
HAL Id: hal-04268830
https://inria.hal.science/hal-04268830v1

Submitted on 2 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Type-directed Program Transformation for
Constant-Time Enforcement

Frédéric Besson, Thomas Jensen, Gautier Raimondi

To cite this version:
Frédéric Besson, Thomas Jensen, Gautier Raimondi. Type-directed Program Transformation for
Constant-Time Enforcement. PPDP 2023 - International Symposium on Principles and Practice of
Declarative Programming, Oct 2023, Lisboa, Portugal. pp.1-13, �10.1145/3610612.3610618�. �hal-
04268830�

https://inria.hal.science/hal-04268830v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Type-directed Program Transformation for Constant-Time
Enforcement

Frédéric Besson
Inria, Univ Rennes
Rennes, France

Thomas Jensen
Inria, Univ Rennes
Rennes, France

University of Copenhagen
Copenhagen, Denmark

Gautier Raimondi
Inria, Univ Rennes
Rennes, France

ABSTRACT
Constant-time is a programming discipline which protects security
sensitive code against a wide class of timing attacks. This discipline
can be formalised as a non-interference property and enforced by
an information flow type system which prevents branching and
memory accesses over secret data. We propose a relaxed informa-
tion flow type system which tracks indirect flows but only rejects
programs leaking secrets through direct flows. The main result of
this paper is that any program that is accepted using this relaxed
type system can be transformed automatically into a semantically
equivalent constant-time program. Our algorithms are implemented
in the jasmin compiler and validated against synthetic programs.
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1 INTRODUCTION
Cryptographic code is notoriously hard to implement because it
must be correct, fast and secure. Cryptographic code is costly in
terms of computation time but nevertheless necessary for protecting
communication, so efficiency is essential. Therefore, implementa-
tions use sophisticated algorithms and exploit particular features
of the hardware’s mathematical functionalities [27] in order to opti-
mise execution time. In addition, the implementation also needs to
be secure with respect to side-channel attacks. In this work, we are
concerned with timing attacks where attackers attempt to extract
confidential information, e.g., cryptographic keys, by observing
the execution time [20]. Constant-time programming [6] is the de
facto standard to protect implementations against a wide range of
timing attacks that exploit micro-architecture side-channels e.g.,
cache attacks. The constant-time programming discipline imposes
two constraints on the code: it is forbidden to make control flow
decisions [24] or access memory addresses [22] that depend on
secret data.
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Several formal approaches have been proposed to ensure that
the constant-time programming property holds at the binary level.
Barthe et al. [7, 8] develop a formal model and a verifier for constant-
time programming at the assembly level. Other approaches ensure
the constant-time programming at source level [13] and transfer
the property at the binary level using a verified compiler [10]. To
ease the burden of developing constant-time code, Cauligi et al. [16]
propose FaCT, a Domain Specific Language (DSL), to automatically
generate constant-time code. FaCT is based on an information flow
type system which ensures that a program accepted by the type sys-
tem can be automatically transformed into a constant-time program.
We follow the same methodology but propose a more permissive
type system which allows more programs to be transformed into a
constant-time equivalent. The main observation of the paper is that
distinguishing between direct and indirect information flows enables

a number of program transformations for constant-time that make it

possible to transform programs which previous methods would have

rejected. More precisely, our contributions can be phrased as fol-
lows: i) we define an information flow tracking type system which
distinguishes indirect and direct flows and only forbids leakage due
to direct flows; ii) we present type directed program transforma-
tions which transform a well-typed program into a constant-time
program. iii) we also present experiments over small but challeng-
ing synthetic programs.

The rest of the paper is organised as follows. In Section 2, we
present our core language and the constant-time type system. We
also present themain features of the FaCTDSL [16]. In Section 3, we
present informally our program transformations and how they lift
certain limitations of FaCT. In Section 4, we define our information
flow tracking type system and show how it relates to the usual
information flow type system for constant-time. In Section 5, we
describe our program transformations and prove their security. We
report on experiments using the Jasmin compiler [5] in Section 6.
Related work is presented in Section 7 and Section 8 concludes.
The paper contains outlines of proofs of the main theorems. For
detailed proofs, see Raimondi’s forthcoming thesis [26].

2 BACKGROUND
2.1 Syntax
We consider an imperative language with arrays and a for loop.
The syntax is given below:

expr ∋ 𝑒 ::= 𝑥 | 𝑐 | 𝑒1 ⊕ 𝑒2 | 𝑒1?𝑒2 : 𝑒3 | 𝑡 [𝑒]
stmt ∋ 𝑠 ::= skip | 𝑥 = 𝑒 | 𝑡 [𝑒1] = 𝑒2 | 𝑠1; 𝑠2

| if@𝑝 𝑥 then 𝑠1 else 𝑠2 next 𝑠3
| for 𝑥 from 𝑐1 to 𝑐2 do 𝑠
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An expression 𝑒 may be a constant 𝑐 , a variable 𝑥 , a binary operator
applied to arguments 𝑒1 ⊕ 𝑒2, a conditional expression 𝑒1?𝑒2 : 𝑒3 or
an array access 𝑡 [𝑒] where 𝑡 is an array variable and 𝑒 a computed
index. The size of arrays is constant and statically known.

A statement 𝑠 may be a skip, an assignment 𝑥 = 𝑒 , an array
update 𝑡 [𝑒] = 𝑒 , a conditional or a for loop. Compared to the
usual if 𝑒 then 𝑠1 else 𝑠2, our conditional takes an additional
next statement 𝑠3. Semantically, if@𝑝 𝑒 then 𝑠1 else 𝑠2 next 𝑠3,
behaves as (if 𝑒 then 𝑠1 else 𝑠2); 𝑠3. The next 𝑠3 syntax is intro-
duced to ease the presentation of our program transformation (see
Section 3) and make explicit that the statement 𝑠3 is within the
scope of the condition. We also write if@𝑝 𝑒 then 𝑠1 else 𝑠2 for
if@𝑝 𝑒 then 𝑠1 else 𝑠2 next skip. For the sake of simplifying the
presentation of our code transformation, we impose the following
syntactic constraints: i) the condition 𝑒 is restricted to be a variable,
say 𝑥 , which is neither modified within the conditional nor after
the conditional; ii) the conditional statement is uniquely identified
by an annotation@𝑝 where 𝑝 ∈ L is a program point or location;
iii) the loop bounds are known constants and; iv) the loop index is
not modified within the loop body. The restrictions to constant ar-
ray size and loops bounds are common for cryptographic code and
can be found e.g., in the input language of the Jasmin compiler [5],
specifically designed for cryptography.

2.2 A Semantic Definition of Constant-time
The language is given a big-step semantics which is standard except
that the execution also generates a trace of leakage. A derivation is
of the form

(𝑃, 𝜎) ↓𝑡 𝜎 ′

where 𝑃 is a program, 𝜎 is an environment mapping variables
𝑥 and arrays 𝑎 to their values, 𝑡 is a leakage trace and 𝜎 ′ is the
final environment. Following Barthe et al. [12], a leakage event is
generated when evaluating a conditional or performing an access
to an array. In the evaluation of expressions, the index of an array
read is leaked in the trace 𝑡1. For simplicity, we assume that binary
operations have an execution time independent of the arguments
and, therefore, no leakage is produced when evaluating ⊕. The
conditional expression is strict and evaluates all its arguments
without leaking the value of the condition 𝑒1. At runtime, such
conditionals can be implemented without branching instructions
using either bitwise operations e.g., 𝑒1?𝑒2 : 𝑒3 ≡ 𝑒1&𝑒2+!𝑒1&𝑒3 or by
using hardware support e.g., conditional moves available on various
architectures. The evaluation of statements is standard with the
exception that, similarly to an array read, the index of an array
write is leaked. Moreover, the control-flow decisions e.g., which
branch of a condition is taken, are also leaked in the trace.

A program 𝑃 abides to the constant-time programming disci-
pline if starting from environments which agree on the variables
containing public values, the execution traces of leakage events
are indistinguishable for an attacker. Given the leakage semantics,
the constant-time property (see Definition 1) can be formalised
as a non-interference property with respect to a low-equivalence
relation over environments. In the following definition, the set 𝐿 is
to be thought of as the set of public (“low”) variables.

1The array variable is not explicitly leaked because it can be reconstructed as control-
flow decisions are also leaked.

(𝑐, 𝜎) ↓𝜖 𝑐 (𝑥, 𝜎) ↓𝜖 𝜎 (𝑥)

(𝑒𝑖 , 𝜎) ↓𝑡𝑖 𝑣𝑖 𝑖 ∈ {1, 2}
𝑣3 = 𝑣1 ⊕ 𝑣2

(𝑒1 ⊕ 𝑒2, 𝜎) ↓𝑡1 ·𝑡2 𝑣3

(𝑒𝑖 , 𝜎) ↓𝑡𝑖 𝑣𝑖 𝑖 ∈ {1, 2, 3}
𝑣 = if 𝑣1 then 𝑣2 else 𝑣3

(𝑒1?𝑒2 : 𝑒3, 𝜎) ↓𝑡1 ·𝑡2 ·𝑡3 𝑣

(𝑒, 𝜎) ↓𝑡𝑒 𝑖 0 ≤ 𝑖 < size(𝑡) 𝜎 (𝑡) [𝑖] = 𝑣

(𝑡 [𝑒], 𝜎) ↓𝑡𝑒 ·𝑖 𝑣

(skip, 𝜎) ↓𝜖 𝜎

(𝑒, 𝜎) ↓𝑡 𝑣
(𝑥 = 𝑒, 𝜎) ↓𝑡 𝜎 [𝑥 ↦→ 𝑣]

(𝑠1, 𝜎1) ↓𝑡1 𝜎2 (𝑠2, 𝜎2) ↓𝑡2 𝜎3
(𝑠1; 𝑠2, 𝜎1) ↓𝑡1 ·𝑡2 𝜎3

(𝑒1, 𝜎) ↓𝑡1 𝑖 0 ≤ 𝑖 < size(𝑡) (𝑒2, 𝜎) ↓𝑡2 𝑣
(𝑡 [𝑒1] = 𝑒2, 𝜎) ↓𝑡1 ·𝑡2 ·𝑖 𝜎 [𝑡 ↦→ (𝜎 (𝑡) [𝑖 ↦→ 𝑣])]

𝜎 (𝑥) = 𝑏 (𝑠𝑏 , 𝜎) ↓𝑡 𝜎 ′ (𝑠, 𝜎 ′) ↓𝑡 ′ 𝜎 ′′

(if@𝑝 𝑥 then 𝑠true else 𝑠false next 𝑠, 𝜎) ↓𝑏 ·𝑡 ·𝑡
′
𝜎 ′′

∀𝑖∈[𝑐1;𝑐2 ] (𝑥 = 𝑖; 𝑠, 𝜎𝑖 ) ↓𝑡𝑖 𝜎𝑖+1 𝑡 = 𝑡𝑐1 · · · · · 𝑡𝑐2
(for 𝑥 from 𝑐1 to 𝑐2 do 𝑠, 𝜎𝑐1 ) ↓𝑡 𝜎𝑐2+1

Figure 1: Leaky semantics

Definition 1 (Constant-time). Let 𝐿 be a set of variables and

𝑃 be a program. The program 𝑃 abides to the constant-time pro-

gramming discipline for 𝐿, written CT (𝑃, 𝐿), if the following non-

interference property holds:

CT (𝑃, 𝐿) △
=
∧©«

𝜎1 ≡𝐿 𝜎2
(𝑃, 𝜎1) ↓𝑡1 𝜎 ′

1
(𝑃, 𝜎2) ↓𝑡2 𝜎 ′

2

ª®¬ ⇒ 𝑡1 = 𝑡2

where 𝜎 ≡𝐿 𝜎 ′ △
= ∀𝑥 ∈ 𝐿, 𝜎 (𝑥) = 𝜎 ′(𝑥).

