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Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the au-
tonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles
could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes –
putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of
human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand,
modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently
and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the
best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction
by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2)
accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with
formal assurance without hurting human drivers’ privacy.

To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and
Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through
extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection perfor-
mance in both highway and urban traffic. The best performance achieves detection rate of 97.3%, average
detection delay of 1.2s, and 0 false alarm.
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1 INTRODUCTION
Despite the rapid development of autonomous vehicles in past decades, hybrid traffic which involves
both autonomous and human-driven vehicles would be a norm for a long time [2–4]. In this work,
we exploit the safety advantages raised by the extended sensing capability of autonomous vehicles
through beneficial information sharing.

Enabling safe autonomy of the autonomous vehicles in the presence of human-driven vehicles is
challenging. Human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably
switching to dangerous driving modes. These switches might arise from factors such as fatigue,
drunkenness, distraction, and aggressiveness. If not detected in a timely manner, such unannounced
switches could quickly put their neighboring vehicles under serious safety threats. To the best
of our knowledge, most literature on abnormal driving behavior detection has been focusing on
monitoring either behavioral parameters such as eye blinking and yawning [5–9], or vehicular
parameters such as speed variability, steering wheel angle, and steering wheel grip force [10, 11],
which require placing sensors on vehicle parts like steering wheel, accelerator or brake pedal; see
Section 2.3 for details. Unfortunately, human-driven vehicles in the hybrid traffic might not have
the required sensor placements to collect the relevant run-time measurements. Moreover, such
measurements, even if available, are privacy sensitive and may not be shared with other vehicles.
When autonomous vehicles does not have the direct measurement data from on-board sensors
of the human-driven vehicles, and can only observe human-driven vehicles as part of the driving
environment based on autonomous vehicle sensors, it is still challenging to detect abnormal driving
behavior.

On the positive side of hybrid traffic, modern vehicle-to-vehicle (V2V) communication technolo-
gies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information
with each other [1]. Sharing such information can be highly beneficial: the U.S. Department of
Transportation (DOT) has estimated that V2V communication can address up to 82% of all crashes
in the United States involving unimpaired drivers, potentially saving thousands of lives and billions
of dollars [12]. In addition, navigation and control strategies based on V2V shared information can
also improve both traffic efficiency and safety [13].

Contributions: We propose, to the best of our knowledge, the first efficient algorithm that
can (1) significantly improve trajectory prediction accuracy by effectively fusing the run-time
information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect
abnormal human driving mode switches with formal assurance without hurting human drivers’
privacy. Our algorithm consists of two major components: trajectory prediction component and
switch detection component.
• On trajectory prediction: We adapt the recently proposed transformer network to the appli-
cations of connected and autonomous vehicles (CAVs). Moreover, we propose multi-encoder
attention mechanism to effectively using the shared information among CAVs. Our model is
named as Multi-Encoder Attention based Trajectory Predictor (MEATP). We evaluate our pro-
posed MEATP on NGSIM [14] and Argoverse [15] datasets, the experiment results show that
MEATP with information sharing outperforms the well-adopted Long-Short Term Memory
(LSTM) [16] and some transformer [17] based trajectory predictors. Moreover, information
sharing improves the prediction performance of MEATP by 50%.
• On switch detection: We adapt the CuSum algorithm [18] and its variant to monitor the
patterns of the run-time prediction errors observing that the prediction errors before and after
abnormal driving behaviors can be well captured by two different probability distributions.
The choice of the CuSum algorithm is motivated by its ease of implementation and strong
provably optimality guarantees for formal assurance. In this work, we consider two popular
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scenarios: (1) CAVs have full knowledge of both the pre-change and post-change probability
distributions and (2) CAVs have full knowledge of the pre-change distribution only and partial
knowledge of the post-change distribution. Note that before the change happens, the driving
mode of the human driver is deemed to be normal. Hence the corresponding prediction error
distribution can be efficiently computed from existing datasets. Through experiments on
SUMO-generated highway and urban traffic datasets, we show that: our proposed algorithm
has great detection performance in both highway and urban traffic; it can be generalized to
different scenarios where we have full or partial knowledge about post-change distributions;
equipped with MEATP with shared information, it is robust to the noises in observations
of the surrounding autonomous vehicles. The best performance achieves detection rate of
97.3%, average detection delay of 1.2s, and 0 false alarm.

2 RELATEDWORK
2.1 Trajectory prediction and transformer neural network
Trajectory prediction is challenging because of the large amount of latent variables involved such as
end goals, intentions at each moment, driving styles of human drivers and interactions with other
vehicles. There has been extensive progress in vehicle trajectory prediction. Existing literature is
divided into three categories: physics-based model, maneuver-based model and interaction-aware
model [19].
Classical dynamic or kinetic model based methods have been designed to predict the future

trajectories based on the current state of the vehicles [20–24]. However, they are unable to predict
any change in the vehicle motion caused by a particular maneuver or external factors. Deep
learning techniques have been widely utilized in maneuver-based model and interaction-aware
model, yielding higher accuracy and longer prediction time [25, 26]. It has also been shown that
the interaction-aware model outperforms in the three classes [19]. Therefore, deep learning-based
interaction-aware trajectory prediction has become the main steam in recent years. Many methods
have been proposed, including (but not limit to): LSTM combined with convolutional neural
network (CNN) to predict the vehicle trajectories on US highways from NGSIM dataset [27], LSTM
encoder-decoder to produce the probabilistic future location of the vehicles over occupancy grid
map [28], LSTM combined with dynamic geometric graph to predict the vehicle trajectories and
road agent behavior [29]. In addition, attempts have been made to integrate deep learning with
model predictive control to reason about the future behavior of nearby vehicles [30].

A transformer network was originally designed for natural language processing [17], recently it
has also been modified to process spatial-temporal data, for traffic flow prediction [31], pedestrian
trajectory prediction [32] and vehicle trajectory prediction. An encoder-decoder architecture
based on multi-head attention generates the distribution of the predicted trajectories for multiple
vehicles in parallel [33]. Dong et al. present a dynamic graph attention network to deal with
social interactions and predict multi-modal trajectories with probability [34]. Messaoud et al. apply
multi-head attention by considering a joint representation of the static scene and surrounding
agents to generate future trajectories [35]. There are other works applying attention mechanism to
trajectory prediction[36, 37]. These works employ attention mechanism to detect vehicles that are
more likely to affect the target vehicle’s trajectory and pay more attention to them. The temporal
dynamics of target and surrounding vehicles’ trajectories, however, are not considered.
There are two types of predictions based on the design of the neural networks: (1) One au-

tonomous vehicle (ego vehicle) predicts its surrounding vehicles’ trajectories, thus all the surround-
ing vehicles are target vehicles. In this case, the input contain the past trajectories of the ego vehicle
and the target vehicles, the outputs are the predicted trajectories of the target vehicles [28, 33].

J. ACM, Vol. xx, No. xx, Article xxx. Publication date: August 2023.



xxx:4 Wang, Su, Han, Song, and Miao

This type of prediction, however, doesn’t take the trajectories of the vehicles that are around the
target vehicle into consideration. As these vehicles interact with the target vehicle, missing their
trajectories may result in inaccurate prediction. (2) One autonomous vehicle predicts one target
vehicle’s trajectory [27, 29, 30, 34, 35, 38]. In this case, the input contain the past trajectories of
the target vehicle and its neighboring vehicles. These works assume that the trajectories of target
vehicle and all its neighboring vehicles are available. However this assumption is too strong in
real world, one autonomous vehicle won’t be able to get all vehicles’ data around target vehicle
for prediction. Therefore, in this work, we propose an multi-encoder attention based predictor
that fuses the shared information among connected autonomous vehicles (CAVs) to predict the
human-driven vehicles’ trajectories.

2.2 Information sharing for connected vehicles
Connected autonomous vehicles (CAVs) have been proposed and studied for a long time. Informa-
tion sharing of basic safety messages (BSMs) (velocity, position, heading angle, and yaw rate) is
beneficial to autonomous vehicles’ learning and control approaches in scenarios such as freeways,
intersections, and lane-merging [13, 39–41]. Besides BSMs, environment information captured by
vision sensors (such as cameras and Lidars) is also useful to improve autonomous vehicles’ decision-
making, trajectory planning, and perceptions [42–44]. GPS reports from neighboring vehicles can
be used to identify driving hazards [45]. It has also been shown that the V2V communications
among the autonomous vehicles can improve traffic safety, traffic flow stability and throughput
[46–48].

