmark.

The next section describes the methodology followed in this
study. Results are discussed in Section 3, and conclusions are drawn
in Section 4.

2 METHODOLOGY
This section outlines the methodology adopted in this study in-
cluding the SBOX-COST benchmarking suite and the CMA-ES
algorithm considered in the experimental study.

2.1 SBOX-COST benchmarking suite
The Strict Box-Constraint Optimization Studies benchmark1 (SBOX-
COST) is benchmark suite for optimisation heuristics that aims to
more closely represent real-world problems with box-constraints.
SBOX-COST is a version of the well-known continuous BBOB
benchmarking suite [6] with the same functions subjected to two
modifications:

(1) enforced strict box-constraints, i.e., points evaluated outside
of the functions’ domain [−5, 5]𝑑 are considered infeasible
and evaluated to∞, providing no guidance to the optimi-
sation process beyond the domain boundaries2 (where 𝑑 is
search space dimensionality);

(2) altered distribution of optima locations across instances to
ensure a more realistic setting: in BBOB most functions
have optima located uniformly in [−4, 4]𝑑 , leaving an unre-
alistically wide outside perimeter of the functions’ domain
free of optima on all possible instances. Therefore in SBOX-
COST:
• optima of all functions except those mentioned be-

low are ensured to have uniform distribution across
instances within the full domain [−5, 5]𝑑 because as
𝑑 grows, the fraction of the search space located in
[−5, 5]𝑑 [−4, 4]𝑑 (i.e. the outer perimeter) grows. For
example, for 𝑑 = 10, almost 90% of the search space is
in the perimeter. Therefore the original BBOB setup
favours algorithms that focus on the center of the
search space;

• optima of F5 are unchanged from BBOB and are found
in one of the corners of [−5, 5]𝑑 ;

• distributions of optima of F4, F8, F9, F19, F20, F24 are
also left unchanged compared to BBOB – however, it
is worth mentioning that such distributions have been
found [12] not to follow uniform distribution within
[−4, 4]𝑑 on BBOB and, therefore, on SBOX-COST as
well.

2.2 Modular CMA-ES
To investigate several commonly and less commonly used con-
figurations and variants of the CMA-ES algorithm [7], we use the
Modular CMA-ES framework [3, 13]. The framework is open-source
and available3 as part of the IOHprofiler [5] environment.

1https://github.com/sbox-cost
2We opt to use∞ instead of NaN to still enable comparison with other solutions.
3https://github.com/IOHprofiler/ModularCMAES

Themodular CMA-ES framework is currentlymade up of 11mod-
ules, each having a number of implemented options (in brackets):
Active update (2), Elitism (2), Orthogonal Sampling (2), Sequential
Selection (2), Threshold Convergence (2), Step-Size Adaptation (7),
Mirrored Sampling (3), Quasi-Gaussian Sampling (3), Recombina-
tion Weights (2), Restart Strategy (3) and Boundary Correction (6).
A detailed description of all available CMA-ES modules and their
settings can be found in [3].

In this paper, to investigate the effect of the introduction of strict
box-constraints on the BBOB problems in the SBOX-COST bench-
marking suite, we investigate the behaviour of several variants
within modular CMA-ES varying:

• initialization methods for the center of mass:
◦ center: origin of the space
◦ random: uniformly at random in the domain

• strategies of dealing with infeasible solutions4 (SDIS) [2, 9,
15]:
◦ None: infeasible solutions are allowed within the pop-

ulation
◦ saturate [2]: infeasible coordinate is placed to the

closest corresponding bound
◦ COTN: replace infeasible solution coordinates with a

value resampled from the truncated normal distribu-
tion centered on the closest bound

◦ mirror: replace infeasible solution with inward reflec-
tion off the closest domain bound

◦ toroidal: replace infeasible solution with inward re-
flection off the furthers domain bound

◦ unif_resample: replace infeasible solution coordinates
with a uniformly distributed valuewithin domain bounds.

All other modules and parameter settings in modular CMA-ES
are set to their defaults specified in [3].

The experimental study will investigate three aspects: (i) per-
formance difference between BBOB and SBOX-COST when initial-
ization methods are combined with two basic constraint-handling
strategies, None or saturate (Section 3.1), (ii) impact on the level
of infeasibility from initial sampling (Section 3.2), and (iii) impact
of the other constraint-handling strategies on the stepsize and the
number of infeasible solutions (Section 3.3).