Note that programs respecting the constant-time programming
discipline do not have the same timing behaviour for any input. The
guarantee is that programs run with 2 distinct secrets execute the
exact same sequence of instructions and perform the exact same
memory accesses in the same order. In practice, this is an effective
countermeasure protecting against micro-architectural timing leaks
due to branch prediction and cache memory.

2.3 Contant-time Type System
The constant-time programming discipline can be enforced by a
flow-sensitive information flow control type system in the style
of Hunt and Sands [18]. A typing judgement is of the form Δ ⊢ct
Γ{𝑝}Γ′. The typing environments Γ, Γ′,Δ : Var → {H, L} map a
program variable 𝑥 to its type 𝜏 ∈ {H, L}. Γ and Γ′ assign types
to scalar variables while Δ assigns types to array variables. As the
type system is flow-sensitive for scalar variables, Γ is the typing
environment before running 𝑃 and Γ′ is the typing environment ob-
tained after running 𝑃 . The typing environments for arrays Δ is not
flow-sensitive. The rationale is that, unlike a variable assignment,
an array update would be modelled as a weak update and therefore
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it is very unlikely that flow-sensitivity would increase precision.
The typing judgement for expressions is of the form Δ, Γ ⊢ 𝑒 : 𝜏 .
Compared to the usual Volpano-Smith style type systems [18, 31],
the type system is flow-sensitive and enforces the additional typ-
ing constraints that conditions and array indices must be of type
L. Therefore, we obtain the typing rules of Figure 2. Theorem 1

Δ, Γ ⊢𝑐𝑡 𝑥 : Γ(𝑥) Δ, Γ ⊢𝑐𝑡 𝑖 : L
Δ, Γ ⊢𝑐𝑡 𝑒 : L

Δ, Γ ⊢𝑐𝑡 𝑡 [𝑒] : Δ(𝑡)

Δ, Γ ⊢𝑐𝑡 𝑒𝑖 : 𝜏𝑖 𝑖 ∈ {1, 2}
Δ, Γ ⊢𝑐𝑡 𝑒1 ⊕ 𝑒2 :

⊔
𝑖 𝜏𝑖

Δ, Γ ⊢𝑐𝑡 𝑒𝑖 : 𝜏𝑖 𝑖 ∈ {1, 2, 3}
Δ, Γ ⊢𝑐𝑡 𝑒1?𝑒2:𝑒3 :

⊔
𝑖 𝜏𝑖

Δ ⊢𝑐𝑡 Γ{skip}Γ
Δ ⊢𝑐𝑡 Γ1{𝑠1}Γ2 Δ ⊢𝑐𝑡 Γ2{𝑠2}Γ3

Δ ⊢𝑐𝑡 Γ1{𝑠1; 𝑠2}Γ3

Δ, Γ ⊢𝑐𝑡 𝑒 : 𝜏
Δ ⊢𝑐𝑡 Γ{𝑥 = 𝑒}Γ [𝑥 ↦→ 𝜏]

Δ, Γ ⊢𝑐𝑡 𝑒1 : L Δ, Γ ⊢𝑐𝑡 𝑒2 : 𝜏2
𝜏2 ⊑ Δ(𝑡)

Δ ⊢𝑐𝑡 Γ{𝑡 [𝑒1] = 𝑒2}Γ

Δ, Γ ⊢𝑐𝑡 𝑐 : L
Δ ⊢𝑐𝑡 Γ{𝑠1}Γ1 Δ ⊢𝑐𝑡 Γ{𝑠2}Γ2

Δ ⊢𝑐𝑡 Γ{if@𝑝 𝑐 then 𝑠1 else 𝑠2}Γ1 ⊔ Γ2

Γ ⊑ Γ′ Γ1 ⊑ Γ′

Δ ⊢𝑐𝑡 Γ′[𝑖 ↦→ L]{𝑠}Γ1
Δ ⊢𝑐𝑡 Γ{for 𝑖 from 𝑐1 to 𝑐2 do 𝑠}Γ′

Figure 2: Constant Time Type System

states that the type-system of Figure 2 ensures that the program is
constant-time according to Definition 1.

Theorem 1 (Soundness of Constant Time Type System). Con-
sider a program 𝑃 typable according to the type-system of Figure 2

Δ ⊢𝑐𝑡 Γ{𝑃}Γ′

We have that 𝐶𝑇 (𝑃, 𝐿) for 𝐿 = {𝑥 | Γ(𝑥) = L ∨ Δ(𝑥) = L}.

2.4 Program Transformations of FaCT
FaCT [16] is a DSL for writing constant-time code. FaCT defines
an information flow type system and guarantees that any well-
typed program can be transformed into a functionally equivalent
but constant-time program. As we follow a similar methodology,
we precisely describe the main features and algorithms of FaCT
adapted to our language.

Type System. The type system of FaCT is based on a classic
Volpano-Smith information flow control type system [31]. The
main difference with respect to a type system for constant time
is that the type system allows conditionals to branch on a secret
value. The rationale is that the FaCT program transformations are
able to eliminate such potential leaks.

Predicated Code. In order to remove secret control dependen-
cies, FaCT performs a so-called if-conversion [2] and generates
branchless, predicated code.

Example 1. Consider the following code which, depending on a

secret ℎ, sets the variable 𝑥 to either 𝑙1 or 𝑙2.

if ℎ then 𝑥 = 𝑙1 else 𝑥 = 𝑙2

After if-conversion, we get the following branchless code which elim-

inates the leakage due to the conditional.

𝑥 = ℎ?𝑙1 : 𝑥 ;𝑥 =!ℎ?𝑙2 : 𝑥

In terms of information flow, if-conversion has the effect of turn-
ing an indirect flow into a direct flow, which respects the constant-
time discipline.

Public Safety. An issue with if-conversion is that it is not always a
semantics-preserving transformation. The problem arises when the
safety of memory accesses within the then (resp. the else) branch
relies on whether the condition holds or not. In Example 1, suppose
that the expressions 𝑙𝑖 performs a memory access e.g., 𝑡 [𝑖] and that
the condition ℎ guards against out-of-bound accesses i.e., ℎ △

= 𝑖 <

size(𝑡). After if-conversion the target code performs the memory
access unconditionally and may perform an illegal access. To solve
this issue, the FaCT type system generates verification conditions to
ensure that the memory accesses are still valid after transformation
i.e., that the expressions 𝑙1 and 𝑙2 in a predicated assignment 𝑥 =

ℎ?𝑙1 : 𝑙2 are safe to evaluate, independently of the value of ℎ.

3 OVERVIEW
In this section, we show through examples how a more fine-grained
and relaxed type system enables more sophisticated program trans-
formations, thereby increasing the set of programs that can be
automatically transformed into constant-time programs. In particu-
lar, the code snippets we present are all rejected by the FaCT type
system and its implementation.

Limitation of Classic if-conversion. As explained above, if-conversion
and predicated code turn an indirect flow into a direct flow by re-
moving the leakage due to tests onH values. However, if-conversion
is not sufficient to remove indirect leakage due to assignments
inside the conditional.

Example 2. Consider the following program 𝑃0.

𝑃0 : if@𝑝 ℎ then (𝑥 = 𝑙1;𝑦 = 𝑡 [𝑥]) else (𝑥 = 𝑙2;𝑦 = 𝑡 [𝑥])

The expressions 𝑙1 and 𝑙2 have type L but since the assignment is

performed in a H context, the variable 𝑥 is given type H. Therefore,
the ensuing array access, 𝑡 [𝑥], is rejected by the FaCT type system.

The if-conversion performed by FaCT would generate the follow-
ing insecure code.

𝑥 = ℎ?𝑙1 : 𝑥 ;𝑦 = ℎ?𝑡 [𝑥] : 𝑦;𝑥 =!ℎ?𝑙2 : 𝑥 ;𝑦 =!ℎ?𝑡 [𝑥] : 𝑦

It is insecure because there is a direct flow from the secret ℎ to the
variable 𝑥 . It follows that the array accesses are secret dependent
thus violating the constant-time discipline. Therefore, FaCT rightly
rejects this code.
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Naive Constant-time Rewriting. To avoid leaking an array access
𝑦 = 𝑡 [𝑥], a standard but inefficient countermeasure consists in
iterating over all the indices 𝑖 of the array and select the relevant
value using a conditional expression.

for 𝑖 from 0 to size(𝑡)−1 do 𝑦 = (𝑥 == 𝑖)?𝑡 [𝑖] : 𝑦

We fall back on this transformation for direct H flows.

Delayed if-conversion. For information leakage due to indirect
flows, our transformation is more efficient than the naive constant-
time rewriting. It is based on the observation that the code can be
made constant-time by postponing the if-conversion at the cost of
introducing extra variables. We perform a delayed if-conversion so
that the direct H flow with ℎ is generated after the array access.
Concretely, our type system accepts 𝑃0 and generates the following
secure code.

𝑥𝑡 = 𝑙1;𝑦𝑡 = 𝑡 [𝑥𝑡 ];𝑥𝑒 = 𝑙2;𝑦𝑒 = 𝑡 [𝑥𝑒 ];
𝑥 = ℎ?𝑥𝑡 : 𝑥𝑒 ;𝑦 = ℎ?𝑦𝑡 : 𝑦𝑒 .

To enable this transformation, our type system (see Figure 4) tracks
the information that the array index 𝑥 is secret due to an indirect

flow.
The previous approach works when we only assign to scalar

variables but is not realistic for assignments to arrays, as this would
require having a distinct copy of the array for each branch of the
conditional which would be too costly. Instead, array writes are
predicated. For the following program 𝑃1, we get the program 𝑃1′.

𝑃1 : if@𝑝 ℎ then (𝑥 = 𝑙1; 𝑡 [𝑥] = 0) else (𝑥 = 𝑙2; 𝑡 [𝑥] = 1)

𝑃1′ :
𝑥𝑡 = 𝑙1; 𝑡 [𝑥𝑡 ] = ℎ?0:𝑡 [𝑥𝑡 ]
𝑥𝑒 = 𝑙2; 𝑡 [𝑥𝑒 ] = !ℎ?1:𝑡 [𝑥𝑒 ]
𝑥 = ℎ?𝑥𝑡 : 𝑥𝑒

As 𝑥𝑡 and 𝑥𝑒 both contain L values, there is no leakage. Yet, being
predicated by ℎ, the content of the array 𝑡 depends on ℎ. As a
consequence, our typing rule for array updates is stricter than for
scalar variables.

