
Neural Network Compression for Noisy Storage Devices

Berivan Isik 1 Kristy Choi 1 Xin Zheng 1 Tsachy Weissman 1 Stefano Ermon 1 H.-S. Philip Wong 1

Armin Alaghi 2

Abstract
Compression and efficient storage of neural network (NN) parameters is critical for applications that run on
resource-constrained devices. Despite the significant progress in NN model compression, there has been consid-
erably less investigation in the actual physical storage of NN parameters. Conventionally, model compression
and physical storage are decoupled, as digital storage media with error-correcting codes (ECCs) provide robust
error-free storage. However, this decoupled approach is inefficient as it ignores the overparameterization present
in most NNs and forces the memory device to allocate the same amount of resources to every bit of information
regardless of its importance. In this work, we investigate analog memory devices as an alternative to digital media –
one that naturally provides a way to add more protection for significant bits unlike its counterpart, but is noisy and
may compromise the stored model’s performance if used naively. We develop a variety of robust coding strategies
for NN weight storage on analog devices, and propose an approach to jointly optimize model compression and
memory resource allocation. We then demonstrate the efficacy of our approach on models trained on MNIST,
CIFAR-10 and ImageNet datasets for existing compression techniques. Compared to conventional error-free
digital storage, our method reduces the memory footprint by up to one order of magnitude, without significantly
compromising the stored model’s accuracy.

1. Introduction
The rapidly growing size of deep neural networks presents new challenges in their storage, computation, and power
consumption for deployment in resource-constrained devices (Dean et al., 2012; LeCun et al., 2015). This makes it crucial
to compress and efficiently store NN parameters. The most commonly used approach is to separate the problem of model
compression from physical storage. Reliable digital storage media, fortified by error correcting codes (ECCs), provide
nearly error-free storage to users – this allows researchers to develop model compression techniques independently from
the precise characteristics of the devices used to store the compressed weights (Bucilua et al., 2006; Cheng et al., 2018).
Meanwhile, memory designers strive to create efficient storage by hiding such physical details from users.

Although the decoupled approach enables isolated investigation of model compression and simplifies the problem, it misses
the opportunity to exploit the full capabilities of the storage device. With no context from data, memory systems dedicate the
same amount of resources to each bit of stored information. This is suboptimal as NNs tend to exhibit a considerable amount
of redundancy in their parameterization (Cheng et al., 2015; Zhou et al., 2018). To address this shortcoming, we investigate
the joint optimization of NN model compression and physical storage – specifically, we perform model compression with
the additional knowledge of the memory’s physical characteristics. This allows us to dedicate more resources to important
bits of data, while relaxing the resources on less valuable bits.

This joint optimization scheme, however, is cumbersome to implement in practice on digital storage media due to the device’s
physical characteristics (Sections 2.1 and 2.2). We instead turn to analog technology – in particular, phase-change memory
(PCM) – as a more feasible alternative (Joshi et al., 2020; Nandakumar et al., 2019). Recent studies have demonstrated
the promise of end-to-end analog memory systems for storing analog data, such as NN weights, as they have the potential
to reach higher storage capacities than digital systems with a significantly lower coding complexity (Zarcone et al., 2018;
2020; Zheng et al., 2018).

1Stanford University, US 2Meta Reality Labs Research, US. Correspondence to: Berivan Isik <berivan.isik@stanford.edu>.

Published at the ACM Transactions on Embedded Computing Systems (TECS), 2023.

ar
X

iv
:2

10
2.

07
72

5v
2

 [
cs

.L
G

]
 1

4
M

ar
 2

02
3

Neural Network Compression for Noisy Storage Devices

Yet despite their advantages, analog storage devices are noisy and may corrupt the written input values. This presents several
key challenges for the compression task. First, the noise characteristic of such memories is a non-linear function of the input
value written onto the cell. Second, slight perturbations of the NN weights from the memory cell may cause the network’s
performance to plummet (Achille et al., 2019), which is unaccounted for in most NN compression techniques. Thus our
objective is to not only minimize the number of memory cells used to store the given NN model (a standard metric named
storage density), but also preserve the compressed weights’ predictive performance.

Motivated by the above challenges, we draw inspiration from classical information theory and coding theory to develop a
framework for encoding and decoding NN parameters to be stored on analog devices (Shannon, 2001). In particular, our
method: (i) leverages existing compression techniques such as pruning (Frankle & Carbin, 2019; Guo et al., 2016) and
knowledge distillation (KD) (Hinton et al., 2015; Polino et al., 2018; Xie et al., 2020) to learn a compressed representation
of the NN weights; and (ii) utilizes various coding strategies to ensure robustness of the compressed network against storage
noise. 1 To the best of our knowledge, this is the first work on NN compression for analog storage devices with realistic
noise characteristics, unlike previous work that only investigate white Gaussian noise models (Fagbohungbe & Qian, 2020;
Zhou et al., 2020).

In summary, the contributions of our work are as follows:

1. We develop a variety of strategies to mitigate the effect of noise and preserve the NN performance on PCM storage
devices.

2. We present methods to combine these strategies with existing model compression techniques.

Empirically, we evaluate the efficacy of our methods on classification tasks with models trained on MNIST, CIFAR-10 and
ImageNet datasets and regression tasks with the Neural Radiance Field (NeRF) model (Mildenhall et al., 2020); and show
that storage density can be increased by 18 times on average compared to conventional error-free digital storage.

2. Preliminaries
2.1. Analog Storage and Phase Change Memory (PCM)

Most memory technologies utilize continuous physical values (e.g., charge) as a means of data storage. The full continuous
storage range is often divided into intervals and used to store discrete values. One extreme that maximizes the device’s
performance is to allow only two values (high and low) to be written to each memory cell. With this approach, one bit of
information can be stored in a memory cell. Storing more values allows more bits to be stored per cell, but also increases the
chance of reading an incorrect value from the memory – this represents a natural trade-off between memory density and
probability of error. Therefore, storage devices often use error correcting codes (ECCs) in practice to protect data from such
memory errors.

Although digital storage (i.e., storing discrete values) is the dominant paradigm in physical memory technology, it is still
possible to store continuous values in memory cells, and read them back as continuous values, albeit with noise. This
approach, also known as analog storage, has regained attention recently (Zarcone et al., 2020) with the emergence of
different non-volatile memory (NVM) technologies, such as PCM. NVMs not only retain the stored information even
when the power supply is off, but also allow efficient storage of multiple bits per cell. In the extreme case, NVMs can
store continuous values (Wong et al., 2010), making them more efficient than their digital counterparts that require discrete
inputs (Zarcone et al., 2018; Zheng et al., 2018). Among the various NVM technologies, our work focuses on phase-change
memory (PCM) technology because it: (i) has faster read/write speed and higher endurance than its competitors; and (ii)
can enhance chip performance by reducing the cost of data movement thanks to its on-chip integration.

A major advantage of the PCM memory device over its (digital) competitors is its relatively low cost as compared to
its access time (read/write time). Commonly used memory devices such as SRAM (static random access memory) and
DRAM (dynamic random access memory) have short access time and high endurance, and are thus used as the cache
and main memory in a wide range of technologies. Storage devices such as NOT-AND (NAND) flash, on the other hand,
provide low-cost, high density, and non-volatile storage, but their long access time makes them unsuitable to use as memory

1This joint approach is fundamentally different from the problem of preserving the utility of the lossily compressed noisy data (Isik &
Weissman, 2022) or vice-versa – noise-corrupted compressed data.

Neural Network Compression for Noisy Storage Devices

devices. As shown in Figure 1(a), PCM successfully bridges the gap between memory and storage devices. Such advantages
of the PCM device allows for utilizing both memory and storage on the main chip, which, when coupled with its high
endurance, makes it a compelling alternative to conventional memories such as NAND flash and DRAM. This is especially
true for applications requiring NN inference, where both short access time and non-volatile storage are crucial for real-time
deployment.

(a) (b)

Figure 1. (a) Figure from (Fong et al., 2017) comparing the access time (read/write time) of various memories versus cost. Significant
space has opened between conventional digital memories, namely NAND flash and DRAM, in the memory hierarchy. PCM can fill this
gap and further complement the memory hierarchy. (b) The cross-section schematic of PCM cell (left) and RESET and SET pulses are
used to program the PCM cell with different temperature (right). Read pulse is used to read the resistance of PCM cell. Figure from
(Wong et al., 2010).

2.1.1. PCM BASICS: PHYSICS MECHANISM, CELL DESIGN AND ANALOG STORAGE CAPABILITY

After a significant amount of research in both academia and industry, the PCM array has entered the market as a breakthrough
technology bridging the gap between memory and storage (Fong et al., 2017). A common PCM device consists of a phase
change material (e.g., GeSbTe) inserted between the top electrode and bottom electrode as in Figure 1(b)-left. The
information in PCM is stored by utilizing the resistivity difference between the low-conductive amorphous state and
high-conductive poly-crystalline states of the phase change material. In the following paragraphs, we briefly explain the
physical mechanism by which reading and writing take place on a PCM array.

To write onto the device, electrical pulses are used to generate phase transformation through joule heating (Figure 1(b)-right).
The fresh PCM device is usually in a high-conductive poly-crystalline state. A fast high-temperature (above melting
temperature) pulse (RESET pulse) can be used to melt and quench the programming region into low-conductive amorphous
states. A longer medium-temperature (above crystallization temperature) pulse, i.e., SET pulse, can then be used to
crystallize the programming region back to high-conductive poly-crystalline state. To read from the cell, a smaller pulse
is used to measure the resistance of the cell without changing the cell states. In particular, the cell state is measured by
reading the cell resistance when applying a small bias (read pulse), whose amplitude is small enough not to disturb the cell.
The cell resistance, interestingly, can be continuously tuned as it is decided by the ratio between amorphous region and
polycrystalline region. As a result, the PCM device enables analog storage as the cell resistance is an analog value that is
determined by the ratio of the two (amorphous and crystalline) phase regions. This property will potentially increase the
storage density of PCM by storing more than 1 bit per cell.

Neural Network Compression for Noisy Storage Devices

2.2. Our Setup

2.2.1. ANALOG-STORAGE WITH 1T1R PCM ARRAY: MEASUREMENT DETAILS

To simulate realistic storage, we utilize measurements collected from physical experiments on PCM arrays (Wu et al., 2018)
of 1 mega 1T1R cells (Wu et al., 2018). We use a simple analog programming strategy by first resetting the device to a
low-conductive initial state and then setting it with 31 different pulse amplitudes (input levels) and more than 1000 cells for
each pulse amplitude. Although this simple programming strategy yields higher noise levels than more complex strategies,
the write speed is fast. The SET pulse amplitude is controlled with a control transistor connected in series to the PCM device
(1T1R structure). Figure 2(a) shows the 1-standard deviation error bar from cell-to-cell variation for each input level, where
both the mean and standard deviation of the output (programmed resistance in log scale) exhibits a non-linear relationship
with the input. Figure 2(b) is the histogram of output distributions corresponding to the 31 input levels, which shows that the
output is roughly Gaussian distributed conditioned on the input level. The channel response to the input values in between
measurement points is then interpolated in order to construct the differentiable continuous analog channel model used in this
work as shown in Figure 2(c). The differentiability of the model allows for an end-to-end learning scheme (to be discussed
in Section 3.3, see Figure 6). Figure 2(c) illustrates the PCM model as a noisy channel.

(a) 1-sigma error bar plot. (b) Channel output distribution. (c) Interpolated measurement data.

Figure 2. Characteristics of the channel noise in a PCM cell. (a) 1-standard deviation error bars for each input level, where both the mean
and variation of the output has a nonlinear relationship to the input value. (b) Distribution of output values corresponding to 31 distinct
input values into the PCM array. (c) Characteristics of the channel noise in a PCM cell, which is dependent on the input value. Each point
corresponds to a possible cell output for a given input.

