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ABSTRACT
In this paper we consider the setting where machine learning mod-
els are retrained on updated datasets in order to incorporate the
most up-to-date information or reflect distribution shifts. We in-
vestigate whether one can infer information about these updates
in the training data (e.g., changes to attribute values of records).
Here, the adversary has access to snapshots of the machine learning
model before and after the change in the dataset occurs. Contrary
to the existing literature, we assume that an attribute of a single or
multiple training data points are changed rather than entire data
records are removed or added. We propose attacks based on the
difference in the prediction confidence of the original model and
the updated model. We evaluate our attack methods on two public
datasets along with multi-layer perceptron and logistic regression
models. We validate that two snapshots of the model can result
in higher information leakage in comparison to having access to
only the updated model. Moreover, we observe that data records
with rare values are more vulnerable to attacks, which points to
the disparate vulnerability of privacy attacks in the update setting.
When multiple records with the same original attribute value are
updated to the same new value (i.e., repeated changes), the attacker
is more likely to correctly guess the updated values since repeated
changes leave a larger footprint on the trained model. These ob-
servations point to vulnerability of machine learning models to
attribute inference attacks in the update setting.

CCS CONCEPTS
• Security and privacy; • Computing methodologies→ Ma-
chine learning;

KEYWORDS
Machine Learning; Privacy; Attribute Inference; Data Update.

ACM Reference Format:
Tian Hui, Farhad Farokhi, and Olga Ohrimenko. 2023. Information Leakage
from Data Updates in Machine Learning Models. In Proceedings of the 16th
ACM Workshop on Artificial Intelligence and Security (AISec ’23), November
30, 2023, Copenhagen, Denmark. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3605764.3623905

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AISec ’23, November 30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0260-0/23/11. . . $15.00
https://doi.org/10.1145/3605764.3623905

1 INTRODUCTION
Machine learning models are shown to leak private information,
such as membership in a training dataset [14], which can be trou-
bling in sensitive application domains. Machine learning models
are however not static. Datasets used for training are constantly
changing and the model must remain accurate to reflect new trends
in data. Therefore, in practice, machine learning models are updated
with the arrival of new data to increase accuracy or incorporate
distribution shifts in data. Furthermore, various legal frameworks,
such as General Data Protection Regulation (GDPR) [6], provide
users with the right to be forgotten. For machine learning models,
this may imply removing the influence of that data point in the
model. This can, for instance, be done with machine unlearning [1].
Therefore, many platforms support automatic model updates when
new batches of data arrive or data changes. One can incorporate
new data in the model either by updating the previous model param-
eters using the new data or by retraining the model from scratch
to incorporate the effect of data updates. Access to different snap-
shots of the model across multiple updates can increase privacy
leakage [9, 13, 15].

In this work, we study the effect of updates to existing records
rather than the addition of new records between model updates.
To this end, we construct attacks that observe the models’ updated
behaviour (i.e., changes to the confidence scores) to extract informa-
tion regarding the changes. We first study an attacker who knows
which records have been updated and its aim is to infer the value
of the updated attribute. We then study an attacker whose goal is
to identify which records have been updated. Empirical evaluations
on two datasets suggest that having black-box access to both the
original model and the updated model results in a larger leakage in
comparison to having access only to the updated model.

The main contributions are listed below:

• We study the problem of inferring information about updated
training data in machine learning. Compared to previous
work we study the setting where some entries of the training
data change as opposed to new data being incorporated into
the training dataset.
• We propose attack methods for inferring which records are
updated andwhat the updated values are. Our attacks assume
black-box access to the models: the attacker is given labels
and corresponding confidence scores.
• We use two datasets, namely, Census and Lending Club data,
to evaluate the success of the proposed attack methods based
on two snapshots of the model and to compare them with
attacks relying on a single model.

ar
X

iv
:2

30
9.

11
02

2v
1 

 [
cs

.L
G

] 
 2

0 
Se

p 
20

23

https://doi.org/10.1145/3605764.3623905
https://doi.org/10.1145/3605764.3623905
https://doi.org/10.1145/3605764.3623905


AISec ’23, November 30, 2023, Copenhagen, Denmark Hui et al.

• We study conditions in terms of attribute values and update
scenarios that render the models most vulnerable to the
proposed attacks.
• We discuss two defenses: differential privacy and batch up-
date.

