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Abstract
Recent programming languages research has developed

language-integrated query, a convenient technique to seam-

lessly embed a domain-specific database query language into

a general-purpose host programming language; such queries

are then automatically converted to the language understood

by the target DBMS (e.g. SQL) while at the same time taking

advantage of the host language’s type-checker to prevent

failure at run-time. The embedded query language is often

equipped with a rewrite system which normalizes queries

to a form that can be directly translated to the DBMS query

language.

However, the theoretical foundations of such rewrite sys-

tems have not been explored to their full extent, particu-

larly when constructs like grouping and aggregation, which

are ubiquitous in real-world database queries, are involved.

In this work, we propose an extension of the nested rela-

tional calculus with grouping and aggregation which can

provide such foundations. Along with strong normalization

and translatability to SQL we show that, remarkably, this

extension can also blend with shredding techniques proposed
in the literature to allow queries with a nested relational type

to be executed on the DBMS.

CCSConcepts: • Information systems→Query languages;
• Software and its engineering→ Formal language def-
initions.
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1 Introduction
Many, if not all, real-world applications involve interac-

tion with data, often stored and managed in a database

system with its own domain-specific language for queries

and updates, with relational database management systems

(RDBMS) using the SQL standard among the most popular.

This architecture has many benefits, particularly separation

of concerns: programmers (supposedly) need only express

the declarative needs of the application through queries or

updates, leaving database implementors free to choose effi-

cient implementation strategies. Nevertheless, database pro-

gramming can be an unpleasant chore since SQL (for exam-

ple) presents a rather different interface and abstractions to

programmers thanmost general-purpose languages in which

the main application logic is implemented do. Addressing

this difficulty has been a major subject of research.

Previous work dating to the late 1980s [31] has estab-

lished the value of viewing database collection types such

as sets and bags as monads equipped with operations such

as “return” (singleton) and “bind” (concat-map, flat-map, or

one-generator comprehension), usually equipped with addi-

tional operations such as a zero (empty collection) and plus

(union). From a programming languages point of view, this

perspective has the distinct advantage of taming queries by

making them an instance of a well-understood and explored

interface (particularly in languages such as Haskell that di-

rectly support monads via type classes). And indeed, there

has now been considerable work exploiting this correspon-

dence, which began in earnest with Wong’s Kleisli system,

and has subsequently informed systems such as Microsoft’s

LINQ for SQL (particularly the F# implementation), the Links

cross-tier web programming language, and libraries such as

Quill for Scala.

Despite the success of this general approach, dark corners

remain, due to the fact that query languages such as SQL are

considerably more restricted than general-purpose program-

ming languages, particularly those those with higher-order

functions such as F#, Scala or Links. The free combination

of type constructors such as collection and record types is

a given in most programming languages, but such nested
collections are not normally supported in RDBMSs (though

this facility is supported by the SQL:2003 standard, it is not

widely adopted). Similarly, it seems natural to use higher-

order functions to decompose query expressions into smaller,

reusable and more readable, chunks, but SQL does not sup-

port higher-order functions (and even using user-defined

1
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NRCλ NRCλ normal form

NRCλ

flat typed
NRCλ

flat normal form

shredding

NRCλ (set,bag) NRCλ (set,bag) normal form

NRCλ (set,bag) 
flat typed

NRCλ(set,bag) 
flat n.f.

shredding

delateralized

select + union all

select [distinct]
+ union [all]

select [distinct]
+ union [all]
+ lateral

Homogeneous nested relational calculus

Heterogeneous nested relational calculus

SQL

Figure 1. Relationship between fragments of NRC and of

SQL.

first-order functions inside queries can have a high cost).

As a result, some previous work has considered the follow-

ing problems: How can we identify which host language

query expressions can actually be performed on the data-

base? When features that seem natural in the host language

are not directly supported by the database, can these never-

theless be simulated somehow? Proposals addressing the first

question include type-and-effect systems (as in Links [15]) or

staged calculi (for F# [3]) to identify query expressions that

can safely be performed on the database, while the second

has been addressed in part by developing query normaliza-

tion techniques that simplify queries that employ nonrecur-

sive higher-order functions and shredding transformations

that simulate queries over nested data using queries over

flat data (that is, queries that manipulate only collections of

records of primitive values, as SQL requires.)

Core calculi like the nested relational calculus (NRC) [2]

offer an elegant way to describe the monadic sublanguage

that is mutually understandable to a general purpose lan-

guage and SQL and have been employed to study query nor-

malization and shredding in the presence of non-recursive

higher-order functions [4–6]. Such techniques were initially

investigated for bag semantics only, but have been since

extended to work with queries mixing set and bag seman-

tics [21, 22, 24].

Figure 1 shows the relationship between fragments of two

variants of NRC and fragments of SQL. In the homoge-

neous NRC, using bag semantics, terms whose type is a

flat relation can be normalized and directly translated to

SQL queries employing SELECT and UNION ALL. Terms with

a nested relational type eventually rewrite to nested rela-

tional forms that can be converted to multiple flat relational

normal forms by shredding, which can be translated to SQL

as described above.

The heterogeneous calculus (also termedNRC𝜆 (Set, Bag))
adds the ability to mix sets and bags in the same query. Just

like in the homogeneous variant, every term can be normal-

ized and normal forms with a nested relational type can be

NRCλγ NRCλγ normal form

NRCλγ

flat typed
NRCλγ

flat normal form

shredding

select [distinct]
+ union [all]
+ lateral
+ group by
+ aggregates

Heterogeneous nested relational calculus with grouping and aggregation SQL

Figure 2. Extending NRC to target SQL with grouping.

shredded to flat normal forms. Predictably, these can be trans-

lated to a larger SQL fragment including SELECT DISTINCT
and UNION operations; however, generally we will also need

to use LATERAL joins (available since SQL:1999); an optional

delateralization step convertsNRC𝜆 (Set, Bag) normal forms

to a form that can be translated to SQLwithout using LATERAL.
Notice that the heterogeneous calculus, including its rewrite

system, is a superset of the homogeneous one, therefore

terms of this calculus only employing bag semantics are

guaranteed to be translated to the same SQL queries pro-

duced by the homogeneous calculus.

Another area where improvement is needed, and which

is the focus of this paper, is the coverage of the most impor-

tant SQL features. In particular, so-called OLAP or on-line
analytic processing queries rely on grouping and aggregation
capabilities of SQL. The importance of these capabilities is

highlighted by their use in 16 out of 22 of the TPC-H bench-

mark queries ([30]), which are by far the most widely used

benchmark for SQL query processing and optimization. We

want to eventualy make language-integrated query “TPC-H

complete”, or in other words capable of handling (in a prin-

cipled way) all of the features needed for the TPC-H queries.

As a simple concrete example, suppose we have an employee

database and we wish to calculate the average salary in each

department. In SQL this can be done as follows:

q_group := SELECT d.name,AVERAGE(e.salary)
FROM department d, employee e
WHERE d.id = e.dept
GROUP BY d.name

We intend to support grouping and aggregation in a func-

tional programming language by means of further exten-

sions to NRC: the intended operation of such an extension

is described by Figure 2. We start with minimal expectations

concerning the operations that should be supported; since

our goal is to allow idiomatic functional programs to be

converted to SQL queries, these operations need not mimic

SQL queries closely, but it is important for them to provide a

natural interface for the functional programmer. Our initial

proposal is based on the understanding that grouping and

aggregation are informally seen as separate operations, and

the reason why SQL requires grouping to be associated with

aggregation (aside from pathological cases) is based on its

limited type system, where all queries must evaluate to finite

collections of records of scalars (also termed (flat) relations).
2
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Operationally, grouping takes a relation and partitions it into

a number of subrelations, each of which is indexed by a key

for that group. While a way to represent such an indexing

would be by means of a function type, general functions can-

not be represented as relations, meaning such types would

not be a suitable source for a translation to SQL. However,

the maps resulting from grouping associate the elements of

a finite domain set to finite relations (i.e. finite collections):

we call these maps finite maps. If we represent multiset col-

lections with element type 𝑇 as [𝑇 ] and finite maps from

records of type 𝜌 to multiset collections with element type

𝑇 as [𝑇 ]𝜌 , we can see that finite maps can be represented as

SQL relations by employing the isomorphism:

[𝑇 ]𝜌 ≃ [𝜌 ×𝑇 ]
Now we tentatively list the operations that a language

with finite maps, grouping, and aggregation should support:

• given a collection 𝑙 of type [𝑇 ] and an indexing func-

tion 𝑓 assigning a key of record type 𝜌 to any value of

type 𝑇 , groupBy 𝑓 𝑙 should return a finite map associ-

ating each 𝑘 : 𝜌 to the collection of those values 𝑣 in 𝑙

for which 𝑘 is equal to the key computed from 𝑣 , i.e.

𝑓 𝑣 :

groupBy : (𝑇 → 𝜌) → [𝑇 ] → [𝑇 ]𝜌
• a lookup operation which, given a finite map𝑚 of type

[𝑇 ]𝜌 and a record 𝑘 of type 𝜌 , returns the collection

associated by𝑚 to the key 𝑘 :

lookup : [𝑇 ]𝜌 → 𝜌 → [𝑇 ]
• an aggregation function 𝛼 takes a collection of type

[𝑆] and returns a value of type 𝑇 (the language will

enforce the property that such aggregation functions

should be expressible in SQL); but for the very common

case in which aggregation is performed on the result

of grouping (i.e. on a finite map), we should be able to

express an operation aggBy to lift aggregations from

collections to indexed collections:

aggBy : ( [𝑇 ] → 𝑇 ) → [𝑆]𝜌 → [𝜌 ×𝑇 ]
• Crucially, we will also need to extend comprehension

from collections to finite maps; we can come up with

several options, which we distinguish by annotating

the comprehension generator by different superscripts.

Perhaps the most obvious solution is to provide compre-

hension for finite maps by implicitly converting them to

their isomorphic collections: we denote this operation with

M← generators [
𝑅 | (𝑘, 𝑥) M← 𝑀

]
This should take the disjoint unions of all the 𝑅 evaluated

for each key 𝑘 of 𝑀 and each value 𝑥 in the collection re-

turned by lookup 𝑀 𝑘 . Since the values that 𝑀 maps to 𝑘

are considered separately rather than as a collection, this

form of comprehension is not very natural. Alternatively,

we can consider a generator returning keys 𝑘 together with

the collection 𝑣 of all values associated to 𝑘 by𝑀 : we use

G←
generators to denote this kind of comprehension:

[
𝑅 | (𝑘, 𝑣) G← 𝑀

]
Here, each key 𝑘 will be returned only once, together with

a 𝑣 which will equal lookup 𝑀 𝑘 ; since 𝑣 can be computed

from𝑀 and 𝑘 , we can even drop it and consider generators

returning only the keys of a given finite map, which we

denote by

K←: [
𝑅 | 𝑘 K← 𝑀

]
While we could consider a language employing any of

these comprehensions (potentially expressing the other two

as derived operators), the queries we express will have to be

converted to SQL. In order for this to happen we will need

to provide a rewrite system to convert the more liberal func-

tional queries into normal forms that can be easily translated

to SQL.

2 A nested relational calculus with finite
maps

2.1 Syntax
We introduce an extension of the heterogeneous nested re-

lational calculus NRC𝜆 (Set, Bag) [21] with finite maps: we

will call the new calculus NRC𝜆𝛾 . Like its predecessor,

NRC𝜆𝛾 allows the mixing of two different kinds of col-

lections: sets and bags (also known as multisets). The main

extension of the new calculus consists in a grouping operator
𝛾 which converts collections into maps assigning collections

to keys in a certain finite domain; these finite maps can be

seen as a generalization of collections and thus collection op-

erators such as unions and comprehensions are extended to

finite maps. The calculus also supports aggregation operators

from bags of values to simple values.

In our previous work we provided two different versions

for most collection operators depending on whether they ap-

plied to sets or bags (for instance: ∪ for set union, and ⊎ for

disjoint bag union): this created a large syntactic overhead

by requiring us to consider all of these operators twice. In

the syntax below, instead, we factorize such operator pairs

by using the same symbol (say ++ for union over any collec-

tion), and discriminate between the two cases by annotating

said operator with its collection kind S = set or bag (i.e.

++set, ++bag). We will often omit the annotation when it is

irrelevant or can be easily inferred from the context.

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Conference’17, July 2017, Washington, DC, USA Wilmer Ricciotti

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Types:
S ::= set | bag

𝑆,𝑇 ::= 𝑏 | 𝑆 → 𝑇 | ⟨𝑃⟩ | [𝑇 ]S𝑃
𝑃 ::=

−−−→
l : 𝑇

Terms:
𝐿,𝑀, 𝑁 ::= 𝑥 | 𝑡 | 𝑐 (−→𝑀) | ⟨−→𝜌 ⟩ | 𝑀.l

| 𝜆𝑥 .𝑀 | 𝑀 𝑁 | 𝛼 (𝑀) | 𝑀 whereS 𝑁

| []S | [𝜌 ⊲𝑀]S | 𝑀 ++S𝑁 | [𝑀 | 𝑥 ← 𝑁 ]S

| 𝛾S𝑥.𝜌 (𝑀) | 𝑀 �S𝑁 |
[
𝑀 | 𝑘 K← 𝑁

]S
| 𝛿𝑀 | 𝜄𝑀 | aggByS

𝑧.
−−−−−−−−−→
l=𝛼 (𝑧.l′)

(𝑀)

𝜌 ::=
−−−−−→
l= 𝑀

𝛼 ::= count | sum | min | max | avg

NRC𝜆𝛾 includes refined types [𝑇 ]set𝑃 and [𝑇 ]bag
𝑃

represent-

ing respectively set-valued and bag-valued finite maps: terms

of these types behave as functions whose domain is described

by a row type 𝑃 (where a row type is defined as a collection of

items in the form l : 𝑇 ′, such that l is a label and𝑇 ′ a regular
type) and whose codomain is either a set or a bag of values

of the target type 𝑇 ; such maps are finite because they will

return a non-empty collection only for a finite subset of their

domain. When 𝑃 is an empty row, we obtain the traditional

types [𝑇 ]set and [𝑇 ]bag of sets and bags over an object type

𝑇 . Row types are also used to express record types ⟨𝑃⟩. The
grammar of types is completed by atomic types 𝑏 (which

must include Booleans B and numbers N) and function types

𝑆 → 𝑇 .