Each point in Figure 2(c) corresponds to a possible read (output) value for a given write (input) value. For simplicity, we
linearly map both the inputs and outputs to be within range [−1, 1]. Our realistic PCM model has different noise mean
and standard deviation (std) for each input, which improves over prior works that only investigate white Gaussian noise
(Fagbohungbe & Qian, 2020; Zhou et al., 2020) when storing NN models on noisy storage.

2.2.2. BASELINES AND KEY ASSUMPTIONS ON PCM STORAGE MODES

In this section, we establish our two digital storage baselines, as well as the set of assumptions used for our approach. For a
fair comparison, we use the same memory device (PCM arrays) in both digital and analog modes (Section 2.1) to mitigate
confounding factors in the hardware technology.

Ideal baseline for PCM digital storage. In classical information theory, the maximum amount of data that can be reliably
transmitted across a noisy channel (or as in our case, reliably stored into memory cells) with arbitrarily low error is called
the channel capacity (Shannon, 2001). In the case of the PCM noise model shown in Figure 2(c), we derive the channel
capacity as 2 bits per cell as in (Engel et al., 2014), and set this as our ideal baseline for digital storage. If we assume 32-bit
floating point number representation for each NN weight, then this channel capacity implies that the weight can be reliably
stored using 16 digital memory cells. Later in Section 4, we also consider less precise representations through quantization,
which will serve as our stronger baselines.

Practical baseline for PCM digital storage. Next, we show a more realistic baseline for PCM digital storage that is
representative of their real-world usage. In practice, various ECCs add extra bits to the data by trading off the overhead

Neural Network Compression for Noisy Storage Devices

coming from additional bits to be stored with the overall reduction in bit error rate (BER). This naturally leads to a rate
smaller than the theoretical capacity. We estimate the practically achievable rate of PCM digital storage by multiplying the
channel capacity of PCM device (2 bits per cell) by a factor α, where α < 1 represents the capacity loss factor (overhead) of
practical implementations of Low Density Parity Check (LDPC) codes – a commonly used ECC in the industry. Specifically,
we extract α = 0.9 from Figure 6 of (Van Nguyen et al., 2012) that presents LDPC overhead in an additive white Gaussian
(AWGN) channel. The practically achievable rate for storing digital data on PCMs would then be 1.8 bits per cell, smaller
than the theoretical limit (2 bits per cell). Therefore, a single NN weight (in 32-bit floating point number representation) for
this baseline can be reliably stored in 18 digital memory cells. We note that the achieved BER under this assumption is 1e−7,
which is still much larger than the target BER 1e−15 (digital storage industry standard for acceptable BER). Therefore, 18
cells is actually an optimistic value for the baseline (since the baseline would realistically require more cells in practice),
which implies that it is a pessimistic assumption for our method. Nevertheless, we set this as our realistic baseline.

PCM analog storage. In our work, we use PCM cells as analog storage devices by storing single-precision floating point
data into the device without separating the information into bits. We assume that the read/write circuitry of the PCM has a
precision equivalent to that of a single-precision (32-bit) floating point data. This means that a floating point number can be
directly written to a memory cell, and the data read back is also a 32-bit float, albeit with the added PCM noise. Although a
naive application of PCM analog storage would require more than 1K memory cells to store a single NN weight reliably
(while eliminating the effect of the PCM noise), we demonstrate that we can drastically reduce this number to outperform all
digital baselines (see Tables 1-6).

2.2.3. ADDITIONAL ASSUMPTIONS

In addition to the major assumptions above, we outline a few additional assumptions that are less critical. Our work only
focuses on weight storage on the PCM device – that is, we assume the chip will not be used for training purposes, so there is
no need to store gradients onto the cell. We also assume that the pretrained NN activations will be stored in local caches. If
such caches are not sufficient for activation storage, then we will have to pay the costly off-chip storage, because PCMs are
not efficient for writing purposes (read is cheap; write is expensive).

2.2.4. MODEL LIMITATIONS

The PCM model used in this work does not consider second-order effects such as device aging and process variation. The
latter can be corrected by adding a compensation term to our error model, once wafer-level variation data becomes available
to us. Furthermore, our method does not consider cell value tuning because its effect was not available in our PCM model.
Our methodology will not be affected by cell value tuning as its effect will only show up as a new and possibly better error
model.

2.3. Problem Statement and Notation

To formalize the joint compression problem, we consider a supervised learning setup where x ∈ X ⊆ Rd is the input
variable, and y ∈ Y = {1, . . . , k} is the label. We assume access to samples D = {(xi, yi)}ni=1 drawn from an underlying
(unknown) joint distribution pdata(x, y), which are used to train a NN predictor fw : X → Y . This network, parameterized
by the weights w ∈ W to be compressed and stored on analog storage devices (whereW denotes the parameter space of
NNs), indexes a conditional distribution pw(y|x) over the labels y given the inputs x.

The NN weights w will be exposed to some input dependent device noise ε(w) when written to the analog storage device,
yielding noisy versions of the weights ŵ = w + ε(w). In our experiments, we find that PCM noise dramatically hurts
classification performance – as a concrete example, the test accuracy of a ResNet-18 model trained on CIFAR-10 drops from
95.10% (using w) to 10% (using ŵ) after the weights are corrupted (via naive storage on analog PCM). Thus to preserve
NN performance even after it is stored on the analog device, we explore various strategies g : W → W for designing
reconstructions of the perturbed weights g(ŵ) such that the resulting distribution over the output labels pg(ŵ)(y|x) is close
to that of the original network pw(y|x).

We note that this notion of “closeness” between the original weights w and the reconstructed weights g(ŵ) has several
interpretations. In Section 3.1.1, we explore methods to minimize the distance between w and g(ŵ) in Euclidean space:

min
g
‖g(ŵ)− w‖2 .

Neural Network Compression for Noisy Storage Devices

In Sections 3.1.2-3.3, we study ways to minimize the Kullback-Leibler (KL) divergence between these two output distribu-
tions:

min
g

Ex∼pdata(x)[DKL(pw(y|x)||pg(ŵ)(y|x))] (1)

where we learn the appropriate transformation g(·).

3. Robust Neural Network Compression
We develop several novel methods to provide NNs robustness against storage noise while also minimizing the storage density.
In Section 3.1, we describe several robust coding strategies for NN weights to be applied post-training. We exploit the
sparsity and sensitivity of NN weights to make our strategies more efficient. In Section 3.2, we propose robust training and
robust distillation methods that simultaneously train the NN model to perform well on the downstream task and be robust to
storage noise. We achieve this by regularizing the loss function with KL divergence in Eq. 1. Finally, in Section 3.3, we
introduce a probabilistic end-to-end approach to optimize compression and robustness (against storage noise) of the NN
model.

3.1. Robust Coding Strategies

In this section, we devise several novel coding strategies for g(·) that can be applied to the model post-training to mitigate the
effect of perturbations in the weights. For each strategy, we require a pre-mapping process to remove the input dependence
in the mean of the PCM response in Figure 2(c).

Pre-mapping: Let C represent the PCM channel. The mean function of C, denoted as µ : X → R, in Figure 2(c) can be
learned via a k-nearest neighbor classifier on the channel response measurements. We can also learn an inverse function
h = µ−1 using the measurement data and use it to remove the input dependence in the mean. More precisely, we pre-map
the data with h prior to channel usage, which yields an identity function with zero-mean noise φ = C ◦ h (Figure 3), i.e.,
φ(x) = x + ε0(x) where ε0(x) is a zero-mean noise with input dependent std σ(x) due to the PCM channel. Thus the
relationship between input weights win to be stored and output weights wout to be read is:

wout =
φ(α · win − β) + β

α
,

where α and β are scale and shift factors, respectively. Since the noise is zero-mean, we have:

wout =
α · win − β + ε0(win) + β

α
= win +

ε0(win)

α
.

If we use the noisy channel φ r times (i.e., store the same weight on r “independent” cells and average over the outputs –
much like repetition codes in coding theory), the relationship between win and wout becomes:

wout =
1

r

r∑
i=1

(
win +

ε0,i(win)

α

)

= win +
1
r

∑r
i=1 ε0,i(win)

α

(2)

Let us define a new random variable ε̃(win, r) = 1
r

∑r
i=1 ε0,i(win). Notice that the standard deviation of ε̃(win, r) is σ(win)√

r
.

Then the standard deviation of ε̂(win, r, α) =
ε̃((win,r))

α in Eq. 2 is given by: σ(win)
α
√
r
. More precisely, we have:

wout = win + ε̂(win, r, α)

where the standard deviation of ε̂(win, r, α) is σ(win)
α
√
r

. This provides us two tools to protect the NN weights against
zero-mean noise.

(Method #1) Increase the number of channel usage r (number of PCM cells per weight).

Neural Network Compression for Noisy Storage Devices

(Method #2) Increase the scale factor α under the condition that α · win satisfies the cell input range limitation
(|α · win − β| ≤ 1).

For the first method, we observe in Figure 3 that the response becomes less noisy as we increase the number of PCM cells
used (r). However, we desire to keep r at a minimum for an efficient storage. The second method allows us to make use of
the full analog range by scaling the weights. This is particularly useful when storing weights with small magnitude. But we
cannot increase α without bound because of the device constraint, since we must satisfy −1 ≤ α · win − β ≤ 1 (in practice,
this constraint is −0.65 ≤ α · win − β ≤ 0.75 since the remaining portion of the response is non-invertible, and therefore
unusable for our purposes). Such limitations leave more to be desired for a general-purpose robust coding strategy for NN
weights.

(a) 1 memory cell (b) 10 memory cells (c) 100 memory cells

Figure 3. Behavior of the inverted channel φ = C ◦f when outputs are read from an average over 1, 10, and 100 memory cells respectively.

3.1.1. SPARSITY-DRIVEN PROTECTION

Next, we leverage the observation that the weights of a fully-trained NN tend to be sparse (Isik et al., 2022) (Figure 4(a)).
Table 1 shows that the test accuracy of a Resnet-18 model on CIFAR-10 with weights corrupted by PCM noise drops from
95.10% to 10% (random behavior) when less than 64 memory cells are used per weight, which does not compare well with
our realistic baseline for digital storage, where 18 cells per weight would be enough. Luckily, sparsity-driven strategies help
to outperform the realistic baseline with an 18× improvement in the required amount of storage compared to digital storage.
The 5th row of Table 1 shows that we achieve 95.10% accuracy with 3 cells (and 94.44% even with 1 cell) per weight using
the sparsity-driven protection; on the other hand, the NN performance is compromised without sparsity-driven protection
even using 512 cells per weight with an accuracy of 94.20% (see No Protection row) – more than 512× times reduction in
the required amount of storage compared to analog storage without our strategies. Figure 5 demonstrates the effectiveness
of our approach in preserving NN performance on PCM (Figure 8 for CIFAR-10 in Appendix). We now introduce each
sparsity-driven strategies one by one.

Sign Protection: When scaling the weights by α to fit them in range [−0.65, 0.75] of φ (Figure 3), small weights are
mapped to values very close to zero. This is problematic because a majority of the trained NN weights have small magnitudes,
and thus the NN with reconstructed weights will suffer a severe drop in performance due to sign errors (see Figure 4(a)).
Therefore, we store the sign and magnitude of the weights separately. The sign can be represented by 1 bit. When we store
magnitudes instead of actual weights, we can use an α that is twice as large, reducing the variance of noise from Method #2.
The No Protection and SP rows of Table 1 illustrate the effect of sign protection as the required memory to achieve a test
accuracy of 94.1± 0.1% on CIFAR-10 is reduced by 16× times (from 512 cells to 32 cells).

Adaptive Mapping: Although protecting the sign bit leads to accuracy gains on CIFAR-10, we still require more than 18
devices to achieve the original accuracy without PCM noise. To further improve the efficiency, we again use the observation
that the majority of nonzero weights are quite small (see Figure 4(a)). This implies that using different values of α depending
on the magnitude of the weight (larger scale factor α for small weights) can reduce the overall variance of the cell’s noise
from Method #2. This requires an extra bit to indicate whether a weight is small or large since two different α’s are used
in encoding and decoding. With this strategy, according to SP and SP+AM rows of Table 1, we can increase the model’s
accuracy from 9.8% to 90.6% with an average of 1 cell per weight on CIFAR-10 (and a corresponding increase in accuracy
from 0.1% to 51.3% with an average of 16 cells per weight for ImageNet).