2 THREAT MODEL AND ATTACK
Let (𝑡, 𝑣,𝑦) be a record in a dataset, where 𝑡 is the target (sensitive)
attribute, 𝑣 are the remaining known attributes, and 𝑦 is the label.
For example, 𝑡 could be amarriage status, 𝑣 may contain information
about one’s date of birth, race and education,and 𝑦 be the income
level. With time, sensitive attribute value may change from 𝑡 to
a new value 𝑡 ′ (e.g., marriage status changed from “unmarried”
to “married”). We refer to the dataset and the machine learning
model trained on it before/after the update asD/D′ andMD /M𝐷 ′ ,
respectively.

We consider two attacker goals: updated attribute inference and
updated record inference. In the first one, the attacker, given 𝑣 and 𝑦,
is interested in inferring the updated attribute value 𝑡 ′. In the second
one, the attacker, given 𝑡, 𝑣,𝑦 of several records, is trying to infer
which of these records has been updated. Note that in the latter,
the attacker is not interested in guessing 𝑡 ′ but merely guess which
record was updated.

Two attack methods are considered. Both attacks assume black-
box access to a model, that is, the attacker can query each model
on inputs of its choice and obtain labels predicted by the model
and their corresponding confidence intervals. In the first one, the
attacker uses only the updated modelM(D′) to carry out its attack.
In the second one, it usesM(D′) and the original modelM(D).
The goal is to examine the difference in attack success rates be-
tween these two scenarios and to determine whether access to an
additional snapshot of the model can improve the attacker’s success
rates (i.e., result in a larger information leakage). We assume that
the attacker possesses no data distribution knowledge. Therefore
the effect is solely from access to the model alone rather than statis-
tical inference from background data distribution knowledge. We
now describe each attack method.

Single model attack. This attack scenario is akin to attribute in-
ference [10], where the adversary is trying to infer a value of a
target attribute. We assume the adversary knows all other attribute
values 𝑣 and the label value 𝑦. The adversary also has access to the
model trained on the updated dataset D′. The adversary’s goal is
to infer the updated target attribute value 𝑡 ′. We use the black-box
attack confidence-based attribute inference (CAI) [10]. The proce-
dure entails trying all possible values in the domain of the target
attribute, denoted as 𝑇 (e.g., all marriage statuses), for the target
attribute along with the known attribute values 𝑣 . For each value
in 𝑇 , it records model’s confidence on predicting 𝑦. The attacker
then uses the value that has the highest model confidence for the
true label as its guess for 𝑡 ′. This is summarized in Algorithm 1.
The attack is successful if attacker’s guess, 𝑡guess, equals 𝑡 ′.

Two model attack. This attack considers the output confidence
vectors of the two models: before and after the update. Here, the
attacker tries all possible values 𝑇 of the attribute on the origi-
nal model and the updated model. It records confidence vectors

returned by each model for the true label 𝑦 for each value in 𝑇 .
It then computes the difference between the vectors returned by
the two models (updated minus original) and picks the value that
corresponds to the largest difference, referred to as 𝑡guess. This
is summarized in Algorithm 2. The attack is successful if 𝑡guess
equals 𝑡 ′.

Algorithm 1 Single model attack. Attribute inference attack using
the confidence on the true label of the updated model. Let (𝑡, 𝑣,𝑦) be
a record, where 𝑡 is the unknown target attribute, 𝑣 is the remaining
known features and 𝑦 is the label. Let 𝑡 ′ be the updated attribute
value. Let 𝑇 denote the set of all possible values for the target
attribute.MD (𝑧) returns confidence on label 𝑦 predicted byM on
the data record 𝑧. The attack is successful if 𝑡guess = 𝑡 ′.

Require: updated modelMD′ , whereD′ contains updated record
(𝑡 ′, 𝑣, 𝑦).

1: Initialize array confnew of size |𝑇 | each
2: for each 𝑡 in 𝑇 do
3: 𝑧 ← (𝑡, 𝑣)
4: confnew [𝑡] ← MD′ (𝑧)
5: end for
6: 𝑡guess← argmax𝑡 ∈𝑇 confnew [𝑡]
7: return 𝑡guess

Algorithm 2 Two model attack. Attribute inference attack using
the confidence difference on the true label for two models.
Require: modelMD and updated modelMD′ , where D and D′

are the same except D contains (𝑡, 𝑣,𝑦) and D′ contains
(𝑡 ′, 𝑣, 𝑦) instead.