Out-of-scope Indirect Flows. In the previous case, the leaky mem-
ory access is within the scope of the condition ℎ and therefore a
delayed if-conversion is sufficient to remove the leaky access. This is
not enough for the following program 𝑃2, where the leaky memory
access 𝑡 [𝑥] occurs after the condition ℎ. To complicate matters,
there is also a harmless array update of the L array 𝑡 before the
problematic memory access 𝑡 [𝑥].

𝑃2 : (if@𝑝 ℎ then 𝑥 = 𝑙1 else 𝑥 = 𝑙2); (𝑡 [𝑙3] = 𝑙4;𝑦 = 𝑡 [𝑥])

If if-conversion is applied to the body of the conditional only, the
variable 𝑥 has a direct flow w.r.t ℎ and the array access 𝑡 [𝑥], that is
outside the scope of the conditional, still leaks information about
the secret ℎ. A naive solution would be to perform code motion and
duplicate the offending code in both branches of the conditional.
However, in our example, this has the adverse effect of moving the
harmless statement 𝑡 [𝑙3] = 𝑙4 into a H context and, from the type-
system standpoint, introducing a novel information flow violation.
Our solution is to move the offending code using the next statement
of the conditional. We obtain:

(if@𝑝 ℎ then 𝑥 = 𝑙1 else 𝑥 = 𝑙2 next 𝑡 [𝑙3] = 𝑙4;𝑦 = 𝑡 [𝑥]);

Intuitively, the statements in the next are within the syntactic
scope of the conditional but are run outside the H context of the
condition. The statement in the next statement requires a specific
transformation performed by our enhanced if-conversion. For the
statements in the scope of the next, the statements with an indirect
dependency on the conditional are duplicated on-the-fly. A subtlety
is that L statements, here 𝑡 [𝑙3] = 𝑙4 are kept unchanged. For our
example 𝑃2, we obtain the code in Figure 3. The resulting code is
constant-time.

𝑥𝑡 = 𝑙1; 𝑥𝑒 = 𝑙2; 𝑡 [𝑙3] = 𝑙4;
𝑦𝑡 = 𝑡 [𝑥𝑡 ]; 𝑦𝑒 = 𝑡 [𝑥𝑒 ];
𝑥 = ℎ?𝑥𝑡 :𝑥𝑒 ; 𝑦 = ℎ?𝑦𝑡 :𝑦𝑒 ;

Figure 3: Result of transforming program 𝑃2.

Preserving Safety. We assume that the source program is safe
which here means that it does not make any out-of-bounds ar-
ray accesses. In a security context, this prerequisite is natural
as an unsafe program cannot be deemed secure. With this hy-
pothesis, we instrument the source program with dynamic bound
checks, preventing if-conversion from generating unsafe target pro-
grams. Our instrumentation transforms the array access 𝑡 [𝑥] into
𝑡 [0 ≤ 𝑥 < size(𝑡)?𝑥 : 0]. Because the program is safe, we have
the invariant that 0 ≤ 𝑥 < 𝑠𝑖𝑧𝑒 (𝑡), so the conditional expression
always evaluates to 𝑥 . Hence, the semantics of the program re-
mains unchanged and the program remains safe after if-conversion.
In addition, the transformation does not introduce a security leak
because the length of an array is a constant and therefore a L value.
This instrumentation has a performance penalty but optimising
compilers should be able to remove most of the redundant checks.

4 INDIRECT FLOW TRACKING TYPE SYSTEM
In this section, we present our flow-sensitive information flow type
system which distinguishes between direct and indirect flows. The
type system accepts leakage due to indirect flows, formalising the
intuition that indirect flows are benign when it comes to constant-
time transformations. The main result for this indirect flow tracking
type system is that our constant-time transformation succeeds for
any source program that is well-typed.

We extend the usual two-point {H, L} lattice with information
flow types of form I(𝑙) where 𝑙 ⊆ L is a subset of program locations.
The type I(𝑙) is given to variables that are secret because of an
indirect secret flow arising from a conditional labelled with one
of the labels in 𝑙 . We keep the type H which now means “secret
because of a direct or indirect flow”.

IFType = P(L) ∪ {H}.
In this lattice, H is the greatest element and I(𝑙1) ⊑ I(𝑙2) if 𝑙1 ⊆
𝑙2 because it is safe to over-approximate the set of conditionals
that caused an indirect flow. The element I(∅) intuitively means
“does not depend on secrets” and types values with only public
information. We will use L as an abbreviation for the type I(∅).

The flow-sensitive type system keeps track of security levels and
the program labels of secret conditionals encountered so far in the
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Expressions :

Δ, Γ ⊢ 𝑥 : Γ(𝑥),∅ Δ, Γ ⊢ 𝑖 : L,∅
Δ, Γ ⊢ 𝑒 : 𝜏, 𝑙 𝜏 = I(𝑙 ′)

Δ, Γ ⊢ 𝑡 [𝑒] : Δ(𝑡) ⊔ 𝜏, 𝑙 ∪ 𝑙 ′
Δ, Γ ⊢ 𝑒𝑖 : 𝜏𝑖 , 𝑙𝑖 𝑖 ∈ {1, 2}
Δ, Γ ⊢ 𝑒1 ⊕ 𝑒2 :

⊔
𝑖 𝜏𝑖 ,

⋃
𝑖 𝑙𝑖

Δ, Γ ⊢ 𝑒𝑖 : 𝜏𝑖 , 𝑙𝑖 𝑖 ∈ {1, 2, 3}
Δ, Γ ⊢ 𝑒1?𝑒2:𝑒3 :

⊔
𝑖 𝜏𝑖 ,

⋃
𝑖 𝑙𝑖

Statements :

Δ, 𝜅 ⊢ Γ{skip∅∅}Γ

Δ, 𝜅 ⊢ Γ{(𝑠1)𝑟1𝑔1 }Γ1 Δ, 𝜅 ⊢ Γ1{(𝑠2)𝑟2𝑔2 }Γ
′

𝑟 = 𝑟1 ∪ 𝑟2 𝑔 = 𝑔1 ∪ 𝑔2

Δ, 𝜅 ⊢ Γ{(𝑠1; 𝑠2)𝑟𝑔}Γ′
Δ, Γ ⊢ 𝑒 : 𝜏, 𝑟

Δ, 𝜅 ⊢ Γ{(𝑥 = 𝑒)𝑟∅}Γ [𝑥 ↦→ 𝜏 ⊔ 𝜅]

Δ, Γ ⊢ 𝑒1 : 𝜏1, 𝑙1 Δ, Γ ⊢ 𝑒2 : 𝜏2, 𝑙2 𝜏1 = I(𝑙 ′1)
𝜏1 ⊔ 𝜏2 ⊔ (𝜅 ⋉L H) ⊑ Δ(𝑡)

𝑟 = 𝑙1 ∪ 𝑙 ′1 ∪ 𝑙2

Δ, 𝜅 ⊢ Γ{(𝑡 [𝑒1] = 𝑒2)𝑟∅}Γ

Δ, Γ ⊢ 𝑐 : 𝜏, 𝑟𝑐 𝜅 ′ = 𝜅 ⊔ (𝜏 ⋉L I({𝑝}))
Δ, 𝜅 ′ ⊢ Γ{(𝑠1)𝑟1𝑔1 }Γ1 Δ, 𝜅 ′ ⊢ Γ{(𝑠2)𝑟2𝑔2 }Γ2

Δ, 𝜅 ⊢ Γ1 ⊔ Γ2{(𝑠3)𝑟3𝑔3 }Γ
′

𝑟 = 𝑟1 ∪ 𝑟2 ∪ 𝑟3 ∪ 𝑟𝑐
𝑔 = 𝑔1 ∪ 𝑔2 ∪ 𝑔3 ∪ 𝜏 ⋉∅ {𝑝}

Δ, 𝜅 ⊢ Γ{(if@𝑝 𝑐 then 𝑠1 else 𝑠2 next 𝑠3)𝑟𝑔}Γ′

Γ ⊑ Γ′ Γ1 ⊑ Γ′ ↑𝑐𝑜𝑛𝑑 (𝑠) Γ′ = Γ′

Δ, 𝜅 ⊢ Γ′[𝑖 ↦→ 𝜅]{(𝑠)𝑟𝑔}Γ1
Δ, 𝜅 ⊢ Γ{(for 𝑖 from 𝑐1 to 𝑐2 do 𝑠)𝑟𝑔}Γ′

where
𝜏 ⋉𝑑 𝑣 =

{
𝑑 if 𝜏 = L
𝑣 otherwise (↑𝑙 Γ) (𝑥) =

{
Γ(𝑥) if Γ(𝑥) = I(𝑙 ′) ∧ 𝑙 ∩ 𝑙 ′ = ∅
H otherwise

𝑐𝑜𝑛𝑑 (𝑠) = {𝑝 | if@𝑝 𝑐 then 𝑠1 else 𝑠2 next 𝑠3 ∈ 𝑠}

Figure 4: Flow Tracking Type System

execution. The typing judgments operates on annotated programs
of form (𝑃)𝑟𝑔 and are of the form

Δ, 𝜅 ⊢ Γ{(𝑃)𝑟𝑔}Γ′

Here, Δ is a typing environment for array variables that are re-
stricted to being simple (i.e., all the array variables have a type
𝜏 ∈ {L,H}) and global (i.e., arrays do not change type during analy-
sis of 𝑃 ). 𝜅 is the security context in which 𝑃 is analysed. Γ and Γ′

are the typing environments for scalar variables before and after
running the program 𝑃 .

The program annotations in 𝑃𝑟𝑔 consists of two sets, 𝑔 and 𝑟 . The
set 𝑔 ⊆ L over-approximates the secret conditionals in 𝑃 . The set
𝑟 ⊆ L is an upper bound of the security levels of the indices that
have been used to access an array (notice that an access with index
of type H is ruled out by the type system). In the rest, we write
ℎ𝑖𝑔ℎ((𝑃)𝑟𝑔) for the set 𝑔 i.e., the set of H conditionals within the
program 𝑃 and we write 𝑙𝑒𝑎𝑘 ((𝑃)𝑟𝑔) for the set 𝑟 i.e., the set of H
conditionals responsible for array accesses with indirect flows.

The typing rules of Figure 4 are syntax-directed and can be turn
into a type-inference algorithm able to compute both the typing
environments and the program annotations. For expressions, the
typing judgment is of the form

Δ, Γ ⊢ 𝑒 : 𝜏, 𝑙

where 𝜏 is the security type of the result and 𝑙 is the upper bound of
security levels of array indices used to compute the value of 𝑒 . For
array accesses, an additional hypothesis enforces that the type of
the index is I(𝑙 ′) i.e., strictly below H. If it is L, there is no leakage
and the expression is well typed. Otherwise, there is leakage of
secrets due to indirect flows but the expression is still well-typed
because the leakage will be erased by our program transformation.

