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ABSTRACT
Graph neural network (GNN)-based models have been extensively
studied for recommendations, as they can extract high-order col-
laborative signals accurately which is required for high-quality
recommender systems. However, they neglect the valuable informa-
tion gained through negative feedback in two aspects: (1) different
users might hold opposite feedback on the same item, which ham-
pers optimal information propagation in GNNs, and (2) even when
an item vastly deviates from users’ preferences, they might still
choose it and provide a negative rating. In this paper, we propose a
negative feedback-aware recommender model (NFARec) that maxi-
mizes the leverage of negative feedback. To transfer information
to multi-hop neighbors along an optimal path effectively, NFARec
adopts a feedback-aware correlation that guides hypergraph convo-
lutions (HGCs) to learn users’ structural representations. Moreover,
NFARec incorporates an auxiliary task - predicting the feedback
sentiment polarity (i.e., positive or negative) of the next interaction
- based on the Transformer Hawkes Process. The task is benefi-
cial for understanding users by learning the sentiment expressed
in their previous sequential feedback patterns and predicting fu-
ture interactions. Extensive experiments demonstrate that NFARec
outperforms competitive baselines. Our source code and data are
released at https://github.com/WangXFng/NFARec.
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Figure 1: Illustration of motivation. In (a), vanilla GCN opera-
tors transmit messages from𝑢3 to 𝑖4 through their interactive
connections. However, the optimal message-passing path, ei-
ther (𝑢3 −→ 𝑖3 −→ 𝑢1 −→ 𝑖4) or (𝑢3 −→ 𝑖6 −→ 𝑢2 −→ 𝑖4), is determined
by the user, 𝑢1 or 𝑢2, with greater similarity to 𝑢3 in (b).

Development in Information Retrieval (SIGIR ’24), July 14–18, 2024, Washing-
ton, DC, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3626772.3657809

1 INTRODUCTION
With the advent of the internet era, effective recommender sys-
tems bring considerable benefits to both service supporters and
customers in various fields, such as social service, movie, and book
recommendations [25, 34, 47, 50]. Graph convolution networks
(GCNs) have been widely employed to capture user–item inter-
active signals for recommendations due to their effectiveness in
capturing high-order structural features [6, 8, 11]. Several authors
have incorporated self-supervised learning [44, 46], hypergraph
correlations [37, 38, 46], and contrastive augmentations [1, 14, 43]
into neural graph learning to boost the representation capability of
node embeddings. However, they do not pay attention to the fact
that individual users may give different or conflicting feedback for
the same item, making GCNs generate flawed node representations.
For instance, in Fig. 1, both user 𝑢1 and 𝑢2 exhibit similarity with
user𝑢3. This is because𝑢1 and𝑢3 provide positive feedback on item
𝑖3, and both 𝑢2 and 𝑢3 give positive feedback on item 𝑖6. However,
there is a divergence in their preferences when it comes to item 𝑖4;
𝑢1 provides positive feedback, while 𝑢2 provides negative feedback.
Typically, recommender algorithms assess whether user 𝑢1 or 𝑢2 is
more similar to 𝑢3 to predict the preferences of user 𝑢3 for item 𝑖4.
If 𝑢3 expresses a positive sentiment score toward item 𝑖4, the path
(𝑢3 −→ 𝑖3 −→ 𝑢1 −→ 𝑖4) should be the optimal message-passing than
the path (𝑢3 −→ 𝑖6 −→ 𝑢2 −→ 𝑖4). The observations show that when
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treating neighboring nodes equally in GCNs, conducting convo-
lution along the connections between nodes results in a lack of
distinction among nodes. This suggests that user feedback is an
important factor to guide message-passing in GCNs.

Negative feedback from interactive events, such as low ratings
[9, 27], clicking dislikes [5, 33, 54], or skipping content [5, 9], have
been utilized to generate negative representations for recommen-
dations. However, their approaches learn the negative and positive
representations independently. This results in their methods failing
to effectively capture behavioral features across users’ interacted
items. Even though these items receive diverse positive and nega-
tive feedback, there still exists some connection among them that
leads to interactions with the same user. Several recent studies
either exclude negative instances, such as ratings below 4 out of 5
[44, 45, 47], or regard all interaction records as positive feedback.
These approaches either simplify the task, which deviates from
real-world scenarios, or overlook crucial feedback features to en-
rich user representations, leading to a performance decrease. In
contrast, our solution is to utilize interaction feedback to guide
GCN operators to learn both behavioral features and user feedback.

User sequential patterns, such as time-aware patterns [4], long-
and short-term user behaviors [2, 26], and spatiotemporal rela-
tionships [15, 21], are extensively employed to improve sequential
recommendations [11, 22, 24, 39, 41]. More recently, several efforts
[29, 37, 38] have been made to integrate sequential and graph-
based representations for recommendations. Despite their inspiring
results, they overlook the fact that even though an item signifi-
cantly diverges from a user’s preferences, the user may still try
it and provide negative feedback. The issue prevents the model
from understanding user behavioral characteristics. For instance,
some customers prefer products with lower prices over reputations,
while others may prefer to be cautious and only engage with highly
rated items after a thorough evaluation. Hence, it is beneficial for
understanding users by learning the sentiment expressed in their
previous sequential patterns of feedback, together with predicting
whether they will interact with an item or not.

Motivated by the aforementioned issues, we propose a negative
feedback-aware recommender model (NFARec) that maximizes the
use of negative feedback in sequential and structural patterns. For
sequential patterns, the NFARec incorporates an auxiliary task -
predicting the feedback sentiment polarity of the next interaction
- based on the Transformer Hawkes Process (THP). This is moti-
vated by the advantage of the THP to model the influence of past
events on the current event, whose impact diminishes over time.
As such, the task prompts the NFARec to recognize the items that
the user interacted with but may not prefer and learn the emotional
relatedness between those interacted items to understand users.

