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ABSTRACT
Graph neural networks (GNNs) have achieved remarkable per-

formance on graph-structured data. However, GNNs may inherit

prejudice from the training data and make discriminatory predic-

tions based on sensitive attributes, such as gender and race. Re-

cently, there has been an increasing interest in ensuring fairness on

GNNs, but all of them are under the assumption that the training

and testing data are under the same distribution, i.e., training data

and testing data are from the same graph.Will graph fairness per-
formance decrease under distribution shifts? How does distribution
shifts affect graph fairness learning? All these open questions are

largely unexplored from a theoretical perspective. To answer these

questions, we first theoretically identify the factors that determine

bias on a graph. Subsequently, we explore the factors influencing

fairness on testing graphs, with a noteworthy factor being the rep-

resentation distances of certain groups between the training and

testing graph. Motivated by our theoretical analysis, we propose

our framework FatraGNN. Specifically, to guarantee fairness perfor-

mance on unknown testing graphs, we propose a graph generator
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to produce numerous graphs with significant bias and under differ-

ent distributions. Then we minimize the representation distances

for each certain group between the training graph and generated

graphs. This empowers our model to achieve high classification and

fairness performance even on generated graphs with significant

bias, thereby effectively handling unknown testing graphs. Experi-

ments on real-world and semi-synthetic datasets demonstrate the

effectiveness of our model in terms of both accuracy and fairness.
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1 INTRODUCTION
Graph Neural Networks (GNNs) are powerful deep learning algo-

rithms that can be used to model graph-structured data. In recent

years, there have been enormous successful applications of GNNs

on various areas such as social media mining [21, 31, 46, 52, 53],

drug discovery [24], and recommender system [5, 51]. However,

despite their success, there is a growing concern that GNNs may

inherit or even amplify discrimination and social bias from the

training data, leading to unfair treatment of sensitive groups with

sensitive attributes such as gender, age, region, and race. This may

result in social and ethical issues, thus limiting the application of

GNNs in critical areas such as job marketing [25], criminal justice

[42], and credit scoring [17].
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Figure 1: Toy example of fairness under distribution shifts
on graphs.

To mitigate this issue, many fair GNNs [6, 9, 11, 32, 49, 54] have

been proposed. They improve graph fairness by adding a fairness-

related regularization term to the optimization objective [49, 54],

adopting adversarial learning to learn fairer node representations

[6, 9], debiasing the graph itself [11, 32], etc. Despite the success

of fair GNNs, they are all proposed under the common hypothesis

that the training and testing data are under identical distribution,

which does not always hold in reality.

In real-world contexts, distribution shifts frequently occurs [2, 4,

29, 48] and can adversely affect the fairness performance of exist-

ing fair GNNs. This is exemplified in Figure 1, where a fair GNN

designed for job recommendation is trained on a social network

from one state and subsequently applied to a network from an-

other state. In both social networks, race serves as the sensitive

attribute, and the label is whether to recommend the job. However,

the two graphs are under different distributions. Specifically in the

testing graph, there are larger feature differences between different

sensitive groups, and nodes within the same sensitive group are

more likely to be connected. After the feature aggregation step, the

aggregated features of nodes within the same sensitive group will

be more homophilous, and nodes in different sensitive groups will

be even more distinguishable. As it is easy to recognize the sensitive

attributes of the nodes, the fair GNN relies more on this information

to make predictions on the testing graph, resulting in discrimina-

tion such as disproportionately recommending low-payment jobs

to certain sensitive groups identified by race.

Although distribution shifts can lead to unfairness, previous

studies [13–15, 48] mainly aim at keeping stable classification per-

formance of GNNs under distribution shifts, while largely ignoring

the fairness issue.Why might graph fairness deteriorate under distri-
bution shifts? How does distribution shifts affect the fairness of GNNs?
The answers from a theoretical and methodological perspective

remain largely unknown.

Recently, the topic of fairness learning under distribution shifts

has received considerable attention [3, 23, 40]. However, all these

works focus on Euclidean data, overlooking the vital structural

information in graphs. Such information helps in making accurate

predictions but runs the risk of amplifying the data bias, therefore

requiring additional careful consideration. In this work, we first

theoretically analyze the relationship between graph data distri-

bution and graph fairness (Theorem 3.6), and conclude that graph

fairness is determined by a sensitive structure-property and the

feature difference between different sensitive groups. This insight

sheds light on the potential deterioration of graph fairness due

to distribution shifts. Then we prove that fairness on the testing

graph depends on two key factors: fairness on the training graph

and the representation distances of certain groups (nodes with the

same label and sensitive attribute) between the training graph and

the testing graph (Theorem 3.8). These findings well deepen our

understanding of graph fairness learning under distribution shifts.

Motivated by our theoretical insights, we further propose a novel

model called FatraGNN to handle this issue. Our model employs an

adversarial module to ensure fairness on the training graph. As the

testing graphs are unknown, we draw inspiration from previous

research [48] that generates graphs under various distributions,

and subsequently trains GNN on them to bolster the classification

performance on unknown testing graphs. Similarly, we also utilize

a graph generation module to generate graphs with significant bias

and under different distributions. Then we utilize an alignment

module to minimize the representation distances of each certain

group between the training graph and the generated graphs. If our

model can learn fair representations for these generated graphs

with large bias, it will be more robust to distribution shifts and

effectively deal with specific testing graphs which usually have

smaller bias. In summary, our contributions are three-fold:

• To the best of our knowledge, this is the first attempt to study

graph fairness learning under distribution shifts from a theo-

retical perspective. We theoretically analyze the relationship

between graph fairness and graph data distribution and discover

the key factors that affect fairness learning under distribution

shifts.

• Based on the theoretical insights, we propose our FatraGNN,

which consists of an adversarial debiasing module, a graph gen-

eration module, and an alignment module, to ensure fairness on

the unknown testing graphs.

• Extensive experiments show that our FatraGNN outperforms

state-of-the-art baselines under distribution shifts in terms of

both classification and fairness performance on real-world and

semi-synthetic datasets.

2 PRELIMINARIES AND NOTATIONS
Let𝒢 = (𝒱, ℰ,X) be a graphwith𝑛 nodes, where𝒱 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
is the node set, ℰ ⊆ 𝒱 × 𝒱 is the edge set. X = [𝑥1, 𝑥2, . . . , 𝑥𝑛] ∈
R𝑛×𝜁 represents the node feature matrix, where 𝑥𝑖 is the feature

vector of node 𝑣𝑖 and 𝜁 is the dimension of node features. Graph

structure of 𝒢 can be described by the adjacency matrix A ∈ R𝑛×𝑛 ,
and A𝑖 𝑗 = 1 iff there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 . The

diagonal degree matrix is denoted as D = diag (𝑑1, · · · , 𝑑𝑛), where
𝑑𝑖 =

∑
𝑗 A𝑖 𝑗 . Node sensitive attributes are specified by the 𝑡-th chan-

nel of X, i.e., F = X:,𝑡 = [𝑓1, 𝑓2, . . . , 𝑓𝑛] ∈ {0, 1}𝑛 , where 𝑓𝑖 is the

sensitive attribute of node 𝑖 . Here we focus on binary classification

tasks, and the binary labels of the nodes are denoted by Y ∈ {0, 1}𝑛 .
Fairness Metric There exist several different definitions of fair-

ness, such as group fairness [34], individual fairness [12], coun-

terfactual fairness [28], and degree-related fairness [45]. In this

work, we focus on group fairness, and use two commonly used

metrics to measure it: equalized oods [22] and demographic parity

[7]. Equalized odds seeks to achieve the same true positive rate and
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true negative rate between two sensitive groups, which is defined

as Δ𝐸𝑂 =
1

2

∑
1

𝑦=0 |E𝑣𝑖 ∈𝒱 (𝑦𝑖 = 𝑦 |𝑦𝑖 = 𝑦, 𝑓𝑖 = 1) − E𝑣𝑗 ∈𝒱 (𝑦 𝑗 =

𝑦 |𝑦 𝑗 = 𝑦, 𝑓𝑗 = 0) |, where 𝑦𝑖 is the predicted label of 𝑣𝑖 , and 𝑦𝑖 is the

ground-truth label of 𝑣𝑖 . Demographic parity measures the accep-

tance rate difference between two sensitive groups. For example,

in binary classification tasks such as deciding whether a student

should be admitted into a university or not, demographic parity

is considered to be achieved if the model yields the same accep-

tance rate for individuals in both sensitive groups. It is defined as

Δ𝐷𝑃 = |E𝑣𝑖 ∈𝒱 (𝑦𝑖 = 1 | 𝑓𝑖 = 1) − E𝑣𝑗 ∈𝒱 (𝑦 𝑗 = 1 | 𝑓𝑗 = 0) |.
Fairness on Graph Distribution Shifts Following the defini-

tion of previous study [48], we characterize the data generation

process as P(A,X,Y|e) = P(A,X|e)P(Y|A,X, e), where e repre-

sents a random variable denoting the latent environmental fac-

tors that influence the data distribution. First, the graph is gener-

ated via P(A,X|e). Then the labels are generated via P(Y|A,X, e).
We assume that P(Y|A,X, e) is invariant under different environ-
ments. Our aim is to achieve a scenario where the generation of

Y is not influenced by the features related to sensitive attributes

F to ensure fairness. We consider training graph from data distri-

bution P(A𝒥 ,X𝒥 |e = 𝒥 ), testing graphs from data distribution

P(A𝒦,X𝒦 |e = 𝒦). This work intends to ensure fairness when

𝒥 ≠ 𝒦.

3 GRAPH FAIRNESS UNDER DISTRIBUTION
SHIFTS

In this section, we first establish a relationship between graph

fairness and graph data distribution P(A,X|e). Then we gain insight
into why distribution shifts may lead to fairness degradation.

3.1 Relationship between Data Distribution and
Graph Fairness

We first use aggregated feature distance to establish the connec-

tion between data distribution and graph fairness. Referring to

commonly used GNNs, we define the aggregated features as H =

D̃−1ÃX, where D̃ = D + I, Ã = A + I. For the convenience of expres-
sion, we define sensitive group, EO group, and aggregated feature

distance between EO groups as follows:

Definition 3.1. (Sensitive group) The sensitive group of nodes

with sensitive attribute 𝑓 is defined as:

𝒱𝑓 = {𝑣𝑖 ∈ 𝒱 |𝑓𝑖 = 𝑓 }. (1)

Definition 3.2. (EO group) The EO group of nodes with label 𝑦

and sensitive attribute 𝑓 is defined as:

𝒱𝑦

𝑓
= {𝑣𝑖 ∈ 𝒱 | (𝑓𝑖 = 𝑓 ) ∩ (𝑦𝑖 = 𝑦)}. (2)

Definition 3.3. (Aggregated feature distance between sensitive

groups with the same label) The aggregated feature distance be-

tween sensitive groups with label 𝑦 is defined as:

𝜂𝑦 = max

𝑣𝑎∈𝒱𝑦

1

min

𝑣𝑏 ∈𝒱𝑦

0

| |ℎ𝑎 − ℎ𝑏 | |2, (3)

where ℎ𝑎 and ℎ𝑏 are the aggregated features of nodes 𝑣𝑎 and 𝑣𝑏 ,

respectively.