1: Initialize arrays confold and confnew of size |𝑇 | each
2: for each 𝑡 in 𝑇 do
3: 𝑧 ← (𝑡, 𝑣)
4: confold [𝑡] ← MD (𝑧)
5: confnew [𝑡] ← MD′ (𝑧)
6: end for
7: 𝑡guess← argmax𝑡 ∈𝑇 (confnew [𝑡] − confold [𝑡])
8: return 𝑡guess

3 EXPERIMENTS
3.1 Datasets
We evaluate the success of the proposed attacks on the following
datasets.

Census. The Census data set is collected by Bargav Jayaraman
and Zihao Su1 from the American Community Survey Public Use
Microdata Sample files2. It has 1 676 013 records and 12 attributes.
This data set consists of records containing demographic infor-
mation about individuals, such as sex, income, marital status, and
education level, which can be highly sensitive. This data set has
been used previously for attribute inference attacks [10]. We con-
sider two update scenarios: one where MaritalStatus changes and
1https://github.com/JerrySu11/CensusData
2https://www.census.gov/programs-surveys/acs/microdata/access.html
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one where Education3 changes. BothMaritalStatus and Education
have 5 possible values (which corresponds to the size of 𝑇 in the
previous section). In each scenario, the attacker is trying to infer
the update value. The goal of the ML task is to infer whether the
annual income is greater than $90 000 or not.

LendingClub. The LendingClub data set contains records of
loan information issued by the peer-to-peer loan company Lend-
ing Club4. The dataset contains approved loan records from 2007
to 2020. The loan information recorded includes the borrower’s
credit history, loan amount, and interest rate. We follow the fea-
ture processing procedure as described in this repository [4], but
remove rows with missing values instead of imputation and use
all processed features. The data set has 1 769 947 records and 140
attributes after preprocessing. We consider an update to one sensi-
tive attribute State that the attacker is trying to infer. The target
attribute State has 51 possible values (i.e., the size of 𝑇 ). The goal
is to predict whether a loan is charged off or fully paid.

3.2 Model Training
For the Census data, we train a multi-layer perceptron model (MLP)
following the same model architecture and hyper-parameters used
in previous work by Jayaraman et al. [10]. The MLP model has
two hidden layers. Each layer has 256 neurons and the activation
function is ReLu. A training set of 50,000 random records are drawn
from all records and separately 25,000 random records are drawn as
the test set. The trained model has 89% train and 85% test accuracy,
which is close to the accuracy reported in Jayaraman et al. [10].

For the LendingClub data, we train a logistic regression model
(LR). We sample 10% of all the records as our training and test
records after pre-processing. We use the Sci-kit Learn implemen-
tation of logistic regression with its default “lbfgs” solver and l2
regularization. The model converges within 200 epochs. It should be
noted that due to strict convexity of the logistic regression problem,
the algorithm will converge to the global minimum. Both train and
test accuracy is around 80%, which is close to the performance in
the aforementioned data processing project [4].

The models are retrained from scratch on the updated datasets.

3.3 Attack Types
We perform two types of attack experiments.

3.3.1 Updated Attribute Inference. We now describe the attack
scenarios we evaluate in the next section. We first simulate an
update scenario where only one record out of all records is up-
dated. The record is updated by changing only one attribute. We
also investigate the success of the attacks when multiple records
were updated. We perform this experiment on both Census and
LendingClub datasets. In Census data, we investigate when the
target attribute of MaritalStatus or Education changes. While in
LendingClub, target attribute of State for the borrower changes.

3.3.2 Update Record Inference. We further investigate attacker’s
ability to pick out which records are changed when multiple un-
known records are changed in a single model update. We run this

3The Education attribute was created from the original SchoolLevel attribute to reduce
the granularity.
4https://www.kaggle.com/datasets/ethon0426/lending-club-20072020q1

experiment on the Census dataset for two settings: when a few
records are updated and when many records are updated (i.e., rep-
resenting a distribution shift as we update ≈5.5% of “married" indi-
viduals in the training set the “divorced" value). In this setting, the
attacker knows all the original “married” individuals and is asked
to pick out which of these records is subsequently changed to be
“divorced”.

4 RESULTS
In this section, we present the results of different attack experiments.
We summarize our findings below:

• Two-model attacks outperform single-model attacks in at-
tribute inference by breaking free from single-model attacks’
idiosyncratic prediction behaviors (e.g., over-prediction of
rare values).
• Data records with rare values are more vulnerable to attacks.
• When multiple records are updated with the same original
and updated values (i.e., repeated changes), the attacker is
more likely to correctly guess the updated value given the
partial target record.
• The simple two-model attack has limited ability to identify
confidently which points are being updated (partly due to
the difficulty of distinguishing nearby members and non-
members). Nevertheless, the difference in success rates still
suggests an increased information leakage from two models
in comparison to a single model.