To enhance the modeling of structural patterns, we propose a
two-phase hypergraph convolution (HGC) approach that leverages
high-order feedback relations between users and items. In the initial
stage, we employ HGCs to capture correlations beyond pairwise
interactions among users and items via a user hypergraph, in which
a hyperedge denotes a user and nodes in the hyperedge refer to the
items interacted by the user. Then, we guide the HGC operator to
efficiently exchange messages between neighboring nodes during
convolutions through a high-order feedback-aware path. The main
contributions of our work can be summarized as follows:

• We propose a negative feedback-aware recommender model
that maximizes the leverage of negative feedback in sequen-
tial and structural patterns.

• We adopt an auxiliary task to learn the sentiment relatedness
between the user’s interacted items based on THP. We em-
pirically find that the task promotes the NFARec to identify
items the user has interacted with but may not prefer.

• We propose a two-phase HGC approach that leverages feed-
back relations between users and items to construct an opti-
mal path for message-passing in HGC.

• Extensive experiments on five public real-world datasets
demonstrate that our NFARec model outperforms SOTA rec-
ommender methods.

2 RELATEDWORK
Sequential Neural Network for Recommendation. Early ef-
forts [12, 13] concentrate on modeling user sequential trajectories
for recommendations. For instance, Wang et al. [26] propose to
mine periodic and short-term patterns from sequential behaviors.
Luo et al. [15] exploit spatiotemporal information of the historical
check-ins. Yang et al. [41] present a user-agnostic global trajectory
flow map to learn discontinuous interactions. Since then, attention-
based algorithms [3, 22, 30, 35] have been explored to learn repre-
sentative items from historical interactions. Furthermore, attempts
[2, 37, 38, 52] to incorporate sequential and spatial representations
gained inspiring results. Another attempt has beenmade to improve
training strategies, such as predicting masked items [20] and inten-
tion disentanglement [16]. More recently, contrastive learning (CL)
draws intensive attention to derive self-supervision signals from
user behavior sequences [4, 39]. However, they neglect that a user
may still provide negative feedback on an item that significantly
diverges from the user’s preferences.
Graph Neural Network for Recommendation. Many efforts
[8, 18, 25, 31, 32, 34, 47] in GCNs have been made to capture high-
order signals from the user–item interactive graph. Several au-
thors perform theoretical strategies to enhance GCNs, including
pre-training GCNs [6], low-pass collaborative filter networks [50],
multi-view intent disentangle graph networks [53]. Furthermore,
contrastive augmentations uniformize graph embeddings by en-
suring the consistency between representations derived from con-
trastive graph views [1, 14, 43, 44]. These approaches are further
improved to mine rich information against data sparsity by stack-
ing Transformers behind GCN layers [29, 37, 38]. However, few of
them address the different feedback for the same item in GCN that
results in defective node representations.
Negative Feedback Learning for Recommendation. Recent
work exploits interactive events that provide negative feedback,
such as low ratings [9, 27], dislikes [5, 33, 54], or skipped content
[5, 9], to create negative representations for recommendations. They
treat negative and positive representations independently, failing
to capture behavioral features across users’ interacted items. Some
attempts exclude negative instances (e.g., ratings below 4 [44, 45,
47]) or regard all interaction records as positive feedback. They
either make the task deviate from real-world scenarios or lose
feedback features, resulting in a performance drop.
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3 PRELIMINARIES
3.1 Definitions
(User-Item Feedback Graph). The user-item feedback graph G
= (U, I, E) shows the network of feedback correlations between
users and items, where U and I denote a set of users and items,
respectively. E = { 𝜁𝑢,𝑖 |𝑢 ∈ U, 𝑖 ∈ I} denotes the set of edges. Each
element 𝜁𝑢,𝑖 equals 1 if user 𝑢 provides positive feedback for item 𝑖 ,
-1 if user 𝑢 gives negative feedback for item 𝑖 , and 0 otherwise.
(Item Recommendation). Given a user historical interaction set
S, where S (𝑢 ) = {𝑖𝑘 }

|S (𝑢) |
𝑘=1 denotes the item sequence of user 𝑢,

and |S (𝑢 ) | refers to the number of items in S (𝑢 ) , the goal is to
generate a list of candidate items with the probabilities.

3.2 Hawkes Process
The basic concept of the Hawkes Process [7] is to model the impact
of past events on the occurrence of the current event, and the
influence decreases over time. The original proposal suggests using
exponential and power-law functions for the intensity function.
Thereafter, due to the capacity of recurrent neural networks (RNNs)
in modeling hidden states of sequential events, Mei and Eisner [17]
propose a neural Hawkes process (NHP) to replace the intensity
function with the learning process of RNNs. More recently, since the
Transformer [23] can capture long-range dependencies between
every two events in the sequence, Zuo et al. [55] propose THP
that adopts the self-attention mechanism as the core of its intensity
function. Motivated by this, we utilize the THP to infer the feedback
sentiment polarity of the next interactions, to capture underlying
sentiment towards users’ interacted items.

3.3 Enhanced HGC with Feedback
HGCs have been extensively employed to mine user–item collabora-
tive signals in recommendations that go beyond pairwise user-item
connections [10, 37, 38, 40, 46] since each hyperedge in the hyper-
graph can connect more than two nodes [48, 49]. They typically
regard nodes equally weighted in each hyperedge to perform con-
volution, while neglecting that various users may give opposite
feedback for the same items. As shown in Fig. 1 (b), the feedback
sentiment of items 𝑖3 and 𝑖4 given by user 𝑢1 are both positive,
indicating that the HGC operator should pass information from 𝑖3
to 𝑖4. In contrast, there should be fewer messages from 𝑖6 to 𝑖4 as
user 𝑢2 gives different negative feedback on these two items. To
address the issue, we introduce a two-phase HGC approach that
leverages feedback relations between users and items to perform
more efficient information propagation during convolutions.

4 METHODOLOGY
The framework of NFARec is illustrated in Fig. 2, which consists of
sequential and structural representation learning.

4.1 Sequential Representation Learning
Given a matrixV ∈ R | I |×𝑑𝑚 representing item embeddings, where
𝑑𝑚 is the dimension size, the embedding 𝑣𝑖 for an item 𝑖 is obtained
by using the one-hot vector v

′
𝑖
∈ R | I | as a slicing operation that

selects corresponding item embedding vectors onV: 𝑣𝑖 = Vv
′
𝑖
.