There have been concerns about the privacy when sharing the data with other vehicles. V2V and
V2I communications allow information to be transmitted between vehicles for safety reasons, but
they also expose the vehicle’s movements and geographical location to external networks, from
which people can access to locate a vehicle driver [49]. This is a serious problem with location-based
data, as human traces are unique, enabling an adversary to trace movements even with limited
side information [50, 51]. Also, access to the interconnected AVs’ wireless network enables public
and private agencies to conduct remote surveillance of AV users, which can undermine individual
autonomy through psychological manipulation and intimidation [49]. Schoonmaker [52] highlights
the inadequacies of protecting location-based data based on customer consent, as customers accept
the terms and conditions without fully understanding them. Surveys are also being conducted to
investigate public attitude towards the privacy concerns brought by sharing the data, there are low
confident on how the information should be exchanged between two vehicles [53, 54]. In the US, the
new SPY Car Act gives NHTSA the authority to protect the use of (and access to) driving data in all
vehicles manufactured for sale in the US [55]. All vehicles must provide owners or lessees the ability
to stop the data collection, except for data essential for safety and post-incident investigations, and
manufacturers are prohibited from using the collected data for marketing or advertising without
consent from the owners or lessees [55]. Therefore, in this work, the hybrid traffic is consisted by
human-driven vehicles that cannot communicate or don’t willing to communicate, and the CAVs.

2.3 Abnormal human driver’s behavior detection
Existing work on abnormal human driver’s behavior detection is mostly restricted to monitor-
ing driver’s behavioral parameters or vehicular parameters. Specifically, there is a large body of
literature that uses camera to extract the behavioral parameters such as eye closure ratio, eye
blinking, head position, facial expressions, and yawning, to classify whether the driver is in fatigued
driving or distracted driving mode [5–7]. A handful of work monitor vehicular parameters such as
changing patterns, vehicle speed variability, steering wheel angle, and steering wheel grip force –
assuming sensor placements on vehicle parts like steering wheel, accelerator or brake pedal [10, 11].
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However, due to the privacy sensitive nature of the human drivers images and the detailed sensor
measurements, none of these methods are applicable to our setting of hybrid traffic. In this work,
we focus on a different challenge of detecting abnormal behavior based only on the observations of
the CAVs.

3 PROBLEM DESCRIPTION
Unpredictable human driver abnormal behavior is a great obstacle to safe autonomy in hybrid traffic
systems. The autonomous vehicles might also have problems during driving. There have been large
numbers of work dealing with problems in perception [56], behavior planning [57, 58], and control
of autonomous vehicles [59], these specific problems about autonomous vehicles are out of our
scope in this paper. In this work, the challenge we focus on is: how to detect the human driver’s
abnormal behavior with high accuracy in a short time based on shared sensing information among
CAVs, without violence of human driver’s privacy. Normal driving behavior can be characterized
by well-controlled speed, reasonable headways, mild accelerations, decelerations, and lane changes.
In contrast, as human driver’s abnormal behaviors are often caused by human factors such as
drunkenness, aggressiveness, and fatigue, the resulting abnormal behaviors usually show up with
unreasonable operations on vehicles, which provides useful clues for detecting them. First, regarding
aggressive driving, the drivers’ abnormal behavior can be reflected by observable signs from the
perspective of autonomous vehicles, such as accelerating suddenly, violating the speed limit, and
making frequent lane changes to surpass the other vehicles [60]. Second, considering the drunk
and fatigued driving, when the driver is intoxicated by alcohol, or affected by tiredness, he or she is
more likely to issue a sudden acceleration or deceleration due to a response delay [61, 62], therefore
the velocity control can be poor. From this perspective, when we are trying to predict the trajectory
of a human-driven vehicle, the distributions of the prediction errors of normal driving mode and
abnormal driving mode could be quite different.

To address the above challenge, in this work, we propose an algorithm that is composed by tra-
jectory predictor component and driving mode switch detection component to detect the abnormal
driving behaviors. Our proposed algorithm takes advantages of information sharing among CAVs
to boost both prediction and detection performance. In this section, we first describe the hybrid
traffic system including autonomous vehicles and human-driven vehicles, then illustrate the details
of information sharing that will be utilized in both trajectory prediction and abnormal behavior
detection.

3.1 Hybrid traffic system description
The traffic is comprised by autonomous vehicles that are connected via V2V communication and
human-driven vehicles. For ease of exposition, we refer to the autonomous vehicle that is doing
prediction as the ego vehicle (EV), other autonomous vehicles that are within the communication
range of the ego vehicle as surrounding vehicles (SV), and the human-driven vehicles is being
predicted and as target vehicle (TV). Without loss of generality, we focus on one TV. It is easy to
see that our algorithm works for the general multiple target vehicles setting under which we can
run the algorithm in parallel for different target vehicles. Notably, the human-driven vehicles are
not communicating with others. The system is illustrated in Fig. 1.

We define a stationary reference frame based on the TV. At time step 𝑡0, the origin are set at TV’s
current location, 𝑋 − 𝑎𝑥𝑖𝑠 is lateral direction, while the 𝑌 − 𝑎𝑥𝑖𝑠 is longitudinal direction. In the
range of 𝑦 = −30𝑚 to 𝑦 = 30𝑚, there are in total 𝑁 neighboring vehicles that interact with the TV,
including 𝑁𝐴 autonomous vehicles and 𝑁𝐻 human-driven vehicles. The range of +30 meters and
-30 meters is proposed by Deo et al. [27] and still widely used in recent works [35, 63]. This setting
has been tested and validated on Highway and Urban datasets including NGSIM and nuScenes.
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Fig. 1. Hybrid traffic with information sharing.

3.2 Information shared to the ego vehicle
All surrounding vehicles’ observations include point cloud data from Lidar and camera image. With
the Lidar-camera fusion techniques [64], surrounding vehicles can get the locations of the nearby
human-driven vehicles. At time 𝑡0, For each surrounding vehicle, the information it shares with EV
include:
(1) its own GPS locations in the past 𝑡ℎ time steps,
(2) locally sensed GPS locations of the nearby human-driven vehicles in the past 𝑡ℎ time steps.

Upon receiving the shared information, EV transfers the GPS locations into the coordinates in
current reference frame: for 𝑖 ∈ [0, 𝑁 ] vehicles, coordinates in the past 𝑡ℎ + 1 time steps: 𝑥𝑖 (𝑡0 −
𝑡ℎ), 𝑦𝑖 (𝑡0 − 𝑡ℎ), . . . , 𝑥𝑖 (𝑡0), 𝑦𝑖 (𝑡0).

In real world applications, it’s unrealistic for the EV to get accurate GPS locations of all the human-
driven vehicles only from the observations of the CAVs. There will be noises in the measurement
due to a variety of factors such as the limitation of on board sensors, the error of object detection
and tracking algorithms, etc [30, 65, 66]. In this work, we discuss two cases: first is an ideal case,
where (1) and (2) are all accurate GPS locations without noise, second is a more realistic case, where
(1) are accurate and (2) are noisy. We will elaborate and validate our abnormal behavior detection
algorithm against noises in inputs in Section 4.3.4 and Section 5 respectively.
It’s worth noting that, information sharing among CAVs has more advantages at gathering

neighboring vehicles’ data compared to existing prediction methods. Multi-agent prediction, usually
with multi encoders have been widely used in the existing works [27, 29, 30, 34, 35, 38]. Each encoder
corresponds to one vehicle’s data around the target vehicle. However, these existing works assume
that the ego vehicle can get all the vehicles’ trajectories around the target vehicles, which can be a
too strong assumption in some scenarios. When the target vehicle is driving in front of or behind
the ego vehicle, shown in Fig. 1, the target vehicle will certainly block part of the ego vehicle’s
Lidar signal and camera view, therefore the ego vehicle won’t be able to get the trajectories of
the vehicles that are in front of or behind the target vehicle. The information, however, is vital
to predict the target vehicle’s trajectory, since the neighboring vehicles’ movement can affect the
trajectory of the target vehicle. For instance, if the vehicle in front slows down, the target vehicle
will also need to slow down to keep a safe distance. In this work, with the shared information
among CAVs, other autonomous vehicles can extract, compute, and send the information to the ego
vehicle. To the best of our knowledge, we are the first to propose a multi-encoder attention based
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trajectory predictor that fuses the shared information among the CAVs, and utilize the prediction
for our proposed abnormal driving behavior detection Algorithm 1.

4 ABNORMAL BEHAVIOR DETECTION FRAMEWORK
To make the discussion concrete, we present our framework in Section 4.2 – right after the presen-
tation of our proposed trajectory prediction method (Section 4.1). Though our framework is stated
w. r. t. the trajectory predictor proposed in Section 4.1 only, it works for more general predictors. Our
framework is also generic in its abnormal behavior detection component. In Section 4.3, we present
three different concrete instantiations to compute the crucial statistic used in the framework.

4.1 Multi-encoder attention based trajectory predictor (MEATP)
We propose a trajectory predictor, named as multi-encoder attention based trajectory predictor
(MEATP) to fuse the real-timemeasurement data and utilize the benefit of shared sensing information
among CAVs. We specify its inputs and outputs in Section 4.1.1, introduce its network architecture
in Section 4.1.2, and present the loss function used in its training in Section 4.1.3.