The aggregated feature distance 𝜂𝑦 defines the maximum short-

est path from a node in 𝒱𝑦

1
to a node in 𝒱𝑦

0
, thus can measure the

Aggregate

f=1 f=0

Figure 2: Example of low sensitive homophily.

aggregated feature difference between the two sensitive groups

with label 𝑦. Large 𝜂𝑦 implies that the aggregated features of dif-

ferent sensitive groups are easy to distinguish, and GNNs may

make predictions based on this sensitive information, resulting in

unfairness.

We then show that 𝜂𝑦 is mainly affected by two factors de-

termined by P(A,X|e). The first factor is the sensitive structure-
property of the graph. Previous fairness studies [32, 47] focus on

the sensitive homophily of the graph structure, defined as 𝛼 =

E𝑣𝑖 ∈𝒱

∑
𝑗∈𝑁𝑖∪{𝑣𝑖 } 1(𝑓𝑖=𝑓𝑗 )

𝑑𝑖 + 1

, where 𝑁𝑖 is the neighbors of node 𝑣𝑖 ,

1(𝑓𝑖=𝑓𝑗 ) is the indicator function evaluating to 1 if and only if 𝑓𝑖 = 𝑓𝑗 .

They believe that higher sensitive homophily will make the ag-

gregated features of two sensitive groups more distinguishable,

resulting in unfairness. However, we find that lower sensitive ho-

mophily will also make aggregated features of sensitive groups

distinguishable. For example, the graph in Figure 2 has very low

sensitive homophily according to 𝛼 . After the aggregation step of

GNN, different sensitive groups may change their features but are

still distinguishable. We further point out that 𝜂𝑦 is determined

by whether the nodes tend to have balanced neighborhoods, i.e.,

the number of neighbors belonging to different sensitive groups is

nearly the same. To theoretically analyze the relationship between

balanced neighborhoods and 𝜂𝑦 , we define a new sensitive balance

degree to quantify the structure property:

Definition 3.4. (Sensitive balance degree) The sensitive balance
degree of node 𝑣𝑖 with sensitive attribute 𝑓𝑖 is:

𝑢𝑖 = |𝑝𝑖 − 𝑞𝑖 |, (4)

where 𝑝𝑖 =

∑
𝑗∈𝑁𝑖∪{𝑣𝑖 } 1(𝑓𝑖=𝑓𝑗 )

𝑑𝑖 + 1

and 𝑞𝑖 =

∑
𝑗∈𝑁𝑖∪{𝑣𝑖 } 1(𝑓𝑖≠𝑓𝑗 )

𝑑𝑖 + 1

rep-

resent the proportions of neighbors with the same and different

sensitive attribute, respectively. The average sensitive balance de-

gree on a graph is :

𝑢 = E𝑖∈𝒱 (𝑢𝑖 ) . (5)

The sensitive balance degree reflects the difference in the number

of neighbors around node 𝑣𝑖 belonging to different sensitive groups.

If a node has nearly the same number of neighbors with different

sensitive attributes, then it has a more balanced neighborhood and

smaller 𝑢𝑖 , and vice versa.

The second factor that affects𝜂𝑦 is the feature difference between

different sensitive groups.We assume features of nodes belonging to

two sensitive groups follow Gaussian distribution, i.e., P(𝑥𝑎 | 𝑣𝑎 ∈
𝒱1) ∼ 𝒩 (𝜇𝒱1

I𝜁 , 𝜎2𝒱1

I𝜁 ) and P(𝑥𝑏 | 𝑣𝑏 ∈ 𝒱0) ∼ 𝒩 (𝜇𝒱0
I𝜁 , 𝜎2𝒱0

I𝜁 ).
With the feature distribution of two sensitive groups and the graph

structure property 𝑢, we can bound 𝜂𝑦 with the following theorem:
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Theorem 3.5. For any 𝛿 ∈ (0, 1), with probability greater than
1 − 𝛿 and large enough feature dimension 𝜁 , we have:

𝜂2𝑦 ≥ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 − 2

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2,

𝜂2𝑦 ≤ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 + 4

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2 .

(6)

From the above theorem, we can find out that the upper bound

and lower bound of 𝜂𝑦 are determined by (𝜇𝒱1
− 𝜇𝒱0

) and 𝑢. Then
we show that the fairness metric Δ𝐸𝑂 is actually bounded by 𝜂𝑦 as

the following theorem.

Theorem 3.6. Consider an encoder𝑔 : 𝐻 → 𝑍 ∈ R𝑛×𝜁 ′
extracting

𝜁 ′-dimensional representations 𝑍 and an classifier 𝜔 : 𝑍 → 𝐶 ∈
R𝑛×2 predicting the binary labels of the nodes. Assume that 𝑔 and
𝜔 have 𝐿1-Lipschitz and 𝐿2-Lipschitz continuity, respectively, then
equalized odds is bounded by:

Δ𝐸𝑂 ≤ 𝐿1𝐿2

∑
1

𝑦=0 𝜂𝑦

2

. (7)

Combining Theorem 3.6 and Theorem 3.5, we find out that Δ𝐸𝑂

is mainly affected by two key factors determined by P(A,X|e): 1)
The feature difference between sensitive groups 𝜇𝒱1

− 𝜇𝒱0
. Larger

𝜇𝒱1
− 𝜇𝒱0

indicates that the features of the two sensitive groups

are easier to distinguish, resulting in larger Δ𝐸𝑂 . 2) The average

sensitive balance degree of the graph 𝑢. Larger 𝑢 implies the nodes

in the graph tend to have unbalanced neighbors, resulting in larger

Δ𝐸𝑂 .

We direct the readers to Appendix A for proofs of all the above

theorems.

3.2 Bounds on Fairness on the Testing Graph
Given the factors that affect graph fairness, we can gain insight

into the reason why distribution shifts may lead to unfairness.

As Δ𝐸𝑂 is determined by two factors affected by P(A,X|e), sup-
pose the data distribution differs between the training graph and

testing graphs, i.e., P(A𝒥 ,X𝒥 |e = 𝒥 ) ≠ P𝒦 (A𝒦,X𝒦 |e = 𝒦),
then the two factors including 𝑢 and (𝜇𝒱1

− 𝜇𝒱0
) will also change,

resulting in fairness deterioration in some cases. For example, if

(𝜇𝒱1
− 𝜇𝒱0

) and 𝑢 are small in the training graph but large in the

testing graph, then the model is highly fair on the training graph

but highly unfair on the testing graph.

Then we characterize the difference of Δ𝐸𝑂 between the training

graph and the testing graph, denoted as Δ𝒥
𝐸𝑂

− Δ𝒦
𝐸𝑂

, by analyzing

the accuracy difference between the training graph and the testing

graph of each EO group. The EO group in the testing graph with

label 𝑦 and sensitive attribute 𝑓 is denoted as 𝒦𝑦

𝑓
= {𝑣𝑖 ∈ 𝒱𝒦 | (𝑓𝑖 =

𝑓 ) ∩ (𝑦𝑖 = 𝑦)}, where 𝒱𝒦 is the node set in the testing grah, and

we define the prediction accuracy on𝒦𝑦

𝑓
as E𝒦𝑦

𝑓
= E𝑣𝑖 ∈𝒦𝑦

𝑓
(𝑦𝑖 = 𝑦).

Similarly, on training graph we have E𝒥 𝑦

𝑓
= E𝑣𝑖 ∈𝒥 𝑦

𝑓
(𝑦𝑖 = 𝑦). Then

we bound the equalized odds difference for data in the training

graph and testing graph as:

Δ𝒦
𝐸𝑂 − Δ𝒥

𝐸𝑂
≤

∑︁
𝑦,𝑓

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
|.

(8)

We then define EO group representation distance between the

training graph and the testing graph in Definition 3.7, and build a

relationship between the representation distance and |E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
|

in Theorem 3.8.

Definition 3.7. (EO group representation distance between the

training graph and the testing graph) For EO group with label𝑦 and

sensitive attribute 𝑓 , we define the representation distance between

the training graph and the testing graph as:

𝜖
𝑦

𝑓
= max

𝑣𝑗 ∈𝒦𝑦

𝑓

min

𝑣𝑖 ∈𝒥 𝑦

𝑓

| |𝑧𝑖 − 𝑧 𝑗 | |2, (9)

where 𝑧𝑖 is the representation of node 𝑣𝑖 learned by the encoder 𝑔.

Theorem 3.8. Assume that the nonlinear transformation 𝜔 (𝑍 ) =
𝑅𝐸𝐿𝑈 (𝑍𝑊𝜔 ) has 𝐿2-Lipschitz continuity, we have:

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
| ≤ 𝐿2𝜖

𝑦

𝑓
. (10)

Then equalized odds difference between the training graph and the
testing graph can be bounded as:

Δ𝒦
𝐸𝑂 − Δ𝒥

𝐸𝑂
≤ 𝐿2

∑︁
𝑓 ,𝑦

𝜖
𝑦

𝑓
. (11)

Based on Theorem 3.8, we can see that Δ𝒦
𝐸𝑂

relies on both Δ𝒥
𝐸𝑂

and EO group representation distance, which is determined by how

much P(A𝒦,X𝒦 |e = 𝒦) differs from P(A𝒥 ,X𝒥 |e = 𝒥 ). Please
note that our objective is not to achieve a tight bound for equalized

odds on the testing graphs. Instead, our focus is on identifying the

sufficient conditions that ensure fair performance on the testing

graphs, and Theorem 3.8 actually reveals the sufficient conditions.

To alleviate the unfairness issue on the testing graph, i.e., min-

imize Δ𝒦
𝐸𝑂

, we not only have to minimize Δ𝒥
𝐸𝑂

, but also have to

minimize the EO group representation distance. Also, minimizing

the EO group representation distance leads to the minimization of

Δ𝒦
𝐷𝑃

. Detailed proofs of minimization of Δ𝒦
𝐷𝑃

, Theorem 3.8, and

Eq. (8) are deferred to Appendix A.

4 METHODOLOGY
In order to solve the unfairness under distribution shifts problem,

motivated by the findings in Section 3, we present our framework

(shown in Figure 3), which mainly includes three parts: (a) the

generative adversarial debiasing module to get smaller Δ𝒥
𝐸𝑂

on the

training graph, (b) the graph generation module to generate graphs

with large bias and are under different distributions, (c) the EO

group alignment module to minimize the EO group representation

distance.