Since each of the past interactions has an impact on the current
interaction occurrence, we employ the Transformer blocks to cap-
ture long-term sequential dependencies through the self-attention
scores as shown in the THP of Fig. 2. Considering T𝑡 = {(𝑡 𝑗 , 𝑧 𝑗 ) :
𝑡 𝑗 < 𝑡} as a user’s historical interactions up to time 𝑡 with the feed-
back sentiment polarity 𝑧 𝑗 ∈ {𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, we feed the in-
teraction sequence embeddingV[T𝑡 ] = V ·𝐶𝑜𝑛𝑐𝑎𝑡 ( [v′

1, v
′
2, ..., v

′
𝑡 ])

as the input, e(0)𝑡 into the first layer of the Transformer. Thus, the
representation ê(𝑙 )𝑡 of historical interactions at time 𝑡 in the 𝑙-th
layer is obtained by the following equation:

e(𝑙+1)
𝑡 = 𝛼1

©«
∑︁
𝑗∈T𝑡

Mask(e(𝑙 )𝑡 w𝑞
∗,𝑡 (e

(𝑙 )
𝑗

w𝑘
∗, 𝑗 )

⊤)√︁
𝑑𝑘

ª®¬ e(𝑙 )𝑡 w𝑣
∗,𝑖 , (1)

where 𝛼1 denotes softmax activation function andW𝑞 ,W𝑘 andW𝑣

are three weight matrices. The function Mask(·) refers to a masking
operation [23, 55] using an upper triangular matrix. This ensures
that e𝑡 is informed by e𝑡−1 while avoiding e𝑡−1 from peeking into
future interactions.

After stacking the number of 𝐿1 Transformer layers, an average-
pooling operation, and an L2 norm normalization, we obtain the
hidden representation h(𝑡 𝑗 ) = H𝑗,∗ for each interaction (𝑡 𝑗 , 𝑧 𝑗 ) in
the sequence. The user sequential representations are obtained by
considering the hidden states of users’ historical interactions:

𝑒S𝑢 = SumPooling({h(𝑡 𝑗 ) : 𝑗 ∈ |T𝑡 |}). (2)

To further enhance user sequential representations by ensuring
sentiment consistency among interacted items, we introduce an
auxiliary task, i.e., predicting the feedback sentiment polarity of the
next interaction. Specifically, let 𝜆(𝑡 |T𝑡 ) be the conditional intensity
function to model the influence of the past interactions up to time 𝑡 .
It accumulates the influences of both types of feedback in the past
interactions as follows:

𝜆(𝑡 |T𝑡 ) =
𝑍∑︁
𝑧

𝜆𝑧 (𝑡 |T𝑡 ), (3)

where the intensity (𝜆𝑧 (𝑡 |T𝑡 )) at time 𝑡 is determined by the his-
torical hidden state h(𝑡 𝑗 ), along with the current state denoted as
𝛼𝑧

𝑡−𝑡 𝑗
𝑡 𝑗

(where 𝑡 𝑗 is the timestamp of the last interaction before 𝑡 ):

𝜆𝑧 (𝑡 |T𝑡 ) = softplus
(
𝛼𝑧
𝑡 − 𝑡 𝑗
𝑡 𝑗

+ MLP(h(𝑡 𝑗 ))
)
, (4)

where softplus(𝑥) = 𝛽𝑧 log(1 + exp(x/𝛽z)) is the softplus function
with a trainable softness parameter 𝛽𝑧 and 𝛼𝑧 indicates a learnable
parameter. The goal of the task is to maximize the intensity of the
feedback sentiment polarity for every next interaction, i.e., 𝑗 ∈ |T𝑡 |,
which is given by:

𝑧 𝑗+1 = argmax
𝑧

𝜆𝑧 (𝑡 𝑗+1 |T𝑡 )
𝜆(𝑡 𝑗+1 |T𝑡 )

. (5)

It is noteworthy that the hidden representation h(𝑡) byNFARec is
enhanced throughout the auxiliary task by predicting the feedback
polarity of every next item. As such, NFARec explores the sentiment
relatedness among the items in the interaction sequences. This
enables NFARec to learn to predict items that the user will interact
with, even if the user may not necessarily prefer them.
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Figure 2: Architecture of our NFARec framework. NFARec learns negative feedback in both sequential and structural patterns.

4.2 Structural Representation Learning
Motivated byHGCs [29, 37, 38, 40, 42], we propose a two-parse HGC
paradigm to exploit the rich feedback features. As illustrated in Fig.
2, the paradigm includes an interactive hypergraph convolution
and a multi-order feedback-aware aggregation.
Interactive Hypergraph Convolution. Following the works [8,
29] that simplify GCNs and make them more appropriate for rec-
ommendations, we removed the global weight matrix and added
a linear feature transformation (W1 ∈ R𝑑𝑚×𝑑𝑚 ). Given the global
item embeddings V as the input Λ(0) of the first layer and the
user hyperedge H (𝑢 ) ∈ R1×|I | , the matrix equivalence form of
informative diffusion in the HGC is as follows:

Λ(𝑙+1) = H (𝑢 ) ÂH (𝑢 )⊤𝛼2 (Λ(𝑙 )W1), (6)

where Λ(𝑙 ) ∈ R | I |×𝑑𝑚 indicates the output of the 𝑙-th HGC layer,
𝛼2 is the ELU activation function, and Â denotes the symmetrically
normalized adjacency matrix:

Â = D− 1
2 AD− 1

2 , (7)

where A ∈ R | I |× |I | denotes the global adjacent matrix for the
item-item graph, and 𝑎𝑖 𝑗 = 1, if item 𝑖 and 𝑗 have interacted with
the same user, otherwise 0. D ∈ R | I |× |I | is a diagonal matrix in
which each entry 𝑑𝑖 𝑗 denotes the number of nonzero entries in the
𝑖-th row vector of the adjacency matrix A.