Transformer based network has been applied in vehicle trajectory prediction[33–37]. They use
attention mechanism to distinguish the vehicles that are more likely to affect the target vehicle’s
trajectory and give them more attention. In this work, our proposed multi-encoder attention layer,
not only finds the more influential vehicles by assigning the corresponding encoder larger weights,
but also finds the more important time steps that affects the trajectory of the target vehicles using
the multi-head attention layer in the multi-encoder attention. Therefore, our proposed model can
find the important features in both spatial and temporal dimensions, whereas the existing works’
attention mechanism only focus on spatial dimension.

4.1.1 Inputs and outputs. The inputs to the MEATP include (I.1) the trajectories of neighboring
vehicles, denoted by 𝑪𝑖 (𝑡0) for 𝑖 ∈ [1, 𝑁 ], and (I.2) the trajectories of the target vehicles, denoted
by 𝑺 (𝑡0). Both (I.1) and (I.2) are over a sliding time window {𝑡0 − 𝑡ℎ, 𝑡0 − 𝑡ℎ + 1, · · · , 𝑡0}, formally,

𝑪𝑖 (𝑡0) ≜ [𝒄𝑖 (𝑡0 − 𝑡ℎ), · · · , 𝒄𝑖 (𝑡0 − 𝑡ℎ + ℓ), · · · , 𝒄𝑖 (𝑡0)] (1)

with 𝒄𝑖 (𝑡0 − 𝑡ℎ + ℓ) ≜ [𝑥𝑖 (𝑡0 − 𝑡ℎ + ℓ), 𝑦𝑖 (𝑡0 − 𝑡ℎ + ℓ)] being the 2-dimensional position of the 𝑖–th
neighboring vehicle at time slot 𝑡0 − 𝑡ℎ + ℓ for ℓ = 0, · · · , 𝑡ℎ , and

𝑺 (𝑡0) ≜ [𝒔 (𝑡0 − 𝑡ℎ), . . . , 𝒔 (𝑡0 − 𝑡ℎ + ℓ), . . . , 𝒔 (𝑡0)] (2)

with 𝒔 (𝑡0 − 𝑡ℎ + ℓ) ≜ [𝑥0 (𝑡0 − 𝑡ℎ + ℓ), 𝑦0 (𝑡0 − 𝑡ℎ + ℓ)] being the 2-dimensional vector that records
the TV’s position at time slot 𝑡0 − 𝑡ℎ + ℓ for ℓ = 0, · · · , 𝑡ℎ .
The outputs of the MEATP are the distributions of the future trajectory of the TV over time

window {𝑡0 + 1, · · · , 𝑡0 + 𝑡𝑓 }. Assume the predicted future trajectory follows bivariate Gaussian
distribution [27, 67], notably, this assumption has been widely adopted in the literature [27, 29, 33,
35, 67], tested in numbers of real-world trace datasets, including NGSIM Lyft Level 5, Argoverse
Motion Forecasting, and the Apolloscape Trajectory [68–70]. the output of the decoder is the
bivariate Gaussian parameters at every time step in the future 𝑡𝑓 time steps:

𝛀 ≜ [𝛀(𝑡0 + 1), . . . ,𝛀(𝑡0 + 𝑡𝑓 )], (3)

where

𝛀(𝑡) ≜ [𝝁 (𝑡),𝝈 (𝑡), 𝜌 (𝑡)] ≜ [𝜇𝑥 (𝑡), 𝜇𝑦 (𝑡), 𝜎𝑥 (𝑡), 𝜎𝑦 (𝑡), 𝜌 (𝑡)], for 𝑡 ∈ [𝑡0 + 1, 𝑡0 + 𝑡𝑓 ],

where (𝜇𝑥 (𝑡), 𝜎𝑥 (𝑡)) and
(
𝜇𝑦 (𝑡), 𝜎𝑦 (𝑡)

)
are the mean and standard deviation in 𝑥-axis and 𝑦-axis,

respectively, and 𝜌 (𝑡) is the corresponding correlation-coefficient.
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4.1.2 Network architectures. Our network architecture is illustrated in Fig. 2. To effectively utilize
the shared information, instead of the single-encoder single-decoder transformer architecture, we
use a multi-encoder single-decoder architecture. Having multiple encoders enables the EV to learn
the spatial and temporal features from the trajectories of the TV and of neighboring vehicles. As
can be seen from Table 4 of our experimental results, compared with CS-LSTM, MEATP can more
effectively extract the relevant information contained in the shared trajectories, hence can achieve
smaller mean and variance of the prediction errors.
Our proposed architecture contains 𝑁 + 1 encoders. For ease of exposition, we index these

encoders from 0 to 𝑁 . Encoder 0 takes 𝑺 (𝑡0) – the target vehicle’s trajectory over time window
{𝑡0 − 𝑡ℎ, · · · , 𝑡0} – as its input. Encoder 𝑖 (for 𝑖 = 1, · · · , 𝑁 ) takes 𝑪𝑖 (𝑡0) – the 𝑖–th vehicle’s trajectory
over time window {𝑡0 − 𝑡ℎ, · · · , 𝑡0} – as its input. The inputs plus the positional encoding are then
sent to the next layer as queries 𝑄 , keys 𝐾 , and values 𝑉 . Positional encoding is just an embedding
mechanism to ensure the order of the input. Following the seminal work [17], each of the encoder
consists of two sub-layers. The first is a multi-head attention mechanism, and the second is a simple,
positionwise fully connected feed-forward network. We use residual connection around each of
the two sub-layers, followed by layer normalization. Multi-head attention layer is composed by ℎ
heads of scaled dot-product attentions, each of which is expressed as:

Attention(𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 , (4)

where 𝑑𝑘 is the dimension of keys. The scaling factor 1√
𝑑𝑘
is used to prevent the dot product from

being numerically too large. Scaled dot-product attention allows the model to pay more attention
to one time step in the input that is useful for the prediction. Multi-head attention executes the ℎ
scaled dot product attention heads in parallel.
Attention outputs are concatenated and linearly transformed into the same dimension of Q.

Therefore:

Multihead(𝑄,𝐾,𝑉 ) = concat(head1, . . . , headℎ)𝑊𝑂 (5)

where head𝑙 = Attention(𝑄𝑊𝑄

𝑙
, 𝐾𝑊 𝐾

𝑙
,𝑉𝑊𝑉

𝑙
). With the multi-head attention layer, multiple (in-

stead of just one) time steps of historical data are processed simultaneously. Each encoder 𝑖 passes
its value 𝑉𝑖 and key 𝐾𝑖 . to the multi-encoder attention layer of decoder.
Different from the encoders, at time step 𝑡𝑝 , the decoder takes the outputs in the past 𝑡𝑝 − 1

steps as inputs, and outputs the bivariate Gaussian parameters, which represent the probability
distribution of the target vehicle’s future coordinates. To be noticed that, the key part in the decoder
is the multi-encoder attention. As shown in Fig. 3, the multi-encoder attention in the decoder
is composed by N+1 multi-head attention. Query 𝑄0, which comes from the decoder, interacts
with each pair of keys and values 𝐾𝑖 ,𝑉𝑖 in a multi-head attention. The outputs of the multi-head
attention are concatenated and linearly transformed into dimension of 𝑄0. Multi-encoder attention
are expressed as:

Multiencoder(𝑄0, 𝐾,𝑉 ) = concat(𝑀0, . . . , 𝑀𝑁 )𝑊𝑀 (6)

where𝑀𝑖 = Multihead(𝑄0, 𝐾𝑖 ,𝑉𝑖 ). The idea of multi-encoder attention comes from the road traffic
interaction. Since the target vehicle is continuously interacting with its neighboring vehicles, the
past trajectories of the neighboring vehicles, and itself, together influence its future trajectory. By
letting query 𝑄0, which corresponds to the target vehicle, interact with 𝐾𝑖 ,𝑉𝑖 , the decoder learns
both temporal and spatial information of the neighboring vehicles and target vehicle itself.
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Fig. 2. MEATP network architecture. The Multi-Encoder Attention Mechanism in decoder is shown in Fig. 3

Multi-Encoder Attention

h

Linear

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Concat

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Scaled Dot-Product
Attention

Concat

h

Fig. 3. Multi-encoder attention in the decoder

4.1.3 Loss function. Since we assume the output at each future time step follows bivariate Gaussian
distribution, we train our neural network base on the weighted sum of two losses below:

𝐿1 =

𝑡0+𝑡𝑓∑︁
𝑡=𝑡0+1

(− log 𝑃 (𝒁 (𝑡) |𝝁 (𝑡),𝝈 (𝑡), 𝜌 (𝑡))),

𝐿2 =

𝑡0+𝑡𝑓∑︁
𝑡=𝑡0+1

| |𝒁 (𝑡) − 𝝁 (𝑡) | |,

(7)
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where 𝒁 (𝑡) = [𝑥0 (𝑡), 𝑦0 (𝑡)] is the true coordinates of target vehicle at future time step 𝑡 . 𝐿1 is
the sum (in future 𝑡𝑓 time steps) of negative log likelihood of true trajectory given the predicted
trajectory distribution. 𝐿2 is the 𝑙2 norm between true trajectory and predicted trajectory in future
𝑡𝑓 time steps. Note that here we choose the mean on 𝑥 and 𝑦 axis 𝝁 (𝑡) = [𝜇𝑥 (𝑡), 𝜇𝑦 (𝑡)] in output
distribution as target vehicle’s predicted future trajectory. By minimizing the loss function, we
make the predicted trajectory stay close to the future true trajectory. To be noticed that, these two
loss functions have been widely used in the exiting literature [27, 29, 33, 35, 67], it is not specifically
for transformer networks, all the existing literature uses the true future trajectory in their training
phase. In this work, in order to make our abnormal behavior detection algorithm work better, we
want the distance between the predicted and true trajectory to be as small as possible. Therefore, the
loss function 𝐿2 are assigned with larger weight. If we denote our proposed predictor as a function
𝑓𝑊 , with𝑊 being the weight parameters, including𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 in scaled dot-product attention
layers,𝑊𝑂 in Multihead attention layers,𝑊𝑀 in Multiencoder attention layers, and the weights
in the feed forward layers. we have [Ω(𝑡0 + 1), . . . ,Ω(𝑡0 + 𝑡𝑓 )] = 𝑓𝑊 (𝑆 (𝑡0),𝐶1 (𝑡0), · · · ,𝐶𝑁 (𝑡0)).
Therefore, by minimizing the loss functions in training phase, we are actually doing gradient decent
on the weight parameters𝑊 of our proposed model.

4.2 Shared information based abnormal behavior detection algorithm
Recall that the EV is the one that executes the MEATP and monitors whether the TV is in an
abnormal driving mode or not. Figuring out which statistic to monitor is highly non-trivial as the
driving mode of the TV can switch to an abnormal driving mode at any unknown time, and the
underlying prediction error distributions prior and posterior to the switch time are different. To
make the discussion concrete, we use 𝛾 to denote this unknown switch time. We consider the most
challenging scenario wherein no prior information on 𝛾 is available.

Recall that 𝑡0 is the variable that indicates the current system time; its value increases by 1 as each
time goes by. At each time, the EV first receives the shared GPS locations from its SVs, transforms
them into 𝑺 (𝑡0) and {𝑪𝒊 (𝑡0)}𝑁𝑖=1, and then passes them as inputs to the MEATP to obtain 𝝁 (𝑡0 + 1).
Finally, when the true 𝒁 (𝑡0 + 1) is revealed, the EV computes its prediction error

𝒆𝑡0+1 = | |𝒁 (𝑡0 + 1) − 𝝁 (𝑡0 + 1) | |, (8)

As 𝑡0 increases over time, via the above process, the EV computes a sequence of prediction errors
{𝒆𝑛, 𝑛 = 1, 2, · · · }.
We use 𝑓 and 𝑔 to denote the distribution of 𝒆𝑛 when 𝑛 < 𝛾 and 𝑛 ≥ 𝛾 , respectively. Clearly,

if 𝛾 > 𝑡0, i.e., the TV’s driving mode has not switched yet, the TV is currently in a normal mode
with 𝒆𝑛

𝑖.𝑖 .𝑑.∼ 𝑓 for 𝑛 = 1, 2, · · · , 𝑡0. If 𝛾 ≤ 𝑡0, i.e., the TV is in the abnormal mode, then 𝒆𝑛
𝑖.𝑖 .𝑑.∼ 𝑔 for

𝑛 = 𝑡0, · · · . At any time, the EV is interested in knowing whether a mode switch has occurred or
not and wants to detect such switch as soon as possible under a given false alarm budget.
Therefore we formulate the problem of detecting abnormal human driver behaviors

as detecting the change in distributions of the sequence of random prediction errors
{𝒆𝑛, 𝑛 = 1, 2, · · · }. The “distance” between 𝑓 and 𝑔 can be captured by the Kullback-Leibler
divergence 𝐷KL (𝑓 , 𝑔), defined as

0 < 𝐷KL (𝑓 , 𝑔) ≜
∫

𝑓 (𝑥) log
(
𝑓 (𝑥)
𝑔(𝑥)

)
𝑑𝑥 < ∞. (9)

Definition 1 (Detection algorithm as a stopping time). A stopping time w.r.t. the sequence of
random prediction errors {𝒆𝑛, 𝑛 = 1, 2, · · · } is a random variable 𝜏 with the property that for each
𝑛, the event {𝜏 = 𝑛} is measurable w.r.t.𝜎 (𝒆1, · · · , 𝒆𝑛) – the 𝜎-algebra generated by 𝒆1, · · · , 𝒆𝑛 .
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Formally, {𝜏 = 𝑛} ∈ 𝜎 (𝒆1, · · · , 𝒆𝑛) for each 𝑛. A detection algorithm is a stopping time of random
prediction errors that declare the detection of a change [71].

Remark 1. A detection algorithm should be a stopping time otherwise it is not implementable due
to lack of information, i.e., {𝜏 = 𝑛} ∉ 𝜎 (𝒆1, · · · , 𝒆𝑛) for some 𝑛. When used as a detection algorithm,
the event 𝜏 = 𝑛 is interpreted as “a distribution change is declared at time 𝑛”.

Given the random sequence prediction error {𝒆𝑛, 𝑛 = 1, 2, · · · }, it’s hard to tell when the distribu-
tion has changed by manual inspection, instead, we compute a statistics𝑊𝑛 given {𝒆𝑛, 𝑛 = 1, 2, · · · },
which will be specified in Section 4.3. Once the statistic𝑊𝑛 exceeds some threshold 𝑏, we declare
the change in distributions, i.e., abnormal driving behavior happened. We propose Algorithm 1 to
illustrate how EV detects whether one TV has turned into abnormal driving mode. Notably, this
algorithm can be ran in parallel to detect multiple TVs. Based on the shared information, the EV
equipped with trained predictor computes the prediction errors at each time step, the statistic𝑊𝑛 is
then updated accordingly. Once the statistic𝑊𝑛 exceeds the threshold, the EV declares the detection
of abnormal behavior. We consider different scenarios regarding the amount of knowledge known
on probability distributions 𝑓 and 𝑔: (1) We have full knowledge of the pre-change and post-change
distributions of 𝑓 and 𝑔, (2) we have full knowledge of pre-change distribution 𝑓 , but we only have
partial knowledge about the post-change distribution 𝑔. Assuming full knowledge on pre-change
distribution is standard in the literature on quickest change detection [71]. Beside, this assumption
can be easily satisfied in our applications: before the change happens, the driving mode of the
human driver is deemed to be normal. Hence the corresponding prediction error distribution can
be efficiently computed from existing datasets. Based on whether we have full knowledge about
the post-change distributions or not and, if not, how much we know about it, the statistic𝑊𝑛 can
be calculated in CuSum algorithm [18], MCuSum algorithm [72, 73], or generalized likelihood ratio
test (GLRT) [74] approach. We elaborate the details of those algorithms and how to update statistic
𝑊𝑛 in Section 4.3.
Minimax quickest change detection (QCD): Next we state the performance metrics of the
detection algorithms. Observing that in practice the prior knowledge on the switch timing of the
driving modes is barely available, we do not impose any distributional assumption of 𝛾 . Instead, we
allow 𝛾 to be an arbitrary and unknown value which can even vary across executions. In other
words, we consider minimax QCD. The measure of the false alarm is the false alarm rate in the
literature [71]:

FAR(𝜏) = 1
𝐸∞ (𝜏)

, (10)

where 𝐸∞ stands for the expectation measure that the change happens at time∞, i.e., the change
doesn’t occur. To provide strong safety guarantee, we adopt the Lorden’s minimax formulation
[74] in which the detection delay is measured via

WADD(𝜏) = sup
𝑛≥1

ess sup 𝐸𝑛 [(𝜏 − 𝑛)+ |𝒆1, · · · , 𝒆𝑛], (11)

where (·)+ = max{0, ·}, 𝐸𝑛 [·] is the expectation operator when the change occurs at time 𝑛, and
ess sup(·) of a scalar-valued random variable is the sup of its support.