4.1 Adversarial Debiasing on Training Graph
As suggested in Theorem 3.8, to improve fairness on the testing

graph, we have to ensure fairness on the training graph. Combining

the aggregation step and the encoder 𝑔 discussed in Section 3.1, we

use a GNN-based encoder 𝜌𝜃𝜌 : (A,X) → 𝑍 ∈ R𝑛×𝜁 ′
with parame-

ters 𝜃𝜌 to extract the 𝜁 ′-dimensional representations of the nodes. If

the representations of different sensitive groups are distinguishable,

then the classifier may make predictions based on this information,

resulting in unfairness. In order to make the representations undis-

tinguishable, we use a sensitive discriminator 𝜉𝜃𝜉 : 𝑍 → 𝐹 ∈ {0, 1}𝑛
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Figure 3: An overview of FatraGNN.

with parameters 𝜃𝜉 to predict the sensitive attributes of the nodes

given their representations 𝑍 . And the encoder 𝜌𝜃𝜌 is trained to

learn similar representations between sensitive groups, thus can

fool the discriminator. Leveraging adversarial training, we compute

the loss of the discriminator and encoder as:

min

𝜃𝜌
max

𝜃𝜉

ℒ𝜉 = E𝑣𝑖 ∈𝒥 (𝑓𝑖 log(𝜉𝜃𝜉 (𝜌𝜃𝜌 (𝑥𝑖 ))

+(1 − 𝑓𝑖 ) log(1 − 𝜉𝜃𝜉 (𝜌𝜃𝜌 (𝑥𝑖 )))) .
(12)

Besides, we also train the encoder together with an MLP-based

classifier𝜔𝜃𝜔 to minimize the classification loss to ensure accuracy:

min

𝜃𝜌 ,𝜃𝜔
ℒ𝑐 = −E𝑣𝑖 ∈𝒥 (𝑦𝑖 log(𝑦𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )) . (13)

4.2 Graph Generation Module
To address the unfairness issue caused by data distribution shifts,

we should also get similar representations between the training

graph and the testing graph for each EO group, as suggested in

Theorem 3.8. During the training process, we consider training 𝜌𝜃𝜌
to learn similar representations for graphs under the distribution of

P(A𝒦,X𝒦 |e = 𝒦) and P(A𝒥 ,X𝒥 |e = 𝒥 ). As P(A𝒦,X𝒦 |e = 𝒦) is
unknown during the training process, it is challenging to generate

the exact testing graphs, so we generate graphs with significant

bias and are under different distributions. If our model can handle

graphs that are more likely to cause unfairness, it will be able to

address unfairness issues under distribution shifts more effectively.

The generated graphs follows distribution P(A𝒦′ ,X𝒦′ |e = 𝒦′).
As demonstrated in Theorem 3.6, larger 𝜇𝒱1

− 𝜇𝒱0
and 𝑢 will lead

to poor fairness performance. So we propose a graph generation

module, including a structure modification step to generate A𝒯 ′

by modifying A𝒥 , and a feature generator to generate X𝒯 ′ based

on X𝒥 . Thus we can generate graphs that will lead to unfairness

and are under different distributions.

For the structure modification step, we generate graphs with

larger 𝑢, i.e., graphs with significant unbalanced neighborhoods.

Two strategies can be employed: One is randomly adding edges

between nodes with the same sensitive attribute and removing

edges between nodes with different sensitive attribute. The other

is the inverse. Both are used to get a bunch of generated A𝒯 ′ with

larger 𝑢 before training.

To make our model adapt to various structures, we feed one of

the generated graphs into training during every certain number of

epochs, then we use an MLP-based feature generator Γ𝜃Γ : X𝒥 →
X𝒯 ′ to generate features with larger 𝜇𝒱1

−𝜇𝒱0
. The generated graph

with A𝒯 ′ and X𝒯 ′ is then feed into 𝜌 and 𝜔 to make predictions.

We also include a regularization term to ensure that the feature

generator does not produce features that significantly stray from

the features of the training graph. The feature generator is trained

to maximize the fairness loss:

max

𝜃Γ
ℒ𝒦′

𝑓 𝑎𝑖𝑟
=

1

2

1∑︁
𝑦=0

|E𝑣𝑖 ∈𝒥 𝑦

1

(𝑦𝑖 = 𝑦 |Γ(𝑥𝑖 ),A𝒯 ′ )

−E𝑣𝑗 ∈𝒥 𝑦

0

(𝑦 𝑗 = 𝑦 |Γ(𝑥 𝑗 ),A𝒯 ′ ) | − 𝜏 | |X𝒯 ′ − X𝒥 | |2𝐹 .
(14)

where | | · | |2
𝐹
is the Frobenius norm of matrix, 𝜏 is the coefficient.

Thus the feature generator can be trained to explore the features

that lead to poor fairness performance but not deviate too much

from the training graph. After the structure modification step and

the feature generation step, we can generate graphs that lead to

unfairness and under different distributions.

4.3 EO Group Alignment Module
We can learn from Theorem 3.8 that the unfairness issue on the

testing graph can be alleviated by minimizing the EO group repre-

sentation distance 𝜖
𝑦

𝑓
. Thus we aim to minimize EO group repre-

sentation distance between the training graph and the generated

graph.

We utilize a similarity score 𝜆
𝑦

𝑓
= E

𝑖∈𝒥 𝑦

𝑓
, 𝑗∈𝒦

′𝑦
𝑓

(𝑧𝑖𝑧 𝑗 )
| |𝑧𝑖 | | · | |𝑧 𝑗 | |

to

measure the alignment of EO group representation. Higher 𝜆
𝑦

𝑓

implies better alignment and lower 𝜖
𝑦

𝑓
. Then we maximize the

similarity score of all EO groups:

max

𝜃𝜌
ℒ𝑎𝑙𝑖𝑔𝑛 =

∑︁
𝑓 ,𝑦

𝜆
𝑦

𝑓
. (15)

In this way, we can get smaller 𝜖
𝑦

𝑓
, implying better fairness

performance on the testing graph. Furthermore, the alignment

module improves the classification accuracy on generated graphs by
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guiding the GNN-based encoder to acquire similar representations

for both the training graph and the generated graphs.

Meanwhile, the alignment module implicitly aids in preserving

the causal features from disruption. The module forces the shared

encoder to learn similar representations for the generated graphs

and the training graph. As the encoder is shared, it is not possible

to learn similar representations for features with significant differ-

ences. This implicitly forces the generator to learn features that are

not significantly different from the original graph but may cause

unfairness. Experimental analysis can be found in Section 5.4.

5 EXPERIMENT
DatasetsWe use five datasets to evaluate the performance of our

model under distribution shifts. Each dataset comprises at least

two graphs: one for training and validation, and others for test-

ing. The five datasets comprise three real-world datasets and two

semi-synthetic datasets summarized as follows. 1) Pokecs includes
Pokec-z and Pokec-n, which are drawn from the popular social

network in Slovakia [10] based on the provinces that users belong

to. Both Pokec-z and Pokec-n consist of users belonging to two

major regions of the corresponding provinces. We use Pokec-z for

training and validation, and Pokec-n for testing. We treat "region"

as the sensitive attribute, and the task is to predict the working

field of the users. 2) Bail-Bs is obtained from the commonly used

fairness-related graph Bail [26], where nodes are defendants re-

leased on bail. Utilizing the modularity-based community detection

method [35], we partition Bail into communities and find that they

exhibit different data distributions. Then we retain five large com-

munities and name them from B0 to B4. We use B0 for training

and validation, and the remaining graphs B1 to B4 for testing. The

task is to decide whether to bail the defendants with "race" being

the sensitive attribute. 3) Credit-Cs is partitioned the same way as

Bail-Bs from Credit [50], where nodes represent credit card users.

We get five communities named from C0 to C4. C0 is used for train-

ing and validation, while C1 to C4 are used for testing. The task is

to classify the credit risk of the clients as high or low with "age"

being the sensitive attribute. 4) sync-B1s comprises testing graphs

with different 𝑢 from 0 to 0.6 obtained by modifying the structure

of B1, and a training graph B0. 5) sync-B2s consisits of testing
graphs obtained by modifying B2 the same way as sync-B1s and a

training graph B0. More details such as dataset statistics and the

data distribution of the training graph and testing graphs can be

found in Appendix B.

BaselinesWe compare our model with nine baselines: 1) Tra-

ditional learning methods: MLP [36], GCN [27]. 2) Fair GNNs:

FairVGNN [47], NIFTY [1], EDITS [11], CAF [20]. 3) Out-of-distribution

(OOD) GNN: EERM [48]. 4) Model-agnostic OOD method: SAGM

[44]. 5) Fairness under distribution shifts methods: RFR [23].

Performance Evaluation We use accuracy (ACC) and ROC-

AUC to evaluate the predictive performance of the node classifica-

tion task. To measure fairness, we use Δ𝐷𝑃 and Δ𝐸𝑂 introduced in

Section 2. Note that a model with lower Δ𝐷𝑃 and Δ𝐸𝑂 implies better

fairness performance. To comprehensively assess the classification

and fairness performance of a model across various testing graphs,

we introduce a metric denoted as 𝑠 = ACC+ROC-AUC−Δ𝐷𝑃−Δ𝐸𝑂 ,

where greater values of this metric indicate superior model perfor-

mance. We calculate the total score for each method by summing

up their scores on all testing graphs, and then provide the overall

rankings for each method.

Experimental SettingWe perform a hyperparameter search for

our model on all dataset groups. For other baseline models: GCN,

MLP, FairVGNN, NIFTY, EDITS, and EERM, we carefully fine-tune

them to get optimal performance on all the dataset groups. Note

that EDITS and EERM have higher complexity and are hard to be

trained on Pokec-z , so we only report the results of other baselines

on Pokecs. For all methods, we randomly run 5 times and report

the mean and variance of each metric. More details such as the

hyperparameter setting can be found in Appendix B.

5.1 Evaluation on Real-world Datasets
We use three real-world datasets for evaluation: Pokecs, Bail-Bs,

and Credit-Cs.

Results Table 1 and Table 2 show the effectiveness of FatraGNN

in terms of classification and fairness performance on all testing

graphs in Bail-Bs and Pokecs. Due to space limitations, we defer

the results on Credit-Cs to Appendix C.

We observe that the proposed FatraGNN outperforms all base-

lines in most cases. Additionally, we find that while fairness base-

lines aim to improve fairness performance, they cannot perform

well on testing graphs when distribution shifts. Although the graph

OOD model EERM achieves better classification performance than

fairness baselines when distribution shifts, it has lower fairness

performance on all the testing graphs because it cannot learn fair

representations.

We also analyze the relationship between accuracy and Δ𝐸𝑂 of

the models, because good fairness performance could be a result

of poor classification performance. For example, if a model mis-

classifies all samples, then the accuracy on all EO groups will be

0, resulting in Δ𝐸𝑂 = 0, which implies good fairness performance.