2.3 Experimental setup
We evaluate algorithms on the 24 functions of both BBOB and
SBOX-COST benchmark suites. We use an identical setup for both
suites: 15 instances per function, 1 run per instance, dimensionality
of 𝑑 ∈ {5, 20}, and fitness evaluation budget of 10 000 × 𝑑 .

Experiments reported in this study are carried out in the IOHex-
perimenter environment [4], which implements both benchmark-
ing suites. The data from the described experiments is visualized
using IOHanalyzer [16].

3 RESULTS
This section presents and analyses the results of the effect of SBOX-
COST (in relation to BBOB) on different initialization and constraint-
handling strategies augmented on modular CMA-ES.

4also referred to as a boundary constrained handling method (BCHM)

https://github.com/sbox-cost
https://github.com/IOHprofiler/ModularCMAES


Analysis of modular CMA-ES on strict box constrained problems

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
fid

10−7

10−5

10−3

10−1

101

103

105

107

f(x
)

version
SBOX
BBOB

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
fid

10−7

10−5

10−3

10−1

101

103

105

107

f(x
)

version
SBOX
BBOB

Figure 1: Best-so-far fitness values attained by CMA-ES with uniform initialization and strategy None within 500 (left) and
10000 (right) fitness evaluations on all functions of both suites in 20D.

1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4 2 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

None_BBOB None_center_BBOB None_center_SBOX None_SBOX saturate_BBOB

saturate_center_BBOB saturate_center_SBOX saturate_SBOX

Function Evaluations

Pr
op

or
tio

n 
of

 (r
un

, t
ar

ge
t, 

...
) p

ai
rs

5 1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4 2 5 1e+5 2

0

0.1

0.2

0.3

0.4

0.5

None_BBOB None_center_BBOB None_center_SBOX None_SBOX saturate_BBOB

saturate_center_BBOB saturate_center_SBOX saturate_SBOX

Function Evaluations

Pr
op

or
tio

n 
of

 (r
un

, t
ar

ge
t, 

...
) p

ai
rs

5 1 2 5 10 2 5 100 2 5 1e+3 2 5 1e+4 2 5 1e+5 2

0

0.1

0.2

0.3

0.4

0.5

None_BBOB None_center_BBOB None_center_SBOX None_SBOX saturate_BBOB

saturate_center_BBOB saturate_center_SBOX saturate_SBOX

Function Evaluations

Pr
op

or
tio

n 
of

 (r
un

, t
ar

ge
t, 

...
) p

ai
rs

Figure 2: Empirical Cumulative Distribution Function for
all variants within modular CMA-ES considered in the 1st

experiment, aggregated over the 24 functions of BBOB and
SBOX-COST in 𝑑 = 5 (top) and 𝑑 = 20 (bottom), where the
proportion of (run, target) pairs shown on the vertical axis is
computed based on targets of 51 log-spaces values between
102 and 10−8 (’bbob’ default in IOHanalyzer). The horizontal
axis shows the number of fitness evaluations. The names are
a concatenation of the SDIS, initialization mechanism and
benchmark suite.

3.1 Performance differences between BBOB and
SBOX-COST

We aggregate the performance of 4 selected CMA-ES variants (vary-
ing initialization between uniform and center, and varying SDIS

between saturation and no SDIS) across all 5-dimensional (𝑑 = 5)
problems per suite (BBOB or SBOX-COST) by means of the Empiri-
cal Cumulative Distribution function (ECDF). The ECDF computes
the fraction of objective value targets that are hit across all runs
of each CMA-ES variant up to a given number of function evalua-
tions. We use the BBOB default of 51 logarithmically-spaced targets
{10−8, . . . , 102}.