4.1 Updated Attribute Inference
In this section we measure whether, given an updated record, an
attacker can infer the value of the updated attribute. We consider
the setting where only one record is updated and the setting where
multiple records are updated to the same value.

Single record update. Table 1 summarizes the attack success rates
for single record updates, where the attacker aims to infer the
updated value of a target attribute (e.g., how the marital status of
a particular record has changed). The experiments report attack
success rates averaged over 100 experiments for Census and 300
experiments for LendingClub datasets, where different records were
updated in each experiment. The two-model attack almost always
has a higher success rate.

To investigate the rationale of the poor performance of single
model attacks and the disparity in attack success rates, we consider
the distribution of the attribute inference predictions versus the
actual distribution of values. We found that single-model attacks
tend to concentrate their predictions on one or two values, and
rarely predict other values. For example, the number of records with
“separated” and “widowed” MaritalStatus values comprise only 4%
of the Census data. However, the single-model attack predicts 40%
to be “widowed” and 37% to be “separated” when applied to all
training records. Similarly, the single-model attack predicts only
two less populous states in the LendingClub data, “ME” (Maine)
and “AR” (Arkansas), resulting in zero success rates in most update
settings. On the other hand, although two-model attacks still to
some extent share the idiosyncratic prediction preferences with
its single-model counterpart, this behavior is less evident and the
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Table 1: Success rates of two attack methods described in Section 2 — single-model access and two-model access — when an
attribute of a single record is updated. The attacker aims to infer the attribute value after an update. Two-model attack has
higher attack success rate than a single-model on all but one update rule.

Dataset (Attribute) Update Rule Attack Success Rates
Before After Single model Two model

Census (MaritalStatus)

married divorced .12 .32
married separated .51 .43
married widowed .45 .52

unmarried married .06 .38
divorced married .05 .32

Census (Education) medium high .01 .31
high higher .20 .51

LendingClub (State)

CA NY .00 .06
CA TX .00 .04
CA FL .00 .06
CA OH .00 .27
CA LA .00 .55
CA SD .00 .65
LA SD .00 .66
VA CA .00 .01
VA LA .00 .56
LA OH .00 .27
NC GA .00 .18

Table 2: Success rates of two attack methods described in Section 2 — single-model access and two-model access — when State of
multiple records in LendingClub dataset is updated. We vary an update set from 1 to 100 records where each record is updated
according to the same update rule. Attack success rate of the two-model attack method grows with the size of the update set.

Update Rule Update Size Attack Success Rates
Before After Single model Two model

CA NY
1 .00 .06
10 .00 .29
100 .00 .48

VA CA
1 .00 .01
10 .00 .16
100 .00 .24

LA TX
1 .00 .05
10 .00 .27
100 .00 .20

NC GA
1 .00 .18
10 .00 .40
100 .00 .41

predictions have a higher chance of aligningwith the actual updated
value.

We observe that rare values suffer greater attack success rates.
For example, “CA” (California), is the most common value in the
LendingClub data (comprising 14% of the data). When State value
“CA” is updated to another common value “NY” (New York, com-
prising 8% of the dataset), the success rates by two-model attack is
6%, but when changed to a rare value “SD” (South Dakota, 0.2%),

the attack success rates rise to 65%. This is inline with prior stud-
ies showing that membership inference attacks, for example, have
higher success rate on records with rare values [12].

Multiple records update. Here we evaluate the same attack, but
each update now consists of changes tomultiple records. All changed
records have the same original and updated attribute values. We
vary the number of records being changed in a single update to
study its effect on the success of the attack. The number of records
changed is still small compared to the population, therefore it does
not constitute a distribution shift. Table 2 shows the attack success
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rates for multiple records update. Experiments with update size 1,
10, 100 are repeated 300, 100 and 10 times, respectively.

We observe that compared to single record update above, when
multiple records are updated, the attacker is more likely to correctly
guess the updated value given the partial target record.

4.2 Updated Record Inference
In this experiment, we test whether, given a subset of records,
an attacker can infer which records were updated. Compared to
experiments in the previous subsection, we do not require the
attacker to guess the attribute value of the updated record and only
guess that the update has happened. We consider the setting where
only a few records are updated and the setting where we simulate
a distribution shift by updating many records.