For statements, the rule for skip and sequence are standard for a
flow-sensitive type system. For an assignment 𝑥 = 𝑒 , the type for 𝑥
is updated to be the least upper bound of the type 𝜏 of the expression
𝑒 and the type of the security context 𝜅. The rule for array update
is flow insensitive. It checks that the type 𝜏1 of the index is not H.
It also checks that the type obtained from the type of the index
𝜏1 and the type of the written value 𝜏2 and an upgraded security
context 𝜅 ⋉L H are below the type Δ(𝑡) of the array. Therefore,
if the security context 𝜅 is L, we have 𝜏1 ⊔ 𝜏2 ⊑ Δ(𝑡). Otherwise,
if the array update is performed under a security context 𝜅 ≠ L,
the typing constraints entail that Δ(𝑡) = H. The 𝑟 annotation is
updated to reflect that an array access with an index of type 𝜏1 has
been made.

The rule for conditions computes the security level 𝜏 of the
condition 𝑐 . If 𝜏 is different from L, 𝑐 contains secret information
and the security context 𝜅 ′ is updated with I({𝑝}), recording that
execution in the branches takes place under a secret condition
located at program point 𝑝 . This information is also added to the
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annotation 𝑔 that is the set of labels of the secret conditions in the
statements that it annotates.

The typing rule for for checks that Γ′ is an invariant typing en-
vironment for the loop, by checking the body 𝑠 can be type checked
in the slightly more constraining typing environment Γ′[𝑖 ↦→ 𝜅]. In
this environment, the iteration variable 𝑖 gets the type of the secu-
rity context𝜅 . The rule also enforces that Γ′ does not contain any de-
pendency to conditions within s by ensuring that ↑𝑐𝑜𝑛𝑑 (𝑠) Γ′ = Γ′.
This equality means that there is no variables of type I(𝑙) in Γ, with
𝑙 containing at least one program point 𝑝 of a condition within 𝑠 .
This means that we keep track of indirect flows within a loop only,
and do not propagate them outside of its containing loop.

Observe that if we only consider a type derivation in the empty
security context (𝜅 = L) and a program 𝑃 with empty annotations
(𝑃 ∅

∅ ), our flow tracking type system enforces the constant-time prop-
erty of Definition 1. Theorem 2 states this essential property that
will serve as a guiding principle for our program transformations.

Theorem 2 (Constant-Time Enforcement). If a program 𝑃 is

well-typed in the flow tracking type system from Figure 4 with empty

annotations i.e.,

Δ, L ⊢ Γ1{𝑃∅∅ }Γ2
then 𝑃 is constant-time. More precisely, the predicate 𝐶𝑇 (𝑃, 𝐿) holds
for any set of variables 𝐿 satisfying

{𝑥 | Γ1 (𝑥) ≠ H} ∪ {𝑡 | Δ(𝑡) ≠ H} ⊆ 𝐿.

Proof outline. Given a type-derivation Δ, L ⊢ Γ1{(𝑃)∅∅}Γ2, we
can exhibit a type derivation Δ ⊢𝑐𝑡 (↓ Γ1){𝑃}(↓ Γ2) where ↓ Γ𝑖 is
obtained by mapping all the indirect flow types i.e., I(𝑙) for some 𝑙 ,
to L. By Theorem 1, we conclude the proof. □

5 PROGRAM TRANSFORMATION
The guiding principle of our constant-time program transforma-
tions is to take a program with only indirect flow leakage (i.e.,
typable according to the type system of Figure 4), and transform it
into a constant-time program (i.e., typable according to the standard
constant-time type system of Figure 2). The core transformation
erases the leakage induced by a single conditional. It is iterated
until no leakage remains.

In the following, we describe the three program transformations
i) scope increase, ii) index sanitising and iii) delayed if-conversion.
and prove the security of the transformations.

5.1 Pre-processing of Direct Information Leaks
Our type system rejects programs leaking H values through mem-
ory accesses. We detect those typing failures and pre-process the
program using the naive transformation of Section 3 which fixes
the information leak at the cost of iterating over all the array in-
dices. Note that this transformation is limited to direct information
flow leaks. For indirect flows, we propose novel transformations
avoiding the iteration.

5.2 Scope Increase Algorithm
The purpose of the scope increase algorithm is to identify a condi-
tional branching over a H variable, say ℎ, and confine inside the
next statement of the conditional all the memory accesses which
are indirectly leaking the secret ℎ.

Condition Selection. As observed in Section 3, duplicating code
in both branches of a H conditional may introduce spurious infor-
mation leaks. To avoid this issue, we select the outermost, rightmost

H conditional i.e., a conditional which is not within the syntactic
scope of another H conditional and is the last in the textual order.
Example 3 illustrates the spurious leaks that would be introduced
by a misselection.

Example 3. Consider the following snippet

©«
if@𝑝0 ℎ0
then if@𝑝1 ℎ1 then 𝑥 = 0 else 𝑥 = 1
else skip

ª®¬ ; 𝑠
where the statement 𝑠 indirectly leaks both ℎ1 and ℎ2. If we select the
innermost conditional ℎ1, code motion would yield

if@𝑝0 ℎ0 then (if@𝑝1 ℎ1 then 𝑥 = 0 else 𝑥 = 1 next 𝑠)
else 𝑠

where the statement 𝑠 is duplicated and crosses the boundaries of ℎ1.
This may introduces additional potential leakage as 𝑠 will be typed

under the more restrictive security context ℎ1. On the contrary, if the

outermost H conditional is selected, we get

if@𝑝0 ℎ0 then (if@𝑝1 ℎ1 then 𝑥 = 0 else 𝑥 = 1) else skip
next 𝑠

In that case, 𝑠 is still typed under the L security context.

Introduction of next. Figure 5 presents the scope increase algo-
rithm SI𝑝 : 𝑠𝑡𝑚𝑡 × 𝑠𝑡𝑚𝑡 → 𝑠𝑡𝑚𝑡 . SI𝑝 (𝑠1, 𝑠) takes a statement 𝑠1 so
that 𝑝 is the rightmost outermost H conditional and a statement 𝑠
which is the continuation of the program 𝑠1 i.e., the statement to
be executed after 𝑠1. The SI𝑝 algorithm recursively performs code
motion until inserting the motioned code in the next statement of
the H conditional. Initially, the statement 𝑠 is skip. If the program is
the H conditional with annotation 𝑝 , SI𝑝 inserts the continuation 𝑠
as the next statement. If this is another conditional with annotation
𝑝 ′ ≠ 𝑝 , the condition 𝑐 is necessarily L and there are two symmetric
cases depending on whether the H conditional is located in the
then branch (i.e., 𝑝 ∈ 𝑠1) or in the else branch (i.e., 𝑝 ∈ 𝑠2). W.l.o.g.
consider 𝑝 ∈ 𝑠2. In that case, the continuation 𝑠 is appended to the
statement 𝑠1 of the then branch and we call recursively SI𝑝 over
the statement 𝑠2 of the else branch. If the statement is a sequence
of the form 𝑠1; 𝑠2, there are two cases depending on whether 𝑝 ∈ 𝑠1
or 𝑝 ∈ 𝑠2. If 𝑝 ∈ 𝑠2, the statement 𝑠1 is kept unchanged and SI𝑝 is
recursively called over 𝑠2. If 𝑝 ∈ 𝑠1, the continuation of 𝑠 is aug-
mented by 𝑠2 and SI𝑝 is recursively called over 𝑠1. However, if the
continuation is skip, we can optimise and split 𝑠2 into a pair of
statements (𝑠𝑙 , 𝑠𝑟 ) ∈ 𝑠𝑒𝑝𝑝 (𝑠2) such that 𝑠𝑟 does not leak 𝑝 . There-
fore, SI𝑝 is recursively called over 𝑠1 with a reduced continuation
𝑠𝑙 which contains all the statements of 𝑠2 which may leak 𝑝 . For a
for, the type system ensures that 𝑝 cannot escape the loop body.
As a result, SI𝑝 is recursively called over the loop body 𝑠1 with the
continuation skip.

Intuitively, after running SI𝑝 (𝑠1, 𝑠), all the indirect flows due to
the H conditional labelled by 𝑝 within 𝑠1 are localised within the
then, else or next statement of the conditional. To formalise this
intuition, we devise a strengthened type systemwhich, given a label
𝑝 , prevents indirect flows from escaping the conditional labelled
by 𝑝 . The typing judgement is of the form Δ, 𝜅 ⊢@𝑝 Γ{𝑠}Γ′. It is
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(𝑠𝑙 , 𝑠𝑠 ) ∈ 𝑠𝑒𝑝𝑝 (𝑠) (skip, 𝑡𝑠 ) ∈ 𝑠𝑒𝑝𝑝 (𝑡)
(𝑠𝑙 , 𝑠𝑠 ; 𝑡𝑠 ) ∈ 𝑠𝑒𝑝𝑝 (𝑠; 𝑡)

(𝑡𝑙 , 𝑡𝑠 ) ∈ 𝑠𝑒𝑝𝑝 (𝑡)
(𝑠; 𝑡𝑙 ; 𝑡𝑠 ) ∈ 𝑠𝑒𝑝𝑝 (𝑠; 𝑡)

𝑝 ∈ leak(𝑠)
(𝑠, skip) ∈ 𝑠𝑒𝑝𝑝 (𝑠)

𝑝 ∉ leak(𝑠)
(skip, 𝑠) ∈ 𝑠𝑒𝑝𝑝 (𝑠)

SI𝑝 (if@𝑝 𝑐 then 𝑠1 else 𝑠2, 𝑠) = if@𝑝 𝑐 then 𝑠1 else 𝑠2 next 𝑠
SI𝑝 (if@𝑝′ 𝑐 then 𝑠1 else 𝑠2, 𝑠) = if@𝑝′ 𝑐 then (𝑠1; 𝑠) else SI𝑝 (𝑠2, 𝑠) 𝑝 ∈ 𝑠2 ∧ 𝑝 ≠ 𝑝 ′

SI𝑝 (if@𝑝 𝑐 then 𝑠1 else 𝑠 ′2, 𝑠) = if@𝑝′ 𝑐 then SI𝑝 (𝑠1, 𝑠) else (𝑠2; 𝑠) 𝑝 ∈ 𝑠1 ∧ 𝑝 ≠ 𝑝 ′

SI𝑝 (𝑠1; 𝑠2, 𝑠) = 𝑠1; SI𝑝 (𝑠2, 𝑠) 𝑝 ∈ 𝑠2
SI𝑝 (𝑠1; 𝑠2, 𝑠) = SI𝑝 (𝑠1, 𝑠2; 𝑠) 𝑝 ∉ 𝑠2 ∧ 𝑠 ≠ skip
SI𝑝 (𝑠1; 𝑠2, skip) = 𝑙𝑒𝑡 𝑠𝑙 , 𝑠𝑟 ∈ 𝑠𝑒𝑝𝑝 (𝑠2) in SI𝑝 (𝑠1, 𝑠𝑙 ); 𝑠𝑟 𝑝 ∉ 𝑠2
SI𝑝 (for 𝑥 from 𝑐1 to 𝑐2 do 𝑠1, 𝑠) = for 𝑥 from 𝑐1 to 𝑐2 do SI𝑝 (𝑠1, skip); 𝑠