However, this is not the ideal model. Fairness models may ensure

fairness at the cost of accuracy, so we further show the Pareto front

curves [41], which are generated by a grid search of hyperparame-

ters, to show this trade-off between accuracy and Δ𝐸𝑂 . As shown

in Figure 4, the horizontal axis represents Δ𝐸𝑂 and the vertical axis

represents accuracy. Curves closer to the upper-left corner imply

higher accuracy and lower Δ𝐸𝑂 , indicating better trade-off perfor-

mance. We can see that FatraGNN achieves better performance

than fairness baselines in terms of this trade-off.

5.2 Evaluation on Semi-synthetic Datasets
We further use sync-B1s and sync-B2s to test the performance of

each method on testing graphs with different𝑢. Testing graphs with

higher 𝑢 have less balanced neighbors and may result in unfairness.

Results As𝑢 is calculated by |𝑝 −𝑞 |, we find that accuracy of the
models have different changing trend when 𝑝 −𝑞 > 0 and 𝑝 −𝑞 < 0.

In order to demonstrate the performance of models more clearly,

we use 𝑢′ = 𝑝 − 𝑞 instead to reflect the average sensitive balance

degree of the graphs.

The classification and fairness performance are shown in Figure 5.

Overall, our FatraGNN outperforms other baselines in terms of both

accuracy and Δ𝐸𝑂 on most testing graphs. Moreover, FatraGNN
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Table 1: Classification and fairness performance (%±𝜎) on Bail-Bs. ↑ denotes the larger, the better; ↓ denotes the opposite. Best
ones are in bold.

metric MLP GCN FairVGNN NIFTY EDITS EERM CAF SAGM RFR FatraGNN (ours)

B1

ACC↑ 70.53±1.01 72.93±4.06 69.76±2.03 69.54±7.26 72.69±1.72 73.25±1.4 69.39±2.30 73.08 ±4.25 71.63 ±1.52 74.59±0.93
ROC-AUC↑ 62.76±1.87 59.41±14.42 64.82±4.32 62.65±5.95 59.91±0.31 63.98±1.28 62.84±1.84 62.76±3.45 62.39±1.53 66.0±0.01
Δ𝐷𝑃 ↓ 4.83±9.38 4.58±0.78 11.05±4.58 7.21±4.54 4.35±1.3 8.85±2.57 4.46±2.03 7.33±4.59 2.57±1.24 1.14±2.87
Δ𝐸𝑂 ↓ 7.48±7.31 10.19±2.3 8.35±4.82 9.57±2.8 9.22±0.97 10.93±2.38 4.97±2.31 7.35±4.56 2.63±0.87 2.38±3.19

B2

ACC↑ 64.33±0.63 69.88±0.45 65.03±2.4 69.95±8.3 69.03±0.16 70.2±0.12 69.36±1.37 68.67±3.24 68.62±1.42 70.46±0.44
ROC-AUC↑ 59.21±1.18 68.35±10.68 70.21±2.61 65.93±13.46 74.25±0.73 72.23±0.49 71.58±2.03 70.67±2.14 70.25±2.35 73.27±4.48
Δ𝐷𝑃 ↓ 8.36±1.62 6.91±0.58 5.64±2.78 3.21±4.54 3.2±3.06 8.31±0.5 2.53±3.62 5.78±2.53 2.15±1.94 0.15±0.79
Δ𝐸𝑂 ↓ 6.51±0.32 8.68±0.2 3.23±3.47 3.57±2.8 2.89±0.54 6.29±0.12 3.81±2.08 6.34±3.56 2.64±1.63 0.43±1.14

B3

ACC↑ 60.76±0.18 68.56±4.2 70.63±0.61 68.8±9.76 68.56±1.82 70.69±5.42 68.97±2.44 69.50±2.12 68.36±1.89 71.65±4.65
ROC-AUC↑ 62.89±2.87 72.99±0.68 80.76±5.01 77.98±5.5 79.28±1.48 79.98±3.61 78.04±2.67 78.43±3.90 78.74±1.95 82.17±3.63
Δ𝐷𝑃 ↓ 9.8±0.38 12.72±2.44 8.05±0.45 6.21±4.54 5.24±0.03 5.64±3.49 6.32±2.45 6.78±3.23 4.23±1.72 5.02±3.54
Δ𝐸𝑂 ↓ 6.29±0.36 14.15±3.09 9.18±0.36 5.57±2.8 3.08±0.27 4.65±1.21 4.32±2.67 5.67±2.84 4.72±2.17 2.43±4.94

B4

ACC↑ 63.13±1.69 69.43±0.48 68.99±2.44 57.96±11.99 68.42±0.14 70.9±1.36 67.33±2.67 70.88±0.98 69.18±2.68 72.59±3.39
ROC-AUC↑ 61.57±0.97 76.4±0.78 77.23±1.14 69.21±5.39 69.2±1.41 68.81±2.27 71.93±1.64 69.34±1.89 68.35±2.52 77.36±3.79
Δ𝐷𝑃 ↓ 4.45±3.15 4.49±1.13 5.21±6.03 3.21±4.54 3.2±9.1 7.23±0.26 3.84±1.41 6.36±6.32 3.43±2.45 2.48±3.09
Δ𝐸𝑂 ↓ 3.29±3.54 8.74±1.62 5.33±6.18 2.57±2.8 5.6±7.86 9.04±0.86 5.36±2.19 7.34±4.67 3.51±2.39 2.45±6.67
rank 10 9 5 8 2 7 3 6 4 1

Table 2: Quantitative results (%±𝜎) on Pokecs. (bold: best)

metric MLP GCN FairVGNN NIFTY CAF SAGM RFR FatraGNN (ours)

Pokec-n

ACC↑ 52.74±3.67 54.83±2.34 60.8±0.54 58.68±5.54 59.37±1.45 58.78±2.33 57.42±3.68 62.00±0.24
ROC-AUC↑ 65.38±0.43 63.48±2.34 65.26±1.45 67.09±2.25 66.86±1.32 65.67±2.45 65.29±1.36 67.82±3.23
Δ𝐷𝑃 ↓ 4.86±1.23 7.38±0.28 5.88±2.34 4.21±3.43 5.49±2.65 5.67±3.22 4.56±2.85 1.34±0.27
Δ𝐸𝑂 ↓ 4.16±2.34 6.37±0.52 6.26±2.21 3.82±3.88 5.02±0.73 4.19±2.45 3.41±2.37 1.43±2.68
rank 7 8 6 2 3 5 4 1

Figure 4: Trade-off of ACC and Δ𝐸𝑂 on all testing graphs of Bail-Bs, Credit-Cs. Upper-left corner (high accuracy, low Δ𝐸𝑂 ) is
preferred. The first row shows the results on B1 to B4. The second row shows the results on C1 to C4.

demonstrates low variance in both classification and fairness perfor-

mance across different testing graphs with various 𝑢′, indicating its
potential to perform well when distribution shifts. Additionally, we

find that most models achieve their optimal fairness performance

when 𝑢′ is close to 0. When 𝑢 = |𝑢′ | increases, Δ𝐸𝑂 also increases,

verifying our analysis in Section 3.1 that unbalanced neighborhoods

will lead to unfairness. Additionally, we find that baselines tend to

achieve better accuracy as 𝑢′ increases. This is because the nodes
with the same sensitive attribute tend to share the same label, which

provides additional information for the classification task.

5.3 Ablation Study
To fully understand the effect of each component of FatraGNN on

alleviating unfairness under distribution shifts, we propose several

variants of FatraGNN, including Fatra w/o AD as removing the ad-

versarial module, Fatra w/o GE as removing the graph generation

module, Fatra w/oMD as removing the structure modification step,

and Fatra w/o AL as removing the EO group alignment module.

Results of the ablation study on sync-B1s and Bail-Bs are shown in

Figure 6. We can see that FatraGNN consistently outperforms the

other variants.Without the adversarial module, Fatra w/o AD learns



Conference’17, July 2017, Washington, DC, USA Yibo Li, Xiao Wang† , Yujie Xing, Shaohua Fan, Ruijia Wang, Yaoqi Liu, and Chuan Shi†

0.4 0.2 0.0 0.2 0.4 0.6
u'

66

67

68

69

70

AC
C(

%
)

0.4 0.2 0.0 0.2 0.4 0.6
u'

0

5

10

15

20

25

Eq
ua

liz
ed

 O
dd

s(
%

)

FairVGNN
NIFTY
RFR
EDITS
GCN
EERM
FatraGNN

sync-B2s

Figure 5: Accuracy and Δ𝐸𝑂 on sync-B1s (left) and sync-B2s
(right).

Figure 6: Ablation study on sync-B1s (left) and Bail-Bs (right).
Please note that testing graphs of sync-B1s have continuously
varying𝑢′, sowe utilize a line chart to illustrate the performance
change of the model on graphs with varying 𝑢′.
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Figure 7: The representation difference between sensitive
groups, equalized odds, and accuracy on the generated graph
during training.

distinguishable representations for the two sensitive groups, result-

ing in poor fairness performance. Without the graph generation

module, Fatra w/o GE fails to perform well when distribution shifts.

Without the alignment module, Fatra w/o AL only generates graphs

but is not trained to learn similar representations between the in-

put graph and the generated graph for each EO group, resulting in

similar poor performance as Fatra w/o GE. Without modification

of the structure, Fatra w/o MD still performs better than Fatra w/o

GE and Fatra w/o AL, since it is trained to adapt to different fea-

ture distributions. However, due to the lack of training graph with

different 𝑢′, Fatra w/o MD cannot perform well on testing graphs

with different 𝑢′.

5.4 Additional Analysises
Analysis of Generated Graphs We also analyze the generated

graphs and find that the generated graphs have different distribu-

tions from the training graph, and their casual features are main-

tained.

First, we show that the generated graphs are under different

distributions from the training graph. Usually, graphs with different

𝑢 and 𝜇𝒱1
− 𝜇𝒱0

have different distributions because the structures

of the graphs and the feature difference between different sensitive

groups are different. In the generation module, we modify the

structure of the graph to get larger 𝑢. Also, as we learn feature

representations through an end-to-end method to get graphs that

lead to unfairness, 𝜇𝒱1
−𝜇𝒱0

of the generated graph will also change

during training. We do experiments Bail-Bs. As shown in Figure 7,

as the number of epochs increases, 𝜇𝒱1
− 𝜇𝒱0

increases, indicating

that the generated graphs are under different distributions from

the training graph.

Then we examine if there are potential disruptions in the causal

features of the generated graphs. We conduct experiments on Bail-

Bs to observe the changes in 𝜇𝒱1
− 𝜇𝒱0

, Δ𝐸𝑂 , and accuracy during

the training process. As shown in Figure 7, during training, the

generated graphs have larger 𝜇𝒱1
− 𝜇𝒱0

and poorer fairness (larger

Δ𝐸𝑂). This suggests that the generated graphs will lead to unfair-

ness and are under different distributions. Still, the accuracy hardly

decreases, indicating that the key features of the graph are not

disrupted.

