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ABSTRACT
The advent of Large Language Models (LLMs) provides an opportu-
nity to change the way queries are processed, moving beyond the
constraints of conventional SQL-based database systems. However,
using an LLM to answer a prediction query is still challenging, since
an external ML model has to be employed and inference has to be
performed in order to provide an answer. This paper introduces
LLM-PQA, a novel tool that addresses prediction queries formulated
in natural language. LLM-PQA is the first to combine the capabil-
ities of LLMs and retrieval-augmented mechanism for the needs
of prediction queries by integrating data lakes and model zoos.
This integration provides users with access to a vast spectrum of
heterogeneous data and diverse ML models, facilitating dynamic
prediction query answering. In addition, LLM-PQA can dynamically
train models on demand, based on specific query requirements,
ensuring reliable and relevant results even when no pre-trained
model in a model zoo, available for the task.
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• Information systems→ Question answering, Information extrac-
tion, Data mining.
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1 INTRODUCTION
The recent advancements of Large Language Models (LLMs) has
opened up opportunities in tackling complex language understand-
ing tasks [1, 9]. These breakthroughs have inspired novel database
management technologies, leading to increasing research interest
in natural language to SQL [4, 16]. These works allow users to
formulate data retrieval queries in natural language, simplifying
interactions with database management systems without requiring
in-depth knowledge of SQL syntax.

Consider the scenario where a practitioner needs to know the
insurance charges of a person meeting specific criteria, e.g., a 19-
year-old female non-smoker, with a BMI of 27.9. Suppose the data-
base contains a dataset with insurance charge information based on
various features. The practitioner’s requirement could be resolved
by retrieving the relevant record in the database. However, in cases
where the required data does not exist in the database, using an LLM
alone could lead to unreliable results due to its tendency to generate
hallucinated answers [8]. Instead, performing ML inference with a
model specifically for this task could provide a more reliable answer.
This type of query, requiring ML model prediction to generate the
result, is referred as prediction query [2] (or predictive query [3]).

This scenario exemplifies and highlights the need for innovative
systems that go beyond simple data retrieval, which can further
incorporate advanced predictive analytics in an easy-to-use manner.
However, answering such prediction queries is challenging. First,
the user request needs to be translated into a series of actionable
steps or pipelines. With the same example, the task is to obtain a
value through regression, with other information serving as input
features. Second, it would be impractical to train a new model for
every query due to resource and time constraints. The alternative
solution, finding a suitable pre-trained model, if it exists, is also a
challenge task. For instance, HuggingFace [7] hosts 111 models for
regression tasks, each varying widely in terms of various factors.

To address the challenges mentioned above, we propose a novel
tool, LLM-PQA , designed to handle prediction queries in natural
language. LLM-PQA1 integrates a data lake [5, 14] and a model
zoo [10, 15] that serve as the sources of datasets and models. The
data lake facilitates the management of heterogeneous data across
various domains. It provides the training data for the model training.
While the model zoo offers a wide selection of ML models, tailored

1https://github.com/zLizy/LLM-PQA
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Figure 1: Components of LLM-PQA

to specific analytical tasks. To align the most suitable model with
the task specified in the query, we employ a vector search strat-
egy. In this approach, the query, models, and datasets are encoded
as vectors which are served as indices. The model with the most
similar vector to the query vector is selected as the candidate for
model inference, ensuring a relevant and efficient response to the
query. Moreover, LLM-PQA can also deliver reliable results even
when no pre-trained model is available. It allows ML model train-
ing “on the spot" based on the specific requirements of the query.
The contributions of this work can be summarized as below:

• Handling prediction queries beyond standard retrieval:
LLM-PQA is designed to handle prediction queries, formulated
in natural language. This allows for a more intuitive user
interaction while addressing complex analytical needs.

• Matching model to query with vector search: Another
critical contribution is the innovative matching mechanism,
which accurately pairs a model to a specific task given a
query. This tool integrates a data lake and amodel zoo, which
together provide access to a diverse collection of datasets
and ML models, thereby facilitating precise model selection.