Figure 5: Scope Increase Algorithm

Δ, Γ ⊢ 𝑐 : 𝜏, 𝑟𝑐 𝜅 ′ = 𝜅 ⊔ (𝜏 ⋉L I({𝑝 ′}))
Δ, 𝜅 ′ ⊢@𝑝 Γ{(𝑠1)𝑟1𝑔1 }Γ3 Δ, 𝜅 ′ ⊢@𝑝 Γ{(𝑠2)𝑟2𝑔2 }Γ3

Δ, 𝜅 ⊢@𝑝 Γ{(𝑠3)𝑟3𝑔3 }Γ
′

𝑟 = 𝑟1 ∪ 𝑟2 ∪ 𝑟3 ∪ 𝑟𝑐 𝑔 = 𝑔1 ∪ 𝑔2 ∪ 𝑔3 ∪ 𝜏 ⋉∅ {𝑝 ′}

Γ′′ =
{

↑{𝑝 } Γ′ if 𝜏 ≠ L ∧ 𝑝 = 𝑝 ′

Γ′ otherwise

Δ, 𝜅 ⊢@𝑝 Γ{if@𝑝′ 𝑐 then 𝑠1 else 𝑠2 next 𝑠3}Γ′′

Figure 6: Localised Implicit Flows Typing Rule

obtained from the type system of Figure 4 by keeping all the typing
rules except the typing rule for the conditional that is replaced
by the typing rule of Figure 6. The typing rule of Figure 6 is very
similar to original typing rule. Actually, the typing judgments only
differ when the label 𝑝 ′ of the condition is 𝑝 and when the typing of
the condition 𝑐 is not L. In that case, instead of Γ′, the final typing
environment is Γ′′ =↑{𝑝 } Γ′ which classifies the indirect flows due
the current conditional annotated by 𝑝 .

The security of the scope increase algorithm is given by Theo-
rem 3. Essentially, it states that after code motion, the program can
be typed using the strengthened type system which classifies the
rightmost outermost H conditional.

Theorem 3 (Security of Scope Increase). Let 𝑝 be the rightmost

(high) condition of 𝑐 i.e., 𝑅𝑂𝑝 (𝑐) and 𝑠 be a program without any

high condition i.e., ℎ𝑖𝑔ℎ(𝑠) = ∅. Suppose that 𝑐; 𝑠 is well-typed i.e.,
Δ, L ⊢ Γ{𝑐; 𝑠}Γ′

and ∀𝑥, 𝑝 ∉ Γ(𝑥).
We have that SI𝑝 (𝑐, 𝑠) is well-typed with respect to the strengthened

type system. More precisely,

Δ, L ⊢@𝑝 Γ{SI𝑝 (𝑐, 𝑠)} ↑{𝑝 } Γ′

Proof outline. The proof is by induction over the typing deriva-
tion of 𝑐 . The two main arguments are: i) if 𝑝 ∉ 𝑃 , we can recon-
struct a derivation using ⊢@𝑝 using the same typing environments;
ii) if high(𝑃) = ∅ and 𝑝 ∉ 𝑙𝑒𝑎𝑘 (𝑃), then given a typing judgement
Δ, L ⊢ Γ{𝑃}Γ′, we can classify 𝑝 and get Δ, L ⊢↑{𝑝 } Γ{𝑃} ↑{𝑝 } Γ′.

□

5.3 Index Sanitising
In order to prevent array out-of-bounds accesses that may happen
after if-conversion (see Section 3), we instrument the program with

dynamic array bounds checks. For our language, this is easily done
because array bounds are statically known by design. In a more
general setting, the instrumentation is still possible but is more
invasive and requires to explicitly pass around the array size using
auxiliary variables [28].

The transformation is only applied to the then and else state-
ments of the H conditional identified by the SI𝑝 algorithm. Each
array access is recursively transformed using the following rule

arr-san 𝑡 [𝑖] { 𝑡 [(0 ≤ 𝑖 < 𝑠𝑖𝑧𝑒 (𝑡))?𝑖:0]
The rule applies for both array read performed within an expression
and array update. In both cases, the index 𝑖 is replaced by the
conditional expression (0 ≤ 𝑖 < 𝑠𝑖𝑧𝑒 (𝑡))?𝑖:0 which returns 𝑖 if the
index is in-bounds and returns 0 otherwise. As array sizes are
strictly positive, 𝑡 [0] is always a valid access. As a result, in both
cases, we get a valid array access.

Example 4. Consider the program 𝑃3 which either performed an

array read or array update depending on a H conditional.

𝑃3 : if@𝑝 ℎ then (𝑥 = 𝑙1;𝑦 = 𝑡 [𝑥]) else (𝑥 = 𝑙2; 𝑡 [𝑥] = 𝑦)
The array accesses are executed in a security context 𝜅 = I({𝑝}) ≠ ∅.
As a result, they need to be instrumented and we get the following

code.

if@𝑝 ℎ then (𝑥 = 𝑙1;𝑦 = 𝑡 [0 ≤ 𝑥 < size(𝑡)?𝑥 :0])
else (𝑥 = 𝑙2; 𝑡 [0 ≤ 𝑥 < size(𝑡)?𝑥 :0] = 𝑦)

Definition 2 (Index Sanitisation). Consider a program con-

taining a conditional labelled by@𝑝 i.e., 𝑃 [if@𝑝 𝑐 then 𝑠1 else 𝑠2].
The program 𝐼𝑆𝑝 (𝑃 [if@𝑝 𝑐 then 𝑠1 else 𝑠2]) is of the form

𝑃 [if@𝑝 𝑐 then 𝑠 ′1 else 𝑠
′
2]

where 𝑠 ′1 (resp. 𝑠
′
2) is obtained by applying the rules arr-san to all the

array accesses of 𝑠1 (resp. 𝑠2).

Theorem 4 states that the instrumentation of array accesses does
not change the typing of the program.

Theorem 4 (Security of index instrumentation). Let 𝑝 a

program point, and 𝑃 a program typable for our strengthened type

system i.e.,

Δ, 𝜅 ⊢@𝑝 Γ{𝑃}Γ′

for some 𝜅, Γ, Δ, Γ′.
Then, the instrumented program 𝐼𝑆𝑝 (𝑃) is also well-typed, and we

have

Δ, 𝜅 ⊢@𝑝 Γ{𝐼𝑆𝑝 (𝑃)}Γ′
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Proof outline. The proof is by induction over 𝑃 . The main
insight of the proof is that the instructions of 𝑃 that are modified
in 𝐼𝑆𝑝 (𝑃) are obtained by the rewrite rule arr-san which preserve
the typing judgments. To see this, consider an expression 𝑒 used
to index an array 𝑡 such that Γ ⊢ 𝑒 : 𝜏 . After instrumentation,
we obtain 𝑒 ′

△
= 0 ≤ 𝑒 < 𝑠𝑖𝑧𝑒 (𝑡)?𝑒 : 0. Because Γ ⊢ 𝑒 : L and

Γ ⊢ 𝑠𝑖𝑧𝑒 (𝑡) : L, we obtain the same typing i.e., Γ ⊢ 𝑒 ′ : 𝜏 . □

5.4 Delayed if-conversion
The delayed if-conversion algorithm takes a H condition of the form
if@𝑝 ℎ then 𝑠𝑡 else 𝑠𝑒 next 𝑠 produced by SI𝑝 . By construction, all
the ℎ-dependent memory accesses are within either 𝑠𝑡 , 𝑠𝑒 or 𝑠 . The
result of the transformation is of the form

𝑝𝑟𝑒; 𝑠 ′𝑡 ; 𝑠
′
𝑒 ; 𝑠

′;𝑝𝑜𝑠𝑡 .

The statement 𝑝𝑟𝑒 makes fresh copies of the scalar variables that
are modified in either branch of the conditional. As a result, if 𝑥 is
used in one of the branches, we have {𝑥𝑡 = 𝑥 ;𝑥𝑒 = 𝑥} ⊆ 𝑝𝑟𝑒 for 𝑥𝑡
and 𝑥𝑒 fresh variables. An example of such a transformation result
was given in Example 2.

The transformation is defined in Figure 7. The function Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

generates code that copies variables, according to two renamings
𝜌𝑡 and 𝜌𝑒 . In general, 𝜌𝑡 and 𝜌𝑒 map the program variables to
fresh copies in the then and the else branch, respectively. The
statement 𝑠 ′𝑡 is obtained by applying recursively the renaming 𝜌𝑡 to
𝑠𝑡 . Similarly, 𝑠 ′𝑒 is obtained by applying recursively the renaming 𝜌𝑒
to 𝑠𝑒 . The only twist is for array variables that are not copied. For
those, we perform a conditional update predicated by the condition
ℎ.

𝑅𝑛ℎ𝜌 (𝑡 [𝑒1] = 𝑒2) = 𝑡 [𝜌 (𝑒1)] = ℎ?𝜌 (𝑒2) : 𝑡 [𝜌 (𝑒1)]
The transformation of 𝑠 is more complicated. Intuitively, we keep
renaming 𝑠 with both the renaming inherited from the then and
else branch. However, the renaming is limited to instructions that
are secret-dependent and the renaming is dynamically updated to
avoid variable clashes. It is crucial not to rename expressions that
are not altered by the H condition, in order to avoid introducing
spurious secret-dependent information flows. For an array update,
𝑡 [𝑒1] = 𝑒2, if the expressions are renamed the same way in both
branches, the runtime values are independent from the secret ℎ,
and we can avoid predicating the update by the condition ℎ. Hence,
we simply generate a renamed array update

𝑡 [𝜌 (𝑒1)] = 𝜌 (𝑒2)

Eventually, at the end of 𝑠 ′, it is necessary to merge the copies of
variables from both branches using a conditional expression. The
whole transformation is given Figure 7 and is explained in more
details in the following sections.

5.4.1 Initialisation. After renaming, the then and the else branch
are executed sequentially. To make sure that variables assigned in
one branch are not read in another branch, a variable 𝑥 modified in
either the then and else branch is copied into fresh variables 𝑥𝑡 and
𝑥𝑒 , to be used in the then and the else branch, respectively. To this
end, we define the function 𝑐𝑜𝑝𝑦 : P(Var) → Var ↩→ Var . Given a
set𝑉 , copy(𝑉 ) returns a renaming 𝜌 such that every variable 𝑥 ∈ 𝑉

is mapped to a variable 𝑥 ′ ∈ fresh.