The terms allow many standard forms including variables

𝑥 , applied constants 𝑐 (−→𝑀), function abstraction and appli-

cation (𝜆𝑥 .𝑀 and 𝑀 𝑁 ). Given a row 𝜌 consisting of items

in the form l = 𝑀 associating a term to a label, ⟨𝜌⟩ repre-
sents the record containing that row. As usual,𝑀.l is used

to access field l in a record𝑀 .

Maps include terms that are similar to the collection terms

in NRC𝜆 (Set, Bag), but with some differences: while the

emptymap []Sand unionmap𝑀++S𝑁 are syntactically indis-

tinguishable from the corresponding concepts of

NRC𝜆 (Set, Bag), the singleton map [𝜌 ⊲𝑀]S represents an

expression associating the record ⟨𝜌⟩ to the singleton col-

lection [𝑀]S – similarly to what we did with map types, we

identify [𝑀]S with the singleton map [· ⊲𝑀]S having the

empty row · as its source. The operation [𝑀 | 𝑥 ← 𝑁 ]S is

also syntactically identical to comprehension in previous

versions of NRC, but as we will see later its typing rule is

relaxed; we will call this operation value comprehension map
to distinguish it from a key comprehension operation that we

will introduce soon. The one armed conditional𝑀 whereS𝑁
evaluating to𝑀 or []S depending on whether the Boolean

𝑁 is true or false is also unsurprising.

All of the aforementioned term forms can be applied to

either collection kind; two operations that defy this scheme

are deduplication 𝛿𝑀 (which converts a bag-valued map to

a set-valued one by deduplicating all of its outputs) and pro-

motion 𝜄𝑀 (performing the inverse opeation by converting

the set outputs of the map 𝑀 to bags containing the exact

same elements, with multiplicity equal to one).

So far, the terms of NRC𝜆𝛾 are very similar to those of

NRC𝜆 (Set, Bag), although with refined typing and seman-

tics; however,NRC𝜆𝛾 also introduces new operations to ma-

nipulate maps that have no counterpart inNRC𝜆 (Set, Bag):
the simplest of these is the lookup operation𝑀 �S𝑁 which,

given a map𝑀 and a key 𝑁 , returns the value of𝑀 associ-

ated to 𝑁 . Since a finite map𝑀 only associates an output to

a finite number of keys 𝑁 , but NRC𝜆𝛾 allows its types to

have infinite inhabitants, it may happen that 𝑁 is not in the

domain of 𝑀 : in this case, the semantics of 𝑀 �S 𝑁 is the

empty collection.

The grouping operation 𝛾S𝑥.𝜌 (𝑀) binds the variable 𝑥 in

the row 𝜌 : if 𝑀 is a collection (a pure set or bag), for each

occurrence of an element 𝑁 in 𝑀 , the grouping operation

produces a singleton map sending the row 𝜌 [𝑁/𝑥] to 𝑁 ;

if 𝑀 is itself a proper map rather than a pure collection,

the behaviour is similar, but the rows resulting from 𝜌 are

combined with those already present in𝑀 .

The groupwise aggregation aggByS
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑀) takes as
its main input𝑀 , which must be a finite map whose target

type is a collection of records of base type (or, for short, a flat
relational map); the secondary input is an aggregation clause

using a bound variable 𝑧 (used to reference the target of the

map𝑀), arbitrary output attributes

−→
l , and input attributes

−→
l′ matching attributes of the relation𝑀 .

For example, asssume 𝑀factors : [⟨f : N⟩]bagnum:N is a bag-

valued relational map associating integers smaller than 100

to the bag of their prime factors, with their multiplicity:

so for example ⟨num = 2⟩ is mapped to the bag [⟨f = 2⟩]bag,
⟨num = 12⟩ to the bag [⟨f = 2⟩, ⟨f = 2⟩, ⟨f = 3⟩]bag, and

⟨num = 99⟩ to the bag [⟨f = 3⟩, ⟨f = 3⟩, ⟨f = 11⟩]bag. Then,
by using the row (small = 𝑥 ≤ 10) (which evaluates to

true for integers 𝑥 less than 10, and to false otherwise),

we can construct a map 𝛾
𝑥.small=𝑥≤10

(𝑀factors) which maps

⟨num = 12, small = true⟩ to [⟨f = 2⟩, ⟨f = 2⟩, ⟨f = 3⟩]bag,
⟨num = 12, small = false⟩ to []bag, ⟨num = 99, small = true⟩
to [⟨f = 3⟩, ⟨f = 3⟩]bag and ⟨num = 99, small = false⟩ to

[⟨f = 11⟩]bag. Groupwise aggregation can be used to count

the number of prime factors of each number in the map:

the map resulting from aggByz.c=count(z.f)
(
𝑀factors

)
maps 2 to

the singleton [⟨c = 1⟩]bag, and 12 to [⟨c = 3⟩]bag. Notice that
since the output type of a finite map is always a collection,

the use of aggBy results in a map returning singletons rather

than naked values.
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The final operation is

[
𝑀 | 𝑘 K← 𝑁

]S
, which we will call

key comprehension: it is semantically equivalent to perform-

ing a set comprehension over the keys of the map 𝑁 return-

ing, for each key, a map 𝑀 where the actual key has been

substituted for the variable 𝑘 . Notice that even in the bag

case

[
𝑀 | 𝑘 K← 𝑁

]bag
, each key of 𝑁 is only considered once,

since there does not seem to be much use to the concept of

multiplicity of the input of a finite map.

To make the syntax of comprehensions less pedantic, we

will allow ourselves to use placeholder symbols ♦ and ♣ in
comprehension generators like

[
𝑀 | 𝑥 ♦← 𝑁

] set
or[

𝑀 | 𝑥 ♣← 𝑁

]bag
to mean either value or key comprehension.

Finally, we will use the syntactic sugar[
𝑀 | 𝑥1

♦← 𝑁1, . . . , 𝑥𝑛
♣← 𝑁𝑚

]
, defined as[

· · ·
[
𝑀 | 𝑥𝑛

♣← 𝑁𝑚

]
· · · | 𝑥1

♦← 𝑁1

]
(and similarly for bags).

2.2 Typing rules
The type system for NRC𝜆𝛾 is given in Figure 3. The rules

for variables, records, projections, functions, and applications

are standard. A fixed signature Σ assigns to constants and

aggregate operators their type: the former take a sequence

of arguments of scalar type and return a scalar; the latter

take as input a single bag of scalar-typed items and return a

scalar.

The typing rules for finite maps are largely based on those

of NRC𝜆 (Set, Bag) collections, but with important differ-

ences. Empty maps [] are allowed at any finite map type,

whereas singletons have a map type corresponding to their

arguments: if 𝜌 has a row type 𝑃 and 𝑀 has type 𝑇 , then

[𝜌 ⊲𝑀]S has type [𝑇 ]S𝑃 . Unions combine collections preserv-

ing the type of their arguments (which must be the same).

The typing rules for value comprehension are more inter-

esting: to construct the term [𝑀 | 𝑥 ← 𝑁 ]S, we will require
the generator 𝑁 to be a pure collection of type [𝑇 ]S; then the
output term𝑀 , existing in an extended context where 𝑥 gets

values of type 𝑇 , can have any set-valued map type [𝑆]set𝑃 ;

the result will have the same type as𝑀 – it must be stressed

that this is a significant extension over NRC𝜆 (Set, Bag), as
in that calculus 𝑀 (and the comprehension output) would

need to be pure collections. Deduplication and promotion

convert a bag-valued map type into the corresponding set-

valued map type and vice-versa; one-armed conditionals are

similar as their NRC version, except for the fact that their

output can be a map rather than a pure collection.

As for key comprehensions

[
𝑀 | 𝑘 K← 𝑁

]S
, the generator

𝑁 can of course be a proper map of type [𝑇 ]S𝑃 ′ (as it would
otherwise be pointless to perform comprehension over its

keys), and the output 𝑀 once again must have a S-valued

map type when evaluated in an extended context: however,

this time the type of the bound variable 𝑘 must be a tuple

over the row type 𝑃 .

Grouping 𝛾𝑥.𝜌 (𝑀) adds new keys to the map𝑀 : if𝑀 has

type [𝑇 ]𝑃 and 𝜌 has row type 𝑃 ′ in the extended context

where 𝑥 : 𝑇 , then the whole term has type [𝑇 ]𝑃⊕𝑃 ′ , where
𝑃 ⊕ 𝑃 ′, only defined when 𝑃 and 𝑃 ′ have disjoint domains,

contains exactly those label-type associations that appear in

either 𝑃 or 𝑃 ′; should 𝑃 and 𝑃 ′ have overlapping label sets,
the typechecker will reject the term. The lookup operation

𝑀 � 𝑁 requires 𝑀 to have a map type [𝑇 ]𝑃 and 𝑁 to be a

tuple over the row type 𝑃 (matching the expected input of

𝑀), and returns the pure set of type [𝑇 ] associated to that

input. Notice that, in order to syntactically avoid unneces-

sary “detour” lookup operations, we require that the lookup

should only happen on proper finite maps rather than pure

collections: therefore, if𝑀 is a pure collection and 𝑁 has an

empty tuple type, 𝑀 � 𝑁 is not syntactically well-formed;

this is not a limitation because the expected semantics of

that term would be the same as that of𝑀 .

Groupwise aggregation aggBy
𝑧.
−−−−−−−−−−−→
l𝑛=𝛼𝑛 (𝑧.l′𝑛)

(𝑀) assumes

that 𝑀 has type [⟨𝑃 ′⟩]𝑃 : for each key 𝑘 of 𝑀 and for each

tuple 𝑧 in𝑀 � 𝑘 , aggBy will produce a key-value pair where

the key is 𝑘 (as it was in the input) and the value is a single-

ton tuple containing fields l𝑖 = 𝛼𝑖 (l′𝑖 ) for 𝑖 = 1, . . . , 𝑛. The

types of the fields in the codomain of map 𝑀 must match

the input of the aggregate functions using them (meaning

that, for each 𝛼𝑖 (𝑧.l′𝑖 ), if the type of 𝛼𝑖 is [𝑏𝑖 ]
bag ⇒ 𝑏 ′𝑖 , then

the row type 𝑃 ′ must associate the label l′𝑖 to the 𝑏𝑖 match-

ing the input of 𝛼𝑖 , where 𝑖 = 1, . . . , 𝑛). The resulting type

is again a finite map with the same domain as that of its

input𝑀 ; however each output of the map will be a singleton

tuple (due to the use of aggregation) whose fields are l𝑖 : 𝑏 ′𝑖
determined by the aggregation clause.

While value comprehension, grouping, lookup and group-

wise aggregation have similar typing rules for both collection

kinds, key comprehension is less obvious. The reason for this

is that in a bag-valued finite map, the output provides multi-

plicity information, but there is no such information for its

input. Consequently, the typing rule for key comprehensions

returning bag-valued maps still requires the generator to be a

set-valued map; however it is always possible to deduplicate

a bag-valued map and perform key comprehension on the

resulting set-valued map.

Example 2.1. The query q_group from the introduction

can be expressed in NRC𝜆𝛾 by a combination of compre-

hension, singleton finite maps, and groupwise aggregation:

𝑀group := aggBy𝑧.salary=avg(𝑧.salary)©­­­­­­«

[[
dept = 𝑑.name

⊲⟨salary = 𝑒.salary⟩
]

where (𝑑.id = 𝑒.dept)
| 𝑑 ← department, 𝑒 ← employee

]
ª®®®®®®¬
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𝑥 : 𝑇 ∈ Γ
Γ ⊢ 𝑥 : 𝑇

Σ(𝑐) = −→𝑏𝑛 ⇒ 𝑏 ′

(Γ ⊢ 𝑀𝑖 : 𝑏𝑖 )𝑖=1,...,𝑛

Γ ⊢ 𝑐 (−→𝑀𝑛) : 𝑏 ′

Σ(𝛼) = [𝑏]bag ⇒ 𝑏 ′

Γ ⊢ 𝑀 : [𝑏]bag

Γ ⊢ 𝛼 (𝑀) : 𝑏 ′

−→
l is duplicate-free

(Γ ⊢ 𝑀𝑖 : 𝑇𝑖 )𝑖=1,...,𝑛

Γ ⊢ −−−−−−→l𝑛 = 𝑀𝑛 :

−−−−−→
l𝑛 : 𝑇𝑛

Γ ⊢ 𝜌 : 𝑃

Γ ⊢ ⟨𝜌⟩ : ⟨𝑃⟩
Γ ⊢ 𝑀 : ⟨𝑃⟩ l ∈ dom(P)

Γ ⊢ 𝑀.l : 𝑃 (l)