Analysis of Representation Distances To demonstrate that by

achieving alignment of representations between the training graph

and generated graphs, our model can ensure alignment between the

representations of the training graph and testing graphs for better

fairness and accuracy performance, we plot the representations

of the training graph and testing graphs of Bail-Bs using t-SNE

[43]. The implementation details and result figures can be found

in Appendix C.4. We can see that the representations of nodes

belonging to the same EO group on the training graph and testing

graphs are close, indicating that by minimizing the representation

difference between the training graph and the generated graphs,

the alignment module of our model can ensure the proximity of

representations of the same EO group between the training graph

and testing graphs, thereby guaranteeing fairness and accuracy on

the testing graphs.

Analysis of Convergence We notice that during training, it is

not difficult to tune the parameters to achieve convergence. Despite

that no theory can guarantee convergence to the saddle point, it

functions well in our experiments, which has also been observed

in many other adversarial methods [19, 37, 47]. Additional experi-

ments are provided in Appendix C.3.

Other additional experiment results such as hyperparameter

study can be found in Appendix C.
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6 RELATEDWORK
Fairness on GNNs There have been a number of works focused on

the unfairness problem on graphs [1, 11, 32, 47]. NIFTY [1] conducts

a two-level strategy to modify GNN to ensure fairness and stability.

EDITS [11] proposes to debias the attributed network to achieve

fairness by feeding GNNs with less biased graphs. FairVGNN [47]

proposes a framework to improve fairness by automatically identi-

fying and masking sensitive-correlated features considering corre-

lation variation after each feature propagation step. FairAdj [30]

indicates that fairness on a graph is contingent on both the size of

the sensitive groups and the connected situation of a graph, and

proposes FairAdj to learn a fair matrix to achieve dynamic fairness

and prediction utility. More recently, Graphair [32] adopts adver-

sarial learning and contrastive learning to automatically discover

fairness-aware augmentations from input graphs. However, these

works are all under the assumption that training and testing data

are under the same distribution.

Fairness under Distribution Shifts Recently, a number of

works intend to study fairness under distribution shifts [3, 8, 16,

33, 39, 40]. [8, 18] Reweight the examples in the training data to

approximate the proportions of groups in the testing data is one of

the . [33, 39] consider data in the testing data as combinations of

samples in the training data with arbitrary weights and ensure fair-

ness of the model under the worst-case shift. [3] derives a sufficient

condition for transferring fairness, and proposes a self-training

algorithm to minimize and balance consistency loss across groups.

However, these works are all focused on Euclidean data and ignore

the special property of graph structure. To the best of our knowl-

edge, this is the first work that considers fairness under distribution

shifts on graphs.

More related work such as OOD generalization methods on

graphs can be found in Appendix D.

7 CONCLUSION
In this work, we study the unfairness problem under distribution

shifts on graphs, which is crucial for the real-world applications of

fair GNNs. We theoretically prove that graph fairness is determined

by a sensitive structure property and feature difference between

sensitive groups of the graph, and explain the reason why distribu-

tion shifts will lead to unfairness. We then derive an upper bound

for fairness on the testing graph. Based on our analysis, we further

propose a novel FatraGNN framework to alleviate this problem.

Experimental results demonstrate that FatraGNN consistently out-

performs state-of-the-art baselines in terms of fairness-accuracy

trade-off performance under distribution shifts.
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A PROOFS
A.1 Proof of Theorem 3.5
Theorem 3.5. For any 𝛿 ∈ (0, 1), with probability greater than 1−𝛿
and large enough feature dimension 𝜁 , we have:

𝜂2𝑦 ≥ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 − 2

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2,

𝜂2𝑦 ≤ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 + 4

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2 .

(16)

Proof.
To get the upper bound and lower bound of 𝜂𝑦 , we introduce

a function 𝜂 (𝑎, 𝑏) describing the aggregated feature difference be-

tween any two nodes belonging to 𝒱1 and 𝒱0, i.e., 𝜂 (𝑎, 𝑏) = | |ℎ𝑎 −
ℎ𝑏 | |2, where ℎ𝑎 and ℎ𝑏 are aggregated features of node 𝑣𝑎 ∈ 𝒱1

and 𝑣𝑏 ∈ 𝒱0, respectively. So 𝜂𝑦 = max𝑣𝑎∈𝒱𝑦

1

min𝑣𝑏 ∈𝒱𝑦

0

| |ℎ𝑎−ℎ𝑏 | |2
equals𝜂 (𝑎, 𝑏) with specific𝑎 and𝑏. Thuswe can bound𝜂𝑦 by bound-
ing 𝜂 (𝑎, 𝑏). As 𝜂 (𝑎, 𝑏) = | |ℎ𝑎 − ℎ𝑏 | |2, we first give the distribution
of (ℎ𝑎 − ℎ𝑏 ).

Recall that we assume P(𝑥𝑎 | 𝑣𝑎 ∈ 𝒱1) ∼ 𝒩 (𝜇𝒱1
I𝜁 , 𝜎2𝒱1

I𝜁 ) and
P(𝑥𝑏 | 𝑣𝑏 ∈ 𝒱0) ∼ 𝒩 (𝜇𝒱0

I𝜁 , 𝜎2𝒱0

I𝜁 ). As ℎ𝑎 = 1

𝑑𝑎+1
∑

𝑗∈𝑁𝑎∪{𝑣𝑎 } 𝑥 𝑗 ,

ℎ𝑏 = 1

𝑑𝑏+1
∑

𝑗∈𝑁𝑏∪{𝑣𝑏 } 𝑥 𝑗 , ℎ𝑎 and ℎ𝑏 follow the Gaussian distribu-

tion:

ℎ𝑎 ∼ 𝒩 (𝑝𝑎𝜇𝒱1
+ 𝑞𝑎𝜇𝒱0

, (𝑝𝑎𝜎2𝒱1

+ 𝑞𝑎𝜎2𝒱0

)I𝜁 ),

ℎ𝑏 ∼ 𝒩 (𝑝𝑏𝜇𝒱0
+ 𝑞𝑏𝜇𝒱1

, (𝑝𝑏𝜎2𝒱0

+ 𝑞𝑏𝜎2𝒱1

)I𝜁 ),
(17)

where 𝑝𝑎 =
∑

𝑣𝑗 ∈𝑁𝑎∪{𝑣𝑎 }
1(𝑓𝑎=𝑓𝑗 )
𝑑𝑎+1 , 𝑞𝑎 =

∑
𝑣𝑗 ∈𝑁𝑎∪{𝑣𝑎 }

1(𝑓𝑎≠𝑓𝑗 )
𝑑𝑎+1 .

Then we have:

ℎ𝑎 − ℎ𝑏 ∼ 𝒩 ((𝑝 − 𝑞) (𝜇𝒱1
− 𝜇𝒱0

), (𝜎2𝒱1

+ 𝜎2𝒱0

)I𝜁 ). (18)

where 𝑝 = E𝑖∈𝒱 (𝑝𝑖 ), 𝑞 = E𝑖∈𝒱 (𝑞𝑖 ). For the convenience of proof,
we transform the above distribution into the form of a standard

Gaussian distribution [ℎ𝑎 −ℎ𝑏 − (𝑝 −𝑞) (𝜇𝐹1 − 𝜇𝐹0 )] ∼ 𝒩 (0, (𝜎2
𝐹1

+
𝜎2
𝐹0
)I𝜁 ). Then we give the 𝑙2 norm of this standard distribution

and subsequently analyze the range of it by Lemma A.1 and Corol-

lary A.2.

| |ℎ𝑎 − ℎ𝑏 − (𝑝 − 𝑞) (𝜇𝒱1
− 𝜇𝒱0

) | |2
2

= | |ℎ𝑎 − ℎ𝑏 | |22 − 2(𝑝 − 𝑞) (𝜇𝒱1
− 𝜇𝒱0

)∑︁
𝑗

(ℎ𝑎 [ 𝑗] − ℎ𝑏 [ 𝑗]) + 𝜁 (𝑝 − 𝑞)2 (𝜇𝒱1
− 𝜇𝒱0

)2

= | |ℎ𝑎 − ℎ𝑏 | |22 − (𝑝 − 𝑞) (𝜇𝒱1
− 𝜇𝒱0

)∑︁
𝑗

(
2(ℎ𝑎 [ 𝑗] − ℎ𝑏 [ 𝑗]) − (𝑝 − 𝑞) (𝜇𝒱1

− 𝜇𝒱0
)
)

≈ ||ℎ𝑎 − ℎ𝑏 | |22 − 𝜁 (𝑝 − 𝑞)2 (𝜇𝒱1
− 𝜇𝒱0

)2,

whereℎ𝑎 [ 𝑗] is the 𝑗-th dimension ofℎ𝑎 . We then state the following

results on standard Gaussian distribution.

Lemma A.1. (Laurent-Massart 𝜒2 tail bound) Consider a standard
Gaussian vector z ∼ 𝒩 (0, I𝜁 ). For any positive vector a ∈ R𝜁≤0, and
any 𝑡 ≤ 0, the following concentration holds.

P
[∑𝜁

𝑖=1
a𝑖z2𝑖 ≥ ∥a∥1 + 2∥a∥2

√
𝑡 + 2∥a∥∞𝑡)

]
≤ exp(−𝑡),

P
[∑𝜁

𝑖=1
a𝑖z2𝑖 ≤ ∥a∥1 − 2∥a∥2

√
𝑡

]
≤ exp(−𝑡) .

(19)

The following corollary immediately follows from using 𝑡 =

log(2/𝛿) and a𝑖 = 1 in the above lemma.

CorollaryA.2. (ℓ2 norm of Gaussian vector). Consider z ∼ 𝒩 (0, 𝜎2I𝜁 ),
for any 𝛿 ∈ (0, 1) and large enough 𝜉 , with probability greater than
1 − 𝛿 , we have:

𝜎2𝜁

(
1 − 2

√︄
log(2/𝛿)

𝜁

)
≤ ∥z∥2

2
≤ 𝜎2𝜁

(
1 + 4

√︄
log(2/𝛿)

𝜁

)
. (20)

As [ℎ𝑎 − ℎ𝑏 − (𝑝 − 𝑞) (𝜇𝐹1 − 𝜇𝐹0 )] ∼ 𝒩 (0, (𝜎2
𝐹1

+ 𝜎2
𝐹0
)I𝜁 ), with

probability greater than 1 − 𝛿 and large enough 𝜁 , we have:

(𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 − 2

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁 (𝑝 − 𝑞)2 (𝜇𝒱1

− 𝜇𝒱0
)2 ≤ ||ℎ𝑎 − ℎ𝑏 | |22

≤ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 + 4

√︄
log(2/𝛿)

𝜁
) + 𝜁 (𝑝 − 𝑞)2 (𝜇𝒱1

− 𝜇𝒱0
)2 .