The expression 𝑝𝑟𝑒𝑡 ∈ 𝑆𝑒𝑞({𝑥𝑡 = 𝑥 | 𝑥 ∈ 𝑉 ∧ 𝜌𝑡 (𝑥) = 𝑥𝑡 }) is a
statement such that for each variable 𝑥 ∈ 𝑉 , there is an assignment
𝑥𝑡 = 𝑥 . As all the variables are fresh, the order of the assignment is
not relevant. For the else branch, the statement 𝑝𝑟𝑒𝑒 is built in a
similar manner.

5.4.2 Branch Renaming. After the initialisation, the function 𝑅𝑛

recursively applies the renaming 𝜌𝑡 (resp. 𝜌𝑒 ) to the statement of
the then (resp. else) branch. The renaming is standard except for
the update of array variables. As array variables are not copied, we
perform a conditional assignment using the condition variable ℎ
and we have

𝑅𝑛ℎ𝜌 (𝑡 [𝑒1] = 𝑒2) = 𝑡 [𝜌 (𝑒1)] = ℎ?𝜌 (𝑒2) : 𝑡 [𝜌 (𝑒1)]

If we are in the branch for which ℎ holds, the array is updated with
the renamed values. Otherwise, if the condition ℎ does not hold, the
array is not modified because it is updated using 𝑡 [𝜌 (𝑒1)] which
is the previous value. Note that we have the syntactic restriction
that the condition variable ℎ is modified by neither the then nor
the else branch.

5.4.3 Simultaneous Renaming of next. The transformation of the
statement 𝑠 in the next statement is given by the function Nxtℎ of
Figure 7. It is more complicated because it requires a simultaneous
renaming using both the renaming 𝜌𝑡 for the then branch and the
renaming 𝜌𝑒 for the else branch. Consider the case of an assignment
𝑥 = 𝑣 . If both renaming yield the same expression (𝜌𝑡 (𝑣) = 𝜌𝑒 (𝑣)),
we have the guarantee that 𝑥 is independent from the condition
ℎ. Therefore, we generate a single statement 𝑥 ′ = 𝜌 (𝑣) and update
𝜌𝑡 and 𝜌𝑒 so that the current value of 𝑥 is bound to 𝑥 ′. If the
expressions are different (𝜌𝑡 (𝑣) ≠ 𝜌𝑒 (𝑣)), the value of 𝑥 may depend
of the condition ℎ and therefore we generate two assignments:
𝑥𝑡 = 𝜌𝑡 (𝑣) models the assignment as if it occurs in the then branch
and 𝑥𝑒 = 𝜌𝑒 (𝑣) models the assignment as if it occurs in the else
branch. The renaming 𝜌𝑡 is updated so that 𝑥 is bound to 𝑥𝑡 and the
renaming 𝜌𝑒 is updated so that 𝑥 is bound to 𝑥𝑒 . For the case of an
array update 𝑡 [𝑒1] = 𝑒2, the reasoning is similar. If both expressions
are renamed the same way (𝜌𝑡 (𝑒1) = 𝜌𝑒 (𝑒1) and 𝜌𝑡 (𝑒2) = 𝜌𝑒 (𝑒2)),
we simply generate a renamed array update because the values
are independent from the condition ℎ. Otherwise, we generate
two array updates predicated by the condition ℎ or its negation
!ℎ depending on whether we model the array update in the then
branch or in the else branch. For the sequence, both statements are
renamed and the renamings are threaded along.

For the conditional, by construction, we have the guarantee that
there is no next statement. This is because the only next in the
program has just been introduced by the SI𝑝 transformation and
we are currently processing the generated next statement. Both
branches are recursively renamed using the same initial renaming
maps 𝜌𝑡 and 𝜌𝑒 . At the end of the conditional, to reconcile the
renaming 𝜌1𝑡 and 𝜌2𝑡 (resp. 𝜌1𝑒 and 𝜌2𝑒 ) we join the renaming maps
¤𝜌𝑡 = 𝜌1𝑡 Z 𝜌2𝑡 (resp. ¤𝜌𝑒 = 𝜌1𝑒 Z 𝜌2𝑒 ) which, returns a fresh variable
if the renaming maps disagree. To synchronise the program vari-
ables with the renaming maps ¤𝜌𝑡 and ¤𝜌𝑒 , we append to each of the
branches a sequences of assignments using the 𝜙 function. Given
𝜌 and 𝜌 ′, 𝜙 (𝜌, 𝜌 ′) contains an assignment 𝜌 (𝑥) = 𝜌 ′(𝑥) for each
variable 𝑥 such that 𝜌 (𝑥) ≠ 𝜌 ′(𝑥). For the for loop, before renaming
the loop body, we update the initial renaming maps 𝜌𝑡 and 𝜌𝑒 so
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𝑉 =𝑚𝑜𝑑 (𝑠𝑡 ) ∪𝑚𝑜𝑑 (𝑠𝑒 ) 𝜌𝑡 = 𝑐𝑜𝑝𝑦 (𝑉 ) 𝜌𝑒 = 𝑐𝑜𝑝𝑦 (𝑉 )
𝑝𝑟𝑒𝑡 ∈ 𝑆𝑒𝑞({𝑥𝑡 = 𝑥 | 𝑥 ∈ 𝑉 ∧ 𝜌𝑡 (𝑥) = 𝑥𝑡 }) 𝑝𝑟𝑒𝑒 ∈ 𝑆𝑒𝑞({𝑥𝑒 = 𝑥 | 𝑥 ∈ 𝑉 ∧ 𝜌𝑒 (𝑥) = 𝑥𝑒 })

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑠) = ( ¤𝜌𝑡 , ¤𝜌𝑒 , 𝑠 ′)
𝑝𝑜𝑠𝑡L ∈ 𝑆𝑒𝑞({𝑥 = ¤𝜌𝑡 (𝑥) | ¤𝜌𝑡 (𝑥) = ¤𝜌𝑒 (𝑥)}) 𝑝𝑜𝑠𝑡H ∈ 𝑆𝑒𝑞({𝑥 = ℎ? ¤𝜌𝑡 (𝑥) : ¤𝜌𝑒 (𝑥) | ¤𝜌𝑡 (𝑥) ≠ ¤𝜌𝑒 (𝑥)})

Iconv(if@𝑝 ℎ then 𝑠𝑡 else 𝑠𝑒 next 𝑠) = 𝑝𝑟𝑒𝑡 ;𝑝𝑟𝑒𝑒 ;𝑅𝑛ℎ𝜌𝑡 (𝑠𝑡 );𝑅𝑛
!ℎ
𝜌𝑒 (𝑠𝑒 ); 𝑠 ′;𝑝𝑜𝑠𝑡L;𝑝𝑜𝑠𝑡H

𝑅𝑛ℎ𝜌 (𝑥 = 𝑒) = 𝜌 (𝑥) = 𝜌 (𝑒)
𝑅𝑛ℎ𝜌 (𝑡 [𝑒1] = 𝑒2) = 𝑡 [𝜌 (𝑒1)] = ℎ?𝜌 (𝑒2) : 𝑡 [𝜌 (𝑒1)]
𝑅𝑛ℎ𝜌 (𝑠1; 𝑠2) = 𝑅𝑛ℎ𝜌 (𝑠1);𝑅𝑛ℎ𝜌 (𝑠2)
𝑅𝑛ℎ𝜌 (if@𝑝′ ℎ′ then 𝑠𝑡 else 𝑠𝑒 ) = if@𝑝′ 𝜌 (ℎ′) then 𝑅𝑛ℎ𝜌 (𝑠𝑡 ) else 𝑅𝑛ℎ𝜌 (𝑠𝑒 )
𝑅𝑛ℎ𝜌 (for 𝑖 from 𝑐1 to 𝑐2 do 𝑠) = for 𝜌 (𝑖) from 𝑐1 to 𝑐2 do 𝑅𝑛ℎ𝜌 (𝑠)

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑥 = 𝑣) =

{
(𝜌𝑡 [𝑥 ↦→ 𝑥 ′], 𝜌𝑒 [𝑥 ↦→ 𝑥 ′], 𝑥 ′ = 𝜌𝑒 (𝑣)) if 𝜌𝑡 (𝑣) = 𝜌𝑒 (𝑣)
(𝜌𝑡 [𝑥 ↦→ 𝑥𝑡 ], 𝜌𝑒 [𝑥 ↦→ 𝑥𝑒 ], 𝑥𝑡 = 𝜌𝑡 (𝑣);𝑥𝑒 = 𝜌𝑒 (𝑣)) otherwise

where 𝑥𝑡 ∈ fresh, 𝑥𝑒 ∈ fresh, 𝑥 ′ ∈ fresh

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑡 [𝑒1] = 𝑒2) =


(𝜌𝑡 , 𝜌𝑒 , 𝑡 [𝜌𝑡 (𝑒1)] = 𝜌𝑡 (𝑒2)) if

∧ 𝜌𝑡 (𝑒1) = 𝜌𝑒 (𝑒1)
𝜌𝑡 (𝑒2) = 𝜌𝑒 (𝑒2)(

𝜌𝑡 , 𝜌𝑒 ,

(
𝑡 [𝜌𝑡 (𝑒1)] = ℎ?𝜌𝑡 (𝑒2) : 𝑡 [𝜌𝑡 (𝑒1)]
𝑡 [𝜌𝑒 (𝑒1)] =!ℎ?𝜌𝑒 (𝑒2) : 𝑡 [𝜌𝑒 (𝑒1)]

))
otherwise

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑠1; 𝑠2) = 𝑙𝑒𝑡 (𝜌 ′𝑡 , 𝜌 ′𝑒 , 𝑠 ′1) = Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑠1) 𝑖𝑛 𝑙𝑒𝑡 (𝜌 ′′𝑡 , 𝜌 ′′𝑒 , 𝑠 ′2) = Nxt

𝜌′𝑡 ,𝜌
′
𝑒

ℎ
(𝑠2) 𝑖𝑛

(𝜌 ′′𝑡 , 𝜌 ′′𝑒 , 𝑠 ′1; 𝑠
′
2)

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(if@𝑝′ ℎ′ then 𝑠1 else 𝑠2) = 𝑙𝑒𝑡 (𝜌1𝑡 , 𝜌1𝑒 , 𝑠 ′1) = Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑠1) and (𝜌2𝑡 , 𝜌2𝑒 , 𝑠 ′2) = Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(𝑠2) 𝑖𝑛
𝑙𝑒𝑡 ¤𝜌𝑡 = 𝜌1𝑡 Z 𝜌2𝑡 and ¤𝜌𝑒 = 𝜌1𝑒 Z 𝜌2𝑒 𝑖𝑛

( ¤𝜌𝑡 , ¤𝜌𝑒 , if@𝑝′ 𝜌𝑡 (ℎ′) then (𝑠 ′1;𝜙 ( ¤𝜌𝑡 , 𝜌
1
𝑡 );𝜙 ( ¤𝜌𝑒 , 𝜌1𝑒 )) else (𝑠 ′2;𝜙 ( ¤𝜌𝑡 , 𝜌

2
𝑡 );𝜙 ( ¤𝜌𝑒 , 𝜌2𝑒 )))