Neural Network Compression for Noisy Storage Devices

(a) Distribution of weights (ResNet-18 trained
on CIFAR-10).

(b) Distribution of sensitivity terms (ResNet-18
trained on CIFAR-10).

Figure 4. Histogram of (a) weights of ResNet-18 trained on CIFAR-10, (b) sensitivity terms (sj = 1
N

∑N
i=1

(
∂ log pw(yi|xi)

∂wj

)2
from

Section 3.1.2) of ResNet-18 trained on CIFAR-10. Since both the weights and sensitivities are sparse, the increase in the average number
of cells per weight due to adaptive redundancy and sensitivity-driven protection strategies is negligible.

Adaptive Redundancy: Finally, we propose to vary the number of PCM cells used for larger and smaller weights. The
average number of cells that we aim to minimize is:

ravg =
rsmall ×Nsmall + rlarge ×Nlarge

Nsmall +Nlarge

where Nsmall and Nlarge are the number of small and large weights; rsmall and rlarge are the number of cells used per
weight for small and large weights, respectively. Using more cells for larger weights (which are more critical for NN
performance) increases the accuracy while it does not increase the average redundancy too much (Method #1) since most
weights are sparse (see Figure 4(a)), e.g., Nsmall = 11, 168, 312 and Nlarge = 5, 650 in ResNet-18 trained on CIFAR-10.
Sign protection and adaptive mapping help protect mostly the small weights while adaptive redundancy protects large
weights by reserving more resources for them. As shown in the SP+AM and SP+AM+AR rows of Table 1, combining
these strategies increases the accuracy by 4%/66% on CIFAR-10/ImageNet for the 1 cell per weight case without requiring
any additional bits.

3.1.2. SENSITIVITY-DRIVEN PROTECTION

While we have demonstrated the success of sparsity-driven protection strategies for g(·) even with 1 cell per weight for
ResNet-18 on CIFAR-10, the method falls short for more complex datasets. For ImageNet, the accuracy of ResNet-50
with sparsity-driven protection against 1 PCM per weight is 10.6% lower than the original accuracy without PCM noise
(76.6%, see Table 1). To close this gap, we first define δw as the final perturbation on the weights, i.e., g(ŵ) = w + δw.
Then we approximate the KL divergence via a second-order Taylor expansion:

Ex∼pdata(x)[DKL(pw(y|x)||pw+δw(y|x))] ≈ δwTFδw +O(||δw||3) (3)

where F := Ex,y∼pdata(x,y)[∇w log pw(y|x)∇Tw log pw(y|x)] is the Fisher Information Matrix (Grosse & Martens, 2016;
Martens, 2014). Dropping the off-diagonal entries in F yields

δwTFδw ≈ Ex,y∼pdata(x,y)
d∑
j=1

(
δwj ·

∂ log pw(y|x)
∂wj

)2

(4)

=

d∑
j=1

δw2
jEx,y∼pdata(x,y)

(
∂ log pw(y|x)

∂wj

)2

(5)

Neural Network Compression for Noisy Storage Devices

where d is the number of weights. Thus KL divergence between the conditional distribution parameterized by the original
(w) and perturbed weights (g(ŵ)) that we aim to minimize is:

Ex∼pdata(x)[DKL(pw(y|x)||pw+δw(y|x))] ≈
1

N

d∑
j=1

δw2
j

N∑
i=1

(
∂ log pw(yi|xi)

∂wj

)2

(6)

For each weight wj , we can estimate how much performance degradation δwj can cause by evaluating the term

sj =
1

N

N∑
i=1

(
∂ log pw(yi|xi)

∂wj

)2

, (7)

which we call “sensitivity”. For the storage of sensitive weights wj with large sj , we should use more PCM cells as
slight perturbations of these weights may lead to significant changes in the output distributions (Method #1). This will
not significantly affect the number of cells per weight on average (ravg) because the gradients of a fully trained network
(which correlate with the sensitivity) are known to be sparse. Figure 4(b) further demonstrates the sparsity of the sensitivity
terms. We combine sensitivity- and sparsity-driven protection to vary the number of memory cells per weight. Table 1
demonstrates that sensitivity-driven protection provides a 2.8% improvement in test accuracy using 1 cell per weight for
ResNet-50 trained on ImageNet. Figure 5 illustrates that sparsity-driven and sensitivity-driven protection strategies provide
2056× more efficient storage of NN models by preserving the accuracy against PCM noise. We refer the reader to Figure 8
in the Appendix for similar results on CIFAR-10.

2056 cells 512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits

No Protection 95.1 94.2 27.1 9.0 10.2 10.2 9.9 9.6 9.8 10.3 0
SP 95.1 95.0 94.2 94.0 92.8 89.5 67.0 41.9 11.8 9.8 1

ResNet-18 AM+AR 95.0 95.0 94.8 94.7 94.4 93.7 93.1 92.7 89.2 58.0 1
CIFAR-10 SP+AM 95.1 95.1 95.0 95.0 94.8 94.7 94.6 93.9 93.2 90.6 2

SP+AM+AR 95.1 95.1 95.0 95.0 95.0 95.0 95.0 95.1 94.8 94.4 2
SP+AM+AR+Sens. 95.1 95.1 95.1 95.1 95.1 95.1 95.0 95.1 94.8 95.0 3

No Protection 67.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
SP 75.8 4.2 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

ResNet-50 AM+AR 76.1 76.0 70.2 70.0 67.8 65.5 46.1 35.8 10.3 0.1 1
ImageNet SP+AM 76.6 75.5 75.0 68.2 65.0 50.2 48.8 25.1 12.2 1.0 2

SP+AM+AR 76.6 76.6 76.6 76.6 76.6 76.4 75.9 76.0 75.8 75.5 2
SP+AM+AR+Sens. 76.6 76.6 76.6 76.6 76.5 76.6 76.2 75.9 76.0 75.9 3

No Protection 34.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
SP 69.9 2.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

MobileNet-v2 AM+AR 71.4 68.4 65.1 61.0 52.3 36.8 22.6 11.9 0.1 0.1 1
ImageNet SP+AM 71.8 71.2 70.6 65.4 50.5 43.8 32.0 16.7 0.1 0.1 2

SP+AM+AR 71.8 71.8 71.8 71.8 71.8 71.4 71.0 70.5 70.2 69.5 2
SP+AM+AR+Sens. 71.8 71.8 71.8 71.8 71.8 71.6 71.2 71.1 71.0 70.4 3

No Protection 39.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
SP 72.4 5.2 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1

EfficientNet-B2 AM+AR 79.6 77.1 72.8 64.7 49.3 37.2 17.5 9.2 0.1 0.1 1
ImageNet SP+AM 80.2 78.6 76.5 69.8 57.0 40.8 24.1 15.9 0.1 0.1 2

SP+AM+AR 80.2 80.2 71.8 80.2 79.9 79.2 78.6 78.0 77.4 76.4 2
SP+AM+AR+Sens. 80.2 80.2 80.2 80.1 80.2 80.1 79.8 79.2 78.8 77.9 3

Table 1. Accuracy of ResNet-18 on CIFAR-10; and ResNet-50, MobileNet-v2, Efficientnet-B2 on ImageNet when weights are perturbed
by the PCM cells. Baseline accuracy (without noise) is 95.1% for ResNet-18 on CIFAR-10, 76.6% for ResNet-50 on ImageNet, 71.8% for
MobileNet-v2 on ImageNet, and 80.2% for EfficientNet-B2 on ImageNet. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven
adaptive redundancy, Sens.: sensitivity-driven adaptive redundancy. Results are averaged over three runs. Higher is better. We provide the
average number of cells, including the ones required to store the additional bits, in Table 2.

3.2. KL Regularization for Robustness

The following set of techniques for constructing g(·) are designed to correct the errors that the robust coding strategies in
the previous section fail to address.

Neural Network Compression for Noisy Storage Devices

SP+AM+AR SP+AM+AR SP+AM+AR SP+AM+AR+Sens. SP+AM+AR+Sens. SP+AM+AR+Sens.
4 cells 3 cells 2 cells 4.5 cells 3.5 cells 2.5 cells

ResNet-18 on CIFAR-10 95.1 94.8 94.4 95.1 94.8 95.0
ResNet-50 on ImageNet 76.0 75.8 75.5 75.9 76.0 75.9
MobileNet-v2 on ImageNet 70.5 70.2 69.5 71.1 71.0 70.4
EfficientNet-B2 on ImageNet 78.0 77.4 76.4 79.2 78.8 77.9

Table 2. A sample of accuracy vs. average number of cells required to store: 1) the continuous weight values and 2) the additional bits.
Numbers taken from Table 1 by computing the average number of cells considering the ones that are required to store the additional bits.
Baseline accuracy (without noise) is 95.1% for ResNet-18 on CIFAR-10, 76.6% for ResNet-50 on ImageNet, 71.8% for MobileNet-v2
on ImageNet, and 80.2% for EfficientNet-B2 on ImageNet. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive
redundancy, Sens.: sensitivity-driven adaptive redundancy. Results are averaged over three runs. Higher is better.

Robust Training: For robust training, we regularize the standard cross-entropy loss with the KL divergence in Eq. 1.
Specifically, the loss function is as follows:

L(w) = Ex,y∼pdata
[− log pw(y|x)] + λEx[DKL(pw(y|x)||pg(ŵ)(y|x))]. (8)

In our experiments, we add a noise (with a carefully adjusted standard deviation) as a perturbation δw (i.e., g(ŵ) = w + δw
is a noisy weight) during robust training, and we observe that the trained network is more robust to PCM noise and also to
pruning effects. This is because the final perturbation δw on the weights (g(ŵ) = w + δw) can be thought of as a noise
or the effect of pruning on the w. Although our framework does not involve a pruning step (pruning can be performed
independently as we show in Section 4.1), we believe that making NN weights more robust to pruning effects is an important
additional feature of our strategy. In particular, when we apply pruning, we have: δwj = 0 for a non-pruned weight wj ,
and δwj = −wj for a pruned weight wj . Recall that in magnitude pruning, only the small weights are set to zero, that is
δwj is equal to 0 (for large weights) or −wj (for small weights). In other words, δwj is always a small value, just like a
noise, therefore this strategy could provide robustness against pruning effects as well. Our experiments on CIFAR-10 and
ImageNet verify that robust training has a protective effect against PCM noise where robust coding strategies are not enough.

Robust Distillation: Distillation is a well-explored NN compression technique (Hinton et al., 2015). The idea is to first
train a teacher network to capture a smooth probability distribution on labels, and then train a smaller student network by
distilling the output probability information from the teacher. We use distillation to optimize a compressed model to be
robust to PCM noise via the noisy student loss:

Ls(ws) = (1− λ)Ex,y∼pdata
[− log pŵs(y|x)] + λEx[DKL(pwt(y|x)||pg(ŵs)(y|x))] (9)

where λ ∈ [0, 1] is a scalar, wt and ws are teacher and student weights, g(ŵs) = g(ws + ε(ws)) = ws + δws with ε(ws)
being the PCM noise and δws being the noise injected onto the student network’s weights. Although (Zhou et al., 2020)
provides an initial exploration into distillation for noisy storage, we leverage experimental data collected from real storage
devices to build a realistic model of the PCM noise.

3.3. End-to-End Learning

Finally, we explore a probabilistic, end-to-end learning approach for g(·) that jointly optimizes over the model compression
and the known characteristics of the noisy storage device. We assume access to a set of weights {Wj}Kj=1 from K models
that have been trained on the same dataset D – this serves as an empirical distribution over NN weights, as different
initializations of NNs typically converge to different local minima. Additionally, we assume that each weight is a sample
from a normal distribution Wij ∼ N (0, 1) (Dziugaite et al., 2018; Zhou et al., 2018).