Γ, 𝑥 : 𝑆 ⊢ 𝑀 : 𝑇

Γ ⊢ 𝜆𝑥.𝑀 : 𝑆 → 𝑇

Γ ⊢ 𝑀 : 𝑆 → 𝑇 Γ ⊢ 𝑁 : 𝑆

Γ ⊢ (𝑀 𝑁 ) : 𝑇

Γ ⊢ 𝑀 : [𝑇 ]S𝑃
Γ ⊢ 𝑁 : B

Γ ⊢ 𝑀 whereS 𝑁 : [𝑇 ]S𝑃

Γ ⊢ []S : [𝑇 ]S𝑃

Γ ⊢ 𝜌 : 𝑃

Γ ⊢ 𝑀 : 𝑇

Γ ⊢ [𝜌 ⊲𝑀]S : [𝑇 ]S𝑃

Γ ⊢ 𝑀 : [𝑇 ]S𝑃 Γ ⊢ 𝑁 : [𝑇 ]S𝑃
Γ ⊢ 𝑀 ++S𝑁 : [𝑇 ]S𝑃

Γ, 𝑥 : 𝑇 ⊢ 𝑀 : [𝑆]S𝑃
Γ ⊢ 𝑁 : [𝑇 ]S

Γ ⊢ [𝑀 | 𝑥 ← 𝑁 ] : [𝑆]S𝑃

Γ ⊢ 𝑀 : [𝑇 ]bag
𝑃

Γ ⊢ 𝛿𝑀 : [𝑇 ]set𝑃

Γ ⊢ 𝑀 : [𝑇 ]set𝑃
Γ ⊢ 𝜄𝑀 : [𝑇 ]bag

𝑃

Γ ⊢ 𝑀 : [𝑇 ]S𝑃
Γ, 𝑥 : 𝑇 ⊢ 𝜌 : 𝑃 ′ 𝜌 not empty

Γ ⊢ 𝛾S𝑥.𝜌 (𝑀) : [𝑇 ]S𝑃⊕𝑃 ′

Γ ⊢ 𝑀 : [𝑇 ]S𝑃
Γ ⊢ 𝑁 : ⟨𝑃⟩ 𝑃 not empty

Γ ⊢ 𝑀 �S𝑁 : [𝑇 ]S

Γ, 𝑥 : ⟨𝑃 ′⟩ ⊢ 𝑀 : [𝑆]S𝑃
Γ ⊢ 𝑁 : [𝑇 ]set𝑃 ′

Γ ⊢
[
𝑀 | 𝑘 K← 𝑁

]S
: [𝑆]S𝑃

Γ ⊢ 𝑀 :

[
⟨−→𝑃 ′⟩

]S
𝑃

(Σ(𝛼𝑖 ) = [𝑏𝑖 ]bag ⇒ 𝑏 ′𝑖 )𝑖=1,...,𝑛 (𝑃 (l′𝑖 ) = 𝑏𝑖 )𝑖=1,...,𝑛

Γ ⊢ aggByS

𝑧.
−−−−−−−−−−−→
l𝑛=𝛼𝑛 (𝑧.l′𝑛)

(𝑀) :

[
⟨−−−−−→l𝑛 : 𝑏 ′𝑛⟩

]S
𝑃

Figure 3. Type system of NRC𝜆𝛾 .

2.3 Rewrite system
In Figure 4 we give a rewrite system to normalize NRC𝜆𝛾
queries. These include beta reduction for applied functions

and a similar rule for projection on a record literal.We import

from NRC𝜆 (Set, Bag) all of the normalization rules involv-

ing collections (although in this calculus they will be applied

to finite maps); among those rules, we note the beta-like rule

for contracting value comprehensions whose generators are

singletons and the “associativity” rules for unnesting value

comprehensions:[
𝑀 | 𝑥 ← [𝑁 ]S

]S
{ 𝑀 [𝑁/𝑥][

𝐿 | 𝑦 ← [𝑁 | 𝑥 ← 𝑀]S
]S
{ [𝐿 | 𝑥 ← 𝑀,𝑦 ← 𝑁 ]S

with the side condition that, to prevent variable capture, the

second rule can only be applied if 𝑥 does not appear free in

𝐿.

We nowwonder whether similar rules would work for key

comprehension: the beta rule needs to be adapted to use the

key in the singleton (rather than the value) as the variable

replacement: [
𝑀 | 𝑘 K← [𝜌 ⊲ 𝑁 ]

]
{ 𝑀 [ ⟨𝜌 ⟩/𝑘]

As for unnesting, we have an interesting situation: for set-

valued maps, any combination of value and key comprehen-

sion can be unnested:[
𝐿 | 𝑦 ♣←

[
𝑁 | 𝑥 ♦← 𝑀

] set] set
{

[
𝐿 | 𝑥 ♦← 𝑀,𝑦

♣← 𝑁

] set
where ♦ and ♣ can stand for value or key comprehension,

indifferently; on the other hand, when we use bag-valued

maps, we are unable to unnest a comprehension out of a key

comprehension[
𝐿 | 𝑦 K←

[
𝑁 | 𝑥 ♦← 𝑀

] set]bag
̸{

[
𝐿 | 𝑥 ♦← 𝑀,𝑦

K← 𝑁

]bag
Recall that the generator of a key comprehension returning a

bag-valuedmapmust be a set-valuedmap: semantically there

is an implicit promotion from set to bag, preventing unnest-

ing from being sound. So, a key-comprehension returning a

bag-valued map behaves similarly to a value-comprehension

whose generator is in the form 𝜄𝑁 : even if 𝑁 is a comprehen-

sion, it is wrapped in a 𝜄 operation which blocks unnesting.

On the other hand, unnesting a comprehension of either

kind out of a value comprehension is semantically sound,
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(𝜆𝑥 .𝑀) 𝑁 { 𝑀 [𝑁 /𝑥] ⟨. . . , l= 𝑀, . . .⟩.l{ 𝑀

𝛾𝑥.𝜌 ( [] ) { [] 𝛾𝑥.𝜌 ( [𝜌 ′ ⊲𝑀] ) { [𝜌 [𝑀/𝑥] ⊕ 𝜌 ′ ⊲𝑀]
𝛾𝑥.𝜌 (𝑀 ++ 𝑁 ) { 𝛾𝑥.𝜌 (𝑀) ++ 𝛾𝑥.𝜌 (𝑁 ) 𝛾𝑥.𝜌 (𝛾𝑥.𝜌′ (𝑀)) { 𝛾

𝑥.𝜌⊕𝜌′ (𝑀)

𝛾𝑥.𝜌 (
[
𝐿 | 𝑦 ♦← 𝑀

]
) {

[
𝛾𝑥.𝜌 (𝐿) | 𝑦

♦← 𝑀

]
(if 𝑦 ∉ FV(𝑥 .𝜌))

𝛾𝑥.𝜌 (𝑀 where 𝑁 ) { 𝛾𝑥.𝜌 (𝑀) where 𝑁
[] � 𝑁 { [] (𝐿 ++ 𝑀) � 𝑁 { (𝐿 � 𝑁 ) ++ (𝑀 � 𝑁 )[

𝐿 | 𝑥 ♦← 𝑀

]
� 𝑁 {

[
𝐿 � 𝑁 | 𝑥 ♦← 𝑀

]
(if 𝑥 ∉ FV(𝑁 ))

(𝐿 where𝑀) � 𝑁 { (𝐿 � 𝑁 ) where𝑀
[𝜌 ⊲𝑀] � 𝑁 { [𝑀] where (⟨𝜌⟩ = 𝑁 )

[] ++ 𝑀 { 𝑀 𝑀 ++ [] { 𝑀

[
[] | 𝑥 ♦← 𝑀

]
{ []

[
𝑀 | 𝑥 ♦← []

]
{ []

[𝑀 | 𝑥 ← [𝑁 ] ] { 𝑀 [𝑁/𝑥]
[
𝑀 | 𝑘 K← [𝜌 ⊲ 𝑁 ]set

]
{ 𝑀 [ ⟨𝜌 ⟩/𝑘][

𝑀 ++ 𝑁 | 𝑥 ♦← 𝑅

]
{

[
𝑀 | 𝑥 ♦← 𝑅

]
++

[
𝑁 | 𝑥 ♦← 𝑅

][
𝑀 | 𝑥 ♦← 𝑁 ++ 𝑅

]set
{

[
𝑀 | 𝑥 ♦← 𝑁

]set
++

[
𝑀 | 𝑥 ♦← 𝑅

]set
[𝑀 | 𝑥 ← 𝑁 ++ 𝑅]bag { [𝑀 | 𝑥 ← 𝑁 ]bag ++ [𝑀 | 𝑥 ← 𝑅]bag[

𝐿 | 𝑦 ♣←
[
𝑁 | 𝑥 ♦← 𝑀

]set]set
{

[
𝐿 | 𝑥 ♦← 𝑀,𝑦

♣← 𝑁

]set
(if 𝑥 ∉ FV(𝐿))[

𝐿 | 𝑦 ←
[
𝑁 | 𝑥 ♦← 𝑀

]bag]bag
{

[
𝐿 | 𝑥 ♦← 𝑀,𝑦 ← 𝑁

]bag
(if 𝑥 ∉ FV(𝐿))[

𝑀 | 𝑥 ♦← 𝑁 where 𝑅
]
{

[
𝑀 | 𝑥 ♦← 𝑁

]
where 𝑅

𝛿 []bag { []set 𝛿 [𝜌 ⊲𝑀]bag { [𝜌 ⊲𝑀]set 𝛿 (𝑀 ++ 𝑁 ) { 𝛿𝑀 ++ 𝛿𝑁 𝛿𝛾𝑥.𝜌 (𝑀) { 𝛾𝑥.𝜌 (𝛿𝑀)

𝛿

[
𝑀 | 𝑥 ♦← 𝑁

]bag
{

[
𝛿𝑀 | 𝑥 ♦← 𝛿𝑁

]set
𝛿 (𝑀 wherebag 𝑁 ) { 𝛿𝑀 whereset𝑁

𝜄 []set { []bag 𝜄 [𝜌 ⊲𝑀]set { [𝜌 ⊲𝑀]bag 𝜄 (𝑀 whereset 𝑁 ) { 𝜄𝑀 wherebag𝑁 𝛿𝜄𝑀 { 𝑀

𝑀 where true { 𝑀 𝑀 where false { []
[] where𝑀 { []

(𝑁 ++ 𝑅) where𝑀 { (𝑁 where𝑀) ++ (𝑅 where𝑀)[
𝑁 | 𝑥 ♦← 𝑅

]
where𝑀 {

[
𝑁 where𝑀 | 𝑥 ♦← 𝑅

]
(if 𝑥 ∉ FV(𝑀))

(𝑅 where𝑀) where 𝑁 { 𝑅 where (𝑀 ∧ 𝑁 )

Figure 4. Normalization rules for NRC𝜆𝛾

hence we can state the rewrite rule:[
𝐿 | 𝑦 ←

[
𝑁 | 𝑥 ♦← 𝑀

]bag]bag
{

[
𝐿 | 𝑥 ♦← 𝑀,𝑦 ← 𝑁

]bag
For similar reasons, in the set-valued case, key compre-

hension distributes over unions both in head and in gen-

erator position, just like value comprehension, but in the

bag-valued case, key comprehension only distributes over

disjoint unions in head position:[
𝐿 ++ 𝑀 | 𝑥 ♦← 𝑁

]S
{

[
𝐿 | 𝑥 ♦← 𝑁

]S
++

[
𝑀 | 𝑥 ♦← 𝑁

] set[
𝐿 | 𝑥 ♦← 𝑀 ++ 𝑁

] set
{

[
𝐿 | 𝑥 ♦← 𝑀

] set
++

[
𝐿 | 𝑥 ♦← 𝑁

] set
[𝐿 | 𝑥 ← 𝑀 ++ 𝑁 ]bag { [𝐿 | 𝑥 ← 𝑀]bag ++ [𝐿 | 𝑥 ← 𝑁 ]bag[
𝐿 | 𝑘 K← 𝑀 ++ 𝑁

]bag
̸{

[
𝐿 | 𝑘 K← 𝑀

]bag
++

[
𝐿 | 𝑘 K← 𝑁

]bag

Finally, we have a look at the reduction rules involving

grouping and lookup. They state that:

• empty collections are absorbent elements for both op-

erations;

• grouping over a singleton maps (𝛾𝑥.𝜌 ( [𝜌 ′ ⊲𝑀] )) ex-
tends the key 𝜌 ′ of the singleton with new fields ob-

tained from the grouping criterion 𝜌 , instantiated on

the value𝑀 ;

• lookup on a singleton map ([𝜌 ⊲𝑀] � 𝑁 ) reduces to

a conditional statement evaluating to the singleton

collection containing𝑀 if and only if ⟨𝜌⟩ = 𝑁 , and to

an empty collection otherwise;

• grouping and lookup commute with unions and dis-

joint unions, with the head of a comprehension, and

with the left-hand argument of a where;
7
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• nested 𝛾s can be merged by merging their grouping

criteria;

Notice that there are no rewrite rules involving groupwise

aggregation. Remember that the main purpose of our rewrite

system is to simplify away unnecessarily nested intermediate

collections: since the input and output types of aggBy are

already flat, no rewrite rules are needed for our purposes

(however, its argument𝑀 may still be involved in rewrites).

Remark. We can easily express the G-comprehension

from the introduction using key cmprehension and finite

map application[
𝑅 | (𝑘, 𝑣) G← 𝑀

]
:=

[
𝑅 [𝑅�𝑘/𝑣] | 𝑘 K← 𝑀

]
The reason why we adopt

K← as primitive instead of

G← is

that it has better algebraic properties. It can be shown that

G← does not distribute over unions:[
𝑅 | (𝑘, 𝑣) G← 𝑀 ++ 𝑁

]
̸{

[
𝑅 | (𝑘, 𝑣) G← 𝑀

]
++
[
𝑅 | (𝑘, 𝑣) G← 𝑁

]
By unfolding the definition of

G←, we see that, in order for

such a rule to be sound, we would need substitution to

commute with unions, but that is generally not the case

(𝑅 [𝑀++𝑁/𝑣] . 𝑅 [𝑀/𝑣] ++ 𝑅 [𝑁/𝑣]).