4.3 Algorithms to calculate𝑊𝑛 for abnormal behavior detection
In this section, we illustrate the abnormal behavior detection component. Given whether we have
full knowledge about the post-change distributions or not, we update the statistic𝑊𝑛 based on
CuSum algorithm, MCuSum algorithm and generalized likelihood ratio test (GLRT) algorithm. We
provide details of adopting these algorithms in our problem.
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Algorithm 1: Abnormal Behavior Detection based on Shared Information
Initialize𝑊0 ← 0, 𝑡0 ← 0, 𝜇 (𝑡0) ← 𝑍 (𝑡0);
Choose CuSum/ MCuSum/ GLRT algorithm based on the knowledge of the post-change
distribution;
if Using MCuSum then

Set threshold 𝑏 ← log(𝑀
𝛼
) ; /* 𝛼 is the given false alarm budget and 𝑀 is

the number of possible 𝑔 */

else
Set threshold 𝑏 ← |log𝛼 |;

end
while true do

Receive information shared by the SVs;
Update 𝑺 (𝑡0) and {𝑪𝑖 (𝑡0)}𝑁𝑖=1 by incorporating this newly received information ;
𝝁 (𝑡0 + 1) ← 𝑓𝑊 (𝑺 (𝑡0), {𝑪𝑖 (𝑡0)}𝑁𝑖=1) ; /* Compute 𝝁 (𝑡0 + 1) by calling MEATP */

𝒆𝑡0 ← ||𝒁 (𝑡0) − 𝝁 (𝑡0) | | ;
Compute statistic𝑊𝑡0 ;
if𝑊𝑡0 ≥ 𝑏 then

Declare the detection of abnormal behavior;
Break;

end
𝑡0 ← 𝑡0 + 1;

end

4.3.1 CuSum algorithm with full knowledge of pre-change and post-change distributions. We first
consider the best case, where we have have full knowledge of the probability distributions 𝑓 and 𝑔.
For ease of exposition, we assume that 𝑓 and 𝑔 are gaussian distributions; they can be parameterized
by their means and standard deviations as 𝑓𝜙 and 𝑔𝜃 , where each of 𝜙 and 𝜃 is a tuple of mean and
standard deviation. We adapt the CuSum algorithm to detect the abnormal human driver behaviors.
CuSum’s algorithm [18]: For some given 𝑏 > 0 (chosen later in Proposition 1),

𝜏 ≜ inf {𝑛 ≥ 1 :𝑊𝑛 ≥ 𝑏}, (12)
where

𝑊𝑛 =

{
max{𝑊𝑛−1 + log𝐿(𝒆𝑛), 0}, for 𝑛 ≥ 1;
0, for 𝑛 = 0.

and 𝐿(𝒆𝑛) = 𝑔𝜃 (𝒆𝑛)/𝑓𝜙 (𝒆𝑛) is the likelihood ratio.

The intuitions behind the CuSum algorithm are as follows: Upon and after the change point 𝛾 ,
the prediction error 𝒆𝑛 follows the distribution𝑔𝜃 , andE𝑛≥𝛾 [log

(
𝑔𝜃 (𝒆𝑛)/𝑓𝜙 (𝒆𝑛)

)
] = 𝐷KL (𝑔𝜃 , 𝑓𝜙 ) > 0.

Similarly, before𝛾 , the prediction error 𝒆𝑛 follows the distribution 𝑓 , andE𝑛<𝛾 [log
(
𝑔𝜃 (𝒆𝑛)/𝑓𝜙 (𝒆𝑛)

)
] =

−𝐷KL (𝑓𝜙 , 𝑔𝜃 ) < 0. Thus, with more and more observations on the prediction errors, we expect∑
𝑛:𝑛≥𝛾 log

(
𝑔𝜃 (𝒆𝑛)/𝑓𝜙 (𝒆𝑛)

)
to bypass the given threshold 𝑏. In a sense, the max{·, 0} operation in

𝑊𝑛 has two effects: (1) it makes a tentative guess on 𝛾 and (2) it does the first level protection
against the random fluctuation in log

(
𝑔𝜃 (𝒆𝑛)/𝑓𝜙 (𝒆𝑛)

)
. A more fine-grained protection against the

random fluctuation is controlled by the choice of 𝑏; the larger the 𝑏, the more accurate the detection
yet the longer delay.
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Clearly, there is a trade-off between the false alarm rate FAR(𝜏) and the detection delay; if we
can tolerate arbitrary FAR(𝜏), we can achieve 0 detection delay by trivially set 𝜏 = 0. It has been
proved in the literature that the CuSum algorithm is optimal [75, 76].
Proposition 1. [71] The CuSum algorithm with 𝑏 = | log𝛼 | for any given 𝛼 ∈ (0, 1) is first order
asymptotically optimal. Furthermore, the false alarm rate and the average detection of the CuSum
algorithm are bounded as follows:

FAR(𝜏) ≤ 𝛼, and WADD(𝜏) = 𝑂
(
| log𝛼 |
𝐷KL (𝑔, 𝑓 )

)
.

4.3.2 MCuSum with unknown parameters. Recall that we assume that 𝑓𝜙 and 𝑔𝜃 are the gaussian
distributions. Denote the mean and variance of 𝑓𝜙 and 𝑔𝜃 as (𝜇0, 𝜎0) and (𝜇1, 𝜎1), respectively. Thus,
we have:

log𝐿(𝑒𝑛) =
(𝑒𝑛 − 𝜇0)2

2𝜎20
− (𝑒𝑛 − 𝜇1)

2

2𝜎21
+ log(𝜎0

𝜎1
) (13)

In CuSum’s algorithm, we assume that we have full knowledge about the pre-change distribution
parameters 𝜇0, 𝜎0 and post-change distribution parameters 𝜇1, 𝜎1. However, when the human driver
switches to abnormal driving mode, it’s more realistic that we cannot know the exact post-change
prediction error distributions. But instead, we have some prior knowledge about the post-change
distribution and estimate the parameters based on our prior knowledge. In this section, we assume
that we have full knowledge of the pre-change distribution 𝑓 , the post-change distribution 𝑔 with
parameter 𝜃 :

𝜃 ∈ Θ = {𝜃1, 𝜃2, . . . 𝜃𝑀 } (14)
Therefore, the unknown post-change distribution belongs to a finite set of distributions. In this
scenario, We adopt the MCuSum algorithm to detect the abnormal driver’s behavior:
MCuSum algorithm [72]:

𝜏𝑀𝐶 ≜ inf {𝑛 ≥ 1 : max
𝑗∈{1,· · · ,𝑀 }

𝑊𝑛 (𝜃 𝑗 ) ≥ 𝑏}, (15)

where

𝑊𝑛 (𝜃 𝑗 ) =

[
𝑊𝑛−1 (𝜃 𝑗 ) + log(

𝑔𝜃 𝑗 (𝒆𝑛 )
𝑓𝜙 (𝒆𝑛 ) )

]+
, 𝑛 ≥ 1;

0, 𝑛 = 0.
(16)

In Eq. (15), [𝑥]+ ≜ max{𝑥, 0}, and, denoting 𝜙 = (𝜇0, 𝜎0) and 𝜃 𝑗 =
(
𝜇 𝑗 , 𝜎 𝑗

)
, the log likelihood can

be written as

log
(
𝑔𝜃 𝑗 (𝒆𝑛)
𝑓𝜙 (𝒆𝑛)

)
=
(𝒆𝑛 − 𝜇0)2

2𝜎20
−
(𝒆𝑛 − 𝜇 𝑗 )2

2𝜎2
𝑗

+ log(𝜎0
𝜎 𝑗
). (17)

Thus, to detect a change when the post-change parameter is unknown, M CuSum algorithms are
executed in parallel, one for each post-change parameter. A change is declared the first time a
change is detected in any one of the CuSum algorithms. In our context, in order to detect the
abnormal human driver behavior, we choose several possible means and standard deviations based
on the prior information we have about the prediction errors after the abnormal behavior happens.
Then we compute the CuSum algorithm in parallel based on each pair of the possible mean and
standard deviation, we declare the detection of the abnormal behavior once the statistic evolves
above the threshold in any one of the CuSum algorithm. The asymptotic optimality of the MCuSum
algorithm is proved in [72].
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Proposition 2. [72] The MCuSum algorithm with 𝑏 = log 𝑀
𝛼
for any given 𝛼 ≥ 0 is first order

asymptotically optimal. Furthermore, the false alarm rate and the average detection of the MCuSum
algorithm are bounded as follows:

FAR(𝜏𝑀𝐶 ) ≤ 𝛼, and WADD𝜃 (𝜏𝑀𝐶 ) ≲
(
| log𝛼 |
𝐷KL (𝑔, 𝑓 )

)
as 𝛼 → 0,∀𝜃 ∈ Θ

4.3.3 Generalized likelihood ratio test with unknown parameters. In this subsection, we further
relax our requirements on the post-change distributions. We assume that we know the values 𝜇0, 𝜎0,
and we only have partial prior information about the distribution 𝜇1, 𝜎1:

𝜇1 − 𝜇0 ≥ 𝜈𝑚, 𝜎1 − 𝜎0 ≥ 𝛿𝑚
Then we can no longer use the recursive form to update𝑊𝑛 since we don’t know 𝜇1, 𝜎1. We adopt
the generalized likelihood ratio test based approach, we see the sum of log likelihood from 𝑘 to 𝑛
as a function of unknown parameter 𝜃 ,

𝑆𝑛
𝑘
(𝜃 ) =

𝑛∑︁
𝑖=𝑘

log𝐿(𝑒𝑖 ) =
𝑛∑︁
𝑖=𝑘

log(𝑔𝜃 (𝑒𝑖 )
𝑓𝜙 (𝑒𝑖 )

) (18)

then we have double maximization:
𝑊𝑛 = max

1≤𝑘≤𝑛
sup
𝜃

𝑆𝑛
𝑘
(𝜃 ) (19)