To learn the representation of the NN weight, we maximize the mutual information (MI) between the original network
weight W and the compressed weight Z that has been corrupted by the noisy channel. Following (Choi et al., 2019), our

Neural Network Compression for Noisy Storage Devices

coding scheme can be represented by the following Markov chain2:

W → Ẑ → Z → Ŵ , (10)

where Ẑ denotes the compressed weight and Z = Ẑ + ε(Z) where ε(Z) denotes the input-dependent PCM noise. Then, we
obtain the following lower bound to the true MI:

I(W ;Z) = H(W)−H(W |Z) = −H(W |Z) + const. (11)
≥ Eqφ(Z|W)[log pθ(W |Z)] (12)

where qφ(Z|W) and pθ(W |Z) denote approximations to the true posteriors p(Z|W) and p(W |Z), respectively (Barber &
Agakov, 2003). We train an autoencoder gφ,θ(·) with a stochastic encoder and decoder to learn these variational posteriors.
The decoder is trained to output a set of reconstructed weights such that its predictions are close to those of the original
network. Notably, our approach differs from KD in that we learn the weight compression scheme rather than using a fixed
student network architecture.

4. Experimental Results
We empirically investigate: (1) whether our protection strategies for g(·) help to preserve NN accuracy; and (2) the
improvements in storage efficiency when using our approach. All experimental results are averaged over 3-5 runs. For
conciseness, we report the average and refer the reader to Appendix B for the complete results.

For all the classification experiments, we consider models trained on three image datasets: MNIST (LeCun et al., 2010),
CIFAR-10 (Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009). We use the standard train/val/test splits for
MNIST and CIFAR-10 datasets and the standard train/val split for the ImageNet dataset. For MNIST, we use two
architectures: LeNet (LeCun et al., 1998), and a 3-layer MLP. For CIFAR-10, we use two types of ResNets (He et al.,
2016): ResNet-18 and a slim version of ResNet-20. For ImageNet, we use pretrained ResNet-50 from PyTorch (He
et al., 2016), and lightweight models MobileNet-v2 (Sandler et al., 2018) and EfficientNet-B2 (Tan & Le, 2019). For the
regression experiment, we use the standard Neural Radience Fields (NeRF) model (Mildenhall et al., 2020) on the fern
dataset (https://github.com/bmild/nerf). For additional details on architectures and hyperparameters, we refer
the reader to Appendix A.

4.1. Sparsity and Sensitivity Driven Protection

We show the effect of sparsity- and sensitivity-driven protection in Figure 5 on ResNet-50 for ImageNet (Figure 8 for
CIFAR-10 in Appendix). The exact numerical results are given in Table 1.

In CIFAR-10 experiments, the number of small weights was Nsmall = 11M and the number of large weights was
Nlarge = 5.6K and number of cells per weight on average for adaptive redundancy is not more than 0.02 above the listed
numbers in the table. Similarly, in ImageNet experiments, Nsmall = 25.4M, Nlarge = 15K and the difference between the
number of cells per weight on average and the listed number is always smaller than 0.06.

In Table 1, we provide detailed experimental results on the effect of each sparsity- and sensitivity-driven strategy with
ResNet-10 on CIFAR-10; and ResNet-50, MobileNet-v2, and EfficientNet-B2 on ImageNet. We provide the required
number of cells per weight to store the continues value of the weight (3rd-12th columns) and the additional bits to store for
each strategy (last column) separately. In Table 2, we report some of the results from Table 1 again, this time by providing
the number of cells per parameter required to store 1) the continuous weight value and 2) the additional bits. Recall that we
can store 2 bits or 1.8 bits digitally in one PCM cell with the ideal or realistic baselines, respectively. It is seen from the
two tables that sparsity driven protection strategies are enough for ResNet-18 on CIFAR-10 to preserve the classification
accuracy (95.10%) with 4 cells per weight. Moreover the accuracy with 2.5 cells per weight. is only 0.1% less than the
baseline accuracy (95.10%). Similar observation can be made for the ImageNet results as well. Table 1 also shows that sign
protection is a critical step: for instance, the AM+AR and SP+AM+AR rows indicate that sign protection can increase the
accuracy from 58% AM+AR to 94.4% SP+AM+AR on CIFAR-10.3

We also combine sparsity driven protection with pruning. Results on 90% pruned ResNet-18 (on CIFAR-10) are given in
Table 15 in Appendix B.2. We follow the standard pruning procedure: first train the model as usual, then prune 90% of the

2Here, we introduce the new notation Ẑ and Z for the compressed and noisy version of the weights because, in the end-to-end learning
approach, we have neural encoder and decoder networks to compress (W → Ẑ) and decompress (Z → Ŵ) the weights. This notation

https://github.com/bmild/nerf

Neural Network Compression for Noisy Storage Devices

Figure 5. ResNet-50 on ImageNet. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy, AP: adaptive
protection (AM+AR), Sens.: sensitivity-driven adaptive redundancy.

weights, and then retrain the remaining non-pruned weights by keeping the pruned weights frozen at value zero. In our
experiment, we retrain the pruned model for 20 epochs. Then for the storage of this pruned model, we assume that the
pruning mask could be stored using the compressed sparse row (CSR) or compressed sparse column (CSC) format and
Huffman coding, as detailed in (Han et al., 2016). This would require at most 0.5 bits per weight. Then we need to store the
continuous weight values of the non-pruned weights. Note that this is the standard technique for storing a pruned network:
(1) first store the pruning mask, (2) then store the values of the non-pruned weights. In Table 15, the number of cells we
report are computed as follows:

avg. # of cells per weight =
of pruned weights
total # of weights

× (avg. # of cells per non-pruned weight) + 0.25,

translating the number of cells per non-pruned weight to number of cells per (pruned or non-pruned) weight and also
considering additional 0.25 cells per parameter to store the pruning mask. Note that the accuracy of the pruned model
without noise is 94.8% and we get 94.2% test accuracy with PCM noise using only 1.35 cells per weight. Compared to
the realistic digital baseline (no compression and each 32-bit weight is digitally stored on 18 PCM cells), we provide
18
1.35 = 13.3× more efficient storage with analog storage combined with our strategies and 90% pruning.

4.2. Robust Training and Distillation

We compare robust training with naive training (training with no noise) in Table 3 on ResNet-18 (on CIFAR-10) and on
ResNet-50 (on ImageNet). In our experiments, we use λ = 0.5 as the coefficient of the KL term in the loss. We experimented
with different combinations of the sparsity and sensitivity driven strategies, and in all cases, robust training provides better
robustness against PCM noise than the naive training. Robust training provides robustness against pruning as well. When
ResNet-18 trained without noise is pruned with 90% sparsity, the accuracy drops from 95.1% to 90.2%. However, the same
model trained with N(0, 0.006) gives 95.0% accuracy after 90% pruning.

Table 4 shows the distillation results on ResNet-20 distilled from ResNet-18 (on CIFAR-10) with PCM noise applied at test
time. We compare three networks: (1) a student ResNet-20 distilled without noise injection, (2) a student ResNet-20 distilled
with Gaussian noise injection, and (3) a teacher ResNet-20 (a baseline) trained without noise. As shown in Table 4, student
ResNet-20 distilled with noise injection outperforms both teacher ResNet-20 and student ResNet-20 distilled without noise
when weights are perturbed by PCM at test time. (see Appendix B.4 for additional results.)

was not necessary in the previous sections, as we did not have such an encoder-decoder pair.
3We would like to note that it is possible to improve the performance of the noisy NNs further by retraining them after the weights are

read from the PCM cells. In fact, our experiments suggest that for the models stored with SP+AM+AR and SP+Am+AR+Sens. strategies
using 1 cell per weight, retraining recovers the original accuracy in 1− 3 epochs. However, we believe it is not realistic to assume that the
stored NNs can be retrained further since we are particularly interested in resource-constrained edge devices.

Neural Network Compression for Noisy Storage Devices

Naive Train Robust Train Robust Train Average
(no noise) (with σ = 0.01) (with σ = 0.006) Number of Cells

No Noise 95.10 95.50 95.60 -
PCM (No Protection) 9.70 8.30 9.90 1
PCM+SP 9.70 10.63 10.33 1.5

CIFAR-10 PCM+AP 27.69 86.20 81.83 1.5
PCM+SP+AP 90.60 94.73 94.80 2
PCM+AP+Sens 36.21 86.73 78.93 2
PCM+SP+AP+Sens 94.95 95.03 95.03 2.5

No Noise 76.60 76.60 76.60 -
PCM (No Protection) 0.1 0.1 0.1 1
PCM+SP 0.1 0.4 0.2 1.5

ImageNet PCM+AP 0.1 0.002 0.1 1.5
PCM+SP+AP 75.50 77.10 77.80 2
PCM+AP+Sens 0.3 0.6 0.5 2
PCM+SP+AP+Sens 75.90 76.20 76.50 2.5

Table 3. Robust training vs. naive training for ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet. SP: sign protection, AP: adaptive
protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.: sensitivity-driven adaptive redundancy. The average number
of cells per weight to store the continuous weight value is 1 in all experiments. The reported average number of cells in the rightmost
column includes 1) the number of cells required to store the continuous weight value and 2) the number of cells required to store the
additional bits.

Avg. # of Cells Teacher Teacher Student Noisy Student Avg. # of Cells
for Cont. Weights ResNet-18 ResNet-20 ResNet-20 ResNet-20 in Total

No Noise - 95.70 92.50 92.90 93.00 -

PCM+AP 3 16.23 48.38 73.38 81.75 3.5

PCM+SP+AP 1
3

93.35
94.78

86.30
89.73

88.58
89.98

90.65
91.33

2
4

PCM+AP+Sens. 1 9.60 29.68 38.18 69.49 2

PCM+SP+AP+Sens. 1
3

93.36
94.90

88.40
89.92

88.96
90.44

91.10
91.78

2.5
4.5

Table 4. Accuracy of ResNet-20 distilled from ResNet-18 on CIFAR-10. The average number of cells per weight to store the continuous
weight value is given in the leftmost column. The reported average number of cells in the rightmost column includes 1) the number of
cells required to store the continuous weight value and 2) the number of cells required to store the additional bits.

4.3. Analog-Digital Comparison

We also consider quantization as a way to improve the efficiency of digital storage. Table 5 shows a comparison between
analog storage improved with our strategies and digital storage improved with quantization techniques. We consider both
the ideal (2 bits per cell) and realistic baselines (1.8 bits per cell). For digital storage, we apply quantization using different
techniques from the literature (Jacob et al., 2018; Banner et al., 2019). We find the number of cells to store one quantized
weight in both ideal and realistic cases. Then we adjust the number of cells used to store one weight in analog PCMs to
be the same as the digital PCMs for both baselines, by adapting the redundancy for large and less sensitive weights. For
instance, when (Banner et al., 2019) performs 4-bit quantization, each parameter is represented by 4 bits. In the ideal
baseline, this would require 2 cells per parameter. We adjust the parameters in our robust strategies so that the number of
cells required to store one parameter is 2 and report the result (76.02) in the ”PCM (analog) + our robust strategies” row
under ”Ideal” column. We repeat the same procedure for the realistic baseline which requires 2.22 cells per parameter to

Neural Network Compression for Noisy Storage Devices

Ideal Realistic

PCM (digital) + 8-bit quantization with (Jacob et al., 2018) 68.30 68.30
∼ 4 cells per parameter PCM (digital) + 8-bit quantization with ACIQ (Banner et al., 2019) 73.60 73.60

PCM (analog) + our robust strategies 76.02 76.08

PCM (digital) + 4-bit quantization with (Jacob et al., 2018) 72.50 72.50
∼ 2 cells per parameter PCM (digital) + 4-bit quantization with ACIQ (Banner et al., 2019) 73.80 73.80

PCM (analog) + our robust strategies 75.50 75.62

Table 5. Digital vs. analog storage for ResNet-50 on ImageNet. For digital storage, number of cells is reduced via 4-bit and 8-bit
quantization techniques (Jacob et al., 2018; Banner et al., 2019). For analog storage, it is reduced via our strategies. For fair comparison,
the number of PCM cells per weight in analog storage is adjusted to be the same as the digital storage (in both ideal and realistic baselines).
For instance, when (Banner et al., 2019) performs 4-bit quantization, each parameter is represented by 4 bits. In the ideal baseline, this
would require 2 cells per parameter. We adjust the parameters in our robust strategies so that the number of cells required to store one
parameter is 2 and report the result (76.02) in the ”PCM (analog) + our robust strategies” row under ”Ideal” column. We repeat the same
procedure for the realistic baseline which requires 2.22 cells per parameter to store 4 bits. We report the result (76.08) in the ”PCM
(analog) + our robust strategies” row under ”Realistic” column.

store 4 bits. We report the result (76.08) in the ”PCM (analog) + our robust strategies” row under ”Realistic” column. As
shown in Table 5, noisy analog storage improved by our strategies outperforms digital storage of quantized weights. We
do not compare against more aggressive quantization techniques (Banner et al., 2018; Choi et al., 2020; Fan et al., 2020;
Khoram & Li, 2018; Oktay et al., 2019; Wiedemann et al., 2020) that can achieve higher efficiency in digital storage since
they incur a huge complexity with multiple retraining stages.