3 Strong normalization
We now move to proving an important termination prop-

erty of the rewrite system presented in the previous section:

all well-typed NRC𝜆𝛾 terms will eventually be reduced to

their normal form in a finite number of steps, regardless

of the reduction strategy. This property is known as strong
normalization.
Our proof is derived as a corollary of the strong normal-

ization proof for the smaller calculus NRC𝜆 (Set, Bag), via
a translation. We prove that every well-typed NRC𝜆𝛾 term

can be translated to a well-typedNRC𝜆 (Set, Bag) term, and

to every reduction step on well-typed NRC𝜆𝛾 terms there

correspond one or more reduction steps onNRC𝜆 (Set, Bag)
via the same translation procedure. Then, since there are no

infinite reduction sequences in NRC𝜆 (Set, Bag), there can
be no infinite reduction sequences in NRC𝜆𝛾 .

The embedding of NRC𝜆𝛾 into NRC𝜆 (Set, Bag) is de-
fined in Figure 5. The rule for grouping is type directed

because we need to know the row associated to the grouping

input (or in other words, the labels lwithin the tuple 𝑥 .1). A

minor complication is the translation of aggregations (both

simple and groupwise), since they have no counterpart in

NRC𝜆 (Set, Bag); we map both of them to a distinguished

unary constant • – this is sufficient because aggregations do

not participate in reductions.

Lemma 3.1. If Γ ⊢ 𝑀 : 𝑇 in NRC𝜆𝛾 , then ⌈Γ⌉ ⊢ ⌈𝑀⌉ : ⌈𝑇 ⌉
in NRC𝜆 (Set, Bag).

Theorem 3.2. Whenever𝑀 { 𝑁 in NRC𝜆𝛾 , we have that

⌈𝑀⌉ +{ ⌈𝑁 ⌉ in NRC𝜆 (Set, Bag).

The proof is by induction and case analysis on the re-

duction rule, unfolding the definition of the embedding as

needed. Some care is needed when handling reduction rules

involving 𝛾𝑥.𝜌 (()𝑀), due to the more involved definition of

the corresponding embedding. More details of the proof are

given in the appendix.

Theorem 3.3. If𝑀 is a well-typedNRC𝜆𝛾 term, there is no
infinite reduction sequence starting with it.

Proof. By Theorem 3.2, every infinite NRC𝜆𝛾 reduction

sequence starting with 𝑀 can be simulated by an infinite

NRC𝜆 (Set, Bag) reduction sequence starting with ⌈𝑀⌉. By
Lemma 3.1, since 𝑀 is well-typed in NRC𝜆𝛾 , ⌈𝑀⌉ is well-
typed in NRC𝜆 (Set, Bag). But given that well-typed

NRC𝜆 (Set, Bag) terms are strongly normalizing, there can

be no infinite reduction starting with ⌈𝑀⌉. Consequently,𝑀
must be strongly normalizing in NRC𝜆𝛾 . □

4 Grammar of normal forms
The remaining results of this paper rely on the structure of

NRC𝜆𝛾 normal forms. To ease the reasoning on such terms,

it will be useful to derive a grammar of normal forms, which

can be used to perform case analysis and recursion without

considering all of the cases of the general grammar of terms,

many of which are precluded by the fact that the term has

been normalized and must therefore be pruned.

We actually go a step further and add to normalization a

few “administrative” rules and assumptions: in so doing, we

effectively present “standardized” normal forms for which

the following conditions are met:

• 𝑛-ary unions𝐶1 ++set · · · ++set 𝐶𝑛 and 𝐷1 ++bag · · · ++bag

𝐷𝑛 are represented as

⋃−→
𝐶 and

⊎−→
𝐷 respectively; for

empty

−→
𝐶 or

−→
𝐷 , their grand unions stand for empty

collections []set, []bag;
• variables with record type and comprehensions whose

head is not a singleton are kept in eta-long form using

the following rules:

𝑥 : ⟨−−−→l : 𝑇 ⟩

𝑥 { ⟨−−−−−−→l= 𝑥 .l⟩

𝑀 : [𝑇 ]S−−→
l:𝑆

𝑁 =

[−−−−−−→
l= 𝑘.l⊲ 𝑣

]
[
𝑀 where 𝑋 | −→𝐹

]S
{[

𝑁 where 𝑋 | −→𝐹 , 𝑘 K← 𝑀, 𝑣 ← 𝑀 � 𝑘

]S
• comprehensions without a guard are considered syn-

tactically equal to those with a trivial guard:[
[𝜌 ⊲𝑀] | 𝑥 ♦← 𝑁

]
=

[
[𝜌 ⊲𝑀] where true | 𝑥 ♦← 𝑁

]
8
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⌈𝑏⌉ = 𝑏 ⌈𝑆 → 𝑇 ⌉ = ⌈𝑆⌉ → ⌈𝑇 ⌉ ⌈⟨𝑃⟩⌉ = ⟨⌈𝑃⌉⟩⌈
[𝑇 ]S𝑃

⌉
= [⟨⟨⌈𝑃⌉⟩, ⌈𝑇 ⌉⟩]S

⌈−−−→
l : 𝑇

⌉
=
−−−−−→
l : ⌈𝑇 ⌉⌈

𝑐 (−→𝑀)
⌉
= 𝑐 (−→𝑀) ⌈⟨𝜌⟩⌉ = ⟨⌈𝜌⌉⟩ ⌈𝑀.l⌉ = ⌈𝑀⌉ .l

⌈−−−−−→
l= 𝑀

⌉
=
−−−−−−−→
l= ⌈𝑀⌉⌈

𝜆𝑥𝑇 .𝑀
⌉
= 𝜆𝑥 ⌈𝑇 ⌉ . ⌈𝑀⌉ ⌈𝑀 𝑁 ⌉ = ⌈𝑀⌉ ⌈𝑁 ⌉

⌈
𝑀 whereS 𝑁

⌉
= ⌈𝑀⌉ whereS ⌈𝑁 ⌉⌈

[]S
⌉
= []S

⌈
[𝜌 ⊲𝑀]S

⌉
= [⟨⟨⌈𝜌⌉⟩, ⌈𝑀⌉⟩]S

⌈
𝑀 ++S𝑁

⌉
= ⌈𝑀⌉ ++S ⌈𝑁 ⌉

⌈𝛿𝑀⌉ = 𝛿 ⌈𝑀⌉ ⌈𝜄𝑀⌉ = 𝜄 ⌈𝑀⌉
⌈
[𝑀 | 𝑥 ← 𝑁 ]S

⌉
= [⌈𝑀⌉ [𝑥.2/𝑥] | 𝑥 ← ⌈𝑁 ⌉]S⌈[

𝑀 | 𝑘 K← 𝑁

] set⌉
= [⌈𝑀⌉ | 𝑘 ← dom(⌈N ⌉)]set

⌈[
𝑀 | 𝑘 K← 𝑁

]bag⌉
= [⌈𝑀⌉ | 𝑘 ← 𝜄dom(⌈N ⌉)]bag⌈

𝛾S𝑥.𝜌 (𝑀)
⌉
=

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

]S
| 𝑥 ← ⌈𝑀⌉

]S
⌈
𝑀 �S𝑁

⌉
=
[
[𝑧.2]S whereS 𝑧.1 = ⌈𝑁 ⌉ | 𝑧 ← ⌈𝑀⌉

]S
(𝑧 ∉ FV(𝑁 ))

⌈𝛼 (𝑀)⌉ =
⌈
aggByS

𝑧.
−−−−−−−−−−−→
l𝑛=𝛼𝑛 (𝑧.l′𝑛)

(𝑀)
⌉
= •(⌈𝑀⌉) dom(M) =

[
[𝑧.1]set | 𝑧 ← 𝑀

] set
Figure 5. Embedding of NRC𝜆𝛾 into NRC𝜆 (Set, Bag).

• singletons that do not appear as the head of a compre-

hension are represented as trivial comprehensions

[𝜌 ⊲𝑀] = [[𝜌 ⊲𝑀] | ]
Similar rules have been considered in previous versions of

NRC. Once the above additional rules are considered, the

normal forms of the resulting rewrite system are described

by the grammar in Figure 6, as stated by the following result.

Theorem 4.1. Every well-typed term 𝑀 of NRC𝜆𝛾 in nor-
mal form generated by the grammar in Figure 6.

The proof is by induction on the structure of𝑀 , noticing

that the induction hypothesis states that the subterms of the

𝑀 for which we are proving this theorem are generated by

the grammar.

4.1 Normal forms of relational maps
For the purpose of generating SQL queries, we are not inter-

ested in all the terms of NRC𝜆𝛾 in their full generality, but

we will instead focus on particular types of terms that we

intend to translate to SQL: we call these terms nested and

flat relational maps.

A nested relational map (nrm) is a term of finite map type

whose keys are rows of basic type, and whose values are,

inductively, tuples of nested relational maps:

𝜌 =
−−−→
k : 𝑏

−−−−−−−→
(𝑇𝑖 nrm)[

⟨−−−→l : 𝑇 ⟩
]
𝜌
nrm

𝜌 =
−−−→
k : 𝑏[

⟨−−−→l : 𝑏 ′⟩
]
𝜌
nrm

Under the additional condition that function typed terms

should not appear as the argument of deduplication 𝛿 and

promotion 𝜄 (as in NRC𝜆 (Set, Bag)), we can easily see that

all function terms are normalized away and all the variables

bound by comprehensions (equivalently, all bound variables

tout court, since there can be no lambda abstractions in the

General NF 𝑀 ::= 𝐵 | 𝑈 | 𝑊 | 𝑄 | 𝑅
𝜌 ::=

−−−−−→
l= 𝑀

Indeterminate NF 𝑋 ::= 𝑥 | 𝑋 .l | 𝑋 𝑀

Base-typed NF 𝐵 ::= 𝑋 | 𝑐 (−→𝐵 ) | 𝛼 (𝑅)
Tuple-typed NF 𝑈 ::= 𝑋 | ⟨𝜌⟩
Function-typed NF 𝑊 ::= 𝑋 | 𝜆𝑥 .𝑀
Set-typed NF 𝑄 ::= []set | 𝐶 | 𝑄 ++set 𝑄

𝐶 ::= 𝐻 | [𝐶 | 𝐹 ]set
𝐻 ::= 𝐼 | 𝐼 whereset 𝐵 | 𝑌
𝐼 ::= 𝑁 | [𝜌 ⊲𝑀]set
𝑁 ::= 𝑋 | 𝛾 set𝑥.𝜌 (𝑁 ) | 𝑁 �set 𝑈

| 𝛿𝑋 | 𝛿𝑡 | 𝑌
𝐹 ::= 𝑥 ← 𝑁 | 𝑘 K← 𝑁

𝑌 ::= aggByset
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄)
Bag-typed NF 𝑅 ::= []bag | 𝐷 | 𝑅 ++bag 𝑅

𝐷 ::= 𝐽 | [𝐷 | 𝐺]bag | 𝑍
𝐽 ::= 𝐿 | 𝐿 wherebag 𝐵
𝐿 ::= 𝑂 | [𝜌 ⊲𝑀]bag

𝑂 ::= 𝑋 | 𝛾bag𝑥.𝜌 (𝑂) | 𝑂 �bag 𝑈

| 𝑡 | 𝜄𝑄 | 𝑍
𝐺 ::= 𝑥 ← 𝑂 | 𝑘 K← 𝑄

𝑍 ::= aggBybag
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅)

Figure 6. Normal forms of NRC𝜆𝛾

normal forms of relational maps) have a tuple type contain-

ing either base types or, inductively, nested relational maps.

Thanks to these considerations, we can derive a further

simplified grammar of nested relational maps, described by

Figure 7. This grammar is made slightly more compact by
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𝑀 ::= 𝐵 | 𝑄 | 𝑅
𝜌 ::=

−−−−−→
l= 𝑀

𝜌∗ ::=
−−−−→
l= 𝐵

𝐵 ::= 𝑥 .l | 𝑐 (−→𝐵 ) | 𝛼 (𝑅)
𝑄 ::=

⋃−→
𝐶

𝐶 ::=

[
[𝜌∗ ⊲ ⟨𝜌⟩]set whereset 𝐵 | −→𝐹

]
| 𝑌

𝑁 ::= 𝑥 .l | 𝛾 set
𝑥.𝜌∗ (𝑁 ) | 𝑁 �set ⟨𝜌∗⟩ | 𝛿 (𝑥 .l) | 𝛿𝑡 | 𝑌

𝑌 ::= aggByset
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄∗)

𝐹 ::= 𝑥 ← 𝑁 | 𝑘 K← 𝑁

𝑅 ::=
⊎−→

𝐷

𝐷 ::=

[
[𝜌∗ ⊲ ⟨𝜌⟩]bag wherebag 𝐵 | −→𝐺

]bag
| 𝑍

𝑂 ::= 𝑥 .l | 𝛾 set
𝑥.𝜌∗ (𝑂) | 𝑂 �bag ⟨𝜌∗⟩ | 𝑡 | 𝜄𝑄∗ | 𝑍

𝐺 ::= 𝑥 ← 𝑂 | 𝑘 K← 𝑄∗

𝑍 ::= aggBybag
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅∗)

(𝑄∗ and 𝑅∗ are defined similarly to 𝑄 and 𝑅, but replacing
deep references to 𝜌 (i.e. those in 𝐶 and 𝐷) with 𝜌∗.)

Figure 7. Nested relational map normal forms of NRC𝜆𝛾

means of syntactic sugar for multi-generator comprehen-

sions, representing as usual head-nested comprehensions.