Therefore, we can adopt the generalized likelihood ratio test (GLRT) to test the abnormal driving
behavior:
GLRT algorithm [74]:

𝜏 ≜ inf {𝑛 ≥ 1 :𝑊𝑛 ≥ 𝑏}, (20)
where

𝑊𝑛 = max
1≤𝑘≤𝑛

sup
𝜃

𝑆𝑛
𝑘
(𝜃 )

Next we elaborate how to deal with the double maximization in statistic𝑊𝑛 . since we know the
minimum magnitude change of the parameter 𝜃1, we have:

𝑊𝑛 = max
1≤𝑘≤𝑛

sup
𝜃 :𝜇1−𝜇0≥𝜈𝑚>0,𝜎1−𝜎0≥𝛿𝑚>0

𝑆𝑛
𝑘
(𝜃 ) (21)

since
(𝑒𝑛 − 𝜇0)2

2𝜎20
− (𝑒𝑛 − 𝜇1)

2

2𝜎21
+ 𝑙𝑜𝑔(𝜎0

𝜎1
) > (𝑒𝑛 − 𝜇0)

2

2𝜎20
− (𝑒𝑛 − 𝜇1)

2

2𝜎20
+ 𝑙𝑜𝑔(𝜎0

𝜎1
)

we can use the cumulative sum:

𝑆𝑛
𝑘
=
𝜇1 − 𝜇0
𝜎20

𝑛∑︁
𝑖=𝑘

(𝑒𝑖 −
𝜇1 + 𝜇0

2 + log(𝜎0
𝜎1
)) (22)

let us introduce 𝜈 = 𝜇1 − 𝜇0, 𝛿 = 𝜎1 − 𝜎0. then𝑊𝑛 can be written as :

𝑊𝑛 = max
1≤𝑘≤𝑛

sup
𝜃 :𝜈≥𝜈𝑚>0,𝛿≥𝛿𝑚>0

𝑛∑︁
𝑖=𝑘

[𝜈 (𝑒𝑖 − 𝜇0)
𝜎20

− 𝜈2

2𝜎20
+ log( 𝜎0

𝜎0 + 𝛿
)] (23)

in such case, the constrained maximization over 𝜃1 is:

𝑊𝑛 = max
1≤𝑘≤𝑛

𝑛∑︁
𝑖=𝑘

[𝜈𝑘 (𝑒𝑖 − 𝜇0)
𝜎20

− 𝜈𝑘
2

2𝜎20
+ log( 𝜎0

𝜎0 + 𝛿
)] (24)
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where:
𝜈𝑘 = (

∑𝑛
𝑖=𝑘
|𝑒𝑖 − 𝜇0 |

𝑛 − 𝑘 + 1 − 𝜈𝑚)+ + 𝜈𝑚, 𝛿 = 𝛿𝑚 (25)

4.3.4 Noisy HV location measurements. When SVs share noisy human driven vehicles’ GPS loca-
tions to the EV, due to the difference in the inputs to our proposed MEATP, the distribution of
prediction error changes accordingly. However, the measurement noises have no impacts on 𝛾 . Our
algorithm can still detect the change in the distributions even with the noises. For instance, consid-
ering MCuSum algorithm, with the noises in the inputs to MEATP, the pre-change distribution of
the prediction error changes from 𝑓𝜙 to 𝑓𝜙 ′ , where 𝜙 ′ = (𝜇′0, 𝜎 ′0), similarly, post-change distribution
changes from 𝑔𝜃 𝑗 to 𝑔𝜃 ′𝑗 , where 𝜃

′
𝑗 = (𝜇′𝑗 , 𝜎 ′𝑗 ). For each 𝜃 ′𝑗 , the log likelihood becomes:

log
(
𝑔𝜃 ′

𝑗
(𝒆𝑛)

𝑓𝜙 ′ (𝒆𝑛)

)
=
(𝒆𝑛 − 𝜇′0)2

2
(
𝜎 ′0

)2 −
(𝒆𝑛 − 𝜇′𝑗 )2

2
(
𝜎 ′
𝑗

)2 + log(𝜎 ′0𝜎 ′
𝑗

). (26)

5 EXPERIMENTS
5.1 Trajectory prediction
5.1.1 Experiment details. In this section, we useNGSIM [14] andArgoverse 1motion forecasting[15]
datasets for evaluation. NGSIM dataset consists of trajectories of freeway (US-101 and I-80) traffic
sampled at frequency 10Hz over 45 minutes. Argoverse dataset is a curated collection of 324,557
scenarios with each 5 seconds long. Each scenario contains the 2D, birds-eye-view centroid of each
tracked object sampled at 10 Hz. We train our model using Adam optimizer with learning rate of
0.01. The dimension of the model, also known as number of features, is 16. The number of heads is
8. For the feed forward layer, it contains a linear layer of size (16, 32), a Relu Layer, and another
linear layer of size (32,16) in sequential. For NGSIM dataset, We use 3s of historical trajectories to
predict the trajectories in future 5s with sample frequency of 5Hz. For Argoverse dataset, the length
of historical trajectory is 2s and the length of predicted trajectory is 3s. In our experiments, we use
a server configured with Intel Core i9-10900X processors and four NVIDIA RTX2080Ti GPUs. Our
experiments are performed on Python 3.6.0, PyTorch 1.6.0, and CUDA 11.0. For trajectory prediction,
we use the standard metrics followed by prior trajectory prediction approaches[27, 29, 33]:
• Root mean square error (RMSE) of the predicted trajectories with respect to the true future
trajectories.
• Average displacement error (ADE): The average RMSE of all the predicted positions and real
positions during the prediction window.
• Final displacement error (FDE): The RMSE distance between the final predicted positions at
the end of the predicted trajectory and the corresponding true location.

5.1.2 Prediction results. We compare our methods with baselines below:
• S-LSTM [38]: This model uses a fully connected social pooling layer to deal with the LSTM
encoder output, and generates a unimodal distribution for future coordinates.
• CS-LSTM [27]: This model devises a convolutional social social pooling layer to process the
LSTM encoder output, and generates a unimodal distribution for future coordinates.
• MHAPTP [33]: This method uses multi-head attention based model for probabilistic vehicle
trajectory prediction.
• TraPHic [67]: This approach uses spatial attention based pooling to perform trajectory
prediction of road agents in dense and heterogeneous traffic.
• MATF-D and MATF-GAN [77]: A Multi-agent tensor fusion network for contextual trajectory
prediction.
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• CAM and ATTGLOBAL-CAM-NF [78]: A cross-agent attention model with understanding of
the scene contexts for trajectory prediction.

We evaluate our model in two modes: with and without shared information. When there is
no information sharing, we assume that the EV can only get the trajectories of the vehicles that
are around it. While with information sharing, we assume that the EV is able to get the TV’s
neighboring vehicles’ historical trajectories and feed them into encoders.

Based on the prediction results in Table 1 and Table 2 we show that:
• Our proposed MEATP with shared information has better prediction performance compared
with LSTM based models and transformer based models on NGSIM dataset. This shows the
advantages of our multi-encoder attention mechanism at encoding both spatial and temporal
features. Information sharing among the CAVs largely improves the prediction performance.
• Our proposed MEATP with shared information outperforms most baseline methods on
Argoverse dataset. It shows slightly worse prediction performance compared with GLOBAL-
CAM-NF [78]. This is because GLOBAL-CAM-NF encodes the scene context, which requires
the bird’s eye view of the entire driving environment. However, this information may not be
available in real world when predicting the trajectories. Compare to this method, our model
doesn’t need the scene contexts for prediction.

Table 1. Prediction results on NGSIM dataset. Root mean square error (RMSE) over 5 seconds of
prediction horizon for models are compared. Our Proposed model MEATP without shared information
has better prediction performance than the baselines. Our MEATP with information sharing signifi-
cantly decreases the RMSE values, at 4s and 5s, the RMSE values are less than half of baselines.

Evaluation
Metric

Prediction
Horizon

(s)
S-LSTM CS-LSTM MHAPTP

MEATP
w/o

shared in-
formation

MEATP w
shared in-
formation

RMSE (m)

1 0.65 0.61 0.55 0.70 0.51
2 1.31 1.27 0.60 1.03 0.76
3 2.16 2.09 1.12 1.26 0.85
4 3.25 3.10 - 1.59 1.05
5 4.55 4.37 - 2.17 1.36

Table 2. Prediction results on Argoverse dataset. ADE and FDE of models are compared. Our
Proposed model MEATP with shared information has better prediction performance than most
methods.