After repeating the number of 𝐿2 HGCs and an average pool-
ing operation, the user structural representations are obtained by

aggregating the representations of users’ interacted items:

𝑒
H1
𝑢 = AvgPooling(Λ(𝐿2 ) ) . (8)

Feedback-awareAggregation. To spread the information through
an optimal path during convolution, we exploit user feedback to
enhance HGC operators. There are two common scenarios among
adjacent nodes, which are illustrated in Fig. 3: (a) opposite feed-
back, where user 𝑢 𝑗 provides positive and negative feedback on 𝑖1
and 𝑖2, respectively; (b) multiple feedback, where three users — 𝑢 𝑗 ,
𝑢𝑘 , and 𝑢𝑙 — offer varying feedback on 𝑖1 and 𝑖2. Hence, we con-
struct a feedback correlation matrixZ ∈ R |U |× |I | . Each element
𝜁𝑖, 𝑗 of Z is set to 1 if user 𝑢𝑖 provides positive feedback for item
𝑣 𝑗 , -1 if user 𝑢𝑖 gives negative feedback for item 𝑣 𝑗 , and 0 other-
wise. Subsequently, we create the 1st-order feedback correlation
matrix X (0) ∈ R | I |× |I | by incorporating feedback among users
interacting with the same items:

X (0) =



𝜒
(0)
1,1 𝜒

(0)
1,2 · · · 𝜒

(0)
1, | I |

𝜒
(0)
2,1 𝜒

(0)
2,2 · · · 𝜒

(0)
2, | I |

.

.

.
.
.
.

. . .
.
.
.

𝜒
(0)
|I |,1 𝜒

(0)
|I |,2 · · · 𝜒

(0)
|I |, | I |


, 𝜒

(0)
𝑖, 𝑗

=
∑︁
𝑢∈U

𝜁𝑖,𝑢 · 𝜁𝑢,𝑗
|U| .

(9)
To model the multi-hop feedback correlations, such as the rela-

tionship between item 𝑖1 and 𝑖3 in Fig. 3 (c), we distill the high-order
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Figure 3: Illustration of various feedback.

relationships from the 1st-order feedback correlations. The correla-
tion matrices denoted by X (𝑙 ) are computed layer by layer:

X (𝑙+1) =



𝜒
(𝑙+1)
1,1 𝜒

(𝑙+1)
1,2 · · · 𝜒

(𝑙+1)
1, | I |

𝜒
(𝑙+1)
2,1 𝜒

(𝑙+1)
2,2 · · · 𝜒

(𝑙+1)
2, | I |

.

.

.
.
.
.

. . .
.
.
.

𝜒
(𝑙+1)
|I |,1 𝜒

(𝑙+1)
|I |,2 · · · 𝜒

(𝑙+1)
|I |, | I |


, 𝜒

(𝑙+1)
𝑖, 𝑗

=
∑︁
𝑣∈I

𝜒
(𝑙 )
𝑖,𝑣

· 𝜒 (𝑙 )
𝑣,𝑗

|I | .

(10)
To integrate the multi-order correlations across different orders,

we define the correlation matrix by X̂ = (X (0) + X (1) + · · · ). Simi-
lar to Eq. (1), we utilize the masking technique to avoid message-
passing between conflicting nodes. Specifically, if an element in
the mask is below 0, it is masked; otherwise, it remains unchanged.
The feedback-aware user representation is given as follows:

𝑒
H2
𝑢 = AvgPooling(H (𝑢 )Mask(X̂)Λ(𝐿2 ) ). (11)

Recall that the HGC paradigm models the interactions between
users and items in the first stage, and utilizes the feedback to guide
HGC operators in the second stage, enabling the NFARec to learn
both behavioral features and user feedback for recommendations.

4.3 Sequential and Structural Decoder
We employ the inner products between user sequential and struc-
tural embeddings, i.e., 𝑒S𝑢 and 𝑒H1

𝑢 , and the item embeddings, i.e.,
V , to infer their preferences in candidate items. In addition, the
model leverages the feedback-aware structural feature, 𝑒H2

𝑢 , to en-
hance its robustness to user feedback. We define the sequential,
structural, and feedback-aware structural features as Seq, Gra1, and
Gra2, respectively. The final rating scores over all candidate items
are given by:

r𝑢,∗ = 𝛼3 (𝑒S𝑢 V⊤︸ ︷︷ ︸
Seq

+ 𝑒H1
𝑢 V⊤︸   ︷︷   ︸
Gra1

+𝛿MLP(𝑒H2
𝑢 )︸        ︷︷        ︸

Gra2

), (12)

where MLP denotes a linear transformer to decode Gra2 and 𝛼3 in-
dicates the tanh activation function. 𝛿 refers to the hyperparameter
to assign weight to the third term.

4.4 Model Optimization
The NFARec consists of a main task, a recommendation, and an
auxiliary task, the next feedback sentiment polarity prediction.
Recommendation.We adopt a weighted multi-label cross-entropy
loss [29] as the main objective function:

L𝑚𝑎𝑖𝑛 =
∑︁

(𝑢∈U)

∑︁
(𝑖∈I)

−𝑐𝑢,𝑖 ∗ 𝛾 (𝑢 )𝑖
log(𝛼4 (r̂𝑢,𝑖 )), (13)

Table 1: Statistics of datasets. "#Avg." denotes the average
count of users’ interactions. “Perc.(#Pos/#Neg)” refers to the
percentage of positive and negative samples.

Dataset #Users #Items #Interactions Perc.(#Pos/#Neg) #Avg.

Yelp 2023 48,993 34,298 3,415,569 72.4%/27.6% 39.5
Beauty 22,363 12,101 198,502 80.2%/19.8% 8.9
Book 19,804 22,086 1,273,679 80.6%/19.4% 64.3
Recipes 7,452 12,911 311,389 82.5%/17.5% 41.8

MovieLens 6,041 3,955 1,000,209 73.5%/26.5% 165.6

where 𝛾 (𝑢 ) ∈ R | I | represents a label vector, in which the element
equals 1 if the corresponding item is a ground-truth candidate;
otherwise, 0. 𝛼4 denotes the sigmoid activation function. 𝑐𝑢,𝑖 is set
to 𝛽1 when the user has interacted with the item, 𝛽2 when the user
will interact with the item, and 0 otherwise.
Next Feedback Sentiment Polarity Prediction. Given user 𝑢’s
interaction sequence S𝑢 with a time interval of [𝑡1, 𝑡 |S𝑢 | ], the log-
likelihood for the task is given as follows:

L𝑎𝑢𝑥𝑖 =
∑︁

(𝑢∈U)
(

|S𝑢 |∑︁
𝑗=1

log 𝜆(𝑡 𝑗 |T𝑡 )︸              ︷︷              ︸
interactive log-likelihood

−
∫ 𝑡 |S𝑢 |

𝑡1

𝜆(𝑡 |T𝑡 )𝑑𝑡︸               ︷︷               ︸
continuous log-likelihood

) .