A final simplification consists in limiting relational maps

to the flat case, in which no collection nesting on the values

of a map is allowed: in other words, flat relational maps are

terms whose type is in the form

[
⟨−−−→l : 𝑏 ′⟩

]
−−→
k:𝑏

.

Applying this constraint to the grammar for nested rela-

tional normal forms we obtain the grammar in Figure 8.

5 Translation to SQL
The grammar of normal forms is amenable to be used to

define algorithmic procedures, including a translation of

NRC𝜆𝛾 normal forms to SQL; clearly, only flat normal forms

need to be translated, as nested queries do not have a direct

representation in SQL due to typing limitations. We devised

one such translation and used it to implement language-

integrated database queries with grouping and aggregation

in the Links programming language [7]: due to space con-

straints, we give here a high level description of the trans-

lation of comprehension forms, referring the reader to the

appendix for further details.

To translate comprehensions, our procedure operates by

returning a complete SELECT . . . FROM . . . WHERE . . . state-

ment: for instance( [
[𝜌 ⊲ ⟨𝜌 ′⟩]bag wherebag 𝑋 | −→𝐺

]bag)sql
= SELECT (𝜌)sql

𝐾
, (𝜌 ′)sql

𝑉
FROM

−−−−→
(𝐺)sql WHERE (𝑋 )sql

𝑀 ::= 𝐵 | 𝑄∗ | 𝑅∗

𝜌∗ ::=
−−−−→
l= 𝐵

𝐵 ::= 𝑥 .l | 𝑐 (−→𝐵 ) | 𝛼 (𝑅∗)
𝑄∗ ::=

⋃−→
𝐶∗

𝐶∗ ::=

[
[𝜌∗ ⊲ ⟨𝜌∗⟩]set whereset 𝐵 | −→𝐹 ∗

]
| 𝑌

𝑁 ∗ ::= 𝛾 set
𝑥.𝜌∗ (𝑁 ∗) | 𝑁 ∗ �set ⟨𝜌∗⟩ | 𝛿𝑡 | 𝑌

𝐹 ∗ ::= 𝑥 ← 𝑁 ∗ | 𝑘 K← 𝑁 ∗

𝑌 ::= aggByset
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄∗)

𝑅∗ ::=
⊎−→

𝐷∗

𝐷∗ ::=

[
[𝜌∗ ⊲ ⟨𝜌∗⟩]bag wherebag 𝐵 | −→𝐺∗

]bag
| 𝑍

𝑂∗ ::= 𝛾
bag
𝑥.𝜌∗ (𝑂∗) | 𝑂∗ �bag ⟨𝜌∗⟩ | 𝑡 | 𝜄𝑄∗ | 𝑍

𝐺∗ ::= 𝑥 ← 𝑂∗ | 𝑘 K← 𝑄∗

𝑍 ::= aggBybag
−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅∗)

Figure 8. Flat relational map normal forms of NRC𝜆𝛾

(with or without DISTINCT, depending on whether we are

performing a set or a bag comprehension); the where clause
is translated to the WHERE statement, and the comprehension

generators are transated to the FROM clause; that leaves the
singleton key-value pair – namely, [𝜌 ⊲ ⟨𝜌 ′⟩] ; both 𝜌 and

𝜌 ′ will go to the SELECT statement, but 𝜌 shall use the aux-

iliary (𝜌)sql
𝐾

translation, marking that row as a key, while

𝜌 ′ shall use the (𝜌 ′)sql
𝑉

translation, marking it as a value

row. Concretely, the two different translations rename the

attributes using prefixes that univocally identify them as

keys or values. Generators 𝐺 are translated differently de-

pending on whether they represent value comprehensions

or key comprehensions: value comprehensions use a simple

recursive call (𝐺)sql; key comprehensions use a specialized

auxiliary translation that removes the prefix from the at-

tributes of (𝐺)sql that are marked as keys, and drops the

attributes marked as values entirely.

5.1 Query shredding and tabular functions
Previous work [4] introduced query shredding, a technique
which allows database queries with a nested collection type

to be decomposed (i.e., “shredded”) into multiple flat queries

which can be expressed in SQL, thus run by a typical SQL-

based DBMS, yielding partial results that are then stitched
back together into the desired final value having a nested

relational type. More recently, [22] proposed NRCG, an

extension of NRC with tabular functions which greatly

simplifies the study of query shredding.NRCG shares some

similarities with the finite maps resulting from the grouping

operators of our NRC𝜆𝛾 . In NRCG, tabular functions are

created using the graph operators Gset (−;−) and Gbag (−;−).
We compare the graph operator with the grouping operator

10
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from NRC𝜆𝛾 in the set case (note that we have taken the

liberty of adapting the types the subterms of Gset (−;−) to
match them to the style used in this paper):

Γ ⊢ 𝐿 :

[−→
𝑃

] set
Γ,
−−−−→
𝑥 :

−→
𝑃 ⊢ 𝑀 : [𝑇 ]set

Γ ⊢ Gset (𝑥 ← 𝐿;𝑀) : [𝑇 ]set𝑃

Γ ⊢ 𝑀 : [𝑇 ]set

Γ,
−−−→
𝑥 : 𝑇 ⊢ 𝜌 : 𝑃

Γ ⊢ 𝛾 set𝑥.𝜌 (𝑀) : [𝑇 ]set𝑃

On the right-hand side, the grouping constructor 𝛾 set𝑥.𝜌 (𝑀)
works by producing a different key 𝜌 for each element 𝑥 of

the input collection𝑀 : this effectively groups the elements

of𝑀 sharing the same key 𝜌 ; on the left-hand side, the graph

constructor Gset (𝑥 ← 𝐿;𝑀) takes the elements 𝑥 of domain

collection 𝐿 and returns for each of them a codomain collec-

tion𝑀 which may depend on 𝑥 : we may view this finite map

as a “grouping”, where the grouping keys are the elements

of 𝐿.

The tabular functions of NRCG cannot be used in ag-

gregations, but they do allow access to “groups” using the

lookup syntax � (which we borrowed for NRC𝜆𝛾 ).

While the lookup operation plays a very similar role in the

two calculi, the introduction rules for tabular functions/finite

maps are rather dissimilar. Despite the superficial differences,

we can show that each operation can be expressed in terms

of the other:

Gset (𝑥 ← 𝐿;𝑀) ::=

[
𝛾 set
_.𝜌𝑥
(𝑀) | 𝑥 ← 𝐿

]
𝛾 set𝑥.𝜌 (𝑀) ::=

[
Gset (_← [𝜌]set ; [𝑥]set) | 𝑥 ← 𝑀

]
(where _ is any variable name chosen to be fresh with respect

to its scope, and 𝜌𝑥 is the row corresponding to the eta-

expansion of the tuple-typed 𝑥 , defined as
−−−−−−→
l= 𝑥 .l,whenever

𝑥 has type ⟨−−−→l : 𝑆⟩; additionally, in the second equation above

we have extended the NRCG notion of comprehension to

allow it to return a tabular function, which was not allowed

in the original formulation but is a straightforward extension

nonethelesss).

Therefore, NRC𝜆𝛾 is very similar to NRCG; however,

NRCG did not provide any rewrite system and was largely

intended as syntactic sugar that could be translated to plain

NRC𝜆 . On the contrary, NRC𝜆𝛾 provides its own notion

of reduction and its normal forms can be directly used to

implement language-integrated database queries.

5.2 A query shredding judgment for NRC𝜆𝛾

Since Gset (−;−) can be intended as a defined operator within
NRC𝜆𝛾 , we wonder whether it is possible to extend query

shredding to NRC𝜆𝛾 , thus allowing one to run nested rela-

tional queries involving grouping operations. The answer is

affirmative and it involves, as it turns out, a limited redesign

of the shredding judgment from [22], of whichwe show some

key rules in Figure 9. As in the case of

NRC𝜆 (Set, Bag), the shredding algorithm performs struc-

tural recursion over the grammar of nested relational normal

𝜑 ∉ dom(Ψ)

Φ;Θ,
−→
𝐹 ⊢ 𝜌 Z⇒ 𝜌 | Ψ

Φ;Θ ⊢
[
[𝜌∗ ⊲ ⟨𝜌 ⟩]set where 𝐵 | −→𝐹

] set
Z⇒ 𝜑 �set ⟨dom(Θ) ⟩

| Ψ [𝜑 ↦→ G(Θ;

[
[𝜌∗ ⊲ 𝜌 ]set where 𝐵 |−→𝐹

] set
) ]

𝜑 ∉ dom(Ψ)

Φ;Θ,
−−→
𝐺𝛿 ⊢ 𝜌 Z⇒ 𝜌 | Ψ

Φ0;Θ ⊢
[
[𝜌∗ ⊲ 𝜌 ]bag where 𝐵 |−→𝐺

]bag
Z⇒ 𝜑 �bag ⟨dom(Θ) ⟩

| Ψ [𝜑 ↦→ G(Θ;

[
[𝜌∗ ⊲ 𝜌 ]bag where 𝐵 |−→𝐺

]bag
) ]

(𝑥 ← 𝑂)𝛿 ≜
{
𝑥 ← 𝑄∗ if𝑂 = 𝜄𝑄∗

𝑥 ← 𝛿𝑂 else
Φ \ −→𝜓 ≜ [ (𝜑 ↦→ 𝑁 ) ∈ Φ | 𝜑 ∉

−→
𝜓 ]

(𝑘 K← 𝑄∗)𝛿 ≜ 𝑄∗

Figure 9. Shredding rules.

forms; in NRC𝜆𝛾 , however, we will need to consider some

more cases for nested relational map normal forms that are

not pure collections.

The shredding judgment describes the process by which,

given a normalized NRC𝜆𝛾 query, each of its subqueries

having a nested finite map type is lifted (in a manner anal-

ogous to lambda-lifting [12]) to an independent finite map

query: more specifically, shredding will produce a shredding
environment (denoted by Φ,Ψ, . . .), which is a finite map

associating special graph variables 𝜑,𝜓 to NRC𝜆𝛾 terms:

Φ,Ψ, . . . ::= [−−−−−−→𝜑 ↦→ 𝑀]
The shredding judgment has the following form:

Φ;Θ ⊢ 𝑀 Z⇒ 𝑀̆ | Ψ
where the Z⇒ symbol separates the input (to the left) from the

output (to the right). The normalizedNRC𝜆𝛾 term𝑀 is the

query that is being considered for shredding;𝑀 may contain

free variables declared in Θ, which must be a sequence of

NRC𝜆 (Set, Bag) set comprehension bindings. Θ is initially

empty, but during shredding it is extended with parts of

the input that have already been processed. Similarly, the

input shredding environment Φ is initially empty, but will

grow during shredding to collect shredded queries that have

already been generated.

The output of shredding consists of a shredded term 𝑀̆

and an output shredding environment Ψ. Ψ extends Φ with

the new queries obtained by shredding 𝑀 ; 𝑀̆ is an output

NRC𝜆𝛾 query obtained from 𝑀 by lifting its collection

typed subqueries to independent flat queries defined in Ψ.
The shredding of finite maps in normal form (i.e. unions,

comprehensions, and groupwise aggregations) is performed

by means of query lifting: we turn the collection into a glob-

ally defined (graph) query, which will be associated to a fresh

name 𝜑 and instantiated to the local comprehension context

by graph application. This operation converts local subterms

11
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into global graphs: thus, when shredding a map, besides pro-

cessing its subterms recursively, we will need to extend the

output shredding environment with a definition for the new

global graph 𝜑 . In the interesting case of comprehensions,

𝜑 is defined by graph-abstracting over the comprehension

context Θ; notice that, since we are only shredding normal-

ized terms, we are allowed to reason on the limited number

of cases allowed by the grammar of normal forms and, in

particular, it is easy to see that the judgment for bag compre-

hensions must ensure that generators

−→
𝐺 be converted into

sets using the operation 𝐺𝛿 .

6 Related work
This paper follows a line of research aat the intersection of

programming languages and databases encompassing over

three decades. Inspired by Trinder and Wadler’s work on

understanding database queries as a form of monadic com-

prehension syntax [31], Buneman et al. developed the nested

relational calculus [1, 2, 29] with nested collections and first-

order functions. Wong [32] proved the conservativity theo-
rem stating that any query computable in that language can

be expressed without resorting to subcomputations with a

greater degree of nesting than that of its input or output

(whichever is greater), and provided a strongly normalizing

rewrite system to simplify queries involving subcomputa-

tions of an unnecessarily nested type; this also implied that

flat-flat NRC queries could be translated to SQL, allowing

a practical implementation [33].

By adding higher-order functions, Cooper extendedNRC

to a superset of the simply-typed lambda calculus [6]. Sup-

port for heterogeneous queries mixing collection kinds such

as sets and bags, initially advocated by Grust and Scholl [10],

was added by Ricciotti and Cheney who also gave a proof

of strong normalization of their rewrite system [21, 24]. Ad-

vancements in the formal semantics of SQL by Guagliardo

and Libkin [11] also made it possible to give a mechanized

proof that NRC queries using sets and bags can be trans-

lated to SQL with LATERAL joins [23].

Further research developed language-integrated query,

i.e. techniques to integrate a domain-specific database query

sublanguage into a general-purpose host language. Microsoft

gave a commercial implementation, termed LINQ [16, 28],

and Cheney et al. showed how to use normalization tech-

niques to improve the reliability and performance of LINQ

queries [3]. Language-integrated querywas also implemented,

in a form closely based onNRC, in the Links programming

language [15], which uses an effect system to identify com-

putations that can be run as database queries. Furthermore,

language-integrated query is available in Scala and Haskell

through libraries such as Quill [20] and DSH [9].