(21)

With 𝑢 = 𝑝 − 𝑞, we have:

𝜂2𝑦 ≥ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 − 2

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2,

𝜂2𝑦 ≤ (𝜎2𝒱1

+ 𝜎2𝒱0

)𝜁 (1 + 4

√︄
𝑙𝑜𝑔(2/𝛿)

𝜁
) + 𝜁𝑢2 (𝜇𝒱1

− 𝜇𝒱0
)2 .

(22)

This concludes the proof of the theorem.

A.2 Proof of Eq. (8)
Δ𝒦
𝐸𝑂 − Δ𝒥

𝐸𝑂

= ( |E𝒦1

0

− E𝒦1

1

| + |E𝒦0

0

− E𝒦0

1

|) − (|E𝒥 1

0

− E𝒥 1

1

| + |E𝒥 0

0

− E𝒥 0

1

|)
= ( |E𝒦1

0

− E𝒦1

1

| − |E𝒥 1

0

− E𝒥 1

1

|) + (|E𝒦0

0

− E𝒦0

1

| − |E𝒥 0

0

− E𝒥 0

1

|)
(𝑎)
≤

���|E𝒦1

0

− E𝒦1

1

| − |E𝒥 1

0

− E𝒥 1

1

|
��� + ���|E𝒦0

0

− E𝒦0

1

| − |E𝒥 0

0

− E𝒥 0

1

|
���

(𝑏 )
≤

∑︁
𝑦,𝑓

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
|,

(23)

where inequality (a) and (b) hold due to 𝑎 − 𝑏 ≤ |𝑎 − 𝑏 | and | |𝑎 −
𝑏 | − |𝑎′ − 𝑏′ | | ≤ |𝑎 − 𝑎′ | + |𝑏 − 𝑏′ |.

A.3 Proof of Theorem 3.6
Theorem 3.6. Consider an encoder 𝑔 : 𝐻 → 𝑍 ∈ R𝑛×𝜁 ′

extracting

𝜁 ′-dimensional representations 𝑍 and an classifier 𝜔 : 𝑍 → 𝐶 ∈
R𝑛×2 predicting the binary labels of the nodes. Assume that 𝑔 and

𝜔 have 𝐿1-Lipschitz and 𝐿2-Lipschitz continuity, respectively, then

equalized odds is bounded by:

Δ𝐸𝑂 ≤ 𝐿1𝐿2

∑
1

𝑦=0 𝜂𝑦

2

. (24)
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Proof.
To characterize the relationship between 𝒱𝑦

1
and 𝒱𝑦

0
, we utilize

a partition that can separate the nodes in 𝒱𝑦

0
into different sets 𝐵

(𝑖 )
𝑦 .

Every node 𝑣 𝑗 in 𝐵
(𝑖 )
𝑦 is near to a certain node 𝑣𝑖 ∈ 𝒱𝑦

1
, satisfying

| |ℎ𝑖 − ℎ 𝑗 | |2 ≤ 𝜂𝑦 . Obviously, 𝒱
𝑦

0
= ∪𝑣𝑖 ∈𝒱𝑦

1

𝐵
(𝑖 )
𝑦 . We have

Δ𝐸𝑂 =
1

2

1∑︁
𝑦=0

|E𝑖∈𝒱𝑦

1

(𝑦𝑖 = 𝑦𝑖 ) − E𝑗∈𝒱𝑦

0

(𝑦 𝑗 = 𝑦 𝑗 ) |

=
1

2

1∑︁
𝑦=0

|E𝑖∈𝒱𝑦

1

𝜔 ◦ 𝑔(ℎ𝑖 ) [𝑦] − E𝑗∈𝒱𝑦

0

𝜔 ◦ 𝑔(ℎ 𝑗 ) [𝑦] |

=
1

2

1∑︁
𝑦=0

1

𝑛𝒱𝑦

1

∑︁
𝑖∈𝒱𝑦

1

|𝜔 ◦ 𝑔(ℎ𝑖 ) [𝑦] −
1

𝑛
𝐵
(𝑖 )
𝑦

∑︁
𝑗∈𝐵 (𝑖 )

𝑦

𝜔 ◦ 𝑔(ℎ 𝑗 ) [𝑦] |

=
1

2

1∑︁
𝑦=0

1

𝑛𝒱𝑦

1

∑︁
𝑖∈𝒱𝑦

1

1

𝑛
𝐵
(𝑖 )
𝑦

∑︁
𝑗∈𝐵 (𝑖 )

𝑦

��𝜔 ◦ 𝑔(ℎ𝑖 ) [𝑦] − 𝜔 ◦ 𝑔(ℎ 𝑗 ) [𝑦]
�� ,

(25)

where 𝜔 ◦ 𝑔(ℎ𝑖 ) [𝑦] is the 𝑦-th row of the vector 𝜔 ◦ 𝑔(ℎ𝑖 ).
As the nonliear transformation𝑔 and classifier𝜔 have𝐿1-Lipschitz

and 𝐿2-Lipschitz continuity, then |𝜔 ◦ 𝑔(ℎ𝑖 ) [𝑦] − 𝜔 ◦ 𝑔(ℎ 𝑗 ) [𝑦] | =
| |𝜔 ◦ 𝑔(ℎ𝑖 ) − 𝜔 ◦ 𝑔(ℎ 𝑗 ) | |∞ =

1

√
2

| |𝜔 ◦ 𝑔(ℎ𝑖 ) − 𝜔 ◦ 𝑔(ℎ 𝑗 ) | |2 ≤
𝐿2√
2

| |𝑔(ℎ𝑖 ) − 𝑔(ℎ 𝑗 ) | |2 ≤ 𝐿1𝐿2√
2

| |ℎ𝑖 − ℎ 𝑗 | | ≤ 𝐿1𝐿2√
2

𝜂𝑦 . So Δ𝐸𝑂 ≤

𝐿1𝐿2

∑
1

𝑦=0 𝜂𝑦

2

√
2

≤ 𝐿1𝐿2

∑
1

𝑦=0 𝜂𝑦

2

.

A.4 Proof of Theorem 3.8
Theorem 3.8. Assume that the nonlinear transformation 𝜔 (𝑍 ) =
𝑅𝐸𝐿𝑈 (𝑍𝑊𝜔 ) has 𝐿2-Lipschitz continuity, we have:

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
| ≤ 𝐿2𝜖

𝑦

𝑓
. (26)

Then equalized odds difference between the training graph and

the testing graph can be bounded as:

Δ𝒦
𝐸𝑂 − Δ𝒥

𝐸𝑂
≤ 𝐿2

∑︁
𝑓 ,𝑦

𝜖
𝑦

𝑓
. (27)

Proof.
To characterize the relationship between 𝒦𝑦

𝑓
and 𝒥 𝑦

𝑓
, we utilize

a partition that can separate the nodes in 𝒦𝑦

𝑓
into different sets

𝑅
(𝑖 )
𝑓 ,𝑦

. Every node 𝑣 𝑗 in 𝑅
(𝑖 )
𝑓 ,𝑦

is near to a certain node 𝑣𝑖 ∈ 𝒥 𝑦

𝑓
,

satisfying | |𝑧𝑖−𝑧 𝑗 | |2 ≤ 𝜖
𝑦

𝑓
. Obviously,𝒦𝑦

𝑓
= ∪𝑣𝑖 ∈𝒥 𝑦

𝑓
𝑅
(𝑖 )
𝑓 ,𝑦

. AsE𝒥 𝑦

𝑓
=

E𝑣𝑖 ∈𝒥 𝑦

𝑓
(𝜔 (𝑧𝑖 ) [𝑦]), E𝒦𝑦

𝑓
= E𝑣𝑖 ∈𝒦𝑦

𝑓
(𝜔 (𝑧𝑖 ) [𝑦]), we have:

Training Data Testing Data

Figure 8: Illustration of minimization of Δ𝒦
𝐷𝑃

.

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
| = |E𝑖∈𝒥 𝑦

𝑓
(𝑦𝑖 = 𝑦) − E𝑗∈𝒦𝑦

𝑓
(𝑦 𝑗 = 𝑦) |

= |E𝑖∈𝒥 𝑦

𝑓
(𝜔 (𝑧𝑖 ) [𝑦]) − E𝑗∈𝒦𝑦

𝑓
(𝜔 (𝑧 𝑗 ) [𝑦]) |

=
1

𝑛𝒥 𝑦

𝑓

∑︁
𝑖∈𝒥 𝑦

𝑓

| 𝜔 (𝑧𝑖 ) [𝑦] −
1

𝑛
𝑅
(𝑖 )
𝑓 ,𝑦

∑︁
𝑗∈𝑅 (𝑖 )

𝑓 ,𝑦

𝜔 (𝑧 𝑗 ) [𝑦] |

=
1

𝑛𝒥 𝑦

𝑓

∑︁
𝑖∈𝒥 𝑦

𝑓

1

𝑛
𝑅
(𝑖 )
𝑓 ,𝑦

∑︁
𝑗∈𝑅 (𝑖 )

𝑓 ,𝑦

|𝜔 (𝑧𝑖 ) [𝑦] − 𝜔 (𝑧 𝑗 ) [𝑦] |.

(28)

As𝜔 has𝐿2-Lipschitz continuity, |𝜔 (𝑧𝑖 ) [𝑦]−𝜔 (𝑧 𝑗 ) [𝑦] | = | |𝜔 (𝑧𝑖 )−
𝜔 (𝑧 𝑗 ) | |∞ =

1

√
2

| |𝜔 (𝑧𝑖 ) − 𝜔 (𝑧 𝑗 ) | |2 ≤ 1

√
2

𝐿2 | |𝑧𝑖 − 𝑧 𝑗 | | ≤
1

√
2

𝐿2𝜖
𝑦

𝑓
.

Then

|E𝒦𝑦

𝑓
− E𝒥 𝑦

𝑓
| ≤ 1

√
2

𝐿2𝜖
𝑦

𝑓
≤ 𝐿2𝜖

𝑦

𝑓
. (29)

According to Eq. (8) and the above equation, we have:

Δ𝒦
𝐸𝑂 − Δ𝒥

𝐸𝑂
≤ 𝐿2

∑︁
𝑓 ,𝑦

𝜖
𝑦

𝑓
. (30)

A.5 Minimization of Δ𝒦
𝐷𝑃

Similar to Theorem 3.8which indicates thatΔ𝒦
𝐸𝑂

−Δ𝒥
𝐸𝑂

≤ 𝐿2
∑

𝑓 ,𝑦 𝜖
𝑦

𝑓
,

we can also prove that demographic parity difference between the

training graph and the testing graph can be bounded as:

Δ𝒦
𝐷𝑃 − Δ𝒥

𝐷𝑃
≤ 𝐿2

∑︁
𝑓

𝛾𝑓 , (31)

where 𝛾𝑓 represents the sensitive group representation distance

between the training graph and the testing graphs. The proof is at

the end of A.5.