Nxt
𝜌𝑡 ,𝜌𝑒
ℎ

(for 𝑖 from 𝑐1 to 𝑐2 do 𝑠) = 𝑙𝑒𝑡 𝜌 ′𝑡 = 𝜌𝑡 [𝑥 ↦→ 𝑥 ′ |𝑥 ′ ∈ 𝑓 𝑟𝑒𝑠ℎ ∧ 𝑥 ∈𝑚𝑜𝑑 (𝑠)] 𝑖𝑛
𝑙𝑒𝑡 𝜌 ′𝑒 = 𝜌𝑒 [𝑥 ↦→ 𝑥 ′ |𝑥 ′ ∈ 𝑓 𝑟𝑒𝑠ℎ ∧ 𝑥 ∈𝑚𝑜𝑑 (𝑠)] 𝑖𝑛
𝑙𝑒𝑡 (𝜌 ′′𝑡 , 𝜌 ′′𝑒 , 𝑠 ′) = Nxt

𝜌′𝑡 ,𝜌
′
𝑒

ℎ
(𝑠) 𝑖𝑛

(𝜌 ′𝑡 , 𝜌 ′𝑒 , 𝜙 (𝜌 ′𝑡 , 𝜌𝑡 );𝜙 (𝜌 ′𝑒 , 𝜌𝑒 ); for 𝜌𝑡 (𝑖) from 𝑐1 to 𝑐2 do (𝑠 ′;𝜙 (𝜌 ′𝑡 , 𝜌 ′′𝑡 );𝜙 (𝜌 ′𝑒 , 𝜌 ′′𝑒 )))
𝑚𝑜𝑑 (𝑆) = {𝑥 | 𝑥 is a variable modified by the statement S}

𝑆𝑒𝑞(𝑆) = {𝑠1; . . . ; 𝑠𝑛 | ∪𝑖𝑠𝑖 = 𝑆 ∧ 𝑛 = |𝑆 |}
𝜙 (𝜌, 𝜌 ′) ∈ 𝑆𝑒𝑞{𝜌 (𝑥) = 𝜌 ′(𝑥) | 𝑥 ∈ 𝜌 (𝑥) ∧ 𝜌 (𝑥) ≠ 𝜌 ′(𝑥)}

∀𝑥 .𝜌1 Z 𝜌2 (𝑥) =
{

𝜌1 (𝑥) if 𝜌1 (𝑥) = 𝜌2 (𝑥)
𝑥 ′ where 𝑥 ′ ∈ 𝑓 𝑟𝑒𝑠ℎ otherwise

Figure 7: Delayed if-conversion

that each variable of the loop body is given a fresh variable. The
loop body 𝑠 is renamed using the obtained renaming maps 𝜌 ′𝑡 and
𝜌 ′𝑒 . In order to synchronise the renaming maps with the program
variables, we insert 𝜙 functions before and after the renaming of
the loop body 𝑠 ′. This is needed to ensure that the variable names
are coherent for the next loop iteration.

5.4.4 Finalisation. The last step of the transformation is performed
by the statements postL and postH. For each variable 𝑥 that is given
the same renaming after the next statement i.e., ¤𝜌𝑡 (𝑥) = ¤𝜌𝑒 (𝑥) = 𝑥 ′,
there is an assignment 𝑥 = 𝑥 ′ ∈ postL. If the renaming differs, i.e.,
¤𝜌𝑡 (𝑥) = 𝑥𝑡 and ¤𝜌𝑒 (𝑥) = 𝑥𝑒 for 𝑥𝑡 ≠ 𝑥𝑒 , there is conditional assign-
ment 𝑥 = ℎ?𝑥𝑡 : 𝑥𝑒 ∈ postH. As a result, the transformation is local
to the H condition of interest and the implicit flow is transformed
in a direct flow outside the scope of the condition.

Definition 3 (Delayed if-conversion). Consider a program

of the form 𝑃 = 𝑃 ′[if@𝑝 ℎ then 𝑠1 else 𝑠2 next 𝑠3] containing a

conditional labelled by@𝑝 . The program obtained after delayed if-

conversion is defined by

IConvp (𝑃)
△
= 𝑃 ′[IConv(if@𝑝 𝑐 then 𝑠1 else 𝑠2 next 𝑠3)]

Theorem 5 states that the transformation of a H conditional
labelled by 𝑝 is still typable in the original flow tracking type system.

Theorem 5 (Security of delayed if conversion). Let 𝐶 =

if@𝑝 ℎ then 𝑠1 else 𝑠2 next 𝑠3 be a conditional, and 𝑃 = 𝑃 ′[𝐶]
a well-typed program containing 𝐶 i.e.,

Δ, L ⊢@𝑝 Γ{𝑃}Γ′

for some Δ, Γ and Γ′. The transformed program IConvp (𝑃) is still
well-typed and there exists Γ′′ such that

Δ, L ⊢ Γ{IConvp (𝑃)}Γ′′

Moreover, ℎ𝑖𝑔ℎ(IConvp (𝑃)) ⊆ ℎ𝑖𝑔ℎ(𝑃) \ {𝑝}
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Proof outline. The proof is by induction over the typing deriva-
tion. For the program 𝑃 ′ containing the condition 𝐶 , the typing
derivation can be rebuilt easily because 𝑃 ′ is not modified. For the
condition 𝐶 , the proof relies on the fact, for modified variables, the
renaming acts on copies of the variables and the array access are
predicated. This ensures that we can construct a typing derivation
for IConv(𝐶). □

5.5 Constant-Time Transformation
The constant-time transformation consists in iterating the previous
transformations i.e., SI𝑝 , 𝐼𝑆𝑝 and IConvp , until the program does
not contain a single H condition.

Definition 4 (Constant-Time Transformation). Let𝑇 be the

function removing (if it exists) the rightmost outermost H conditional

of a program 𝑃 .

𝑇 (𝑃) =
{

IConvp (𝐼𝑆𝑝 (SI𝑝 (𝑃))) if 𝑅𝑂𝑝 (𝑃) for some 𝑝

𝑃 otherwise

For a program 𝑃 , the Constant-Time Transformation𝐶𝑇𝑇 (𝑃) iterates
the function 𝑇 until there is no H conditional left.

𝐶𝑇𝑇 (𝑃) =
{

𝑃 if 𝑇 (𝑃) = 𝑃

𝐶𝑇𝑇 (𝑇 (𝑃)) otherwise

To summarise, we consider a program 𝑃 that is well-typed ac-
cording to our information flow tracking type-system i.e., Δ, L ⊢
Γ{𝑃𝑟𝑔 }Γ′. At each iteration of the 𝐶𝑇𝑇 transformation, we select
the rightmost, outermost H conditional of program 𝑃 , say 𝑝 . By
construction, we have that 𝑝 ∈ 𝑔. The scope increase transformation
(see Section 5.2) identifies the indirect flows that leak outside the
scope of the condition and perform code motion to install a next
statement. The array accesses within the statements of the condi-
tions are then protected using the index sanitising transformation
(see Section 5.3) and the H condition of program point 𝑝 is removed
using delayed if-conversion (see Section 5.4). As each iteration of the
transformation removes a H condition, the transformation termi-
nates. Theorem 6 states that the resulting program is constant-time
according to the constant-time type system.

Theorem 6 (Constant-Time enforcement). Let 𝑃 be a typable

program for a L security context and simple typing environments Γ,
Γ′ and Δ, i.e.,

Δ, L ⊢ Γ{𝑃}Γ′

Then we have that 𝐶𝑇𝑇 (𝑃) is typable with an empty guard i.e.,

Δ, L ⊢ Γ{𝐶𝑇𝑇 (𝑃)∅∅ }Γ
′′.

Proof outline. The proof is by induction over the number of
H conditionals of 𝑃 i.e., |high(𝑃) |. Suppose a well-typed program
Δ, L ⊢ Γ{𝑃}Γ′.

• high(𝑃) ≠ ∅. There is a H conditional 𝑝 such that 𝑅𝑂𝑝 (𝑃).
After the scope increase pass, by Theorem 3, we obtain

Δ, L ⊢@𝑝 Γ{SI𝑝 (𝑃, skip)} ↑{𝑝 } Γ′

After the index sanitise pass, by Theorem 4, we obtain

Δ, L ⊢@𝑝 Γ{𝐼𝑆𝑝 (SI𝑝 (𝑃, skip))} ↑{𝑝 } Γ′

After delayed if-conversion, by Theorem 5, we get a well-
typed program 𝑃 ′ = IConvp (𝐼𝑆𝑝 (SI𝑝 (𝑃, skip))) such that

high(𝑃 ′) ⊂ high(𝑃) because at least the H conditional 𝑝 is
removed. The proof follows by induction hypothesis.

• high(𝑃) = ∅. There are no H conditionals and therefore no
indirect flows. As the program is well-typed, there are no
H array accesses. It follows that all the array accesses are L
accesses and this concludes the proof.

□

6 IMPLEMENTATION AND EXPERIMENTS
We have implemented and tested our constant-time enforcement
transformation as a pass in the Jasmin compiler [3, 5].

6.1 Implementation
The code of the transformations amounts to around 4 KLOC in the
Gallina language of the Coq proof assistant. An advantage of using
Jasmin is that the constant-time property that we enforce at source
level is preserved at assembly level. We can actually check this a
posteriori by using Jasmin’s Constant-Time type checker. Moreover,
as Jasmin is built upon a simple imperative language, there is lit-
tle gap between our formal model and the real implementation.
Because we do not have a formal support for function calls, we
transform each function at a time, before the aggressive inlining
pass of Jasmin. To allow for this, we over-approximate the output
typing of a function from I(𝑙) to H.

6.2 Experiments
We evaluate our constant-time enforcement transformation on
simple but challenging programs that illustrate the expressiveness
of our constant-time enforcement transformations. They include
the following programs which are taken from the FaCT test suite

• BranchRemoval : if@𝑝 ℎ then 𝑥 = 𝑙1 else 𝑥 = 𝑙2
• PotentialOOB : if@𝑝 ℎ then 𝑡 [𝑥] = 0 else skip
• ReturnDeferall : if@𝑝 ℎ then 𝑟𝑒𝑡𝑢𝑟𝑛 𝑥 else skip

We also include the motivating examples of the current paper i.e.,
𝑃0 of Example 2 and 𝑃2 from Section 3, together with hand-crafted
programs (see Figure 10) as well as bubble sort. These programs
are detailed in table 9. Programs P3, P4, P5 and P7 need the scope-
increase algorithm, while P6 require the naive transformation to
get rid of the problematic memory access. We also include the
cswap function which is used by the existing implementation of
Curve25519 in Jasmin from libjc

2 [5]. More precisely, we have
rewritten the existing constant-time cswap to the more natural non
constant-time version.

6.2.1 Metrics. In Figure 9, we evaluate each one of these programs,
and their transformations, using the following metrics :

a) Constant-Time: We check whether the program is success-
fully transformed and if the transformed version is indeed
Constant-Time according to the type checker of Jasmin.

b) Code Size Overhead: We provide the size of the initial code
and its size after the transformation in terms of number of
statements.