Particulaly relevant to our paper is the research devoted

to translating nested relational queries to multiple flat SQL

queries. A shredding technique was devised by Cheney et

al. [4] to accomplish this goal in NRCwith bag semantics;

shredding has also proved useful to achieve greater paral-

lelism in large-scale distributed query processing [26]. A

rationalization of shredding by Ricciotti and Cheney called

query lifting [22] using ideas from the well-understood con-

cept of lambda-lifting makes it possible to process queries

mixing sets and bags; the definition of query lifting employs

finite maps (partially inspired by [8]), which are used as the

basis of this paper.

Various other works have proposed query calculi or

language-integrated query facilities offering grouping and

aggregation, incuding Libkin and Wong’s BQL [14], Suzuki

et al.’sQueΛ [13, 27], and Okura and Kameyama’s Quelg [18,

19]. Unlike NRC𝜆𝛾 , none of these works supports nested

collections or first-class grouping independent of aggrega-

tion, but Quelg provides optimization techniques to produce

more efficient SQL queries, whichwe view as complementary

to our proposal. To enable the optimization of hybrid data-

base and linear algebra workload, Shaikha et al. developed

semi-ring dictionaries [25], which are conceptually similar

to our finite maps; their work even proposes a variant of

NRC allowing independent grouping, but crucially does

not provide a rewrite system or normalization.

7 Conclusion
Our calculus NRC𝜆𝛾 provides a formalism which can be

used to developed a principled implementation of language-

integrated query with grouping and aggregation. Unlike

other proposals, we allow grouping to happen independently

of aggregation: this allows queries to be expressed in a way

that is more natural in a general-purpose programming lan-

guage, while at the same time making it possible to convert

such queries to idiomatic SQL queries. Commercial imple-

mentations such as Microsoft’s LINQ are known to fail on

grouping queries due to an imperfect understanding of their

theory [17]: we believe that NRC𝜆𝛾 provides as a ratio-

nal basis to reason on such queries and are using it in an

extension the Links programming language.

At the moment, NRC𝜆𝛾 does not address the efficient

execution of queries: its normal forms are considerably more

involved than those ofNRC𝜆or evenNRC𝜆 (Set, Bag), sug-
gesting that there is probably space for optimizations, partic-

ularly in the case of complex queries obtained composition-

ally from simpler ones, as shown by Okura and Kameyama

in the context of the Quelg language [19]: we do expect to

be able to translate their optimizations to NRC𝜆𝛾 , and the

experimental evaluation of this (possibly together with more

optimizations) will be the subject of our future work.
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A Proofs from Section 3
Lemma A.1. For all 𝑀 , 𝑁 , and 𝑥 , we have ⌈𝑀 [𝑁/𝑥]⌉ =

⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥].

Proof. By structural induction on𝑀 : we comment on a few

relevant cases:

• ⌈(𝜆𝑦.𝑀) [𝑁/𝑥]⌉ = ⌈𝜆𝑦.𝑀⌉ [ ⌈𝑁 ⌉/𝑥]: we assume without

loss of generality that𝑦 is freshwith respect to𝑥 and𝑁 ;

by definition, the lhs is equal to 𝜆𝑦. ⌈𝑀 [𝑁/𝑥]⌉, which
can be rewritten to 𝜆𝑦. ⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥] by the IH; this is

equal to the rhs by definition.

•
⌈[
𝐿 | 𝑘 K← 𝑀

] set
[𝑁/𝑥]

⌉
=

⌈[
𝐿 | 𝑘 K← 𝑀

] set⌉
[ ⌈𝑁 ⌉/𝑥]: we

assume without loss of generality that 𝑘 is fresh with

respect to 𝑥 and 𝑁 ; by definition, the lhs is equal to

[⌈𝐿 [𝑁/𝑥]⌉ | 𝑘 ← dom(⌈M [𝑁/x]⌉)]set

By the IH, we rewrite ⌈𝐿 [𝑁/𝑥]⌉ to ⌈𝐿⌉ [ ⌈𝑁 ⌉/𝑥] and
⌈𝑀 [𝑁/𝑥]⌉ to ⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥]; then we can see that the

resulting term is equal to the rhs by unfolding the

definitions.

•
⌈
𝛾𝑦.𝜌 (𝑀) [𝑁/𝑥]

⌉
=

⌈
𝛾𝑦.𝜌 (𝑀)

⌉
[ ⌈𝑁 ⌉/𝑥]; we assume with-

out loss of generality that 𝑦 is fresh with respect to 𝑥

and 𝑁 ; by definition, the lhs is equal to[ [
⟨⟨−−−−−−−→l= 𝑦.1.l⊕ ⌈𝜌 [𝑁/𝑥]⌉ [𝑦.2/𝑦]⟩, 𝑦.2⟩

]
| 𝑦 ← ⌈𝑀 [𝑁/𝑥]⌉

]
By the IH, we rewrite ⌈𝑀 [𝑁/𝑥]⌉ to ⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥], and
⌈𝜌 [𝑁/𝑥]⌉ to ⌈𝜌⌉ [ ⌈𝑁 ⌉/𝑥]; by the substitution lemma,

we prove ⌈𝜌⌉ [ ⌈𝑁 ⌉/𝑥] [𝑦.2/𝑦] = ⌈𝜌⌉ [𝑦.2/𝑦] [ ⌈𝑁 ⌉/𝑥]; by
this, we can prove that the term is equal to the rhs.

• ⌈(𝐿 � 𝑀) [𝑁/𝑥]⌉ = ⌈𝐿 � 𝑀⌉ [ ⌈𝑁 ⌉/𝑥]; we choose 𝑧 fresh
with respect to 𝑥 , 𝐿,𝑀 , 𝑁 ; then by definition, the lhs is

equal to [[𝑧.2] where 𝑧.1 = ⌈𝑀 [𝑁/𝑥]⌉ | 𝑧 ← ⌈𝐿 [𝑁/𝑥]⌉] ;
by the IH, this is equal to

[[𝑧.2] where 𝑧.1 = ⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥] | 𝑧 ← ⌈𝐿⌉ [𝑁/𝑥]]

which by definition is equal to the rhs. □

Theorem 3.2. Whenever 𝑀 { 𝑁 in NRC𝜆𝛾 , we have

that ⌈𝑀⌉ +{ ⌈𝑁 ⌉ in NRC𝜆 (Set, Bag).

Proof. By induction and case analysis on the reduction rule.

We consider here some key cases:

• ⌈(𝜆𝑥 .𝑀) 𝑁 ⌉ +{ ⌈𝑀 [𝑁/𝑥]⌉: we prove that ⌈𝑀 [𝑁/𝑥]⌉ =
⌈𝑀⌉ [ ⌈𝑁 ⌉/𝑥]. By Lemma A.1.

•
⌈
𝛾𝑥.𝜌 ( [] )

⌉
=

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

]
| 𝑥 ← []

]
+
{ [] = ⌈[] ⌉: trivial.

•
⌈
𝛾𝑥.𝜌 ( [𝜌 ′ ⊲𝑀] )

⌉
= [

[
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

]
| 𝑥 ← [⟨⟨⌈𝜌 ′⌉⟩, ⌈𝑀⌉⟩] ]
+
{

[
⟨⟨
−−−−−−−→
l=

⌈
𝜌 ′
l

⌉
⊕ ⌈𝜌⌉ [ ⌈𝑀 ⌉/𝑥]⟩, ⌈𝑀⌉⟩

]
= ⌈[𝜌 [𝑀/𝑥] ⊕ 𝜌 ′ ⊲𝑀] ⌉ : we reduce the comprehension

in the lhs, and then perform as many reductions on

the resulting projection redexes as needed to obtain

the rhs. This also uses Lemma A.1 just like the lambda-

application case.

•
⌈
𝛾𝑥.𝜌 (𝛾𝑥.𝜌′ (𝑀))

⌉
=[ [

⟨⟨−−−−−−−→l= 𝑦.1.l⊕ ⌈𝜌⌉ [𝑦.2/𝑦]⟩, 𝑦.2⟩
]
| 𝑦 ←[ [

⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌 ′⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩
]
| 𝑥 ← ⌈𝑀⌉

] ]
+
{

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥] ⊕ ⌈𝜌 ′⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

]
| 𝑥 ← ⌈𝑀⌉

]
=

⌈
𝛾
𝑥.𝜌⊕𝜌′ (𝑀)

⌉
: we perform unnesting on the lhs, then

reduce the comprehension binding 𝑦 to a singleton;

finally, we reduce the projections as many times as

needed to obtain the rhs.

•
⌈
𝛾𝑥.𝜌 (𝑀 ++ 𝑁 )

⌉
=

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥/𝑥.2]⟩, 𝑥 .2⟩

]
| 𝑥 ← ⌈𝑀⌉ ++ ⌈𝑁 ⌉

]
+
{

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥/𝑥.2]⟩, 𝑥 .2⟩

]
| 𝑥 ← ⌈𝑀⌉

]
++[ [

⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥/𝑥.2]⟩, 𝑥 .2⟩
] set
| 𝑥 ← ⌈𝑁 ⌉

]
=

⌈
𝛾𝑥.𝜌 (𝑀) ++ 𝛾𝑥.𝜌 (𝑁 )

⌉
: trivial.

•
⌈
𝛾𝑥.𝜌 ( [𝐿 | 𝑦 ← 𝑀] )

⌉
=

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥/𝑥.2]⟩, 𝑥 .2⟩

]
| 𝑥 ← [⌈𝐿⌉ [𝑦.2/𝑦] | 𝑦 ← ⌈𝑀⌉]

]
+
{

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

]
[𝑦.2/𝑦]

| 𝑦 ← ⌈𝑀⌉ , 𝑥 ← ⌈𝐿⌉ [𝑦.2/𝑦]
]

=

⌈[
𝛾𝑥.𝜌 (𝐿) | 𝑦 ← 𝑀

] ⌉
: we assume, withut loss of gen-

erality, that 𝑦 ≠ 𝑥 and 𝑦 ∉ FV(𝑀, 𝜌); we perform

unnesting on the lhs and, thanks to the freshness con-

ditions, that the resulting term is equal to the rhs.

•
⌈
𝛾𝑥.𝜌 (

[
𝐿 | 𝑘 K← 𝑀

] set
)
⌉

=

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥/𝑥.2]⟩, 𝑥 .2⟩

] set
| 𝑥 ← [⌈𝐿⌉ [𝑘.1/𝑘] | 𝑘 ← ⌈𝑀⌉]set

] set
+
{

[ [
⟨⟨−−−−−−−→l= 𝑥 .1.l⊕ ⌈𝜌⌉ [𝑥.2/𝑥]⟩, 𝑥 .2⟩

] set
[𝑘.1/𝑘]

| 𝑦 ← ⌈𝑀⌉ , 𝑥 ← ⌈𝐿⌉ [𝑦.1/𝑘]
] set
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=

⌈[
𝛾𝑥.𝜌 (𝐿) | 𝑘

K← 𝑀

] ⌉
: we assume, withut loss of gen-

erality, that 𝑘 ≠ 𝑥 and 𝑘 ∉ FV(𝑀, 𝜌); we perform

unnesting on the lhs and, thanks to the freshness con-

ditions, that the resulting term is equal to the rhs.

• ⌈[] � 𝑁 ⌉ = [[⟨⟨⟩, 𝑥 .2⟩] where 𝑥 .1 = ⌈𝑁 ⌉ | 𝑥 ← []]
+
{ [] = ⌈[] ⌉: trivial.
• ⌈(𝐿 ++ 𝑀) � 𝑁 ⌉
= [[⟨⟨⟩, 𝑥 .2⟩] where 𝑥 .1 = ⌈𝑁 ⌉ | 𝑥 ← ⌈𝐿⌉ ++ ⌈𝑀⌉]
+
{ [[⟨⟨⟩, 𝑥 .2⟩] where 𝑥 .1 = ⌈𝑁 ⌉ | 𝑥 ← ⌈𝐿⌉] ++

[[⟨⟨⟩, 𝑥 .2⟩] where 𝑥 .1 = ⌈𝑁 ⌉ | 𝑥 ← ⌈𝑀⌉]
= ⌈(𝐿 � 𝑁 ) ++ (𝑀 � 𝑁 )⌉: trivial.
• ⌈[𝐿 | 𝑥 ← 𝑀] � 𝑁 ⌉

=

[
[⟨⟨⟩, 𝑦.2⟩] where 𝑦.1 = ⌈𝑁 ⌉

| 𝑦 ← [⌈𝐿⌉ [𝑥.2/𝑥] | 𝑥 ← ⌈𝑀⌉]
]

+
{

[
[⟨⟨⟩, 𝑦.2⟩] where 𝑦.1 = ⌈𝑁 ⌉

| 𝑥 ← ⌈𝑀⌉ , 𝑦 ← ⌈𝐿⌉ [𝑥.2/𝑥]
]

= ⌈[𝐿 � 𝑁 | 𝑥 ← 𝑀] ⌉: we assume, without loss of

generality, that 𝑦 ≠ 𝑥 , and 𝑦 ∉ FV(𝑁 ); we perform

unnesting on the lhs and, by the freshness conditions,

show that the resulting term is equal to the rhs.

•
⌈[
𝐿 | 𝑘 K← 𝑀

] set
� 𝑁

⌉
=

[
[⟨⟨⟩, 𝑦.2⟩] where 𝑦.1 = ⌈𝑁 ⌉

| 𝑦 ← [⌈𝐿⌉ [𝑘.1/𝑘] | 𝑘 ← ⌈𝑀⌉]set
] set

+
{

[
[⟨⟨⟩, 𝑦.2⟩] where 𝑦.1 = ⌈𝑁 ⌉

| 𝑘 ← ⌈𝑀⌉ , 𝑦 ← ⌈𝐿⌉ [𝑘.1/𝑘]
] set

=

⌈[
𝐿 � 𝑁 | 𝑘 K← 𝑀

] set⌉
: we assume, without loss of

generality, that 𝑦 ≠ 𝑘 , and 𝑦 ∉ FV(𝑁 ); we perform

unnesting on the lhs and, by the freshness conditions,

show that the resulting term is equal to the rhs.