Evaluation
Metric

CS-
LSTM

MATF-
D

MATF-
GAN TraPHic CAM

GLOBAL-
CAM-
NF

MEATP
w

shared
informa-
tion

ADE (m) 1.39 1.35 1.26 1.04 1.13 0.80 1.13
FDE (m) 2.57 2.48 2.31 3.08 2.50 1.25 2.07
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5.2 Human driver abnormal behavior detection
5.2.1 Experiment details. In this section, we use open source simulator Simulation of UrbanMobility
(SUMO) [79] to generate the dataset. We first construct a highway scenario: a highway with 5 lanes,
1000m length. The traffic volume is 8000 Veh/Hour. Without loss of generality, We then set another
urban traffic scenario. We construct a city street with 5 lanes, 1000m length. Two intersections
with traffic lights are set 300m and 600m away from the start point of the street. Each branch road
contains 4 lanes, with 2 lanes in each direction. Regarding the traffic lights, each of them are set
to green light status 80% of one cycle, where one cycle is two minutes. The Traffic volumes are
7000 Veh/Hour on the main road and 200 Veh/Hour on each branch road. The total simulation
time is one hour in both scenarios. Notebly, we set the traffic volume according to the real world
traffic report [80]. The vehicles are simulated using Krauß car following model [81]. 1000 vehicles
are switched to abnormal mode once they pass a random location on the road. In our experiment,
abnormal behaviors include unusual speed control, larger accelerations, decelerations, frequent
lane-changing, and small headways, etc. They differ from the normal driving behaviors with altered
parameters as shown in Table 3. Vehicle trajectories are collected at frequency of 10Hz in one hour
with label of whether the vehicle has turned into abnormal driving mode. Both highway and urban
traffic datasets are divided into training and testing set by the ratio of 7:3.

Table 3. Parameters of different driving behavior types. On longitudinal direction: vehicles
in abnormal driving mode have larger acceleration and deceleration abilities, nonusual maximum
speed, smaller minimum gaps to leading vehicles, and less perfect driving (sigma denotes the driver
imperfection in Krauß car following model, the larger the more imperfection). On lateral direction:
vehicles in abnormal driving mode are less willing to perform cooperative lane changing (larger
lcCooperative), they will tend to change lane more frequently to gain high speed (larger lcSpeedGain),
and less perfect in lane changing (larger lcSigma).

Parameters Normal driving behavior Abnormal driving behavior
accel (𝑚/𝑠2) 2.6 7
decel (𝑚/𝑠2) 4.5 8
miniGap (𝑚) 2.5 1.0

sigma 0.1 0.8
maxSpeed (highway) (𝑚/𝑠) 30 20 or 45
maxSpeed (urban) (𝑚/𝑠) 16 7 or 25

speedFactor 1.0 1.2
lcCooperative 1.0 0.1
lcSpeedGain 1.0 5.0
lcSigma 0.1 0.8

5.2.2 Detection results. We train our proposed MEATP and the baseline CS-LSTM separately
on the normal vehicles’ trajectories in SUMO-generated highway and urban traffic datasets. We
apply the trained predictors to testing set, then compute the mean and standard deviations of
the prediction errors in future 3s. The distributions of the prediction errors on highway and
urban traffic are shown in table 4 and table 5 respectively. It can be clearly seen that the means
and standard deviations of prediction errors on the abnormal vehicles are larger than those of
normal vehicles. This is consistent with our expectation, since the prediction will be less accurate
when the abnormal vehicles have more unreasonable behaviors, such as sudden accelerations
and decelerations, frequent lane changes, etc. What’s more, our proposed MEATP with shared
information has smallest mean and standard deviation among three predictors.
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Table 4. Distributions of prediction errors on highway dataset.MEATPwith shared information
has the smallest mean and the smallest standard deviation. With all the three predictors, the mean
and the standard deviation of the prediction errors on abnormal vehicles are larger than those on
normal vehicles.

Parameters Prediction
horizon (s) CS-LSTM

MEATP w/o
shared

information

MEATP w
shared

information

Mean (m)

Normal Abnormal Normal Abnormal Normal Abnormal
1 0.89 1.43 0.68 1.41 0.59 1.07
2 1.30 1.96 0.85 1.72 0.73 1.54
3 2.71 3.59 1.23 2.23 0.89 1.93

SD (m)
1 0.93 1.52 1.00 1.35 0.62 1.36
2 1.68 2.50 1.47 2.37 0.79 1.98
3 1.94 3.73 1.57 3.56 0.88 3.17

Table 5. Distributions of prediction errors on urban traffic dataset.

Parameters Prediction
horizon (s) CS-LSTM

MEATP w/o
shared

information

MEATP w
shared

information

Mean (m)

Normal Abnormal Normal Abnormal Normal Abnormal
1 1.09 1.36 0.78 1.29 0.67 0.95
2 1.62 2.00 0.96 1.65 0.83 1.42
3 2.78 3.43 1.32 2.40 1.01 1.83

SD (m)
1 0.88 1.73 0.89 1.31 0.69 1.35
2 1.71 2.84 1.56 2.66 1.02 1.88
3 2.89 4.60 2.48 3.72 1.13 2.92

Based on the trained predictors and the probability distributions, we apply proposed algorithm 1
to detect the abnormal behaviors. For each target vehicle, at every time step, we use the trained
predictor to predict the trajectory in future 5s, then compute the prediction error 𝒆𝑛 based on the
true trajectory and predicted trajectory. After that,𝑊𝑛 is computed based on 𝒆𝑛 and compared
with threshold 𝑏 to detect the change point. For each target vehicle, the inference runtime of our
detection algorithm equipped with MEATP is 4.8 ms per time step. To be noticed that, depending on
whether we have full knowledge of the post-change distribution𝑔, we evaluate the algorithm 1 based
on three different methods: CuSum, MCuSum and GLRT algorithm in highway and urban traffic
datasets respectively. We add four levels of Gaussian noise to the neighboring vehicles’ coordinates,
with mean and SD being (0.3m, 0.2m), (0.3m, 0.4m), (0.6m, 0.2m), (0.6m, 0.4m) respectively based
on the exiting 3D object detection and tracking algorithms [65, 82, 83], level 0 means no noise in
inputs. The detection results are shown in Table 6 to Table 8. Notably, ADD represents average
detection delay in unit of sample. We first summarize our findings based on the results and analyze
them separately in the following parts. Our findings:
• Our proposed algorithm 1, equipped with well trained predictor, has shown great detection
performance in both highway and urban traffic scenarios.
• Information sharing among CAVs helps increase the detection rate, lower the false alarms
and average detection delay.
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• our proposed algorithm 1 can be generalized to different scenarios: (1) we have full knowledge
about the pre-change distribution 𝑓 and post-change distribution 𝑔; (2) We have full knowl-
edge about the pre-change distribution 𝑓 and only partial knowledge about the post-change
distribution 𝑔. In both scenarios, algorithm 1 shows remarkable detection performance. When
having least information about the post-change distributions, algorithm 1 equipped with
MEATP with shared information still achieves: detection rate 91.0%, average detection delay
24.9 samples, 16 false alarms in 300 vehicles.
• Equipped with MEATP with shared information, our detection algorithm is robust to the
noises in observations of the surrounding autonomous vehicles.

Fig. 4 and Fig. 5 show the statistic evolution given the prediction errors of an abnormal vehicle and
a normal vehicle. Notably, the change point, which corresponds to the distribution change, is the
point where driver switches from normal driving mode to abnormal driving mode.

0 25 50 75 100 125 150 175 200 225 250
Samples

0

5

10

15

20

Change point occurs at 190

Change point detected at 215
Wn

Fig. 4. Abnormal behavior statistics. Threshold 𝑏 = 5. The abnormal vehicle changes from normal driving
mode to aggressive driving mode at time step 190. At time step 215, the statistic𝑊𝑛 exceeds the threshold,
thus the detection of abnormal behavior is declared. Detection delay is 25 samples in this case.
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Fig. 5. Normal behavior statistics. Threshold 𝑏 = 5. Since𝑊𝑛 never exceeds the threshold, the change
point, namely the abnormal behavior is not detected.

Detection results based on CuSum algorithm. In first scenario, we have full knowledge of
the pre-change distribution 𝑓 and post-change distribution 𝑔. We update statistics𝑊𝑛 based on
CuSum algorithm, the detection results are shown in table 6. It can be seen that, when having full
knowledge of the pre-change and post-change distributions, our proposed algorithm 1 equipped
with the well trained predictor can detect the most of the abnormal driving behavior within a short
time in both highway and urban traffic scenarios. Even using the baseline CS-LSTM as predictor,
our proposed algorithm 1 can achieve around 89.0% of detection rate with ADD of 18.7 samples.
Compared with the baseline predictor CS-LSTM, our proposed predictor MEATP with shared
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information outperforms among three predictors, it achieves detection rate of 97.6%, 12.3 samples
of ADD, and zero false alarms in highway traffic scenario. Because the shared information enables
the predictor to learn more about the interactions between target vehicles and its neighboring
vehicles, the prediction performance is much better. Based on the small means and standard
deviations of the prediction errors, the detection algorithm is more likely to detect the changes
in the distributions, less likely to declare false alarm, rendering highest detection rate, smallest
false alarms and detection delay. Compared with detection results in highway traffic datasets, the
detection results in urban traffic have similar detection rate, yet more false alarms, this may be
caused by larger variance in prediction errors in urban traffic dataset. Notably, the detection delay
in unit of second is proportional to the sampling rate. The average detection delay of 12.3 samples
with 10 Hz sampling rate rendering the detection delay to be around 1.2s. If we want to detect the
abnormal human driver’s behavior as soon as possible, we can increase the sampling rate. Thus, our
proposed abnormal behavior detection algorithm is generic, the detection delay can be improved
by improving the hardware sampling capabilities.