(14)
The task is learned by maximizing interactive and continuous

log-likelihood. The final multi-task objective loss is given by:
L𝑓 𝑖𝑛𝑎𝑙 = L𝑚𝑎𝑖𝑛 + 𝛿2L𝑎𝑢𝑥𝑖 , (15)

where 𝛿2 is the hyperparameter for the auxiliary task.
To make the continuous log-likelihood, i.e., Δ =

∫ 𝑡 |S𝑢 |
𝑡𝑖

𝜆(𝑡 |T𝑡 )𝑑𝑡 ,
trainable by back-propagation, we exploit Monte Carlo integration
(MCI) [19] following Zuo et al.’s work [55], which leverages random
sampling to estimate definite integrals, to approximate Δ:

Δ̂𝑀𝐶𝐼 =

|𝑆𝑢 |∑︁
𝑗=2

(𝑡 𝑗 − 𝑡 𝑗−1)
(

1
𝑁

𝑁∑︁
𝑘=1

𝜆(𝑥𝑘 )
)
, (16)

where 𝑁 represents the number of sampling points in MCI, and
𝑥𝑘 ∼ uniform(𝑡 𝑗−1, 𝑡 𝑗 ) is a uniform distribution such that 𝜆(𝑥𝑘 )
can be calculated by back-propagation through the NFARec and
the unbiased estimation E[Δ̂𝑀𝐶𝐼 ] is equal to Δ.

5 EXPERIMENT
5.1 Experimental Setup
Datasets and Evaluation Metrics. To examine user feedback, we
collected five public datasets with rating scores, i.e., Yelp 20231,
Beauty2, Books3, Recipes4, and MovieLens [14]. Similar to previous
works [9, 27, 44, 45, 47], we regard interactions with ratings below
4 as negative feedback; others are positive. We exclude users and
items with fewer than 𝑛 interactions, where 𝑛 is 15, 10, 25, and 5 for
Yelp 2023, Recipes, Books, and Beauty, respectively. The statistical
1https://www.yelp.com/dataset
2https://www.kaggle.com/datasets/skillsmuggler/amazon-ratings/
3https://jmcauley.ucsd.edu/data/amazon/links.html
4https://www.kaggle.com/datasets/shuyangli94/food-com-recipes-and-user-
interactions/
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Table 2: Performance comparison of recommendermodels. Bold: Best, underline: Second best. “*” indicates that the improvement
is statistically significant (p-value < 0.01) in the 10-trial T-test.

Dataset Metric CF-based GCN-based GCL-based Dif-based S&G-based Ours Improv. p-value
DirectAU InvCF LightGCN SGL HCCF NCL LightGCL XSimGCL DiffRec SHT AutoCF EEDN

Yelp 2023

Recall@5 0.0316 0.0321 0.0344 0.0366 0.0299 0.0360 0.0341 0.0376 0.0323 0.0340 0.0391 0.0426 0.0449 +5.6% * 1.4e-07
NDCG@5 0.0497 0.0607 0.0540 0.0551 0.0426 0.0535 0.0479 0.0566 0.0487 0.0619 0.0614 0.0668 0.0741 +10.9% * 2.4e-09
Recall@10 0.0517 0.0464 0.0564 0.0581 0.0403 0.0572 0.0502 0.0590 0.0529 0.0476 0.0535 0.0672 0.0707 +5.2% * 2.2e-06
NDCG@10 0.0507 0.0644 0.0587 0.0603 0.0457 0.0571 0.0498 0.0595 0.0548 0.0673 0.0704 0.0733 0.0778 +6.1% * 4.9e-07
Recall@20 0.0722 0.0798 0.0752 0.0721 0.0518 0.0795 0.0675 0.0857 0.0809 0.0796 0.0939 0.1031 0.1074 +4.2% * 6.1e-06
NDCG@20 0.0714 0.0795 0.0715 0.0740 0.0526 0.0743 0.0661 0.0756 0.0713 0.0785 0.0810 0.0858 0.0894 +4.1% * 2.2e-06

MovieLens

Recall@5 0.0726 0.0728 0.0603 0.0665 0.0603 0.0673 0.0690 0.0726 0.0642 0.0698 0.0691 0.0737 0.0789 +7.1% * 1.8e-08
NDCG@5 0.2969 0.3144 0.2438 0.2767 0.2490 0.2579 0.2556 0.3165 0.2710 0.2822 0.3084 0.3222 0.3716 +15.3% * 1.9e-12
Recall@10 0.1044 0.1085 0.0863 0.1069 0.0967 0.1029 0.1046 0.1037 0.0923 0.1072 0.0991 0.1136 0.1213 +6.7% * 8.3e-06
NDCG@10 0.2819 0.2831 0.2476 0.2829 0.2539 0.2497 0.2494 0.2754 0.2670 0.2739 0.2729 0.2878 0.3314 +15.1% * 3.03-13
Recall@20 0.1504 0.1481 0.1107 0.1432 0.1287 0.1298 0.1313 0.1426 0.1204 0.1509 0.1470 0.1628 0.1736 +6.6% * 3.5e-07
NDCG@20 0.2592 0.2537 0.2047 0.2541 0.2312 0.2479 0.2540 0.2481 0.2284 0.2400 0.2452 0.2631 0.3007 +14.2% * 5.6e-10