The ECDF for 5D problems is shown in the top plot of Figure 2.
We observe that, while there is almost no difference between the
CMA-ES variants on the BBOB suite, the CMA-ES variants without
boundary correction perform slightly worse on the SBOX-COST
suite than the other variants. The bottom plot of Figure 2 shows
the ECDF curves on the 20-dimensional problems (20D, 𝑑 = 20).
Here, the poor performance of the CMA-ES with random initializa-
tion without boundary correction on SBOX-COST is much more
obvious. The explanation is that, in higher dimensions, a Gaussian
distribution around a random point will be much more likely to gen-
erate points outside the domain, leading to many wasted function
evaluations due to the lack of boundary correction, and potentially
a disrupted search process. When only a small set of points in
the population are infeasible, the rank-based update mechanism
of CMA-ES will be relatively unimpacted, but when this fraction
grows larger the inability to distinguish between the poor solutions
can have a real impact on the algorithm behaviour. While initial-
izing CMA-ES in the center of the domain alleviates this problem
somewhat, it still performs worse than the variant using the satu-
rate strategy. Crucially, this difference cannot be observed in the
BBOB suite because box-constraints are not enforced. This high-
lights the need for dealing with infeasible solutions. Unsurprisingly,
similar conclusions have been made regarding other algorithms,
such as variants of Differential Evolution [2, 10].

To get a more detailed view of the performance on individual
functions, we plot the convergence trajectories (mean function
value over time) in Figure 3. To ease readability, we only show the
CMA-ES variants that are initialized in the center of the domain.
We can see in Figure 3 that, for several functions, the performance
differences between the algorithms run on SBOX-COST and on
BBOB are rather small. In particular, this is the case for functions
F4, F19, F20 and F24, where the instance generation procedure was
not modified from the original BBOB suite. However, the differences



Vermetten, et al.

1e−12

1e−9

1e−6

1e−3

1

1e+3

0.1

1

10

100

0.01

1

100

1e+4

1e−10

1e−5

1

1e+5

0.01

0.1

1

10

100

1 100 1e+4
4
5
6
7
89

10

2

3
4
5
6
7
89

100

1e−8

1e−4

1

1e+4

1e+8

1e−8

1e−4

1

1e+4

1e−10

1e−5

1

1e+5

1e−6

1

1e+6

1e+12

2

5
1
2

5
10

2

5
100

2

1 100 1e+4

7
8
9

10

2

3

4
5
6
7
8
9

100

5

100

2

5

1e+3

2

5
10

2

5
100

2

5
1e+3

2

1e−10

1e−5

1

1e+5

5

100

2

5

1e+3

2

1

2

5

10

2

1 100 1e+4
0.1

2

5

1

2

5

10

2

5

100

2

5

1e+3

2

5

0.01

1

100

1e+4

1e+6

1e−10

1e−5

1

1e+5

1e+10

5
1
2

5
10

2

5
100

1

100

1e+4

1 100 1e+4

5

100
2

5

1e+3
2

5

1e+4

None_center_BBOB None_center_SBOX saturate_center_BBOB saturate_center_SBOX

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

1e−12

1e−9

1e−6

1e−3

1

1e+3

0.1

1

10

100

0.01

1

100

1e+4

1e−10

1e−5

1

1e+5

0.01

0.1

1

10

100

1 100 1e+4
4
5
6
7
89

10

2

3
4
5
6
7
89

100

1e−8

1e−4

1

1e+4

1e+8

1e−8

1e−4

1

1e+4

1e−10

1e−5

1

1e+5

1e−6

1

1e+6

1e+12

2

5
1
2

5
10

2

5
100

2

1 100 1e+4

7
8
9

10

2

3

4
5
6
7
8
9

100

5

100

2

5

1e+3

2

5
10

2

5
100

2

5
1e+3

2

1e−10

1e−5

1

1e+5

5

100

2

5

1e+3

2

1

2

5

10

2

1 100 1e+4
0.1

2

5

1

2

5

10

2

5

100

2

5

1e+3

2

5

0.01

1

100

1e+4

1e+6

1e−10

1e−5

1

1e+5

1e+10

5
1
2

5
10

2

5
100

1

100

1e+4

1 100 1e+4

5

100
2

5

1e+3
2

5

1e+4

None_center_BBOB None_center_SBOX saturate_center_BBOB saturate_center_SBOX

Function Evaluations Function Evaluations Function Evaluations Function Evaluations

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

B
es

t-s
o-

fa
r f

(x
)

F1F1F1 F2F2F2 F3F3F3 F4F4F4

F5F5F5 F6F6F6 F7F7F7 F8F8F8

F9F9F9 F10F10F10 F11F11F11 F12F12F12

F13F13F13 F14F14F14 F15F15F15 F16F16F16

F17F17F17 F18F18F18 F19F19F19 F20F20F20

F21F21F21 F22F22F22 F23F23F23 F24F24F24

Figure 3: Mean function value over time (fitness evaluations) for the CMA-ESmethods with center initialization, for 24 functions
in BBOB and SBOX-COST in 20D. The names are a concatenation of the SDIS, initialization mechanism and benchmark suite.