4.4. Regression Models

We test our strategies on a regression setting as well. For the regression task, we consider the Neural Radiance Fields
(NeRF) framework (Mildenhall et al., 2020) that contains a neural network to model the relation between 1) the 3D
coordinates of a point in a given 3D scene and the view direction; and 2) the view-dependent continuous color4 and
volume density at that 3D point. More precisely, a NeRF model takes 3D positions (x, y, z) of a point in 3D space and a
particular direction to view the 3D scene (θ, φ); and outputs a view-dependent RGB color and a volume density at that
point. We note that this is a nontrivial task that has been attracting significant interest from the computer graphics and vision
communities since the first paper in 2020 (Mildenhall et al., 2020). We report the PSNR of the NeRF model on fern dataset
(https://github.com/bmild/nerf) that was generated by the authors of (Mildenhall et al., 2020) under the effect
of PCM noise in Table 6. Though the PSNR is affected severely by the PCM noise when there is no protection, our robust
strategies help to preserve the PSNR. In particular, the PSNR is 24.75 dB with an average number of 4.5 cells, which is
even higher than the baseline (without noise) PSNR 24.73 dB. Additionally, we note that we would normally expect to
see a more severe effect on PSNR by the PCM noise. This is because the exact values of the model outputs matter more
in a regression setting than in a discriminative one, since the classifier’s accuracy can remain unchanged even with small
perturbations to the logits. However, as can be seen from Table 6, PSNR is still within an acceptable range once we apply
the robust strategies. We believe this is due to the discretization at the evaluation phase, which may cancel out some noise
on the output.

As a final note, the storage density for the NeRF model or other 3D regression models could be improved further through
model compression techniques such as (Isik, 2021; Isik et al., 2021a; Bird et al., 2021).

4.5. End-to-End Learning

Finally, we explore the effectiveness of the end-to-end learning scheme in which we train an autoencoder on a set of model
weights. We generate two sets of 2-D Gaussian mixtures: an “easy” task in which we first sample a two-dimensional mean
vector µ1 ∈ R2 where µ1i ∼ U [−1, 0) and µ2 ∈ R2 where µ2i ∼ U [0, 1) for i = {1, 2}. After sampling these means, we
draw a set of 50K points for the two mixture components: x1 ∼ N (µ1, I) and x2 ∼ N (µ2, I). This ensures that the two
mixture components are well-separated. For the “hard” task, we sample overlapping means: both components of µ1 and µ2

4Color is then discretized during evaluation.

https://github.com/bmild/nerf

Neural Network Compression for Noisy Storage Devices

PSNR (dB)

No protection (32 cells) 5.66
SP+AM+AR (4 cells) 23.08
SP+AM+AR (3 cells) 20.41
SP+AM+AR (2 cells) 18.20
SP+AM+AR+Sens. (4.5 cells) 24.75
SP+AM+AR+Sens. (3.5 cells) 22.98
SP+AM+AR+Sens. (2.5 cells) 20.65

Table 6. NeRF (Mildenhall et al., 2020) model on fern dataset (https://github.com/bmild/nerf). A sample of PSNR vs.
average number of cells required to store 1) the continuous weight values and 2) the additional bits. Baseline PSNR (without noise)
is 24.73 dB. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive
redundancy. Higher is better.

are drawn from U [−1,+1] before sampling from their respective mixture components. We generate 50 datasets per task,
where each dataset has 50K data points.

We train 50 different logistic regression models on each of the datasets for both the “easy” and “hard” tasks (each model has
3 parameters). After training the logistic regression models, we use an autoencoder with MLP encoder and MLP decoder
architectures and ReLU nonlinearities, as shown in Table 7. The autoencoder for both the ”easy” and ”hard” tasks is trained
for 10 epochs with a batch size of 100 using the Adam optimizer with learning rate = 0.001, β1 = 0.9, β2 = 0.999, and
early stopping on a held-out validation set.

Name Component
(Encoder) Input Layer Linear 3→ 1, ReLU

(Encoder) Hidden Layer Linear 1→ 1
(Decoder) Hidden Layer Linear 1→ 1, ReLU
(Decoder) Output Layer Linear 1→ 3

Table 7. MLP-based autoencoder architecture for synthetic experiments, trained on 50 logistic regression classifiers per task.

We test the autoencoder on both Gaussian and PCM noise: that is, we corrupt the 1-dimensional encoder output (z-
representation of the classifier weights) with the appropriate perturbation before passing in the encoded representation into
the decoder. Figure 6 provides an illustration of the autoencoding process for the PCM array, which is analogous to the
Gaussian noise setup. For the easy task with Gaussian noise, the autoencoder achieves an accuracy of 95.2%; for PCM
noise, it achieves 91.8% accuracy. For the hard task with Gaussian noise, the autoencoder achieves an average accuracy of
78.8% across all classifiers; for PCM channel noise, it achieves 78.6% on average across all 50 classifiers.

Figure 6. Illustration of the autoencoder used for the logistic regression experiments. The input weight W is mapped to a compressed
representation Ẑ by an encoder module, which is then perturbed by the PCM (or analogously, Gaussian) noise channel to become a
perturbed representation Z. This perturbed representation is then passed to the decoder, which produces a reconstructed weight Ŵ .

Interestingly, we find that the 1-D classifier representations in the autoencoder’s latent space is semantically meaningful. In
Figure 7, we qualitatively analyze the learned representations of the logistic regression classifier weights. In Figure 7(a),
we plot all 50 datasets of the Gaussian mixtures (“easy task”) as well as the true decision boundaries for each of the 50
logistic regression models, each boundary colored by the magnitude of its z-representation as learned by the autoencoder.
We plot the same for the “hard task” in Figure 7(b). For the easy task, we note that the classifiers are encoded by their

https://github.com/bmild/nerf

Neural Network Compression for Noisy Storage Devices

relative location in input-space: those that are in the lower left corner of the scatter plot have smaller magnitudes than those
on the upper right. For the hard task, however, the z-representations appear to be fairly random – at a first glance, there does
not appear to be a particular correlation between the magnitudes of the z-encodings and the original classifier weights.

We further explore this phenomenon for the hard task in Figure 7(c-d). For two particular datasets (though the trend holds
across all 50 datasets), we color the original data points by their mixture component as well as the true decision boundary
by the magnitude of its z-encoding. As shown in Figure 7(c) and (d), we find that the autoencoder has learned to map all
classifiers with the positive class to the left of the decision boundary to z-representations with large magnitude; conversely,
those with the positive class to the right of the decision boundary are encoded to z-representations with smaller magnitudes.
Through this preliminary investigation, we demonstrate that the end-to-end approach for learning both the compression
scheme while taking the physical constraints of the storage device into account shows promise.

(a) Logistic regression experiment, easy task. (b) Logistic regression experiment, hard task.

(c) Encoded classifier with large magnitude. (d) Encoded classifier with small magnitude.

Figure 7. (a-b) Qualitative visualizations of the learned representations in the logistic regression experiment. (a) shows all 50 datasets with
the true decision boundaries colored by the magnitude of their z-representations for the “easy task”, while (b) shows the analogous plot
for the harder task with overlapping means. (c-d) Qualitative visualizations of the learned representations for the hard logistic regression
task. We find in (c) that classifiers with large magnitudes in z-space have the positive labels to the left of the decision boundary, while (d)
those with small magnitudes have the positive labels to the right of the decision boundary.

5. Related Work
In this section, we briefly summarize the related work in model compression and analog computing in NNs.

Model Compression. Compression of NN parameters has a rich history starting from the early works of (Cun et al., 1990;
Hassibi et al., 1993), with techniques such as pruning (Frankle & Carbin, 2019; Han et al., 2016; 2015; Isik et al., 2021b;
2022; Lee et al., 2018; Singh & Alistarh, 2020; Sehwag et al., 2020; Kundu et al., 2021; Isik et al., 2023; Barnes et al.,
2020; Pase et al., 2022), quantization, (Khoram & Li, 2018; Banner et al., 2018; Choi et al., 2020; Fan et al., 2020; Young
et al., 2020) and KD (Hinton et al., 2015; Polino et al., 2018; Xie et al., 2020) among others (Deng et al., 2020). (Papernot

Neural Network Compression for Noisy Storage Devices

et al., 2016) explores KD as a way to encourage robustness to adversarial perturbations in input space, while we specifically
desire robustness to weight perturbations. Although probabilistic approaches to model compression have been explored
in (Louizos et al., 2017; Reagan et al., 2018; Havasi et al., 2019), we additionally consider the physical constraints of the
storage device used for memory as part of our learning scheme. Our end-to-end approach is most similar to (Oktay et al.,
2019), in that they also learn a decoder to map NN weights into a latent space prior to quantization. However, our method is
different in that our autoencoder also learns the appropriate compression scheme (with an encoder), we inject noise into our
compressed weights rather than quantizing, and we do not require training a NN from scratch.

Analog Computing in NNs. A complementary line of work utilizes analog components in NN training and/or inference
(Joshi et al., 2020; Schmid et al., 2000; Bo et al., 2000; Binas et al., 2016; Du et al., 2018; Burr et al., 2019; Zhou et al.,
2021). The common theme is performing computation in the analog domain to reduce the overall computation power, but
this procedure may be noisy or inflexible. In contrast, our work focuses on storing NN models in analog cells – once the
parameters are read from memory, the actual computation happens in the digital domain.

6. Discussion and Conclusion
In this work, we formalized the problem of jointly optimizing model compression and memory resource allocation on noisy
analog storage devices. We introduced novel coding techniques for preserving NN accuracy even in the presence of weight
perturbations, and demonstrated their effectiveness on models trained on MNIST, CIFAR-10, and ImageNet. Additionally,
we explored different training strategies that can be coupled with existing compression techniques such as distillation, and
provided an initial foray into a fully end-to-end learning scheme for the joint problem.

Limitations. First, the actual deployment of our approach may require some level of quantization in practice – directly
writing analog values on a physical storage device requires complex read/write circuitry, which may not be feasible on
current systems. For future work, we aim to investigate this bottleneck on physical hardware devices. Second, our end-to-end
learned compression scheme assumes that all models share identical structures and are trained on the same dataset. Extending
our framework to handle models trained on various datasets/tasks is an exciting research direction.

Broader Impacts. Although our work aims to reduce power and memory consumption through more efficient NN model
compression, it is still susceptible to propagating existing biases in the original trained network. While the research
community has mainly evaluated the success of NN compression methods by only considering the compression ratio-
accuracy trade-off, a recent study has shown that existing compression methods may disproportionately impact different
subgroups of the data (Hooker et al., 2020). Unfortunately, this implies that we will not be able to detect or prevent potential
amplification of existing biases once the network is deployed. This speaks to the fundamental importance in the careful
curation of datasets and selection of training objectives to mitigate model bias.