Recipes

Recall@5 0.0235 0.0167 0.0208 0.0265 0.0224 0.0207 0.0164 0.0253 0.0193 0.0249 0.0162 0.0269 0.0292 +8.6% * 1.6e-09
NDCG@5 0.0359 0.0352 0.0283 0.0365 0.0330 0.0267 0.0257 0.0389 0.0283 0.0377 0.0264 0.0395 0.0418 +9.4% * 1.5e-08
Recall@10 0.0426 0.0266 0.0333 0.0406 0.0340 0.0330 0.0296 0.0419 0.0324 0.0405 0.0273 0.0401 0.0442 +5.5% * 3.6e-06
NDCG@10 0.0429 0.0254 0.0304 0.0382 0.0332 0.0293 0.0275 0.0435 0.0305 0.0412 0.0237 0.0429 0.0459 +5.5% * 1.4e-06
Recall@20 0.0595 0.0376 0.0399 0.0566 0.0386 0.0402 0.0360 0.0595 0.0416 0.0560 0.0331 0.0592 0.0609 +2.4% * 1.4e-03
NDCG@20 0.0476 0.0227 0.0329 0.0465 0.0346 0.0319 0.0299 0.0481 0.0392 0.0406 0.0186 0.0475 0.0492 +2.3% * 2.3e-04

Books

Recall@5 0.0392 0.0301 0.0329 0.0338 0.0252 0.0359 0.0275 0.0440 0.0254 0.0317 0.0329 0.0473 0.0489 +3.4% * 1.7e-04
NDCG@5 0.0973 0.0827 0.0905 0.0874 0.0524 0.0912 0.0723 0.1029 0.0654 0.0834 0.0890 0.1082 0.1139 +5.3% * 1.0e-06
Recall@10 0.0696 0.0590 0.0655 0.0693 0.0474 0.0667 0.0513 0.0712 0.0484 0.0680 0.0516 0.0729 0.0753 +3.3% * 1.1e-05
NDCG@10 0.0988 0.0804 0.0956 0.0896 0.0635 0.0969 0.0715 0.0990 0.0632 0.0913 0.0727 0.1011 0.1065 +5.3% * 3.1e-07
Recall@20 0.1029 0.0854 0.0994 0.0981 0.0670 0.0971 0.0672 0.1037 0.0647 0.0828 0.0762 0.1075 0.1112 +3.4% * 7.8e-05
NDCG@20 0.1024 0.0792 0.1007 0.0992 0.0812 0.0943 0.0645 0.1033 0.0560 0.0799 0.0730 0.1099 0.1141 +3.9% * 1.1e-08

Beauty

Recall@5 0.0518 0.0530 0.0489 0.0522 0.0367 0.0521 0.0468 0.0548 0.0479 0.0520 0.0490 0.0548 0.0585 +6.8% * 5.7e-07
NDCG@5 0.0447 0.0476 0.0414 0.0467 0.0344 0.0453 0.0417 0.0486 0.0402 0.0415 0.0437 0.0476 0.0514 +8.0% * 7.8e-07
Recall@10 0.0725 0.0710 0.0704 0.0737 0.0517 0.0688 0.0615 0.0733 0.0657 0.0719 0.0759 0.0779 0.0811 +4.1% * 1.2e-06
NDCG@10 0.0527 0.0522 0.0499 0.0530 0.0387 0.0502 0.0488 0.0557 0.0476 0.0513 0.0542 0.0558 0.0596 +6.8% * 8.1e-09
Recall@20 0.0908 0.1022 0.0879 0.0939 0.0672 0.0839 0.0803 0.1007 0.0876 0.0901 0.1034 0.1054 0.1103 +4.6% * 3.0e-05
NDCG@20 0.0614 0.0613 0.0570 0.0607 0.0413 0.0529 0.0499 0.0640 0.0517 0.0587 0.0625 0.0648 0.0683 +5.4% * 4.1e-05

details are summarized in Table 1. Following [29, 47], we split each
dataset into training, validation, and test data with a ratio of 7:1:2.
We employed the widely used Recall@𝐾 (R@𝐾) and NDCG@𝐾
(N@𝐾 ) with 𝐾 ∈ {5, 10, 20} as metrics to evaluate performance.
Baselines. We compared the NFARec with the following 12 SOTA
recommender models which are classified into five groups:
- Collaborative Filtering (CF)-based method:

DirectAU [25] optimizes alignment and uniformity of graph
embeddings in the hypersphere. InvCF [51] discovers disentangled
the preference and popularity semantics for recommendations.
- Graph Convolution Network (GCN)-based method:

LightGCN [8] simplifies GCNs, making them more appropriate
for recommendations. SGL [34] exploits a self-supervised task to
reinforce node representation.HCCF [34] proposes hypergraph-
enhanced cross-view contrastive learning for recommendations.
- Graph Contrastive Learning (GCL)-based method:

NCL [14] regards users (or items) and their structural neighbors
as contrastive pairs. LightGCL [1] utilizes singular value decom-
position for refining contrastive learning. XSimGCL [47] adds
uniform noise to the embedding space to create contrastive views.
- Diffusion (Dif)-based method:

DiffRec [28] learns the generative process in a denoisingmanner
from personalized information in user interactions.

- Sequential and Graph (S&G)-based method:
SHT [38] explores the self-attention- and hypergraph-based col-

laborative relationships. AutoCF [36] exerts self-supervised learn-
ing to automatically augment data for recommendations.EEDN [14]
exploits rich latent features between users, items, and interactions
between users and items.
Implementation and Parameter Settings. The best parameters
of the FNGRec were sampled as follows: 𝛽1, 𝛽2, 𝛿1, and 𝛿2 were set
to 0.12, 1.49, 1.2, and 1e-3 for Yelp 2023, 1.47, 3.99, 1.2, and 0.5 for
MovieLens, 0.12, 3.81, 1.0 and 1e-5 for Recipes, 0.25, 3.53, 1.2, and 1e-
5 for Books, and 0.62, 3.74, 1.2, and 1e-3 for Beauty, respectively. 𝑑𝑚
was 1,024. The numbers 𝐿1 and 𝐿2 of Transformer layers and HGC
layers were 1. These hyperparameters were tuned using Optuna5.
The parameters for the baselines were tuned to attain the best
performance or set as proposed by the authors. We implemented
our NFARec and experimented with Pytorch on Nvidia GeForce
RTX 3090 (24GB memory).