Few records update setting. We consider a scenario where the
attributes and the label of 1000 training data points (before the
update) are known to the attacker. We then update 100 of these
records by changing the target attribute to new values (unknown
to the attacker). The attacker’s goal is to guess which 100 records
among 1000 original data records have been updated. Note that in
this setting due to the small number of updated records (i.e., 0.2%
of the training data), the change does not constitute a shift in the
distribution.

The attack algorithm proceeds as follows. For a given test point
(old record), the attacker obtains confidence scores of the original
and updated model and computes the difference between the two.
The attacker repeats this calculation for all test points (i.e., all 1000
in the experiment described above) and sorts them by the confidence
difference. The intuition is that the larger the confidence difference
is, the more likely a point has been changed when training the new
model.

We evaluate the attacker’s performance using a receiver oper-
ating characteristic (ROC) curve in Figure 1. We focus on the low
false positive region. This is motivated by the work of Carlini et
al. [2] that suggests the attacker would ideally aim for high true
positive rates at low false positive rates in many realistic settings.
It is argued that an attack is considered successful if it reliably
violates the privacy for even a few users while it is considered un-
successful if it unreliably achieves high aggregate success. Note that
the attacker outputs at most 100 guesses. The ROC curve shows
that the attack outperforms random guessing. At 100 guesses, the
attack picks out 20 true points, which is better than the expected 10
correct points by random guessing.

We note that this attack is similar to the one on inferring mem-
bership between updated models in [9]. However, our setting is
different, since instead of adding or deleting a data record, we up-
date an attribute value of an existing data record and try to infer
which record was updated.

Distribution shift update. We now consider a distribution shift
setting where many records are updated. The attacker’s goal is
again to guess which records have changed while knowing that dis-
tribution shift has occurred. In particular, the attacker knows that
some records among 27 403 have been updated to “divorced” but

Figure 1: In this experiment, 1000 data records with
MaritalStatus “married” are chosen from the Census dataset;
MaritalStatus of 100 of these records is then updated to “di-
vorced”. An attacker needs to guess which of the 1000 records
hav been updated. The attacker can vary the number of their
guesses by choosing the top 𝑘 points sorted by the model
confidence difference. By changing 𝑘 , we can vary the false
positive rates.

does not know which ones. In experiments, we change 2 740 “mar-
ried” records to “divorced” and refer to this update as a distribution
shift since 5.5% of the training data is updated.

Table 3 shows that two-model attacks can pick out more data
points that have been updated, but suffer higher false positive rates
compared to the results in Figure 1. From the perspective of aiming
for high true positive rates at low false positive rates, the attacker
only showed limited ability to identify which data points have been
updated. However, the difference in the attacker’s behavior may
suggest an increased privacy risk with the exposure to two versions
of the model. Further work in designing attacks to reduce false
positive rates may be interesting.

Table 3: In this experiment, 27 403 data records with
MaritalStatus “married” are chosen from the Census dataset;
MaritalStatus of 2 740 of these records is then updated to
“divorced”. An attacker needs to guess which of the 27 403
records have been updated to “divorced”.

TPR FPR
Single model Two model Single model Two model

.11 .35 .08 .26

4.3 Discussion
We now discuss the influence of randomness in our experiments.
Since logistic regression algorithm converges to global minimum,
results for LendingClub do not depend on randomization. However,
neural network behavior for Census dataset changes depending on
the random seed used for weight initialization and shuffling. The
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results presented in this section use the same random seed for the
original model and the updated model. When the seed is set to be
different, the attack success rates drop but still outperform single-
model attacks. This is an interesting direction for further research
in terms of investigating various factors of the success of attribute
inference attacks using two models and developing ad hoc defense
mechanisms. As noted in [8], random seeds or randomization in
training algorithms in general can have a larger impact on the
model than an individual training data point. Therefore, the effect
of updating a single data recordmay bemasked by randomization in
the training algorithm. To further investigate the attacker’s ability
to distinguish between the world where a given target data point
is indeed updated from one value to another and the world where
the target is not updated at all, one can run the same attacks on the
two models where different seeds are used but the training data is
not changed.