7. Acknowledgement
The authors would like to thank TSMC Corporate Research for technical discussions; and Robert M. Radway and Pulkit
Tandon for their constructive feedback. BI is supported by the Stanford Graduate Fellowship and a Meta research award.
KC is supported by the NSF GRFP, Stanford Graduate Fellowship, and Two Sigma Diversity PhD Fellowship. The
Stanford authors’ work was supported by NSF (#1651565, #1522054, #1733686), ONR (N00014-19-1-2145), AFOSR
(FA9550-19-1-0024), ARO (W911NF2110125), and Amazon AWS.

References
Achille, A., Paolini, G., and Soatto, S. Where is the information in a deep neural network? arXiv preprint arXiv:1905.12213,

2019.

Banner, R., Hubara, I., Hoffer, E., and Soudry, D. Scalable methods for 8-bit training of neural networks. In Advances in
neural information processing systems, pp. 5145–5153, 2018.

Banner, R., Nahshan, Y., and Soudry, D. Post training 4-bit quantization of convolutional networks for rapid-deployment.
Advances in Neural Information Processing Systems, 32, 2019.

Neural Network Compression for Noisy Storage Devices

Barber, D. and Agakov, F. V. The im algorithm: a variational approach to information maximization. In Advances in neural
information processing systems, pp. None, 2003.

Barnes, L. P., Inan, H. A., Isik, B., and Özgür, A. rtop-k: A statistical estimation approach to distributed sgd. IEEE Journal
on Selected Areas in Information Theory, 1(3):897–907, 2020.

Binas, J., Neil, D., Indiveri, G., Liu, S.-C., and Pfeiffer, M. Precise neural network computation with imprecise analog
devices. arXiv preprint arXiv:1606.07786, 2016.

Bird, T., Ballé, J., Singh, S., and Chou, P. A. 3d scene compression through entropy penalized neural representation
functions. In 2021 Picture Coding Symposium (PCS), pp. 1–5. IEEE, 2021.

Bo, G. M., Caviglia, D. D., and Valle, M. An on-chip learning neural network. In Proceedings of the IEEE-INNS-ENNS
International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives
for the New Millennium, volume 4, pp. 66–71 vol.4, 2000. doi: 10.1109/IJCNN.2000.860751.

Bucilua, C., Caruana, R., and Niculescu-Mizil, A. Model compression. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’06, pp. 535–541, New York, NY, USA,
2006. Association for Computing Machinery. ISBN 1595933395. doi: 10.1145/1150402.1150464. URL https:
//doi.org/10.1145/1150402.1150464.

Burr, G. W., Ambrogio, S., Narayanan, P., Tsai, H., Mackin, C., and Chen, A. Accelerating deep neural networks with
analog memory devices. In 2019 China Semiconductor Technology International Conference (CSTIC), pp. 1–3, 2019.
doi: 10.1109/CSTIC.2019.8755642.

Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., and Chang, S.-F. An exploration of parameter redundancy in
deep networks with circulant projections. In Proceedings of the IEEE international conference on computer vision, pp.
2857–2865, 2015.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. Model compression and acceleration for deep neural networks: The principles,
progress, and challenges. IEEE Signal Processing Magazine, 35(1):126–136, 2018.

Choi, K., Tatwawadi, K., Grover, A., Weissman, T., and Ermon, S. Neural joint source-channel coding. In International
Conference on Machine Learning, pp. 1182–1192. PMLR, 2019.

Choi, Y., El-Khamy, M., and Lee, J. Universal deep neural network compression. IEEE Journal of Selected Topics in Signal
Processing, 2020.

Cun, Y. L., Denker, J. S., and Solla, S. A. Optimal Brain Damage, pp. 598–605. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990. ISBN 1558601007.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., et al. Large
scale distributed deep networks. In Advances in neural information processing systems, pp. 1223–1231, 2012.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In
CVPR09, 2009.

Deng, L., Li, G., Han, S., Shi, L., and Xie, Y. Model compression and hardware acceleration for neural networks: A
comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

Du, Y., Du, L., Gu, X., Du, J., Wang, X. S., Hu, B., Jiang, M., Chen, X., Iyer, S. S., and Chang, M.-C. F. An analog neural
network computing engine using cmos-compatible charge-trap-transistor (ctt). IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(10):1811–1819, 2018.

Dziugaite, G. K., Arpino, G., and Roy, D. M. Towards generalization guarantees for sgd: Data-dependent pac-bayes priors.
2018.

Engel, J. H., Eryilmaz, S. B., Kim, S., BrightSky, M., Lam, C., Lung, H., Olshausen, B. A., and Wong, H. . P. Capacity
optimization of emerging memory systems: A shannon-inspired approach to device characterization. In 2014 IEEE
International Electron Devices Meeting, pp. 29.4.1–29.4.4, 2014.

https://doi.org/10.1145/1150402.1150464
https://doi.org/10.1145/1150402.1150464

Neural Network Compression for Noisy Storage Devices

Fagbohungbe, O. and Qian, L. Benchmarking inference performance of deep learning models on analog devices. arXiv
preprint arXiv:2011.11840, 2020.

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jégou, H., and Joulin, A. Training with quantization noise for
extreme model compression. 2020.

Fong, S. W., Neumann, C. M., and Wong, H.-S. P. Phase-change memory—towards a storage-class memory. IEEE
Transactions on Electron Devices, 64(11):4374–4385, 2017.

Frankle, J. and Carbin, M. The lottery ticket hypothesis: Finding sparse, trainable neural networks. International Conference
on Learning Representations (ICLR), 2019.

Grosse, R. and Martens, J. A kronecker-factored approximate fisher matrix for convolution layers. In International
Conference on Machine Learning, pp. 573–582, 2016.

Guo, Y., Yao, A., and Chen, Y. Dynamic network surgery for efficient dnns. In Advances in neural information processing
systems, pp. 1379–1387, 2016.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both weights and connections for efficient neural network. In Advances in
neural information processing systems, pp. 1135–1143, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization
and huffman coding. International Conference on Learning Representations (ICLR), 2016.

Hassibi, B., Stork, D. G., Wolff, G., and Watanabe, T. Optimal brain surgeon: Extensions and performance comparisons. In
Proceedings of the 6th International Conference on Neural Information Processing Systems, NIPS’93, pp. 263–270, San
Francisco, CA, USA, 1993.

Havasi, M., Peharz, R., and Hernández-Lobato, J. M. Minimal random code learning: Getting bits back from compressed
model parameters. In International Conference on Learning Representations (ICLR), 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770–778, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. In NIPS Deep Learning and
Representation Learning Workshop, 2015. URL http://arxiv.org/abs/1503.02531.

Hooker, S., Moorosi, N., Clark, G., Bengio, S., and Denton, E. Characterising bias in compressed models. arXiv preprint
arXiv:2010.03058, 2020.

Isik, B. Neural 3d scene compression via model compression. arXiv preprint arXiv:2105.03120, 2021.

Isik, B. and Weissman, T. Learning under storage and privacy constraints. In 2022 IEEE International Symposium on
Information Theory (ISIT), pp. 1844–1849. IEEE, 2022.

Isik, B., Chou, P., Hwang, S. J., Johnston, N., and Toderici, G. Lvac: Learned volumetric attribute compression for point
clouds using coordinate based networks. Frontiers in Signal Processing, pp. 65, 2021a.

Isik, B., No, A., and Weissman, T. Rate-distortion theoretic model compression: Successive refinement for pruning. arXiv
preprint arXiv:2102.08329, 2021b.

Isik, B., Weissman, T., and No, A. An information-theoretic justification for model pruning. In International Conference on
Artificial Intelligence and Statistics, pp. 3821–3846. PMLR, 2022.

Isik, B., Pase, F., Gunduz, D., Weissman, T., and Michele, Z. Sparse random networks for communication-efficient
federated learning. In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=k1FHgri5y3-.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H., and Kalenichenko, D. Quantization and training
of neural networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2704–2713, 2018.

http://arxiv.org/abs/1503.02531
https://openreview.net/forum?id=k1FHgri5y3-
https://openreview.net/forum?id=k1FHgri5y3-

Neural Network Compression for Noisy Storage Devices

Joshi, V., Gallo, M. L., Haefeli, S., Boybat, I., Nandakumar, S., Piveteau, C., Dazzi, M., Rajendran, B., Sebastian,
A., and Eleftheriou, E. Accurate deep neural network inference using computational phase-change memory. Nature
Communications, 11, 2020.

Khoram, S. and Li, J. Adaptive quantization of neural networks. In International Conference on Learning Representations,
2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers of features from tiny images. 2009.

Kundu, S., Nazemi, M., Beerel, P. A., and Pedram, M. Dnr: A tunable robust pruning framework through dynamic network
rewiring of dnns. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, pp. 344–350, 2021.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Cortes, C., and Burges, C. Mnist handwritten digit database, 2010.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature, 521(7553):436–444, 2015.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot network pruning based on connection sensitivity. arXiv preprint
arXiv:1810.02340, 2018.

Louizos, C., Ullrich, K., and Welling, M. Bayesian compression for deep learning. arXiv preprint arXiv:1705.08665, 2017.

Martens, J. New insights and perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193, 2014.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. Nerf: Representing scenes as neural
radiance fields for view synthesis. In European conference on computer vision, pp. 405–421. Springer, 2020.

Nandakumar, S. R., Boybat, I., Joshi, V., Piveteau, C., Le Gallo, M., Rajendran, B., Sebastian, A., and Eleftheriou, E.
Phase-change memory models for deep learning training and inference. In 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), pp. 727–730, 2019. doi: 10.1109/ICECS46596.2019.8964852.

Oktay, D., Ballé, J., Singh, S., and Shrivastava, A. Scalable model compression by entropy penalized reparameterization.
arXiv preprint arXiv:1906.06624, 2019.

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a defense to adversarial perturbations against
deep neural networks. In 2016 IEEE Symposium on Security and Privacy (SP), pp. 582–597. IEEE, 2016.

Pase, F., Isik, B., Gunduz, D., Weissman, T., and Zorzi, M. Efficient federated random subnetwork training. In Workshop on
Federated Learning: Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022.

Polino, A., Pascanu, R., and Alistarh, D. Model compression via distillation and quantization. arXiv preprint
arXiv:1802.05668, 2018.

Reagan, B., Gupta, U., Adolf, B., Mitzenmacher, M., Rush, A., Wei, G.-Y., and Brooks, D. Weightless: Lossy weight
encoding for deep neural network compression. In International Conference on Machine Learning, pp. 4324–4333, 2018.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520, 2018.

Schmid, A., Leblebici, Y., and Mlynek, D. Mixed analogue-digital artificial-neural-network architecture with on-chip
learning. Circuits, Devices and Systems, IEE Proceedings -, 146:345 – 349, 01 2000. doi: 10.1049/ip-cds:19990685.

Sehwag, V., Wang, S., Mittal, P., and Jana, S. Hydra: Pruning adversarially robust neural networks. Advances in Neural
Information Processing Systems (NeurIPS), 7, 2020.

Shannon, C. E. A mathematical theory of communication. ACM SIGMOBILE mobile computing and communications
review, 5(1), 2001.

Singh, S. P. and Alistarh, D. Woodfisher: Efficient second-order approximations for model compression. arXiv preprint
arXiv:2004.14340, 2020.

Neural Network Compression for Noisy Storage Devices

Tan, M. and Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference
on machine learning, pp. 6105–6114. PMLR, 2019.

Van Nguyen, T., Nosratinia, A., and Divsalar, D. The design of rate-compatible protograph ldpc codes. IEEE Transactions
on communications, 60(10):2841–2850, 2012.

Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinč, T., Neumann, D., Nguyen, T., Schwarz, H.,
Wiegand, T., Marpe, D., and Samek, W. Deepcabac: A universal compression algorithm for deep neural networks. IEEE
Journal of Selected Topics in Signal Processing, 14(4):700–714, 2020.

Wong, H.-S. P., Raoux, S., Kim, S., Liang, J., Reifenberg, J. P., Rajendran, B., Asheghi, M., and Goodson, K. E. Phase
change memory. Proceedings of the IEEE, 98(12):2201–2227, 2010.