5.2 Overall Performance
Table 2 shows the performance comparison between NFARec and
SOTA baselines on five datasets. The results highlight the effec-
tiveness of NFARec in making the most of negative feedback for

5https://github.com/pfnet/optuna
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recommendations. Specifically, the NFARec surpasses the runner-
ups XSimGCL and EEDN by 4.2 ∼ 5.6% in Recall@𝑘 and 4.1 ∼ 10.9%
in NDCG@𝑘 on the Yelp 2023 dataset, 6.6 ∼ 7.1% in Recall@𝑘 and
14.2 ∼ 15.3% in NDCG@𝑘 on the MovieLens dataset, 2.4 ∼ 8.6% in
Recall@𝑘 and 2.3 ∼ 9.4% in NDCG@𝑘 on the Recipes dataset, 3.3 ∼
3.4% in Recall@𝑘 and 3.9 ∼ 5.3% in NDCG@𝑘 on the Books dataset,
and 4.1 ∼ 6.8% in Recall@𝑘 and 5.4 ∼ 8.0% in NDCG@𝑘 on the
Beauty dataset. Table. 2 also promotes the following observations
and insights:

(1) The S&G-based methods are competitive among baselines,
which indicates the effectiveness of both sequential and graph-
based features to improve performance. Among them, EEDN achieves
the highest performance across all datasets, suggesting that mining
implicit features is beneficial to mitigate exposure bias for rec-
ommendations. However, their underperformance compared to
NFARec shows that they do not take into account negative feed-
back in modeling user-item interactions.

(2) The GCN- and GCL-based methods capture high-order inter-
active information between users and items via GCNs. However,
they typically treat neighboring nodes as equal in GCN and per-
form convolution along the connections between nodes, leading
to a performance drop. The algorithms SGL, NCL, and XSimGCL
outperform others because of their effective graph augmentations
on edges or nodes. The lower effectiveness of LightGCL may be
due to its susceptibility to conflicting feedback from different users,
but this aspect was overlooked.

(3) For the CF-based methods, DirectAU optimizes the perspec-
tive of alignment and uniformity in the hypersphere and InvCF dis-
entangles representations of preference and popularity semantics to
refine the invariant information. They are dedicated to promoting
better user and item representations but neglect the underlying
feedback correlations in the user-item interactive network.

(4) DiffRec utilizes generative diffusion models for personalized
interactive information learning. Its suboptimal performance sug-
gests potential explorations for integrating negative feedback into
conditional diffusion models.

5.3 Ablation Study
We conducted an ablation experiment to examine the effectiveness
of each module in NFARec. Table. 3 shows the result in NDCG@20.
Overall, the sequential features contribute more than the structural
features in NFARec. We have the following findings:

(1) The sequential features enhance performance across five
datasets, with an improvement ranging from 3.5% to 11.1%. This
shows the efficacy of the auxiliary task, which predicts the feedback
sentiment polarity of the next interaction.

(2) On the Yelp 2023, Recipes, and Beauty datasets, the graph-
based feature (Gra1) is effective, but its influence is not drastically
on the Books dataset and harms the performance of the MovieLens
dataset. This indicates that in several real-world scenarios, features
derived from an interactive graph, without addressing conflicting
feedback, have limited or even negative effects on performance.

(3) The feedback-aware graph-based feature benefits the recom-
mendation quality for all datasets. It supports our assertion that
the enhanced HGC operators effectively convey information along
the feedback-aware paths.

Table 3: Ablation study. “w/o X” denotes the removed parts. “Seq”,
“Gra1”, and “Gra2” indicate the sequential, graph-based, and feedback-
aware graph-based features, respectively. Note that on MovieLens,
the results of “w/o Seq” and “w/o Gra2” are obtained without “Gra1”.

Model Yelp 2023 MovieLens Recipes Books Beauty

w/o Seq 0.0862 0.2741 0.0460 0.1026 0.0654
(+3.7%) (+9.7%) (+7.0%) (+11.2%) (+4.4%)

w/o Gra1
0.0866 0.3007 0.0462 0.1133 0.0648
(+3.2%) (-5.2%) (+6.5%) (+0.7%) (+5.4%)

w/o Gra2
0.0873 0.2865 0.0466 0.1094 0.0669
(+2.4%) (+5.0%) (+5.6%) (+4.3%) (+2.1%)

Full 0.0894 0.2851 0.0492 0.1141 0.0683

Table 4: Comparison of sequential encoders. “THP” and “NHP” in-
dicate the Transformer Hawkes process and neural Hawkes process,
respectively. “Masking” refers to the masking technology in Eq. (1).

Encoder Yelp 2023 MovieLens Recipes
R@20 N@20 R@20 N@20 R@20 N@20

Transformer 0.0960 0.0777 0.1512 0.2543 0.0555 0.0407
NHP 0.0921 0.0793 0.1478 0.2402 0.0587 0.0480
THP 0.1074 0.0894 0.1736 0.3007 0.0609 0.0492

w/o Masking 0.1053 0.0876 0.1608 0.2765 0.0574 0.0463

Table 5: Comparison of feedback across various orders.

Metric Yelp 2023 MovieLens Recipes Books Beauty

1-Order R@20 0.1071 0.1725 0.0609 0.1112 0.1098
N@20 0.0892 0.2980 0.0492 0.1141 0.0678

2-Order R@20 0.1074 0.1736 0.0605 0.1111 0.1103
N@20 0.0894 0.3007 0.0486 0.1139 0.0683

3-Order R@20 0.1071 0.1713 0.0602 0.1105 0.1101
N@20 0.0893 0.2961 0.0482 0.1133 0.0681

4-Order R@20 0.1068 0.1709 0.0603 0.1103 0.1083
N@20 0.0884 0.2956 0.0481 0.1131 0.0679

5.4 In-Depth Analysis of NFARec
To further understand the NFARec, we conducted further experi-
ments. Due to the space limit, we excluded contents with similar
observations, i.e., comparisons of sequential encoders on Books
and Beauty datasets, and sensitivity of other hyperparameters.
Effect of Various Sequential Encoders. We compared the en-
coder by NFARec with the Transformer, the neural Hawkes process,
and the THPwithout masking. As illustrated in Table. 4, we have the
following findings: (1) the standalone Transformer as the encoder
cannot attain the best performance, indicating that the sequential
dependencies by Hawkes stochastic process cannot be ignored; (2)
a major drawback of the neural Hawkes process is that it inherits
the weaknesses of RNNs to capture long-term sequential dependen-
cies; and (3) the encoder without masking will peek into the future
and results in a representation degeneration. This indicates that se-
quentially predicting the sentiment polarity of the next interaction
contributes to NFARec for recommendations.
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Figure 4: Visualizations of users’ sequential and structure representations (Reps.) and item representations.