Thus to minimize Δ𝒦
𝐷𝑃

− Δ𝒥
𝐷𝑃

, we have to minimize

∑
𝑓 𝛾𝑓 . Fa-

traGNN utilizes the alignment module to minimize

∑
𝑓 ,𝑦 𝜖

𝑦

𝑓
, then

we show that

∑
𝑓 𝛾𝑓 can also be minimized at the same time. For

better illustration, we draw Figure 8. In Figure 8, all solid circles

represent sets of nodes with a certain sensitive attribute and label,
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such as 𝒥 1

0
denoting nodes in the training graph with the sensi-

tive attribute 0 and label 1, and 𝒦1

0
denoting nodes in the testing

graphs with the sensitive attribute 0 and label 1. We encircle nodes

with the same sensitive attribute in the training graph and testing

graphs with blue and orange circles, separately. For example, 𝒥0

represents nodes with sensitive attribute 0 in the training graph,

and 𝒦0 represents nodes with sensitive attribute 0 in the testing

graphs. Assuming that nodes with the same label have more similar

representations, then the representation distance from 𝒥 0

0
to 𝒦0 is

the same as the distance from 𝒥 0

0
to𝒦0

0
(𝜖0
0
), and the representation

distance from 𝒥 1

0
to 𝒦0 is the same as the distance from 𝒥 1

0
to 𝒦1

0

(𝜖1
0
). Thus the representation distance from 𝒥0 to 𝒦0 is denoted

as 𝛾0 = max(𝜖0
0
, 𝜖1
0
). Therefore, minimizing

∑
𝑓 ,𝑦 𝜖

𝑦

𝑓
can minimize∑

𝑓 𝛾𝑓 at the same time.

Proof of Eq. (31):

The proof is similar to the proof of Theorem 3 in the Appendix.

First, we characterize the difference of Δ𝐷𝑃 between the training

graph and testing graphs, denoted as Δ𝒥
𝐷𝑃

− Δ𝒦
𝐷𝑃

, by analyzing the

accuracy difference between the training graph and testing graphs

of each sensitive group.

Δ𝒦
𝐷𝑃 − Δ𝒥

𝐷𝑃
= |E𝒦0

− E𝒦1
| − |E𝒥0

− E𝒥1
|

≤ | |E𝒦0
− E𝒦1

| − |E𝒥0
− E𝒥1

| |
≤ |E𝒦0

− E𝒥0
| + |E𝒦1

− E𝒥1
|

=
∑︁
𝑓

|E𝒦𝑓
− E𝒥𝑓

|.

We then define sensitive group representation distance between

the training graph and testing graphs in Definition and build a

relationship between the representation distance and |E𝒦𝑓
− E𝒥𝑓

|.

𝛾𝑓 = max

𝑣𝑗 ∈𝒦𝑓

min

𝑣𝑖 ∈𝒥𝑓

| |𝑧𝑖 − 𝑧 𝑗 | |2

To characterize the relationship between 𝒦𝑓 and 𝒥𝑓 , we utilize

a partition that can separate the nodes in 𝒦𝑓 into different sets

𝑅
(𝑖 )
𝑓

. Every node 𝑣 𝑗 in 𝑅
(𝑖 )
𝑓

is near to a certain node 𝑣𝑖 ∈ 𝒥𝑓 ,

satisfying | |𝑧𝑖 −𝑧 𝑗 | |2 ≤ 𝜖𝑓 . Obviously,𝒦𝑓 = ∪𝑣𝑖 ∈𝒥𝑓
𝑅
(𝑖 )
𝑓

. As E𝒥 𝑦

𝑓
=

E𝑣𝑖 ∈𝒥𝑓
(𝜔 (𝑧𝑖 ) [𝑦]), E𝒦𝑓

= E𝑣𝑖 ∈𝒦𝑓
(𝜔 (𝑧𝑖 ) [𝑦]), we have:

|E𝒦𝑓
− E𝒥𝑓

| = |E𝑖∈𝒥𝑓
(𝑦𝑖 = 𝑦) − E𝑗∈𝒦𝑓

(𝑦 𝑗 = 𝑦) |
= |E𝑖∈𝒥𝑓

(𝜔 (𝑧𝑖 ) [𝑦]) − E𝑗∈𝒦𝑓
(𝜔 (𝑧 𝑗 ) [𝑦]) |

=
1

𝑛𝒥𝑓

∑︁
𝑖∈𝒥𝑓

| 𝜔 (𝑧𝑖 ) [𝑦] −
1

𝑛
𝑅
(𝑖 )
𝑓

∑︁
𝑗∈𝑅 (𝑖 )

𝑓

𝜔 (𝑧 𝑗 ) [𝑦] |

=
1

𝑛𝒥𝑓

∑︁
𝑖∈𝒥𝑓

1

𝑛
𝑅
(𝑖 )
𝑓

∑︁
𝑗∈𝑅 (𝑖 )

𝑓

|𝜔 (𝑧𝑖 ) [𝑦] − 𝜔 (𝑧 𝑗 ) [𝑦] |.

As𝜔 has 𝐿2-Lipschitz continuity, |𝜔 (𝑧𝑖 ) [𝑦] −𝜔 (𝑧 𝑗 ) [𝑦] | = | |𝜔 (𝑧𝑖 ) −
𝜔 (𝑧 𝑗 ) | |∞ =

1

√
2

| |𝜔 (𝑧𝑖 ) − 𝜔 (𝑧 𝑗 ) | |2 ≤ 1

√
2

𝐿2 | |𝑧𝑖 − 𝑧 𝑗 | | ≤
1

√
2

𝐿2𝛾𝑓 .

Then

|E𝒦𝑓
− E𝒥𝑓

| ≤ 1

√
2

𝐿2𝛾𝑓 ≤ 𝐿2𝛾𝑓 ,

we have:

Δ𝒦
𝐷𝑃 − Δ𝒥

𝐷𝑃
≤ 1

√
2

𝐿2

∑︁
𝑓

𝛾𝑓 .

B REPRODUCIBILITY INFORMATION
B.1 Dataset Statistics
We use Bail-Bs, Credit-Cs, Pokecs, sync-B1s, and sync-B2s to eval-

uate our model as described in Section 5. The modularity-based

community detection method we used to partition Bail [26] and

Credit [50] is provided by Gephi. For each training graph in each

dataset, we randomly choose 50% nodes for training and 25% nodes

for validation. And we use all the nodes in all the testing graphs

for testing. The statistics of Bail-Bs, Credit-Cs, Pokecs are shown

in Table 3, Table 4, and Table 5.

To observe the data distribution of different datasets, we calculate

𝜇𝒱1
−𝜇𝒱0

for each dataset. As indicated in Theorem 3.6 of our paper,

one of the factors influencing Δ𝐸𝑂 is 𝜇𝒱1
− 𝜇𝒱0

, and graphs with

different 𝜇𝒱1
− 𝜇𝒱0

will lead to different fairness performances.

As we mainly focus on the fairness performance under different

distributions, we utilize 𝜇𝒱1
− 𝜇𝒱0

to capture distribution shifts in

terms of fairness. As can be seen in Table 3, Table 4, and Table 5, the

training graph and testing graphs in Bail-Bs, Credit-Cs, and Pokecs

have different values of 𝜇𝒱1
−𝜇𝒱0

, indicating that the training graph

and testing graphs are under different data distributions.

As can be seen from the table, the mu values of different datasets

vary, indicating that their data distributions are distinct. We observe

nodes in different communities exhibit some differences.

sync-B1s contains a training graph B0 and thirty testing graphs

with different 𝑢. sync-B2s contains a training graph B0 and thirty

testing graphs with different 𝑢.

All the datasets can be found in https://anonymous.4open.science/r/FatraGNN-

118F.

Table 3: Bail-Bs statistics.

dataset B0 B1 B2 B3 B4

Nodes 4686 2214 2395 1536 1193

Edges 153942 49124 88091 57838 30319

𝜇𝒱1
− 𝜇𝒱0

0.1692 0.2224 0.2055 0.0297 0.2442

Features 18

Sensitive attribute Race

Label Bail/no bail

Table 4: Credit-Cs statistics.

dataset C0 C1 C2 C3 C4

Nodes 4184 2541 3796 2068 3420

Edges 45718 18949 28936 15314 26048

𝜇𝒱1
− 𝜇𝒱0

0.2611 0.2832 0.4052 0.4413 0.4766

Features 13

Sensitive attribute Age

Label High/low risk

https://anonymous.4open.science/r/FatraGNN-118F
https://anonymous.4open.science/r/FatraGNN-118F
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Table 5: Pokecs statistics.

dataset Pokec-z Pokec-n

Nodes 67,796 66,569

Edges 1,303,712 1,100,663

𝜇𝒱1
− 𝜇𝒱0

1.0942 1.2074

Features 265

Sensitive attribute Region

Label Working field

B.2 Baselines
The publicly available implementations of Baselines can be found

at the following URLs:

• GCN: (MIT license) https://github.com/tkipf/gcn

• MLP: (MIT license) https://github.com/xmu-xiaoma666/External-

Attention-pytorch/tree/master/model/mlp

• FairVGNN: (MIT license) https://github.com/YuWVandy/FairVGNN

• NIFTY: (MIT license) https://github.com/chirag126/nifty/tree/main

• EDITS: (MIT license) https://github.com/yushundong/EDITS

• EERM: (MIT license) https://github.com/qitianwu/GraphOOD-

EERM

B.3 Operating Environment
• Operating system: Linux version 3.10.0-693.el7.x86_64

• CPU information: Intel(R) Xeon(R) Silver 4210 CPU@2.20GHz

• GPU information: GeForce RTX 3090

B.4 Inplementation Details
We use Pytorch to implement FatraGNN, for other baselines, we

utilize the original codes from their authors and train the mod-

els in an end-to-end way. For all the models, we first train each

model on the training graph with careful finetune, and then we

test the performance of classification and fairness on the testing

graphs. In each training iteration, we performed five training steps,

including training the discriminator to discriminate the sensitive

attribute, training the encoder to deceive the discriminator, training

the encoder and classifier to ensure accuracy, training the feature

generator to generate features, and training the encoder to obtain

similar representations. The respective numbers of iterations for

these steps were denoted as T1, T2, T3, T4, and T5. For the pro-

posed FatraGNN, we search on epoch number T ranging from {400,

600}. For T1, T2, T3, T4, and T5, we test them ranging from {2, 5},

{8, 10, 12}, {5, 8}, {2, 5, 8}, {2, 5}, respectively. For the learning rate

of the feature generator, discriminator, classifier, and encoder, we

test them from {0.001, 0.005, 0.01, 0.05}. In order to get a bunch of

modified graphs, we modify the structure of the training graph

by randomly removing and adding the same number of edges. Ev-

ery 10 epochs we choose one modified graph for training. For fair

comparisons, we randomly run 5 times and report the average

results for all methods. The code of FatraGNN can be found in

https://anonymous.4open.science/r/FatraGNN-118F.