2https://github.com/tfaoliveira/libjc
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Program Constant-Time Source code size Variables - Source Variables - Compiled Compilation Time Assembly size (CompCert) Assembly Size (gcc -O3)
FaCT Ours Input Output Input Output C[Input] C[Output] Classic Transformed Classic Transformed Classic Transformed

BranchRemoval ✓ ✓ 3 8 1 3 6 6 0.003 0.016 19 19 24 24
PotentialOOB ∼ ✓ 3 5 1 2 6 6 0.004 0.011 22 25 26 34
ReturnDeferral ✓ × – – – – – – – – – – – –

cswap ✓ ✓ 27 45 10 21 6 7 0.007 0.212 61 136 75 82
BubbleSort ✓ ✓ 8 12 4 6 7 8 0.268 2.126 42 52 53 56

𝑃0 × ✓ 9 19 2 7 6 7 0.004 0.028 27 43 31 31
𝑃2 × ✓ 8 17 3 7 6 7 0.004 0.036 24 27 27 28
𝑃3 × ✓ 7 16 2 7 6 7 0.006 0.023 21 24 25 26
𝑃4 × ✓ 11 46 3 18 6 12 0.004 0.093 28 94 31 67
𝑃5 × ✓ 10 24 3 10 6 9 0.005 0.025 27 24 26 29
𝑃6 × ✓ 8 14 3 7 6 7 0.005 0.056 27 37 25 45
𝑃7 × ✓ 8 17 3 8 6 8 0.007 0.034 28 25 26 24

Figure 8: Case-study of our transformation

Program Description

cswap Swap function from Curve25519
BubbleSort Standard bubble sort algorithm

P3 Conditionnal access
P4 Two imbricated conditionnals
P5 Two sequentials ifs
P6 For loop followed by a memory access
P7 For loop containing a memory access

Figure 9: Description of test cases

c) Number of Variables: We also provide the number of vari-
ables used by the program, at source level, and after trans-
formation but before optimisations. We also provide the
number of variables after optimisations just before assembly
generation.

d) Compilation Time: We provide the time taken by Jasmin
to complete the compilation of the program, whether the
transformation is enabled or not, in seconds.

e) Assembly Size: The size of the compiled code, before and
after transformations. Due to restrictions on the Jasmin
compiler, our introduction of complex expressions some-
times prevents the compilation to terminate. To evaluate our
compiled code, we export the resulting high-level program
to C, and compile it using CompCert, thus preserving the
Constant-Time property. As to compensate CompCert’s lack
of optimisation, we also compile using GCC -O3.

The results of our evaluation are summarized in Figure 8.

6.2.2 Evaluation of Results.

Constant-Time Property. We are able to transform all the bench-
marks except ReturnDeferall which is rejected because jasmin only
accept a return as the last instruction. For PotentialOOB, our gen-
erated program is different from FaCT which inserts an assume

statement to ensure safety. Instead, we instrument the array access
and get safety for free. Yet, our transformation is only semanti-
cally correct if the initial program has no array of bound access.
Programs P0, P2, P3, P4, P5, P6 and P7 are rejected by FaCT but
accepted by our enhanced transformation at the cost of some code
duplication.

cswap : if@𝑝
swap then

for 𝑖 from 0 to 4 do
𝑡𝑚𝑝 = 𝑧2𝑝 [𝑖]; 𝑧2𝑝 [𝑖] = 𝑧3𝑝 [𝑖]; 𝑧3𝑝 [𝑖] = 𝑡𝑚𝑝;
𝑡𝑚𝑝 = 𝑥2[𝑖]; 𝑥2[𝑖] = 𝑥3𝑝 [𝑖]; 𝑥3𝑝 [𝑖] = 𝑡𝑚𝑝;

else skip

𝑃3 : (if@𝑝 ℎ then 𝑥 = 𝑙1 else 𝑥 = 𝑙2);𝑦 = 𝑡 [𝑥];

𝑃4 :

©«
if@𝑝 ℎ then©«

if@𝑝′ ℎ′ then
𝑥 = 𝑙1
else 𝑥 = 𝑙2

ª®¬ ;𝑦 = 𝑡 [𝑥]

else 𝑦 = 𝑙3

ª®®®®®¬
; 𝑡 [𝑦] = 𝑙4;

𝑃5 : ©«
if@𝑝 ℎ then
𝑟 = 0
else 𝑟 = 1

ª®¬ ; ©«
if@𝑝′ 𝑟 then
𝑥 = 1
else 𝑥 = 2

ª®¬ ;𝑦 = 𝑡 [𝑥];

𝑃6 : ©«for 𝑖 from 𝑐1 to 𝑐2 do
if@𝑝 ℎ then
𝑥 = 𝑙1
else 𝑥 = 𝑙2

ª®¬ ;𝑦 = 𝑡 [𝑥];

𝑃7 : ©«for 𝑖 from 𝑐1 to 𝑐2 do
if@𝑝 ℎ then
𝑥 = 𝑙1
else 𝑥 = 𝑙2

;𝑦 = 𝑡 [𝑥]ª®¬ ;
Figure 10: Example programs

Code Size Overhead. For most of the benchmark, the resulting
source code is around twice the size of the original. This observation
is true for programs containing at most 1 imbricated conditionnal :
the code duplication pass is only applied once.

For other programs, such as 𝑃4, the overhead is proportional to
2𝑛 , with 𝑛 the depth of the program. In the case of 𝑃4, the 𝑡 [𝑦] = 𝑙4
instruction is duplicated by the first if-conv pass, inserted into the
next for the 𝑝 conditional, and later duplicated again. This repeats
at every level of nesting in the program.

Number of Variables - Source. By the same reasoning as above, the
number of variables in the transformed code, before compilation, is
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around 2𝑛 times the size of the original program, with 𝑛 the depth
of the program.

Number of Variables - Compiled. The Jasmin compiler applies
a number of aggressive optimisations. To evaluate the impact of
optimisations on the transformed code, we also compare the number
of written variables with and without constant-time enforcement.

For most of the programs, the variables overhead is reduced to
1 or 2 and is almost insignificant. However, for program such as
𝑃4, where there are more than one level, the overhead is around 𝑛
times the initial source code, with 𝑛 the depth of the program.

Compilation Time. For most of the programs, we have at most
one order ofmagnitude added by the compilation of the transformed
program. However, when a secret conditional is within a loop, our
variable overhead is demultiplied by the loop unrolling of Jasmin,
resulting in greater compilation time, although it stays reasonable.

Asssembly Size. For most of our benchmark, the resulting assem-
bly code using CompCert does not differ by much in size. Notable
exceptions are cswap and P4. The one common factor between
these two code snippets is the introduction of multiples cmove
instructions. The construction of the expressions used within those
instructions provoke a significant overhead in code size. When
compiling using all optimisations offered by gcc, we don’t notice
such a high overhead anymore, except for P4. Overall, both our
transformation, whether the compilation method used, struggles
with imbricated conditionals, but offers satisfying results on other
programs.

Summary of Evaluation. Our type-directed transformation al-
lows for more programs to be transformed into a Constant-Time
semantically-equivalent version than FaCT. This transformation
implies a performance and size overhead at most doubles in per-
formance and size. Subsequent compiler optimising passes remove
most of the increase in code size and number of variables used.

7 RELATEDWORK
The constant-time property can be verified at different level ranging
from assembly [8, 9], intermediate code [4, 27] to source level [13]
using a taint analysis. One difficulty is to precisely model aliases
and avoid false alarms. The logic implemented by our type system
is simpler but is sufficiently precise to analyse jasmin programs [3]
which are equipped with a functional semantics. In particular, it is
the role of the jasmin compiler to ensure that arrays are not aliases
and that memory updates can be performed in-place.

Agat [1] pioneered type-directed program transformations to
eliminate information leaks. The transformation ensures that both
branches of a H conditional perform the same amount of computa-
tions by inserting dummy instructions. Using unification, Köpf and
Mantel [23] propose an enhanced type-system reducing the amount
of dummy operations. The constant-time programming discipline is
a stronger guarantee. It protects against micro-architectural timing
leaks for which inserting dummy computations is not an effective
countermeasure. As a result, our transformation is more aggressive
and completely removes H conditionals. SC Eliminator [32] uses
a taint analysis to detect and repair information flow leaks. They
eliminate H conditionals using a if-conversion, similar to FaCT [16],

where each statement is predicated by the conditional. Their ap-
proach has been improved by Sores and Pereira [28] to avoid gener-
ating programs with out-of-bound accesses. jasmin arrays have a
known size, which simplifies our instrumentation of array accesses.
Our delayed if-conversion is more sophisticated and allows a more
efficient transformation of array accesses that are secret due to
indirect flows.

Domain Specific Languages (DSL) have been designed to pro-
gram and verify constant-time cryptographic algorithms. vale [14,
17] is a high-level assembly language for programming and verify-
ing cryptographic algorithms using either dafny [21] or F* [29]. To
prove the constant-time property, they implement in F* a proved-
correct taint analysis.HACL* [33] is a verified cryptographic library
programmed and proved in F* and compiled with the KremLin com-
piler [25] which preserves the constant-time property. jasmin [3, 5]
is another language for programming cryptographic algorithms.
The constant-time proof is obtained by embedding the jasmin lan-
guage in the easycrypt proof-assistant [11] and preserved by the
jasmin compiler. In our work, benefit from the infrastructure of
the existing jasmin compiler. We implement a front-end compiler
pass which ensures that a well-typed program is transformed into
a constant-time program.

FaCT [15, 16] (described in Sec. 2.4) use type-based transforma-
tions to ensure constant-time. We employ a more permissive type
system and additional, non-local program transformations such
as scope increase. This means that there are programs that we can
transform to constant-time which FaCT would reject. On the other
hand, FaCT handles language features that we do not deal with,
in particular the deferral of early returns from functions. Another
difference is our handling of so-called public safety. FaCT augments
the type system with partial verification conditions, whereas we as-
sume the safety of the input program and instrument array accesses,
at the cost of some potential overhead.

8 CONCLUSION
We have proposed type-directed transformations which turn a po-
tentially insecure program into a more secure constant-time pro-
gram. A key insight of the approach is that programs with indirect
secret flows can always be transformed into semantically equiva-
lent constant-time programs at the cost of duplicating problematic
array accesses with the scope of the conditional and performing
delayed if-conversion. The transformations subsume those offered
by the state-of-the-art tool FaCT. In addition, our type system en-
ables transformations that are not available FaCT, at the cost of
increasing the size of the generated code. Furthermore, the transfor-
mations are fully automatic, and do not require prior annotations
of the program. Experiments with the Jasmin compiler shows that
the increase in code size can be mitigated by subsequent compiler
optimisations.

Our type system does not protect against speculative leaks e.g.
Spectre [19]. A promising approach is to perform speculative post-
analysis à la blade [30] over the constant-time program. As future
work, we will extend our type system to cope with function calls.
We will also investigate how to get a more permissive type system.
A challenge would be to automatically transform while loops with
H conditions.
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