Figure 5: Effect of various 𝛿 on performance.

Effect of Various Orders of Feedback. It is interesting to note
how high-order feedback impacts performance. The results in Table.
5 provide the following findings: (1) the optimal performance is
achieved with a 1-order feedback correlation on the Recipes and
Books datasets, while a 2-order correlation works better on other
datasets; and (2) excessive higher-order information diminishes the
lower-order dependencies, affecting the performance.
Computational Complexity. The computational complexity of
NFARec relies on three components, i.e., sequential representing
learning (O(|S̄ |2), where |S̄ | denotes the average user interaction
count), structure representation learning (O(|I |2)), and the decoder
(O(|I |)). As |I |2 ≫ |S̄|2 + |I |, the computational complexity of
NFARec in a fixed setting is O(|I |2), indicating that considering
the number of items is essential in a real deployment.
Parameter Sensitivity. Fig. 5 shows the effect of various 𝛿 on
performance decline in terms of R@20 and N@20. We can see that
(1) although there exists a slight distinction between Recall@20

and NDCG@20, the optimal value of 𝛿 is approximately 1.2 across
all datasets. and (2) it is more sensitive on the Recipes dataset than
others due to their different data distributions.

5.5 Representation Visualization
To examine the sequential and structural features, we visualize user
and item representations in Fig. 4. Dots with the same color refer to
users who interact with the same item or items that interact with
the same user. We have the following observations:

(1) In the majority of cases, NFARec effectively identifies the
similarities between user and item representations, while the quality
of visualization relies heavily on the datasets. Notably, the clustering
results on the Yelp 2023, Beauty, and Books datasets outperform
others by a significant margin.

(2) Both sequential and structural representations can reveal
which users are similar but reflect different aspects. We can see that
clusters of the same color in two representations exhibit distinct
shapes and distributions on five datasets.

(3) The structural features suggest more cohesion within clusters,
while sequential features exhibit greater dispersion. It indicates
that the former reinforces the similarity and diversity among users,
whereas the latter, by learning more uniform representations, helps
alleviate the issue of inactive users becoming isolated nodes.

(4) Interestingly, the dense stacking of users and items on Movie-
Lens is due to the large number of users engaging with the same
items, averaging 165.6 shown in Table 1. In contrast, the undesired
visualization on the Recipes dataset results from a more challenging
data distribution for recommendations. This is evident in the lower
Recall and NDCG results in Table 2 compared to other datasets.
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Figure 6: Case Study. ✔ and ✘ indicate that the model recommends correctly and incorrectly, respectively. ✘ denotes that the
removed component is the key in each case. We do not show the case study on Gra1, as it is not our main focus.

5.6 Case Study
We collected several apparent cases where NFARec achieves success,
whereas baseline models fall short. We chose the Yelp 2023 dataset
due to its explainable reviews.
Cases for Sequential Representations. We empirically found
two major cases where the sequential representations are effective.
Case 1. The majority of the ground-truth candidates are with neg-
ative feedback. As Case (a) shown in Fig. 6, the user has visited 18
places, and the ground-truth candidates from 𝑖19 to 𝑖23 were rated
negatively by the user. In this scenario, NFARec successfully recom-
mended item 𝑖20, while EEDN incorrectly recommended high-rated
items instead of the items that users will interact with.
Case 2. A user has a long historical visit sequence. In Case (b), the
user has visited 242 places, and NFARec successfully recommended
𝑖285. This is because the THP encoder, attributed to the Transformer,
is crucial for capturing sequential correlations among nodes in long
sequences to reflect their preferences.
Cases for Structural Representations. There are three typical
cases to demonstrate the effectiveness of the feedback-aware struc-
tural representations.
Case 1. A user exclusively visits places with high scores. In Case
(c), the user rates all visited and future-visited places with positive
scores, indicating that the user has less curiosity about unknown
things. NFARec conveys information through an optimal feedback-
aware path during HGCs and reduces message-passing between
conflicting nodes, which is particularly beneficial for the user who
solely entertains places with positive feedback.
Case 2. A user actively explores new things. In Case (d), the major-
ity of the user’s experiences were with negative feedback, indicat-
ing that the user prefers to explore new places. For this user, the

feedback-aware HGC operators in NFARec improve learning cor-
relations between negative interactions, resulting in recommenda-
tions that better reflect real-life situations, even if the recommended
items may be perceived negatively by the user.
Case 3. A user is involved in an intricate interactive network. As
depicted in Case (b) in Fig. 6, the user has visited 242 places, sig-
nifying a substantial interactive network. The NFARec correctly
recommends 𝑖274 to the user based on structural representations.
This indicates that NFARec can discriminate the user’s latent pref-
erences from the complex interactive graph.

6 CONCLUSION
In this paper, we proposed an NFARec that maximizes the utiliza-
tion of negative feedback in sequential and structural patterns for
recommendations. For sequential patterns, NFARec predicts the
feedback sentiment of the next interaction based on the THP. This
prompts the NFARec to identify items that the user has interacted
with but may not prefer. For structural patterns, NFARec adopts
a two-phase HGC approach to guide HGC operators to efficiently
exchange messages along feedback-aware paths. Extensive experi-
ments on five public datasets show that NFARec outperforms SOTA
methods. In the future, we intend to (1) explore the impact of im-
plicit negative feedback to improve performance, such as skipping
content, and (2) incorporate large language models to make more
interpretable recommendations.
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