B.5 Hyperparameter Setting
We implement FatraGNN in PyTorch, and list some important pa-

rameter values in our model in Table 6. We use Adam [38] as the

optimizer for encoder 𝜌 , discriminator 𝜉 , feature generator Γ, and
classifier 𝜔 with different learning rates.

Table 6: Hyperparameter Setting

T T1 T2 T3 T4 T5 Γ lr 𝜉 lr 𝜔 lr 𝜌 lr

credit 600 5 5 12 5 2 0.05 0.001 0.01 0.005

bail 400 5 5 12 8 5 0.05 0.001 0.005 0.005

pokec 400 2 5 10 2 5 0.05 0.001 0.01 0.01

C ADDITIONAL RESULTS
C.1 Results on Credit-Cs
Table 7 shows classification and fairness performance on Credit-Cs.

C.2 Trade-off on Pokecs
The accuracy-fairness trade-off of fairness baselines and FatraGNN

on Pokec is shown in Figure 10.

C.3 Analysis of the Adversarial Module
We do experiments on Credit-Cs with five different sets of randomly

chosen hyperparameters and random seeds and plot the loss versus

epoch curve of the feature generator, the discriminator, and the

classifier on Credit-Cs. As shown in Figure 9, the amplitude of

loss gradually decreases as the number of epochs rises, indicating

that it is actually not difficult to tune the parameters to achieve

convergence and FatraGNN is not that susceptible to instability

under varying random seeds.

C.4 Analysis of the Representation Differences
between the Training Graph and Testing
Graphs

In order to plot the representations of the training graph and testing

graphs of Bail-Bs using t-SNE [43], we first obtain the representa-

tion matrices of the training graph and testing graphs. Then we

concatenate them into a single matrix and apply the same transfor-

mation to obtain a new two-dimensional matrix. Then, we separate

these matrices corresponding to the original graphs. For each graph,

we plot the node representations in one figure, with different col-

ors indicating nodes belonging to different EO groups. As shown

in Figure 12, the representations of nodes belonging to the same

EO group on the training graph and testing graphs are close. This

indicates that by minimizing the representation difference between

the training graph and the testing graphs, the alignment module of

our model can ensure the proximity of representations of the same

EO group between the training graph and testing graphs, thereby

guaranteeing fairness and accuracy on the testing graphs. We also

propose an alignment score

∑
𝑓 ,𝑦 E𝑖∈𝒥 𝑦

𝑓
, 𝑗∈𝒦𝑦

𝑓

(𝑧𝑖𝑧 𝑗 )
| |𝑧𝑖 | | · | |𝑧 𝑗 | |

to mea-

sure the alignment of the training graph and the testing graphs.

The alignment scores between B0 and B1, B2, B3, and B4 are 3.89,

3.88, 3.81, and 3.86, respectively. However, when the generation

module and alignment module are excluded, the alignment scores

experience a decrease, measuring 3.85, 3.85, 3.73, and 3.83. This

demonstrates the capacity of the generation and alignment modules

https://github.com/tkipf/gcn
https://github.com/xmu-xiaoma666/External-Attention-pytorch/tree/master/model/mlp
https://github.com/xmu-xiaoma666/External-Attention-pytorch/tree/master/model/mlp
https://github.com/YuWVandy/FairVGNN
https://github.com/chirag126/nifty/tree/main
https://github.com/yushundong/EDITS
https://github.com/qitianwu/GraphOOD-EERM
https://github.com/qitianwu/GraphOOD-EERM
https://anonymous.4open.science/r/FatraGNN-118F
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Figure 9: Loss versus epoch curve of the feature generator, the discriminator, and the classifier on Credit with five different sets
of randomly chosen hyperparameters and random seeds.

Table 7: Classification and fairness performance (%±𝜎) on Credit-Cs. ↑ denotes the larger, the better; ↓ denotes the opposite.
Best ones are in bold.

metric MLP GCN FairVGNN NIFTY EDITS EERM CAF SAGM RFR FatraGNN (ours)

C1

ACC↑ 75.69±5.64 76.69±2.48 77.45±0.31 77.51±0.03 77.06±0.03 77.04±0.09 76.54±0.81 77.16 ±0.45 76.83±1.26 77.31±0.1
ROC-AUC↑ 64.38±0.47 65.54±1.43 67.07±0.4 68.43±0.25 65.25±1.29 66.54±1.37 67.58±1.36 65.35±1.03 66.08±0.81 65.41±1.28

Δ𝐷𝑃 ↓ 5.2±14.92 7.4±6.69 1±0.63 4.34±0.03 2.43±0.03 5.46±0.38 5.61±0.84 5.21±0.76 3.46±0.98 0.5±0.21
Δ𝐸𝑂 ↓ 7.92±15.86 6.31±6 0.85±0.2 2.73±0.04 3.24±0.03 6.47±0.26 5.03±1.49 4.58±0.68 3.19±0.73 0.71±0.03

C2

ACC↑ 72.05±2.6 75.42 ±0.44 75.49±1.7 74.44±0.47 77.07±0.22 76.16±0.91 75.49±0.82 76.38±0.91 75.24±0.68 77.12±0.28
ROC-AUC↑ 62.36±6.29 63.76±3.07 63.8±0.25 60.63±10.06 62.5±3.27 65.49±2.39 62.36±1.18 62.65±0.89 61.35±0.92 64.16±0.69

Δ𝐷𝑃 ↓ 8.14±4.39 8.74±3.6 3.54±0.42 3.54±1.6 2.98±0.01 4.22±1.38 3.61±0.74 5.34±0.67 2.35±0.39 1.64±1.06
Δ𝐸𝑂 ↓ 6.7±4.3 7.35±2.64 2.63±0.61 2.34±0.63 3.65±0.16 5.71±1.1 3.57±0.89 4.37±0.98 2.96±0.81 0.95±0.7

C3

ACC↑ 68.15±0.16 70.31±1.79 71.49±0.56 70.11±0.04 70.89±0.96 71.43±1.24 71.28±1.35 70.83±0.65 70.03±0.48 71.81±0.39
ROC-AUC↑ 64.64±4.49 65.90±1.72 65.96±0.19 64.75±0.14 63.18±2.53 65.36±1.03 64.37±1.06 64.52±0.91 63.59±0.63 65.7±0.91

Δ𝐷𝑃 ↓ 8.7±0.12 9.46±10.06 3.05±1.76 3.54±0.07 3.22±0.45 5.63±9.43 5.28±0.94 5.12±1.36 2.86±1.25 0.25±0.2
Δ𝐸𝑂 ↓ 9.47±0.03 9.71±8.29 3.35±2.46 2.23±0.08 1.87±0.36 5.34±4.62 4.82±1.33 5.57±0.79 3.41±0.89 0.81±0.56

C4

ACC↑ 68.26±3.09 70.89±5.38 71.74±0.45 71.84±6.36 71.28±0.2 71.35±4.28 71.48±0.81 71.22±0.29 71.47±0.92 72.15±0.42
ROC-AUC↑ 65.32±4.42 64.28±3.45 66.45±1.61 66.98±2.3 63.45±0.6 64.04±0.67 66.59±1.24 63.45±0.88 65.27±0.68 67.66±0.87

Δ𝐷𝑃 ↓ 7.46±12.08 6.13±4.08 3.46±0.05 7.84±9.64 3.42±0.47 4.35±0.85 3.73±0.92 5.46±1.18 3.59±0.41 0.61±0.08
Δ𝐸𝑂 ↓ 6.61±11.22 8.16±2.38 2.82±0.19 2.18±9.91 3.22±0 5.07±0.74 4.18±0.85 5.34±0.22 2.46±0.87 1.16±0.13
rank 10 9 2 4 3 7 6 8 5 1

to facilitate the encoder in learning similar representations for the

same EO group between the training and testing graphs.

C.5 Hyperparameter Study
We investigate the impact of epochs used in each training step. Fig-

ure 13 shows the overall score of FatraGNN on the Bail-Bs dataset.

We can see that the performance benefits from an applicable selec-

tion of each epoch. Specifically, when T1 and T2 are set to small

values, the adversarial module fails to guide the encoder in learning

indistinguishable representations for sensitive groups. Similarly, a

small T3 hinders the classifier’s ability to effectively classify the

nodes. In addition, a small T4 limits the generator’s capacity to

generate features that may lead to unfairness. Lastly, a small T5
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Figure 10: Trade-off of ACC and Δ𝐸𝑂 on the testing graph
of Pokec. Upper-left corner (high accuracy, low Δ𝐸𝑂 ) is pre-
ferred.

Figure 11: The hyperparameter sensitivity of FatraGNN with
varying generated graph numbers.

prevents the alignment module from facilitating the encoder in

learning similar representations for the initial graph and the gener-

ated graph, resulting in unfairness.

As we modify the graph structure to get graphs with different 𝑢

by adding and removing the edges of the graph, we also explore

the impact of the edge modification ratio. As shown in Figure 14,

we observe that FatraGNN achieves better performance when the

ratio is around 0.5. Conversely, when the edge modification ratio is

either too small or too large, FatraGNN’s performance deteriorates.

A small edge modification ratio results in little structural change in

the generated graph, making it challenging for FatraGNN to adapt

to testing graphs with different 𝑢. On the other hand, a large edge

modification ratio leads to substantial changes in the graph struc-

ture and may disrupt the original information, making it difficult

for FatraGNN to learn meaningful patterns.

Additionally, to investigate the optimal number of generated

graphs, we keep other parameters fixed and vary the number of

generated graphs utilized during training on Bail-Bs. As shown

in Figure 11, the training process yields better results when the

number of generated graphs reaches 40.

Figure 12: Visualization of the representations of the training
graph and testing graphs.
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Figure 13: The hyperparameter sensitivity of FatraGNN with varying epoch numbers of each training step.

Figure 14: The hyperparameter sensitivity of FatraGNN with varying modification rates.

D RELATEDWORK
OOD Generalization on Graphs [29] proposes a novel out-of-
distribution generalized graph neural network to solve the problem

of generalization of GNNs under complex and heterogeneous dis-

tribution shifts. [48] focuses on out-of-distribution generalization

for node-level problems and aims GNNs to minimize the mean and

variance of risks from data with different distributions simulated

by adversarial context generators. Although these works can re-

lease the problem of classification performance deterioration under

distribution shifts, they may lead to unfairness.
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