• For all reductions happening within a context, the

thesis is obtained by an application of the induction

hypothesis. □

B Proofs from Section 4
Theorem 4.1. Every well-typed term 𝑀 of NRC𝜆𝛾 in

normal form generated by the grammar in Figure 6.

Proof. By induction on the structure of 𝑀 . Notice that the

induction hypothesis states that the subterms of the𝑀 for

which we are proving this theorem are generated by the

grammar. By cases:

• Terms in the form 𝑥 , 𝑡 , ⟨𝜌⟩, 𝜆𝑥 .𝑀 , []S, [𝜌 ⊲𝑀 ′]S: the
proof is trivial, or a direct consequence of the induction

hypothesis.

• 𝑐 (−→𝑀 ′): by IH,

−→
𝑀 ′ is generated by the grammar; we

reason by cases on the possible productions of

−→
𝑀 ′ and

see that, in order for the term to be well-typed, we

must have

−→
𝑀 ′ =

−→
𝐵 : 𝑐 (−→𝐵 ) is generated by the grammar

for𝑀 , which proves the thesis.

• 𝛼 (𝑀 ′): by IH, 𝑀 ′ is generated by the grammar; we

reason by cases on the possible productions of𝑀 ′ and
see that, in order for the term to be well-typed, we

must have𝑀 ′ = 𝑅: 𝛼 (𝑅) is generated by the grammar

for𝑀 , which proves the thesis.

• 𝑀 ′.l: by IH,𝑀 ′ is generated by the grammar; we rea-

son by cases on the possible productions of𝑀 ′ and see
that, in order for the term to be well-typed, we must

have𝑀 ′ = 𝑈 ;𝑈 can be either 𝑋 or ⟨𝜌⟩, however ⟨𝜌⟩.l
is not in normal form; that only leaves 𝑋 .l, which is

generated by the grammar for𝑀 , as required.

• 𝑀 ′ 𝑀 ′′: by IH,𝑀 ′ and𝑀 ′′ are generated by the gram-

mar; we reason by cases on the possible productions of

𝑀 ′ and see that, in order for the term to be well-typed,

we must have𝑀 ′ =𝑊 ;𝑊 can be either 𝑋 or 𝜆𝑥 .𝑀 ′′′,
however (𝜆𝑥.𝑀 ′′′)𝑀 ′′ is not in normal form; that only

leaves 𝑋 𝑀 ′′, which is generated by the grammar for

𝑀 , as required.

• 𝑀 ′ ++set 𝑀 ′′: by IH, 𝑀 ′ and 𝑀 ′′ are generated by the

grammar; we reason by cases on the possible produc-

tions of𝑀 ′ and𝑀 ′′ and see that, in order for the term

to be well-typed, we must have 𝑀 ′ = 𝑄 ′, 𝑀 ′′ = 𝑄 ′′;
𝑄 ′ ++set 𝑄 ′′ is generated by the grammar for 𝑀 , as

required.

• 𝑀 ′ whereset 𝑀 ′′: by IH, 𝑀 ′ and 𝑀 ′′ are generated

by the grammar; we reason by cases on the possible

productions of 𝑀 ′ and 𝑀 ′′ and see that, in order for

the term to be well-typed, we must have𝑀 ′ = 𝑄 and

𝑀 ′′ = 𝐵; furthermore, in order for the term to be in

normal form, we prove by deep case analysis on the

possible productions of 𝑄 that we must have 𝑄 = 𝐼 ;

then, 𝐼 whereset 𝐵 is generated by the grammar for𝑀 ,

as required.

• 𝛿𝑀 ′: by IH,𝑀 ′ is generated by the grammar; we reason

by cases on the possible productions of𝑀 ′ and see that,
in order for the term to be well-typed, we must have

𝑀 ′ = 𝑅; by deep cases analysis on the productions

starting at 𝑅, we see that, in order for 𝛿𝑅 to be in

normal form, we must have 𝑅 = 𝑋 or 𝑅 = 𝑡 ; both

𝛿𝑋 and 𝛿𝑡 are generated by the grammar for 𝑀 , as

required.

• 𝜄𝑀 ′: by IH,𝑀 ′ is generated by the grammar; we reason

by cases on the possible productions of𝑀 ′ and see that,
in order for the term to be well-typed, we must have

𝑀 ′ = 𝑄 ; 𝜄𝑄 is generated by the grammar for 𝑀 , as

required.

• [𝑀 ′ | 𝑥 ← 𝑀 ′′]set: by IH, 𝑀 ′ and 𝑀 ′′ are generated

by the grammar; we reason by cases on the possible

productions of 𝑀 ′ and 𝑀 ′′ and see that, in order for

the term to be well-typed, we must have 𝑀 ′ = 𝑄 ′,
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𝑀 ′′ = 𝑄 ′′; by more case analysis, we see that 𝑄 ′ = 𝐶

(otherwise, the term would not be in normal form);

by a similar reasoning, 𝑄 ′′ must be in the form 𝑁 : we

thus easily show that [𝐶 | 𝑥 ← 𝑁 ]set is generated by

the grammar for𝑀 , as required.

•
[
𝑀 ′ | 𝑘 K← 𝑀 ′′

] set
: similar to the value comprehension

case above.

• 𝛾 set𝑥.𝜌 (𝑀 ′): by IH,𝑀 ′ is generated by the grammar; we

reason by cases on the possible productions of𝑀 ′ and
see that, in order for the term to be well-typed and

in normal form, we must have 𝑀 ′ = 𝑁 ; 𝛾 set𝑥.𝜌 (𝑁 ) is
generated by the grammar for𝑀 , as required.

• 𝑀 ′ �set 𝑀 ′′: by IH, 𝑀 ′ and 𝑀 ′′ are generated by the

grammar; we reason by cases on the possible produc-

tions of𝑀 ′ and𝑀 ′′ and see that, in order for the term

to be well-typed, we must have𝑀 ′ = 𝑄 ,𝑀 ′′ = 𝑈 ; fur-

thermore, by cases on the productions for 𝑄 , in order

for the term to be in normal form we will need𝑄 = 𝑁 ;

then we see that the term 𝑁 �set𝑈 is generated by the

grammar, as required.

• aggByset
−−−→
l=𝛼
(𝑀 ′): by IH, 𝑀 ′ is generated by the gram-

mar; we reason by cases on the possible productions of

𝑀 ′ and see that, in order for the term to be well-typed,

we must havee𝑀 ′ = 𝑄 ; then we see that aggByset
−−−→
l=𝛼
(𝑄)

is generated by the grammar, as required.

• 𝑀 ′ ++bag 𝑀 ′′: by IH,𝑀 ′ and𝑀 ′′ are generated by the

grammar; we reason by cases on the possible produc-

tions of𝑀 ′ and𝑀 ′′ and see that, in order for the term

to be well-typed, we must have 𝑀 ′ = 𝑅′, 𝑀 ′′ = 𝑅′′;
𝑅′ ++bag 𝑅′′ is generated by the grammar for 𝑀 , as

required.

• [𝑀 ′ | 𝑥 ← 𝑀 ′′]bag: by IH, 𝑀 ′ and 𝑀 ′′ are generated
by the grammar; we reason by cases on the possible

productions of 𝑀 ′ and 𝑀 ′′ and see that, in order for

the term to be well-typed, we must have 𝑀 ′ = 𝑅′,
𝑀 ′′ = 𝑅′′; by more case analysis, we see that 𝑅′ = 𝐷

(otherwise, the term would not be in normal form); by

a similar reasoning, 𝑅′′ must be in the form𝑂 : we thus

easily show that [𝐷 | 𝑥 ← 𝑂]bag is generated by the

grammar for𝑀 , as required.

•
[
𝑀 ′ | 𝑘 K← 𝑀 ′′

]bag
: by IH, 𝑀 ′ and 𝑀 ′′ are generated

by the grammar; we reason by cases on the possible

productions of 𝑀 ′ and 𝑀 ′′ and see that, in order for

the term to be well-typed, we must have 𝑀 ′ = 𝑅′,
𝑀 ′′ = 𝑄 ′′; by more case analysis, we see that 𝑅′ = 𝐷

(otherwise, the term would not be in normal form); we

thus easily show that

[
𝐷 | 𝑘 K← 𝑄 ′′

]bag
is generated

by the grammar for𝑀 , as required.

• 𝑀 ′ wherebag 𝑀 ′′: by IH, 𝑀 ′ and 𝑀 ′′ are generated

by the grammar; we reason by cases on the possible

productions of 𝑀 ′ and 𝑀 ′′ and see that, in order for

the term to be well-typed, we must have𝑀 ′ = 𝑅 and

𝑀 ′′ = 𝐵; furthermore, in order for the term to be in

normal form, we prove by deep case analysis on the

possible productions of 𝑅 that we must have 𝑅 = 𝐿;

then, 𝐿 wherebag 𝐵 is generated by the grammar for

𝑀 , as required.

• 𝛾bag𝑥.𝜌 (𝑀 ′): by IH,𝑀 ′ is generated by the grammar; we

reason by cases on the possible productions of𝑀 ′ and
see that, in order for the term to be well-typed and

in normal form, we must have 𝑀 ′ = 𝑂 ; 𝛾
bag
𝑥.𝜌 (𝑂) is

generated by the grammar for𝑀 , as required.

• 𝑀 ′ �bag 𝑀 ′′: by IH,𝑀 ′ and𝑀 ′′ are generated by the

grammar; we reason by cases on the possible produc-

tions of𝑀 ′ and𝑀 ′′ and see that, in order for the term

to be well-typed, we must have𝑀 ′ = 𝑅,𝑀 ′′ = 𝑈 ; fur-

thermore, by cases on the productions for 𝑅, in order

for the term to be in normal form we will need 𝑅 = 𝑂 ;

then we see that the term 𝑂 �bag 𝑈 is generated by

the grammar, as required.

• aggBybag
−−−→
l=𝛼
(𝑀 ′): by IH, 𝑀 ′ is generated by the gram-

mar; we reason by cases on the possible productions of

𝑀 ′ and see that, in order for the term to be well-typed,

we must havee𝑀 ′ = 𝑅; then we see that aggBybag
−−−→
l=𝛼
(𝑅)

is generated by the grammar, as required. □

C Details of the translation to SQL
(Section 5)

The grammar of normal forms is amenable to be used to

define algorithmic procedures, including a translation of

NRC𝜆𝛾 normal forms to SQL; clearly, only flat normal forms

need to be translated, as nested queries do not have a direct

representation in SQL due to typing limitations. We give one

such translation in Figure 10: we define a main translation

operation (·)sql along with auxiliary translations (·)sql
𝐾
, (·)sql

𝑉
,

(·)sql
𝐺𝐾

, and operations 𝑘𝑒𝑦𝑠 , 𝑣𝑎𝑙𝑠 , 𝑎𝑡𝑡𝑟𝑠 .

The main translation (·)sql assigns trivially empty queries

to [] and, by recursion, union/disjoint union queries to

NRC𝜆𝛾 queries employing ++. In the more involved com-

prehensions cases, the translation operates by returning a

complete SELECT . . . FROM . . . WHERE . . . statement (with

or without DISTINCT, depending on whether we are per-

forming a set or a bag comprehension); the where clause is
translated to the WHERE statement, and the comprehension

generators are transated to the FROM clause; that leaves the
singleton key-value pair – namely, [𝜌 ⊲ ⟨𝜌 ′⟩] ; both 𝜌 and 𝜌 ′

will go to the SELECT statement, but 𝜌 shall use the auxil-

iary (𝜌)sql
𝐾

translation, marking that row as a key, while 𝜌 ′

shall use the (𝜌 ′)sql
𝑉

translation, marking it as a value row.

Concretely, the two different translations tag the attribute

names so that attributes used as grouping keys (in the form
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1@l) will always be distinguished from attributes used as

values (in the form 2@l).

The rest of the NRC𝜆𝛾 normal forms can only appear as

comprehension generators: these include table references 𝑡

(translated using SELECT with the value-tagging translation

(·)sql
𝑉
), deduplicated tables (which use SELECT DISTINCT ∗,

promoted set queries (translated by recursion: from an SQL

point of view, promotion does not change the semantics of a

query).

The translation of grouping (𝛾 set𝑥.𝜌 (𝑁 ) or 𝛾
bag
𝑥.𝜌 (𝑂)) uses a

SELECT (DISTINCT) statement, in which the values from the

table resulting from the evaluation of𝑁 (or𝑂) are linkedwith

keys (𝜌)sql
𝐾
; notice that, although we know by reasoning on

typing that 𝑁 (or𝑂) must be a pure collection (rather than a

finite map), the recursive translation will return a table with

value-tagged attributes: the 𝑣𝑎𝑙𝑠 (·) operation returns the

list of value-tagged attributes. Dually, the lookup operation

(𝑁�set ⟨𝜌⟩ or𝑂�bag ⟨𝜌⟩) also produces a SELECT (DISTINCT)
statement uing the 𝑣𝑎𝑙𝑠 (·) operation, but the input relation
𝑁 or 𝑂 must be a proper finite map, thus we need to filter

those keys matching the lookup row 𝜌 . Groupwise aggre-

gation is translated by means of a SELECT statement using

the appropriate aggregates, along with a GROUP BY clause

(notice that since we know that each key will be mapped

to a singleton, we can avoid using DISTINCT even in the set

case).