Wu, J., Chen, Y., Khwa, W., Yu, S., Wang, T., Tseng, J., Chih, Y., and Diaz, C. H. A 40nm low-power logic compatible
phase change memory technology. In 2018 IEEE International Electron Devices Meeting (IEDM), pp. 27–6. IEEE, 2018.

Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. Self-training with noisy student improves imagenet classification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698, 2020.

Young, S. I., Zhe, W., Taubman, D., and Girod, B. Transform quantization for cnn compression. arXiv preprint
arXiv:2009.01174, 2020.

Zarcone, R., Paiton, D., Anderson, A., Engel, J., Wong, H. P., and Olshausen, B. Joint source-channel coding with neural
networks for analog data compression and storage. In 2018 Data Compression Conference, pp. 147–156. IEEE, 2018.

Zarcone, R. V., Engel, J. H., Eryilmaz, S. B., Wan, W., Kim, S., BrightSky, M., Lam, C., Lung, H.-L., Olshausen, B. A.,
and Wong, H.-S. P. Author correction: Analog coding in emerging memory systems. Scientific reports, 10(1):13404,
August 2020. ISSN 2045-2322. doi: 10.1038/s41598-020-70121-y. URL https://europepmc.org/articles/
PMC7400509.

Zheng, X., Zarcone, R., Paiton, D., Sohn, J., Wan, W., Olshausen, B., and Wong, H.-S. P. Error-resilient analog image
storage and compression with analog-valued rram arrays: an adaptive joint source-channel coding approach. In 2018
IEEE International Electron Devices Meeting (IEDM), pp. 3–5. IEEE, 2018.

Zhou, C., Kadambi, P., Mattina, M., and Whatmough, P. N. Noisy machines: Understanding noisy neural networks and
enhancing robustness to analog hardware errors using distillation. arXiv preprint arXiv:2001.04974, 2020.

Zhou, C., Zhuang, Q., Mattina, M., and Whatmough, P. N. Information contraction in noisy binary neural networks and its
implications. arXiv preprint arXiv:2101.11750, 2021.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz, P. Non-vacuous generalization bounds at the imagenet scale: a
pac-bayesian compression approach. arXiv preprint arXiv:1804.05862, 2018.

https://europepmc.org/articles/PMC7400509
https://europepmc.org/articles/PMC7400509

Neural Network Compression for Noisy Storage Devices

Appendix
A. Additional Experimental Details

We conducted our experiments on NVIDIA Titan XP GPUs on an internal cluster server. We used 2 GPUs for ImageNet
experiments and 1 GPU for the rest of the experiments. In the following subsection, we provide additional details on the
models, model architectures, and hyperparameters used in our experiments.

A.1. MNIST

The architectures for LeNet and the MLP are shown in Tables 8 and 9 respectively:

Name Component
conv1 [5× 5 conv, 20 filters, stride 1], ReLU, 2× 2 max pool
conv2 [5× 5 conv, 50 filters, stride 1], ReLU, 2× 2 max pool
Linear Linear 800→ 500, ReLU

Output Layer Linear 500→ 10

Table 8. LeNet architecture for MNIST experiments.

Name Component
Input Layer Linear 784→ 100, ReLU

Hidden Layer Linear 100→ 100, ReLU
Output Layer Linear 100→ 10

Table 9. MLP architecture for MNIST experiments.

For both the LeNet and MLP classifiers, we use a batch size of 100 and train for 100 epochs, early stopping at the best
accuracy on the validation set. We use the Adam optimizer with learning rate = 0.001, and β1 = 0.9, β2 = 0.999 with
weight decay = 5e−4. For knowledge distillation, we use a temperature parameter of T = 1.5 and equally weight the
contributions of the student network’s cross entropy loss and the distillation loss (λ = 0.5).

A.2. CIFAR-10

We provide the architectural details for the ResNet-18 and the slim ResNet-20 used in our experiments in Tables 10 and 11
below:

Name Component
conv1 3× 3 conv, 64 filters. stride 1, BatchNorm

Residual Block 1
[
3× 3 conv, 64 filters
3× 3 conv, 64 filters

]
× 2

Residual Block 2
[
3× 3 conv, 128 filters
3× 3 conv, 128 filters

]
× 2

Residual Block 3
[
3× 3 conv, 256 filters
3× 3 conv, 256 filters

]
× 2

Residual Block 4
[
3× 3 conv, 512 filters
3× 3 conv, 512 filters

]
× 2

Output Layer 4× 4 average pool stride 1, fully-connected, softmax

Table 10. ResNet-18 architecture for CIFAR-10 experiments.

For both ResNet-18 and slim ResNet-20, we use a batch size of 128 and train for 350 epochs, early stopping at the best
accuracy on the validation set. We use SGD with learning rate = 0.1, and momentum = 0.9 and weight decay = 5e−4.

A.3. IMAGENET

We provide the architectural details for the ResNet-50 used in our experiments in Table 12.

Neural Network Compression for Noisy Storage Devices

Name Component
conv1 3× 3 conv, 16 filters. stride 1, BatchNorm

Residual Block 1
[
3× 3 conv, 16 filters
3× 3 conv, 16 filters

]
× 2

Residual Block 2
[
3× 3 conv, 32 filters
3× 3 conv, 32 filters

]
× 2

Residual Block 3
[
3× 3 conv, 64 filters
3× 3 conv, 64 filters

]
× 2

Output Layer 7× 7 average pool stride 1, fully-connected, softmax

Table 11. Slim ResNet-20 architecture for CIFAR-10 experiments.

Name Component
conv1 3× 3 conv, 64 filters. stride 1, BatchNorm

Residual Block 1

 1× 1 conv, 64 filters
3× 3 conv, 64 filters
1× 1 conv, 256 filters

× 3

Residual Block 2

1× 1 conv, 128 filters
3× 3 conv, 128 filters
1× 1 conv, 512 filters

× 4

Residual Block 3

 1× 1 conv, 256 filters
3× 3 conv, 256 filters
1× 1 conv, 1024 filters

× 6

Residual Block 4

 1× 1 conv, 512 filters
3× 3 conv, 512 filters
1× 1 conv, 2048 filters

× 3

Output Layer 4× 4 average pool stride 1, fully-connected, softmax

Table 12. ResNet-50 architecture for ImageNet experiments.

We use the pretrained ResNet-50 from PyTorch (https://github.com/pytorch/vision/blob/
master/torchvision/models/resnet.py), with a batch size of 64. For the robust training experiments, we
retrain the model for 20 epochs with early stopping at best accuracy. We use SGD with learning rate = 0.001, and
momentum = 0.9 and weight decay = 5e−4.

B. Additional Experimental Results

B.1. SPARSITY- AND SENSITIVITY-DRIVEN PROTECTION

We give the full results of sparsity-driven and sensitivity-driven protection experiments on CIFAR-10 and ImageNet with
confidence intervals in Table 13 and Table 14. In Figure 8, we present experimental results with ResNet-18 on CIFAR-10.
As can be seen from Figure 8(a), our strategies, namely sign protection, adaptive mapping and adaptive redundancy, reduce
the number of PCM cells per weight required to preserve accuracy from 1024 to 1. We also test our strategies against
Gaussian noise. In the Gaussian experiments, we consider hypothetical storage devices with white Gaussian noise where the
standard deviation of the overall noise on the output (ε̂(r, α) “not input-dependent”) can be reduced by using the channel
multiple times (Method #1) and by using the channel in the its power limit (Method #2). Figure 8(b) shows that our strategies
increase the standard deviation threshold, where the NN performance sharply drops, from 0.005 to 0.2, i.e., robustness
increases by 40 times. We note that we present results of Gaussian noise experiments to be comparable to future work
although this scenario is not realistic.

B.2. ROBUST PRUNING

We give the results of robust pruning experiment in Table 15. We apply one-shot pruning followed by 20 epochs of retraining.
When sparsity- and sensitivity-driven strategies are applied, 2.05 cells per weight are enough to preserve the original
accuracy of the pruned model (94.8%). Moreover, if we use only 1.35 cells per weight on average, the accuracy drop is

Neural Network Compression for Noisy Storage Devices

(a) Perturbation by PCM cells. (b) Perturbation by Gaussian noise.

Figure 8. Accuracy of ResNet-18 on CIFAR-10 when weights are perturbed by (a) PCM cells, (b) Gaussian noise. SP: sign protection,
AM: adaptive mapping, AR: sparsity-driven adaptive redundancy. Experiments are conducted three times.

512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits

No Protection 94.2(± 0.1) 27.1 (± 3.4) 9.0 (± 4.1) 10.2 (± 0.5) 10.2 (± 0.5) 9.9 (± 0.1) 9.6 (± 0.5) 9.8 (± 0.7) 10.3 (± 0.4) 0
SP 95.0 (± 0.0) 94.2 (± 0.1) 94.00 (± 0.2) 92.80 (± 0.3) 89.50 (± 0.6) 67.00 (± 0.2) 41.90 (± 0.5) 11.80 (± 5.1) 9.80 (± 1.5) 1
AM+AR 95.0 (± 0.0) 94.8 (± 0.1) 94.70 (± 0.1) 94.40 (± 0.1) 93.70 (± 0.2) 93.10 (± 0.2) 92.70 (± 0.2) 89.20 (± 2.6) 58.00 (± 8.2) 1
SP+AM 95.1 (± 0.0) 95.0 (± 0.0) 95.00 (± 0.1) 94.80 (± 0.1) 94.70 (± 0.1) 94.60 (± 0.1) 93.90 (± 0.2) 93.20 (± 0.1) 90.60 (± 0.3) 2
SP+AM+AR 95.1 (± 0.0) 95.0 (± 0.0) 95.00 (± 0.1) 95.00 (± 0.1) 95.00 (± 0.1) 95.00 (± 0.1) 95.10 (± 0.1) 94.80 (± 0.1) 94.44 (± 0.2) 2
SP+AM+AR+Sens. 95.1 (± 0.0) 95.1 (± 0.0) 95.10 (± 0.1) 95.07 (± 0.1) 95.11 (± 0.1) 95.03 (± 0.2) 95.14 (± 0.1) 94.80 (± 0.1) 94.95 (± 0.3) 3

Table 13. Accuracy of ResNet-18 on CIFAR-10 when weights are perturbed by the PCM cells. Baseline accuracy (when there is no noise)
is 95.10%. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive
redundancy. Reported results are averaged over three experimental runs.

512 cells 64 cells 32 cells 16 cells 8 cells 4 cells 3 cells 2 cells 1 cell Additional Bits

No Protection 0.1(± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0
SP 4.7(± 0.0) 0.9 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 1
AM+AR 75.0 (± 0.5) 66.7 (± 0.8) 66.4 (± 2.5) 63.2 (± 2.5) 57.5 (± 2.2) 34.1 (± 3.4) 22.4 (± 3.0) 3.7 (± 0.0) 0.1 (± 0.0) 2
SP+AM 70.6 (± 0.7) 69.4 (± 1.1) 55.1 (± 3.2) 51.3 (± 2.4) 34.6 (± 1.8) 28.0 (± 5.6) 17.6 (± 4.1) 4.6 (± 0.0) 0.2 (± 0.0) 2
SP+AM+AR 75.4 (± 0.2) 74.5 (± 0.1) 74.2 (± 0.4) 73.8 (± 0.0) 73.8 (± 0.2) 72.8 (± 0.0) 72.2 (± 0.4) 70.2 (± 0.0) 66.0 (± 0.8) 1
SP+AM+AR+Sens. 75.8 (± 0.0) 75.6 (± 0.0) 75.3 (± 0.0) 74.8 (± 0.1) 74.9 (± 0.1) 74.5 (± 0.1) 73.7 (± 0.0) 73.0 (± 0.2) 68.8 (± 0.3) 3

Table 14. Accuracy of ResNet-50 on ImageNet when weights are perturbed by the PCM cells. Baseline accuracy (when there is no
noise) is 76.6%. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy, Sens.: sensitivity-driven adaptive
redundancy. Reported results are averaged over three experimental runs.