Analysis of modular CMA-ES on strict box constrained problems

on F5 clearly show the impact of the strict box-constraint, with the
CMA-ES on BBOB easily solving the problem (achieved by moving
outside the domain).

When comparing the performance of CMA-ES with uniform
initialization and no boundary handling on the BBOB and SBOX
suites (Figure 1), we observe that the SBOX suite is more difficult
in general and leads to more variance in performance, and this
difference increases with higher number of evaluations.

Furthermore, a closer inspection of more detailed summary sta-
tistics of runs on BBOB and SBOX-COST (omitted due to space
limitations) confirms the observations from Figure 3: for many
problems, the CMA-ES can overcome the addition of strict box-
constraints and changed function initialization, although there are
some problems where the changes lead to a noticeable deterioration
in performance.

3.2 Infeasibility from initial sampling
As noted in Section 3.1, performance comparisons seem to suggest
that CMA-ES with random initialisation of the center of mass (see
Section 2.2) generates higher ratios of infeasible solutions. In order
to confirm this hypothesis, we plot the ratio of solutions generated
outside the bounds of the SBOX-COST problems in Figure 5. Here,
we see that the ratio is similar for most problems, of an order of
magnitude around 10−1. An interesting pattern we observe from
Figure 5 is that the distribution of these ratios for the uniform-
initialized CMA-ES with SDIS ’None’ is extremely wide, with peaks
close to 1, meaning that almost all evaluated points were unfeasible.

This increase in bound-violations happens due to the higher
probability of having a full population of infeasible solutions di-
rectly in the first iteration since having a center of mass close to
the domain boundary would more likely result in infeasible points
when a population is generated from the sampling distribution.
Such probability can be estimated as follows:

(1) In one dimension, the probability of generating a point
inside the bounds can be calculated as follows (assuming
a normalization of the domain): 𝑃 = Pr(0 ≤ 𝑋 ≤ 1 | 𝑋 ∼
N(𝜇, 𝜎2)) = 𝐹𝑋 (1) − 𝐹𝑋 (0) = 1

2

(
erf

(
1−𝜇
𝜎
√
2

)
+ erf

(
𝜇

𝜎
√
2

))
,

where 𝐹𝑋 (𝑥) is the CDF at 𝑥 and erf is the error function.
(2) To get the probability for 𝜇 ∼ U(0, 1), we take𝐶 =

∫ 1
0 𝑃 𝑑𝜇.

Since each dimension is identical, and we only need to be in-
feasible in one to get an infeasible solution, we then get the
probability of a single point generated by this distribution
to be infeasible to be 1 −𝐶𝑑 where 𝑑 is the dimension.

(3) Then, sincewe have a default population size of 4+3 log10 (𝑑),
we get the total probability of being infeasible as seen in
Figure 4.

From the results in Figure 4, we can see that the probability for
the whole initial population to be infeasible grows quickly as the
dimensionality increases. To compensate for this, the stepsize has to
be reduced significantly. This results in CMA-ES being a very local
optimization algorithm, indicating a need to augment the algorithm
with constraint-handling strategies and/or mechanisms facilitating
exploration.

0 20 40 60 80 100
Dimension

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Stepsize
0.2
0.1
0.05
0.02
0.01

Figure 4: Probability of the whole initial CMA-ES population
of size 4 + 3 log10 (𝑑) to be infeasible if the center of mass is
initialized uniformly at random, for increasing dimensional-
ity 𝑑 and various values of stepsize 𝜎 .

3.3 Stepsize and infeasibility for strategies of
dealing with infeasible solutions

In this experiment, we consider additional boundary handling
strategies and analyze in more detail how they affect the step-
size and the number of infeasible solutions. Figure 6 shows the
effect of enforcing box-constraints for various strategies on F13
with center initialization: On BBOB (left), there are few differences
between the strategies, with None perhaps having a slight advan-
tage; however, on SBOX-COST, the None strategy performs clearly
worse. When the initialization is random, this difference becomes
more evident (see Figures 7 and 8), for the reasons discussed earlier.
While the differences in performance between different SDIS are
minor, Figures 6, 7 and 8 seem to suggest that the more disruptive
mechanisms (uniform resampling and toroidal) generally perform
worse than the alternatives.