The main translation is used in this form to process value

comprehensions; for key comprehensions, we provide a spe-

cific translation (·)sql
𝐺𝐾

whose only cases are grouping, with

set or bag semantics, and (implicitly promoted) set sub-

queries 𝑄 ; the main purpose of this particular translation is

to collect only the key attributes from the input map (using

𝑘𝑒𝑦𝑠 (·) in the inner set query case) and then retag them as

value attributes; since we never want duplicate keys, not

even in bags, all of the cases are translated using DISTINCT.
In both kinds of comprehension, our translation can gener-

ate lateral joins (as it is normal for queries mixing sets an

bags [21]) which require the SQL:1999 keyword LATERAL.
Lateral joins can always be removed using the technique

shown in [22] (in exchange for additional query complexity).

Aggregation can only be performed on pure collections

of basic values: we convert these to collections of trivial

unary tuples, translate them recursively, and finally apply

the corresponding SQL aggregation operation to obtain the

result we want.

As a concluding remark, we note that this translation

procedure handles the grouping operator without employing

SQL GROUP BY statements, save when it is the argument of

a groupwise aggregation: this is because GROUP BY clauses

can only be used when attributes other than the grouping

keys have been aggregated.

Example C.1. TheNRC𝜆𝛾 query𝑀group from Example 2.1

is translated to SQL as follows;

(
𝑀group

)sql
:=

SELECT x.1@dept AS 1@dept,
AVERAGE(x.2@salary) as 2@salary

FROM (SELECT d.name AS 1@dept,
e.salary AS 2@salary

FROM department d, employee e
WHERE d.id = e.dept)

GROUP BY 1@dept

This is slightly more complicated than the original query

q_group from the introduction due to the separation of

grouping and groupwise aggregation in the NRC𝜆𝛾 term;

however, this kind of nesting is easily optimized in most

DBMS; alternatively, we can get rid of such artifacts in a

postprocessing step.

D Full definition of query shredding
(Section 5.2)

Figure 11 shows the full definition of the shredding judgment

for NRC𝜆𝛾 . We comment the rules that were omitted from

the main body of this article.

The rules for the shredding judgment operate as follows:

the first rule expresses the fact that a normalized term of

base type 𝐵 does not contain subexpressions with nested

collection type, therefore it can be shredded to itself, leaving

the shredding environment Φ unchanged. This rule is also

applied for plain aggregation, despite the fact that they have

a collection subterm: from the grammar of flat relational

normal forms, we know that such aggregatins must be in

the form 𝛼 (𝑅∗), where 𝑅∗ is a flat collection. Since 𝑅∗ is flat,
it does not need to be shredded recursively.

In the case of rows, we perform shredding pointwise on

each field, connecting the input and output shredding envi-

ronments in a pipeline, and finally combining together the

shredded subterms in the obvious way.

The shredding of set and bag unions uses the query lifting

technique and is performed by recursion on the subterms,

using the same plumbing technique we employed for tuples;

additionally, we optimize the output shredding environment

by removing the graph queries

−→
𝜓 resulting from recursion,

since they are absorbed into the new graph 𝜑 .

Finally, groupwise aggregation employs query lifting as

well, since it returns a finite map. Since we know that the

input is a flat relation, we do not need to shred the input

query recursively.
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( [] )sql = SELECT 42 WHERE 0 = 1 (𝑥.l)sql = 𝑥.l(
𝑐 (−→𝑋 )

)sql
= (𝑐)sql (

−−−−−→
(𝑋 )sql) (𝛼 (𝑀))sql = SELECT (𝛼)sql (𝑥) FROM

( [
[ ⟨• = 𝑧 ⟩]bag | 𝑧 ← 𝑀

]bag)sql
𝑥(−−−−→

l= 𝑋

)sql
= (𝑋1)sql AS l1, . . . , (𝑋𝑛)sql AS l𝑛(−−−−→

l= 𝑋

)sql
𝐾

= (𝑋1)sql AS 1@l1, . . . , (𝑋𝑛)sql AS 1@l𝑛

(−−−−→
l= 𝑋

)sql
𝑉

= (𝑋1)sql AS 2@l1, . . . , (𝑋𝑛)sql AS 2@l𝑛(⋃−→
𝐶

)sql
= (𝐶1)sql UNION . . . UNION (𝐶𝑛)sql

(⊎−→
𝐷

)sql
= (𝐷1)sql UNION ALL . . . UNION ALL (𝐷𝑛)sql

(𝑡 )sql = SELECT
(−−−−−−→
l= 𝑥.l

)sql
𝑉

FROM 𝑡 (if 𝑡 :

[
⟨−−−→l : 𝑇 ⟩

]bag
)

(𝛿𝑡 )sql = SELECT DISTINCT ∗ FROM (𝑡 )sql (𝜄 (𝑄))sql = (𝑄)sql

(𝑄)sql
𝐺𝐾

= SELECT DISTINCT 𝑘𝑒𝑦𝑠 (𝑄, 𝑧) FROM (𝑄)sql 𝑧(
𝛾 set𝑥.𝜌 (𝑁 )

)sql
= SELECT DISTINCT (𝜌)sql

𝐾
, 𝑣𝑎𝑙𝑠 (𝑁,𝑥) FROM (𝑁 )sql 𝑥(

𝛾 set𝑥.𝜌 (𝑁 )
)sql
𝐺𝐾

= SELECT DISTINCT (𝜌)sql
𝑉

FROM (𝑁 )sql 𝑥(
𝛾
bag
𝑥.𝜌 (𝑂)

)sql
= SELECT (𝜌)sql

𝐾
, 𝑣𝑎𝑙𝑠 (𝑂,𝑥) FROM (𝑂)sql 𝑥 (if𝑂 :

[
⟨−−−→l : 𝑇 ⟩

]bag
)(

𝛾
bag
𝑥.𝜌 (𝑂)

)sql
𝐺𝐾

= SELECT DISTINCT (𝜌)sql
𝑉

FROM (𝑂)sql 𝑥(
𝑁 �set ⟨−−−−−−−→k𝑖 = 𝑀𝑖 ⟩

)sql
= SELECT DISTINCT 𝑣𝑎𝑙𝑠 (𝑁,𝑥) FROM (𝑁 )sql 𝑥 WHERE (

−−−−−−−−−−−−−−−−→
𝑥.1@k𝑖 = (𝑀𝑖 )sql)(

𝑂 �bag ⟨−−−−−−−→k𝑖 = 𝑀𝑖 ⟩
)sql

= SELECT 𝑣𝑎𝑙𝑠 (𝑂,𝑥) FROM (𝑂)sql 𝑥 WHERE (
−−−−−−−−−−−−−−−−→
𝑥.1@k𝑖 = (𝑀𝑖 )sql)(

aggByset
−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄)
)sql

= SELECT 𝑘𝑒𝑦𝑠 (𝑄,𝑥),
−−−−−−−−−−−−−−−−−−−−−−→
(𝛼)sql (𝑥.2@l′) AS 2@lFROM (𝑄)sql 𝑥 GROUP BY 𝑘𝑒𝑦𝑠 (𝑄,𝑥)(

aggBybag
−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅)
)sql

= SELECT 𝑘𝑒𝑦𝑠 (𝑅, 𝑥),
−−−−−−−−−−−−−−−−−−−−−−→
(𝛼)sql (𝑥.2@l′) AS 2@lFROM (𝑅)sql 𝑥 GROUP BY 𝑘𝑒𝑦𝑠 (𝑅, 𝑥)

(−→
𝐹 , 𝑥 ← 𝑁

)sql
=


(−→
𝐹

)sql
, ( (𝑁 )sql) 𝑥 (𝑁 closed wrt. 𝑣𝑎𝑟𝑠 (𝐹 ))(−→

𝐹

)sql
, LATERAL ( (𝑁 )sql) 𝑥 (otherwise)(

−→
𝐹 , 𝑥

K← 𝑁

)sql
=

{
(𝐹 )sql , ( (𝑁 )sql

𝐺𝐾
) 𝑥 (𝑁 closed wrt. 𝑣𝑎𝑟𝑠 (𝐹 ))

(𝐹 )sql , LATERAL ( (𝐹 )sql
𝐺𝐾
) 𝑥 (otherwise)(−→

𝐺,𝑥 ← 𝑂

)sql
=


(−→
𝐺

)sql
, ( (𝑂)sql) 𝑥 (𝑂 closed wrt. 𝑣𝑎𝑟𝑠 (𝐺))(−→

𝐺

)sql
, LATERAL ( (𝑂)sql) 𝑥 (otherwise)(

−→
𝐺,𝑥

K← 𝑄∗
)sql

=


(−→
𝐺

)sql
, ( (𝑄∗)sql

𝐺𝐾
) 𝑥 (𝑄∗ closed wrt. 𝑣𝑎𝑟𝑠 (𝐺))(−→

𝐺

)sql
, LATERAL ( (𝐺)sql

𝐺𝐾
) 𝑥 (otherwise)( [

[𝜌 ⊲ ⟨𝜌′⟩]set whereset 𝑋 | −→𝐹
] set)sql

= SELECT DISTINCT (𝜌)sql
𝐾
, (𝜌′)sql

𝑉
FROM

(−→
𝐹

)sql
WHERE (𝑋 )sql( [

[𝜌 ⊲ ⟨𝜌′⟩]bag wherebag 𝑋 | −→𝐺
]bag)sql

= SELECT (𝜌)sql
𝐾
, (𝜌′)sql

𝑉
FROM

−−−−−→
(𝐺)sql WHERE (𝑋 )sql

𝑘𝑒𝑦𝑠 (𝑄,𝑧) = 𝑧.1@k1 AS 2@k1, . . . , 𝑧.1@k𝑛 AS 2@k𝑛 (if𝑄 : [𝑇 ]set−−→
k:𝑆

or [𝑇 ]bag−−→
k:𝑆

)

𝑣𝑎𝑙𝑠 (𝑄,𝑧) = 𝑧.2@l1, . . . , 𝑧.2@l𝑛 (if𝑄 :

[
⟨−−−→l : 𝑇 ⟩

] set
𝑃

or

[
⟨−−−→l : 𝑇 ⟩

]bag
𝑃

)

Figure 10. Translation to SQL
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2053
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2055

2056
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2058

2059

2060

2061

2062

2063

2064

2065
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2068

2069

2070

2071
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2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

Φ;Θ ⊢ 𝐵 Z⇒ 𝐵 | Φ

(Φ𝑖−1;Θ ⊢ 𝑀𝑖 Z⇒ 𝑀̆𝑖 | Φ𝑖 )𝑖=1,...,𝑛

Φ0;Θ ⊢ −−−−−→l= 𝑀 Z⇒
−−−−−→
l= 𝑀̆ | Φ𝑛

𝜑 ∉ dom(Φn)
(Φ𝑖−1;Θ ⊢ 𝐶𝑖 Z⇒ 𝜓𝑖 �set ⟨dom(Θ) ⟩ | Φ𝑖 )𝑖=1,...,𝑛

Φ0;Θ ⊢ ⋃−→
𝐶 Z⇒ 𝜑 �set ⟨dom(Θ) ⟩

| (Φ𝑛 \
−→
𝜓 ) [𝜑 ↦→ ⋃−−−−−→

Φ𝑛 (𝜓 ) ]

𝜑 ∉ dom(Φn)

(Φ𝑖−1;Θ ⊢ 𝐷𝑖 Z⇒ 𝜓𝑖 �bag ⟨dom(Θ) ⟩ | Φ𝑖 )𝑖=1,...,𝑛

Φ0;Θ ⊢ ⊎−→
𝐷 Z⇒ 𝜑 �bag ⟨dom(Θ) ⟩

| (Φ𝑛 \
−→
𝜓 ) [𝜑 ↦→ ⊎−−−−−→

Φ𝑛 (𝜓 ) ]

𝜑 ∉ dom(Ψ)

Φ;Θ,
−→
𝐹 ⊢ 𝜌 Z⇒ 𝜌 | Ψ

Φ;Θ ⊢
[
[𝜌∗ ⊲ ⟨𝜌 ⟩]set where 𝐵 | −→𝐹

] set
Z⇒ 𝜑 �set ⟨dom(Θ) ⟩

| Ψ [𝜑 ↦→ G(Θ;

[
[𝜌∗ ⊲ 𝜌 ]set where 𝐵 |−→𝐹

] set
) ]

𝜑 ∉ dom(Ψ)

Φ;Θ,
−−→
𝐺𝛿 ⊢ 𝜌 Z⇒ 𝜌 | Ψ

Φ0;Θ ⊢
[
[𝜌∗ ⊲ 𝜌 ]bag where 𝐵 |−→𝐺

]bag
Z⇒ 𝜑 �bag ⟨dom(Θ) ⟩

| Ψ [𝜑 ↦→ G(Θ;

[
[𝜌∗ ⊲ 𝜌 ]bag where 𝐵 |−→𝐺

]bag
) ]

𝜑 ∉ dom(Φ)
Φ;Θ ⊢ aggByset

−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄∗) Z⇒ 𝜑 �set ⟨dom(Θ) ⟩

| Φ[𝜑 ↦→ G(Θ; aggByset
−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑄∗)) ]

𝜑 ∉ dom(Φ)

Φ;Θ ⊢ aggBybag
−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅∗) Z⇒ 𝜑 �bag ⟨dom(Θ) ⟩

| Φ[𝜑 ↦→ G(Θ; aggBybag
−−−−−−−−−−−→
𝑧.l=𝛼 (𝑧.l′)

(𝑅∗)) ]

(𝑥 ← 𝑂)𝛿 ≜
{
𝑥 ← 𝑄∗ if𝑂 = 𝜄𝑄∗

𝑥 ← 𝛿𝑂 else
Φ \ −→𝜓 ≜ [ (𝜑 ↦→ 𝑁 ) ∈ Φ | 𝜑 ∉

−→
𝜓 ]

(𝑘 K← 𝑄∗)𝛿 ≜ 𝑄∗

Figure 11. Shredding rules.
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