5 DEFENSES
We discuss two possible defenses: batch update and differential
privacy.

Batch Update. When a large group of records is updated at the
same time in a single update, it may be possible for any potential
target record to hide among the “crowd”. For example, in the data
addition setting (as opposed to data change), Zanella-Béguelin et
al. [15] and Jagielski et al. [9] studied how attack accuracy is af-
fected by model update strategies and sizes of batches with new
data. They showed that compared to continued training it is safer to
retrain the model from scratch with old and new data; while in the
continued training setting the larger batch sizes conceal new data
better than small batch sizes. However, the same cannot be directly
applied to the data change setting. Since continued training with
updated records cannot reflect data change and erase the footprint
of outdated records in previous training, the model needs to be re-
trained from scratch. However, the idea of large batch updates may
still be applicable to our setting based on the following observation.
In the experiments we considered multiple data point update for the
records that had the same original value and were changed to the
same updated value. This was done to measure the contribution of
multiple identical changes on the trained model and on the success
of the attacks — which can be seen as the worst-case analysis. This
experimental setup is however not entirely reflective of practice as
updates can be heterogeneous and changes in opposing directions
can potentially cancel the effect of each other on the trained model.
Hence, as a defense, one could wait until data updates meet certain
heterogeneous conditions and only then update the model.

Differential Privacy. Differential privacy (DP) [5] provides strong
guarantees on the amount of information leakage. It is possible to
train both the original model and the updated model with differ-
ential privacy to defend against the developed attacks. Jagielski et
al. [9] showed that training with differential privacy at a low privacy
budget can offer protection against membership inference attacks
on the update set in the data addition setting. However, training
with differential privacy can reduce the utility of the model. The
purpose of a model update would be to maintain its accuracy and
therefore the use of differential privacy is only reasonable if the

updated model can still maintain its accuracy in utility-sensitive
settings.

6 RELATEDWORK
There are existing works on extracting information between up-
dates of models. The attacks can be mainly categorized into the
addition and deletion of data points. Various defense methods, in-
cluding differential privacy, were also proposed.

Membership Inference Attack. Membership inference attacks aim
to determine whether a given data point is in the model training
dataset [14]. Our updated record inference attack can be seen as
inferring the membership of an individual in the update.

Attribute Inference Attack. Attribute inference and model inver-
sion attacks [7] for machine learning models aim to infer the values
of an unknown attribute of a record in the training set. Jayaraman
et al. [11] showed that the success of black-box attribute inference
attacks on a single model is mostly due to the attacker’s knowledge
of data distribution, and access to the model has negligible effect. In
comparison, we study the information leakage caused by access to
two versions of the model, before and after attribute update. We do
not consider the background knowledge of the attacker and study
the properties of the model instead.

Attacks in Model Updates. Zanella-Béguelin et al. [15] showed
that training samples used to update a language model can be re-
constructed by using differences in prediction scores of the model
before and after the update. Jagielski et al. [9] investigated member-
ship inference attacks between multiple updates and showed that
a drastic shift in distribution poses higher risks. Salem et al. [13]
showed how to reconstruct data points in the update set using
an attack based on an encoder-decoder architecture. Compared to
these previous works, we study the setting where data changes (i.e.,
attribute values are updated between model updates) as opposed to
new data being added.

Machine Unlearning. Another scenario for model updates is data
deletion. In many privacy regulations, such as the European Union’s
General Data Protection Regulation (GDPR) [6], users have the right
to request their data be forgotten by the data curator, which could
involve machine learning models. Chen et al. [3] demonstrated
that machine unlearning can put the user’s data in more danger
if an adversary has both versions of models before and after the
deletion. Since data deletion can be seen as “reversed data addition”,
the attack methods developed for either of them can be used by
swapping the order of the original and updated models. Again,
it should be noted that, compared to these works, we study data
changes as opposed to data deletion.

7 CONCLUSION
We considered the case where an adversary has black-box access to
machine learning models before and after an update in the training
dataset occurs. We showed several settings where an update in
an attribute value can result in information leakage. In particular,
the change in the model confidence scores can be used to infer
which data records and how attribute values in the training data
were modified. This expands the literature on attribute inference
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in the update setting: we consider a setting when an attribute of
a single or multiple training data records is updated rather than
entire data records removed or added, which is the current norm in
the literature. Using experiments based on two tabular datasets and
model families (perceptrons and logistic regression), we demon-
strated that access to two snapshots of the model can result in
higher information leakage in comparison to having access to only
the updated model in various settings. Future work can focus on de-
fending against such attacks by using batch updates and differential
privacy.
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