By analysis on CuSum algorithm based detection results, we show that:
• When having full knowledge of pre-change and post-change probability distributions, our
proposed detection algorithm 1, equipped with well trained predictor, is able to detect most
of the abnormal behaviors in short time with small amount of false alarms.
• Our algorithm 1 has remarkable detection performance in both highway and urban traffic
scenarios. In highway traffic, the best detection performance is: 0 false alarms, detection rate
of 97.6%, and ADD 12.3 samples. in urban traffic, the best detection performance is: detection
rate 96.3%, ADD 18.4 samples , and 6 false alarms in 300 vehicles.
• The shared information among autonomous vehicles increases the detection rate and lowers
the detection delay, while maintains least false alarms.

Table 6. Detection Results on SUMO dataset based on CuSum

Models Parameters
highway traffic

noise level
urban traffic
noise level

0 1 2 3 4 0 1 2 3 4

CS-LSTM

detected 267 264 263 239 226 271 262 258 225 223
false alarm 7 16 26 31 59 20 22 35 59 67

ADD 18.7 31.3 30.4 28.7 25.5 30.1 25.1 32.6 33.4 31.7
detection

rate 89.0% 88.0% 87.7% 79.7% 75.3% 90.3% 87.3% 86.0% 75.0% 74.3%

MEATP
w/o
shared
information

detected 282 278 270 261 250 277 273 269 270 259
false alarm 7 16 21 33 42 13 17 25 28 35

ADD 22.0 25.4 24.3 25.5 30.1 25.5 30.3 28.2 27.3 27.5
detection

rate 94.0% 92.7% 90.0% 87.0% 83.3% 92.3% 89.6% 91.0% 90.0% 86.3%

MEATP
w shared
information

detected 293 291 290 288 285 289 284 286 286 283
false alarm 0 1 1 2 4 6 10 8 8 11

ADD 12.3 18.3 17.1 19.6 23.2 18.4 13.6 14.8 15.2 18.7
detection

rate 97.6% 97.0% 96.7% 96.0% 95.0% 96.3% 94.7% 95.3% 95.3% 94.3%

Detection results based on MCuSum algorithm. In second scenario, we have full knowledge
of the pre-change distribution 𝑓 , the unknown post-change distribution 𝑔 with parameter 𝜃 belongs
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Table 7. Detection Results on SUMO dataset based on MCuSum

Models Parameters
highway traffic

noise level
urban traffic
noise level

0 1 2 3 4 0 1 2 3 4

CS-LSTM

detected 263 258 241 225 213 265 260 224 219 207
false alarm 18 32 42 49 60 17 29 51 65 71

ADD 37.3 24.0 16.7 14.5 11.7 12.5 15.9 16.8 11.6 12.8
detection

rate 87.7% 86.0% 80.3% 75.0% 71.0% 88.3% 86.7% 74.7% 73.0% 69.0%

MEATP
w/o
shared
information

detected 271 267 262 255 253 263 257 253 251 228
false alarm 12 23 23 26 31 14 21 25 27 57

ADD 33.9 27.9 30.2 28.6 27.3 20.7 23.7 27.2 27.6 25.7
detection

rate 90.3% 89.0% 87.3% 85.0% 84.3% 87.6% 85.6% 84.3% 83.7% 76.0%

MEATP
w shared
information

detected 291 288 287 284 283 287 283 283 281 278
false alarm 4 6 8 10 10 6 10 11 11 15

ADD 14.9 18.2 23.7 22.5 20.1 16.0 19.8 18.6 18.1 19.5
detection

rate 97.0% 96.0% 95.7% 94.7% 94.3% 95.7% 94.3% 94.3% 93.6% 92.6%

Table 8. Detection Results on SUMO urban dataset based on GLRT

Models Parameters
highway traffic

noise level
urban traffic
noise level

0 1 2 3 4 0 1 2 3 4

CS-LSTM

detected 252 233 234 220 201 243 229 231 218 195
false alarm 24 32 36 56 74 26 32 44 75 75

ADD 27.1 27.5 23.7 24.5 26.3 24.3 29.0 28.7 28.2 29.3
detection

rate 84.0% 77.7% 78.0% 73.3% 67.0% 81.0% 76.3% 77.0% 72.7% 65.0%

MEATP
w/o
shared
information

detected 271 259 260 258 248 268 254 253 250 245
false alarm 18 23 27 27 38 25 32 34 37 50

ADD 22.5 25.7 20.1 22.6 25.0 31.4 33.2 31.7 32.1 33.5
detection

rate 90.3% 86.3% 86.7% 86.0% 82.7% 89.3% 84.7% 84.3% 83.3% 81.7%

MEATP
w shared
information

detected 287 286 283 280 279 283 283 280 278 273
false alarm 5 6 7 11 13 10 11 13 14 16

ADD 21.4 20.1 21.8 23.3 23.9 23.0 20.4 21.0 20.2 24.9
detection

rate 95.7% 95.3% 94.3% 93.3% 93.0% 94.3% 94.3% 93.3% 92.7% 91.0%

to a finite set of distributions: 𝜃 ∈ Θ = {𝜃1, 𝜃2, . . . 𝜃𝑀 }. Regarding the true post-change parameters
𝜇1, 𝜎1, we add two small magnitude (less than 0.3) gaussian noise to each of them separately,
meaning𝑀 = 4 in this case. The detection results based on MCuSum algorithm are shown in table
7. The overall detection performance are slightly worse than the first scenario where we have
full knowledge of distributions 𝑓 and 𝑔. This is consistent with our expectations. Since we only
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have partial knowledge about the post-change distributions 𝑔, we can only use the possible set
𝜃 ∈ Θ = {𝜃1, 𝜃2, . . . 𝜃𝑀 }. We perform𝑀 CuSum algorithms in parallel, at every time step, we choose
the maximum𝑊𝑛 (𝜃 ) to see whether it exceeds the threshold.

By analysis on MCuSum algorithm based detection results, it shows that:
• There is a trade off between the knowledge we have about post-change distributions and
abnormal driving behavior detection performance.
• Whenwe have full knowledge about pre-change distribution 𝑓 , and the unknown post-change
distribution 𝑔 belongs to a finite set, our proposed algorithm 1 still has remarkable detection
performance in both highway and urban traffic scenario. Best detection performance based
on MEATP with shared information In highway traffic: detection rate detection rate 97.0%,
ADD 14.9 samples, 4 false alarms in 300 vehicles; in urban traffic: detection rate 95.7%, ADD
16 samples , 6 false alarms in 300 vehicles.

Detection results based on GLRT algorithm. In the third scenario, we have full knowledge of
the pre-change distribution 𝑓 with parameter 𝜙 (𝜇0, 𝜎0), for the unknown post-change distribution
𝑔 with parameter 𝜃 (𝜇1, 𝜎1), we only know the minimum magnitude change compared with pre-
change parameters: 𝜇1 − 𝜇0 ≥ 𝜈𝑚, 𝜎1 − 𝜎0 ≥ 𝛿𝑚 . The detection results based on GLRT algorithm
are shown in table 8. As can be seen, since we have even less information about the post-change
distributions, the detection performance slightly drop compared with second scenario.

By analysis on GLRT algorithm based detection results, we show that:
• When we have full knowledge of the pre-change distribution parameter 𝜙 , and we only know
that the minimum magnitude difference between post-change parameter 𝜃 and pre-change
parameter 𝜙 , our proposed algorithm 1 still shows great detection performance. MEATP
with shared information in highway traffic: detection rate 95.7%, ADD 21.40 samples, 5 false
alarms in 300 vehicles; in urban traffic: detection rate 94.3%, ADD 23.0 samples, 10 false
alarms in 300 vehicles.

6 CONCLUSION
This paper proposes abnormal human driving behavior detection algorithm for CAVs based on
shared sensing information in hybrid traffic system. This work, to the best of our knowledge, is
the first efficient algorithm that can accurately and quickly detect abnormal human driving mode
switches based on CAVs sensing data without using in-vehicle sensing data that may hurt human-
driver privacy. We first propose a multi-encoder attention based interaction-aware trajectory
prediction model called MEATP. Based on the predictor MEATP, we further develop an abnormal
behavior detectionmethod. Through extensive experiments on both public dataset and simulator,We
show that (1) our proposed MEATP predictor outperforms the baselines; (2) our proposed algorithm
detects abnormal behaviors with remarkable high accuracy (the best performance achieves detection
rate of 97.3%) and low detection delay; (3) shared information boosts the performance of both
trajectory prediction and abnormal behavior detection.
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