To gain a better understanding of the worst-case impact of boun-
dary constraints on the performance of CMA-ES, we zoom in on
the linear slope (F5), which we observed in Figure 3 to be impacted
significantly when changing from BBOB to SBOX. Additionally, we
plot in Figure 9 the evolution of the stepsize (𝜎) for the CMA-ES
with center-initialisation and all variants of SDIS studied here. By
comparing the figures between BBOB and SBOX, we clearly see
that only the None SDIS shows differences in behaviour, since for
all other mechanisms points outside the boundaries are never ex-
plicitly evaluated. For this None strategy clear differences can be
observed: for the SBOX-version of F5, stepsize initially decreases,
and keeps varying widely from there. For the BBOB version how-
ever, stepsize quickly grows from the beginning of the search. This
can be explained by considering that increasing the step-size is very
beneficial, as even points generated outside the bound will usually
be improvements, as long as the direction is following the slope.
So, the larger the steps, the more improvements are made. Then, as
soon as a step outside the bound in the right corner is made, the
problem is solved since any point beyond there has better fitness
than the global optimum.

In addition to the differences observed for the None strategy,
Figure 9 further highlights the differences between the other SDIS.
In particular, the more disruptive mechanisms (unif_resampl and



Vermetten, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

10−3

10−2

10−1

100
Fr

ac
tio

n 
OO

B

SDIS
COTN None mirror saturate toroidal unif_resample

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

10−3

10−2

10−1

100

Fr
ac

tio
n 

OO
B

SDIS
COTN None mirror saturate toroidal unif_resample

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Function ID

10−3

10−2

10−1

100

Fr
ac

tio
n 

OO
B

SDIS
COTN None mirror saturate toroidal unif_resample

Figure 5: Ratio of solutions generated outside box-constraints in modular CMA-ES with center (left) or uniform (right)
initialization on SBOX-COST problems in 20D for different bound correction strategies.

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 200.0
1000 * Function Evaluations

10−7

10−5

10−3

10−1

101

103

f(x
)

sdis
None
saturate
COTN
mirror
toroidal
unif_resample

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 200.0
1000 * Function Evaluations

10−7

10−5

10−3

10−1

101

103

f(x
)

sdis
None
saturate
COTN
mirror
toroidal
unif_resample

Figure 6: Performance of CMA-ES with center initialization on F13 of BBOB (left) and SBOX-COST (right) in 20D at various
budgets (x-axis in thousands of function evaluations).

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 200.0
1000 * Function Evaluations

10−7

10−5

10−3

10−1

101

103

105

107

f(x
)

sdis
None
saturate
COTN
mirror
toroidal
unif_resample

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 200.0
1000 * Function Evaluations

10−7

10−5

10−3

10−1

101

103

105

107

f(x
)

sdis
None
saturate
COTN
mirror
toroidal
unif_resample

Figure 7: Performance of CMA-ES with uniform initialization on F2 of BBOB (left) and SBOX-COST (right) in 20D at various
budgets (x-axis in thousands of function evaluations).

toroidal) show a continuous increase of stepsize. This can be
understood by considering that as soon as a point near the optimum,
but outside the bound, is generated, it is placed at a very large
distance from the center of mass. If this happens often enough, the
update mechanism will use these points in the update, even though
they fall completely outside of the assumed normal distribution.
This leads to an increase in stepsize, and a very poor performance of
the CMA-ES. Also of note are the patterns created by the saturate

mechanism. In this case, it starts converging as usual, but when it
is close enough to the border, the saturation makes sure that even
points generated with large step-sizes are mapped to good points
often enough, leading to an increase in population size.

Next, we analyze the ratio of solutions generated that violate
the box-constraints with respect to the total. Without a boundary
handling strategy, those solutions may give an advantage when not
enforcing box-constraints (BBOB) while they waste evaluations in



Analysis of modular CMA-ES on strict box constrained problems

0.1 0.2 0.5 1.0 2.0 5.0 10.0 50.0 100.0 200.0
1000 * Function Evaluations

10−7

10−5

10−3

10−1

101

103

105

f(x
)

sdis
None
saturate
COTN
mirror
toroidal
unif_resample

Figure 8: Performance of CMA-ESwith uniform initialization
on F8 of SBOX-COST in 20D at various budgets (x-axis in
thousands of function evaluations).