2.05 cells 1.55 cells 1.95 cells 1.45 cells 1.85 cells 1.35 cells

SP+AM+AR - 94.3 - 94.5 - 94.2
SP+AM+AR+Sens. 94.8 - 94.6 - 94.7 -

Table 15. Accuracy of 90% pruned ResNet-18 on CIFAR-10 when weights are perturbed by the PCM cells vs the average number of
cells required to store 1) the continues weight values of the non-pruned parameters and 2) the pruning mask. Baseline accuracy after the
pruning (when there is no noise) is 94.8%. SP: sign protection, AM: adaptive mapping, AR: sparsity-driven adaptive redundancy, Sens.:
sensitivity-driven adaptive redundancy.

only 0.1%, which is insignificant considering the fact that pruning reduces the accuracy by 0.3% (from 95.1% to 94.8%).
We note that this performance degradation due to pruning can be eliminated with robust training, explained in Section 3.2.
With this strategy, we can reduce the number of cells required to store each weight from 16 (in digital storage) to 1.35 with
analog storage combined with our robust strategies and pruning. This corresponds to a 11.85 times more efficient storage.

Neural Network Compression for Noisy Storage Devices

B.3. ROBUST TRAINING

Naive Training Robust Training Robust Training Additional
(no noise) (with N(0, 0.01)) (with N(0, 0.006)) Bits

No Noise 95.10 95.50 95.60 0
PCM Noise (No Protection) 9.70(± 1.0) 8.30 (± 0.4) 9.90 (± 1.1) 1
PCM Noise+SP 9.70(± 1.5) 10.63 (± 0.2) 10.33 (± 0.2) 2
PCM Noise+SP+AP 90.60(± 0.2) 94.73 (± 0.1) 94.80 (± 0.2) 2
PCM Noise+AP 27.69(± 8.2) 86.20 (± 0.4) 81.83 (± 4.2) 1
PCM Noise+AP+Sens 36.21(± 3.1) 86.73 (± 2.2) 78.93 (± 4.4) 2
PCM Noise+SP+AP+Sens 94.95(± 0.3) 95.03 (± 0.1) 95.03 (± 0.1) 3

Table 16. Accuracy of ResNet-18 on CIFAR-10 when weights are perturbed by the PCM cells. Baseline accuracy (when there is no noise
at train or test time) is 95.10%. SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy),
Sens.: sensitivity-driven adaptive redundancy. Experiments are conducted three times.

Naive Training Robust Training Robust Training Additional
(no noise) (with N(0, 0.01)) (with N(0, 0.6)) Bits

No Noise 76.60 76.60 76.60 0
PCM Noise (No Protection) 0.1(± 0.0) 0.1 (± 0.0) 0.1 (± 0.0) 0
PCM Noise+SP 0.1(± 0.0) 0.4 (± 0.0) 0.2 (± 0.0) 1
PCM Noise+AP 0.1(± 0.0) 0.2 (± 0.0) 0.1 (± 0.0) 1
PCM Noise+SP+AP 66.00(± 0.8) 69.00 (± 0.3) 69.20 (± 0.2) 2
PCM Noise+AP+Sens 0.3(± 0.0) 0.6 (± 0.0) 0.5 (± 0.0) 2
PCM Noise+SP+AP+Sens 68.80 (± 0.3) 70.20 (± 0.0) 70.40 (± 0.1) 3

Table 17. Accuracy of ResNet-50 on ImageNet when weights are perturbed by the PCM cells. Baseline accuracy (when there is no noise
at train or test time) is 74.4%. SP: sign protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy),
Sens.: sensitivity-driven adaptive redundancy. Experiments are conducted three times.

We give the full results of robust training experiments on CIFAR-10 and ImageNet with confidence intervals in Table 16
and Table 17. We use λ = 0.5 as the coefficient of the KL regularization term in the loss function in Section 3.2. The level
of the noise (standard deviation) injected during the training is adjusted according to r and α values to be used at storage
time since the noise at storage time has a standard deviation of σ(win)

α
√
r

. It is seen from Table 16 and Table 17 that robust
training improves the robustness of the network against noise. We have also observed that the pruned network reaches higher
accuracy after robust training compared to naive training without noise injection (an increase from 90.2% to 95.0% without
retraining).

B.4. ROBUST DISTILLATION

Knowledge distillation (KD) is a well-established NN compression method where a large teacher network is trained with Lt
loss given by

Lt = Ex,y∼pdata [− log pwt(y|x)]

where wt is the weights of the teacher network, and probability of each class i is the output of the high temperature softmax
activation applied to logits:

yi =
exp(zi/T)∑
j exp(zj/T)

.

Neural Network Compression for Noisy Storage Devices

Number of Teacher Teacher Student Noisy Student Add.
PCM cells ResNet-18 ResNet-20 ResNet-20 ResNet-20 Bits

No Noise 16 95.70 92.50 92.90 93.00 0

PCM+AP 3 16.23 (± 1.6) 48.38 (± 14.3) 73.38 (± 2.4) 81.75 (± 1.5) 1

PCM+SP+AP 1
3

93.35 (± 0.5)
94.78 (± 0.2)

86.30 (± 1.5)
89.73 (± 0.2)

88.58 (± 0.4)
89.98 (± 0.3)

90.65 (± 0.7)
91.33 (± 0.2) 2

PCM+AP+Sens. 1 9.60(± 0.4) 29.68 (± 0.4) 38.18 (± 7.2) 69.49 (± 3.7) 2

PCM+SP+AP+Sens. 1
3

93.36 (± 0.2)
94.90 (± 0.2)

88.40 (± 1.4)
89.92 (± 0.5)

88.96 (± 0.7)
90.44 (± 0.6)

91.10 (± 0.3)
91.78 (± 0.2) 3

Table 18. Accuracy of ResNet-20 distilled from ResNet-18 on CIFAR-10 when weights are perturbed by PCM. SP: sign protection, AP:
adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.: sensitivity-driven adaptive redundancy. During the
distillation of noisy student, a Gaussian noise with N(0,0.01) is injected onto the weights. Experiments are conducted five times.

Teacher Teacher Student Noisy Student Additional
ResNet-18 ResNet-20 ResNet-20 ResNet-18 Bits

No Noise 95.70 92.50 92.90 93.00 0
N(0,0.01)+No Protection 82.90 (± 2.3) 86.44 (± 1.6) 89.10 (± 0.7) 90.56 (± 0.4) 0
N(0,0.01)+SP+AP 95.60 (± 0.0) 92.30 (± 0.1) 92.66 (± 0.0) 92.76 (± 0.1) 2
N(0,0.02)+No Protection 10.88 (± 1.2) 45.36 (± 8.8) 65.50 (± 7.0) 77.78 (± 3.7) 0
N(0,0.02)+SP+AP 95.70 (± 0.0) 91.68 (± 0.4) 92.30 (± 0.1) 92.36 (± 0.2) 2

Table 19. Accuracy of ResNet-20 distilled from ResNet-18 on CIFAR-10 when weights are perturbed by the Gaussian noise. SP: sign
protection, AP: adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy). During the distillation of noisy student, a
Gaussian noise with N(0,0.01) is injected onto the weights. Experiments are conducted five times.

where zi is the logit for class i. Temperature T > 1 helps the output probabilities of the teacher network be softer. Using the
same temperature, a smaller student network can be trained with the following student loss function Ls:

Ls = (1− λ)Ex,y∼pdata [− log pws(y|x)] + λEx[DKL(pwt(y|x)||pws(y|x))]

where ws is the weights of the student network. It has been shown that distilled student network achieves a test accuracy
that a teacher network with the same architecture cannot achieve. In other words, a student network distilled from a teacher
network performs comparable to a larger network. This suggests that knowledge distillation can be regarded as a promising
compression method. In addition to compression, distillation has been shown to be an effective method for other desired NN
attributes such as generalizability and adversarial robustness (Papernot et al., 2016). In this work, we define “robustness” as
preserving a network’s downstream classification accuracy when noise is added to the weights. This is achieved in part by
robust training in the previous section where a trained network is robust to pruning and noise on the weights. Here, we
present a student loss function that would make a (compressed) student network more robust to noise with no change in the
teacher network training:

Ls = (1− λ)Ex,y∼pdata [− log pg(ŵs)(y|x)] + λEx[DKL(pwt(y|x)||pg(ŵs)(y|x))]

In the experiments, we use a temperature parameter of T = 1.5 and equally weight the contributions of the student network’s
cross entropy loss and the KL term (λ = 0.5). Similar to robust training, the noise level (standard deviation) during training
is adjusted according to r and α values to be used at storage time. We give the full results on CIFAR-10 with confidence
intervals in Tables 18 and 19 with weights perturbed by PCM cells and Gaussian noise, respectively. We also present the
same set of experiments on MLP distilled from LeNet (on MNIST) in Tables 20 and 21. As in CIFAR-10 experiments, noise
injection during distillation makes the student network more robust to both PCM and Gaussian noise in MNIST experiments.

Neural Network Compression for Noisy Storage Devices

Teacher Teacher Student Noisy Student Noisy Student Number of Additional
LeNet MLP MLP MLP MLP PCM cells Bits

(Student baseline) (No Noise) (with N(0,0.1)) (with N(0,0.006))

No Noise 99.20 97.50 97.80 96.30 97.30 16 0
PCM+SP 98.94 (± 0.0) 91.86 (± 1.7) 87.46 (± 3.7) 95.46(± 0.1) 93.12 (± 1.4) 1 1
PCM+AP 98.60 (± 0.2) 92.76 (± 1.6) 95.40 (± 1.0) 95.78(± 0.2) 96.04 (± 0.4) 1 1
PCM+SP+AP 99.20 (± 0.0) 97.04 (± 0.1) 97.46 (± 0.2) 96.12 (± 0.1) 97.58 (± 0.1) 1 2
PCM+SP+AP+Sens. 99.20 (± 0.0) 97.20 (± 0.0) 97.72 (± 0.1) 96.14(± 0.1) 97.80 (± 0.1) 1 3
PCM+AP+Sens. 98.88 (± 0.1) 95.04 (± 0.5) 97.10 (± 0.1) 95.92(± 0.1) 97.46 (± 0.1) 1 3

Table 20. Accuracy of MLP distilled from LeNet on MNIST when weights are perturbed by the PCM cells. SP: sign protection, AP:
adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy), Sens.: sensitivity-driven adaptive redundancy. Experiments
are conducted five times.

Teacher Teacher Student Noisy Student Noisy Student Additional
LeNet MLP MLP MLP MLP Bits

(Student baseline) (No Noise) (with N(0,0.1)) (with N(0,0.006))

No Noise 99.20 97.50 97.80 96.30 97.30 0
N(0,0.1)+No Protection 22.60 (± 7.7) 77.72 (± 3.8) 58.90 (± 3.6) 93.80 (± 0.4) 62.20 (± 3.5) 0
N(0,0.1)+SP+AP 99.22 (± 0.0) 95.92 (± 0.3) 95.96 (± 0.8) 95.82 (± 0.2) 97.02 (± 0.2) 2
N(0,0.2)+No Protection 12.02 (± 3.0) 33.50 (± 3.4) 24.78 (± 6.3) 74.82(± 5.0) 25.02(± 2.8) 0
N(0,0.2+SP+AP) 99.18 (± 0.1) 90.36 (± 1.0) 86.30 (± 4.6) 95.06(± 0.3) 93.06 (± 2.1) 2
N(0,0.06)+No Protection 99.24 (± 0.0) 97.38 (± 0.1) 97.82 (± 0.1) 96.28 (± 0.0) 97.86 (± 0.0) 0
N(0,0.06)+SP+AP 99.20 (± 0.0) 97.50 (± 0.0) 97.80 (± 0.0) 96.30 (± 0.0) 97.90 (± 0.0) 2

Table 21. Accuracy of MLP distilled from LeNet on MNIST when weights are perturbed by the Gaussian noise. SP: sign protection, AP:
adaptive protection (adaptive mapping+sparsity-driven adaptive redundancy). Experiments are conducted five times.