101 102 103 104 105

Function Evaluations

10−9

10−7

10−5

10−3

10−1

101

103

105

Si
gm

a

sdis
COTN
None
mirror
saturate
toroidal
unif_resample

101 102 103 104 105

Function Evaluations

10−9

10−7

10−5

10−3

10−1

101

103

105

Si
gm

a

sdis
COTN
None
mirror
saturate
toroidal
unif_resample

Figure 9: Evolution of stepsize of center-initialized CMA-ES
with different strategies of boundary handling on F5 of BBOB
(top) and SBOX-COST (bottom) in 20D.

SBOX. Figure 5 shows this ratio for center (left) and uniform (right)
initialization, clearly showing that the ratio is higher for the latter.
We can also observe that the ratio differs greatly between functions,
being quite small for F9, F18 and F24. Onewould expect that without
a boundary handling strategy (None), CMA-ES will avoid evaluating
solutions outside the bounds. However, the plots show that this
is not always the case. In fact, with random initialization, there is
a high variance and the actual ratio likely depends on the initial
population of each run.

4 CONCLUSIONS
In this paper we have benchmarked a variety of configurations of
the modular CMA-ES on SBOX-COST, which is a variant of the
BBOB suite that enforces box-constraints.

Our results show that, with strict box-constraints, the lack of a
strategy for handling box-constraints often leads to worse results.
This effect is stronger when CMA-ES uses random initialization
rather than center initialization, presumably because the former has
a higher probability of generating infeasible solutions at the start
of the run. Indeed, we observe that a higher ratio of infeasible solu-
tions is generated with random initialization. We also analyzed the
evolution of the stepsize within each run and the results show why
CMA-ES can exploit the lack of boundary constraints to quickly
solve the linear slope problem. Finally, we analyzed the effect of han-
dling box-constraints in the BBOB suite. In some functions of BBOB,
CMA-ES successfully uses the information provided by infeasible
solutions to guide the search more effectively, thus applying bound-
ary handling sometimes leads to worse performance. In general, our
results show clear differences between benchmarking algorithms
with (SBOX) and without (BBOB) enforcing box-constraints, thus
leading to different conclusions about the performance of various
CMA-ES variants.

Results presented in this paper confirm the need for the intro-
duction of a feasibility-enforcing operator within a wider class of
heuristic optimisers as pointed out in [10]. However, in the case of
CMA-ES, enforcing feasibility after the application of generating
operator appears to be suboptimal since a sampling operator can
potentially significantly increase the ratio of infeasible solutions
generated throughout the search. Therefore, as a point of future
research, we see the potential for designing new adaptive strate-
gies of dealing with infeasible solutions that truncate the sampling
distribution depending on the current location of its mean within
the box-constrained domain. Such strategy can be applied either
to only infeasible dimensions as done in most cases considered in
this paper or to all dimensions of an infeasible solution to preserve
the search direction [10] prescribed based on the points success-
fully sampled so far; see [11] for a similar idea for the Differential
Evolution algorithm.

Reproducibility. Source code and the data generated in this study
are available from https://doi.org/10.5281/zenodo.7649077.

REFERENCES
[1] Richard Allmendinger and Joshua Knowles. 2013. On handling ephemeral re-

source constraints in evolutionary search. Evolutionary Computation 21, 3 (2013),
497–531.

[2] Fabio Caraffini, Anna V. Kononova, and David W. Corne. 2019. Infeasibility and
structural bias in differential evolution. Information Sciences 496 (2019), 161–179.
https://doi.org/10.1016/j.ins.2019.05.019

[3] Jacob de Nobel, Diederick Vermetten, Hao Wang, Carola Doerr, and Thomas
Bäck. 2021. Tuning as a means of assessing the benefits of new ideas in interplay
with existing algorithmic modules. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. 1375–1384.

[4] Jacob de Nobel, Furong Ye, Diederick Vermetten, Hao Wang, Carola Doerr, and
Thomas Bäck. 2021. IOHexperimenter: Benchmarking Platform for Iterative
Optimization Heuristics. arXiv preprint arXiv:2111.04077 (2021).

[5] Carola Doerr, Hao Wang, Furong Ye, Sander van Rijn, and Thomas Bäck. 2018.
IOHprofiler: A benchmarking and profiling tool for iterative optimization heuris-
tics. arXiv preprint arXiv:1810.05281 (2018).

[6] Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar, and
Dimo Brockhoff. 2020. COCO: A platform for comparing continuous optimizers
in a black-box setting. Optimization Methods and Software (2020), 1–31.

https://doi.org/10.5281/zenodo.7649077
https://doi.org/10.1016/j.ins.2019.05.019


Vermetten, et al.

[7] Nikolaus Hansen and Andreas Ostermeier. 1996. Adapting Arbitrary Normal Mu-
tation Distributions in Evolution Strategies: The Covariance Matrix Adaptation.
In Proceedings of the IEEE International Conference on Evolutionary Computation.
312–317. https://doi.org/10.1109/ICEC.1996.542381

[8] Youngmin Kim, Richard Allmendinger, and Manuel López-Ibáñez. 2021. Safe
learning and optimization techniques: Towards a survey of the state of the
art. In Trustworthy AI-Integrating Learning, Optimization and Reasoning: First
International Workshop, TAILOR 2020, Virtual Event, September 4–5, 2020, Revised
Selected Papers 1. Springer, 123–139.

[9] Anna V. Kononova, Fabio Caraffini, Hao Wang, and Thomas Bäck. 2020. Can
Compact Optimisation Algorithms Be Structurally Biased?. In Parallel Problem
Solving from Nature – PPSN XVI. Springer International Publishing, Cham, 229–
242. https://doi.org/10.1007/978-3-030-58112-1_16

[10] Anna V. Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A. Mitran,
and Daniela Zaharie. 2022. The importance of being constrained: dealing with in-
feasible solutions in Differential Evolution and beyond. arXiv:2203.03512 [cs.NE]

[11] Vinicius Kreischer, Thiago Tavares Magalhaes, HJ Barbosa, and Eduardo
Krempser. 2017. Evaluation of bound constraints handling methods in differ-
ential evolution using the cec2017 benchmark. In XIII Brazilian Congress on
Computational Intelligence.

[12] Fu Xing Long, Diederick Vermetten, Bas van Stein, and Anna V. Kononova. 2023.
BBOB Instance Analysis: Landscape Properties and Algorithm Performance
Across Problem Instances. In Applications of Evolutionary Computation, João Cor-
reia, Stephen Smith, and Raneem Qaddoura (Eds.). Springer Nature Switzerland,
Cham, 380–395.

[13] Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas Bäck. 2016.
Evolving the structure of evolution strategies. In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 1–8.

[14] Diederick Vermetten, Fabio Caraffini, Bas van Stein, and Anna V. Kononova.
2022. Using Structural Bias to Analyse the Behaviour of Modular CMA-ES. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Boston, Massachusetts) (GECCO ’22). Association for Computing Machinery,
New York, NY, USA, 1674–1682. https://doi.org/10.1145/3520304.3534035

[15] Diederick Vermetten, Bas van Stein, Anna V. Kononova, and Fabio Caraffini.
2022. Analysis of Structural Bias in Differential Evolution Configurations. In
Differential Evolution: From Theory to Practice. Springer Singapore, 1–22. https:
//doi.org/10.1007/978-981-16-8082-3_1

[16] Hao Wang, Diederick Vermetten, Furong Ye, Carola Doerr, and Thomas Bäck.
2022. IOHanalyzer: Detailed Performance Analyses for Iterative Optimization
Heuristics. ACM Transactions on Evolutionary Learning and Optimization 2, 1
(2022), 1–29. https://doi.org/10.1145/3510426

https://doi.org/10.1109/ICEC.1996.542381
https://doi.org/10.1007/978-3-030-58112-1_16
https://arxiv.org/abs/2203.03512
https://doi.org/10.1145/3520304.3534035
https://doi.org/10.1007/978-981-16-8082-3_1
https://doi.org/10.1007/978-981-16-8082-3_1
https://doi.org/10.1145/3510426

	Abstract
	1 Introduction
	2 Methodology
	2.1 SBOX-COST benchmarking suite
	2.2 Modular CMA-ES
	2.3 Experimental setup

	3 Results
	3.1 Performance differences between BBOB and SBOX-COST
	3.2 Infeasibility from initial sampling
	3.3 Stepsize and infeasibility for strategies of dealing with infeasible solutions

	4 Conclusions
	References