• On-the-Spot model training capability: LLM-PQA is able
to train ML models tailored to the specific need of a query,
which ensures high accuracy and relevance in the responses.

2 ARCHITECTURE
In this section, we introduce the architecture of LLM-PQA, designed
to answer prediction queries expressed in natural language. We
first introduce the components and then illustrate the workflow.

2.1 Components
LLM-PQA consists of the following components, as shown in Figure 1,
arranged in layers that collectively contribute to answering a query.

Prediction query. This is the input provided by the user, which
consists of a task that requires ML model inference to obtain the
results. The query is expressed in natural language.

Core processor. The main functionalities are performed in this
layer. The layer is responsible of retrieving matched model and
dataset given a user query, and then perform model inference. We
perform a vector search to retrieve the model and dataset. The
processes include i) vectorizing/indexing the query, ii) retrieving

Model & Data Retrieval

Model Inference

Similarity
Search 

⓸ ⓹

Model
exists?

Model Training

Vector Store

⓷

Model Zoo

Feature
Mapping

Feature
Mapping

⓶
Query
Vector

UI

   Query⓵

Response

...

Data Lake

Figure 2: The workflow of answering prediction query

corresponding dataset and model with similarity search given the
query vector, and iii) performing ML model inference to obtain the
results. Detailed explanations are illustrated in Section 2.2.

Indexing layer. To support vector search, datasets and models
are indexed in the form of vectors. All the vectors, including the ones
for query, datasets and models, should apply the same encoding
method, using the same encoding model to generate the vectors.
The indexed entities are stored in a database system.

Model, data, and metadata management. To provide sources
for the datasets and model collection, in the foundation layer of
LLM-PQA, we employ our previous data lake [5, 12] and model
zoo [11]. A model zoo [10, 11, 15] is a collection of diverse ML mod-
els of different capabilities, which can be updated and expanded
with new models being trained. A data lake [6, 14] is a data man-
agement system that stores a vast amount of raw data in its native
format with metadata regarding its structure and other information.
In LLM-PQA, all the models and datasets are associated with a unique
profile, which can be regarded as a model/dataset card. Currently,
the system includes 52 model cards and 50 dataset profiles.

2.2 Workflow
We present the workflow of LLM-PQA in Figure 2. The depicted
workflow illustrates the process of addressing the ML inference
query in natural language. The process initiates with a user query
in step ①. The query could contain analytic requests on top of the
stored datasets, encompassing predictive and classification tasks.

Indexing query, models and datasets. As the preparation
process, we first index these entities into vectors, as in Figure 3.
Each model and dataset consist of its raw files (e.g., script, weights,
data documents) as well as a profile describing detailed information,
e.g., metadata, statistics, etc.We use a text encoder, ‘text-embedding-
ada-002’, from OpenAI, to generate the embedding vectors from
the descriptive profiles. The model profile includes training details,
for example the training dataset, used features, performance. The
dataset profile contains information regarding, for example, the
domain and features. The vectors of models and datasets are stored
in a vector store, allowing for semantically relevant retrieval.
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Figure 3: Retrieving model and dataset with vector search

Retrieving Model/Dataset given query. The backend takes
the user query as input and first, as step ②, embeds the query into
a vector, in the same way as indexing the models and datasets, as
presented in Figure 3. With the vectorized entities, (i.e., models,
datasets, and query), we perform a vector search in step ③. We use
cosine similarity for similarity search, returning the model profile
with the most similar vector. We then retrieve the model scripts
based on the information in the returned profile. We conducted a
preliminary experiment on query construction. The text encoder
effectively handle grammatical errors and synonyms in queries,
facilitating accurate vector retrieval. With the retrieved model, a
user can verify its applicability for the request. Depending on the
feedback, the subsequent process may involve either performing
only model inference, or first training then inference.

Feature mapping for model inference and training. Before
executing the model, one important step is to identify the features
to be used. When there is no model available, we need to distin-
guish the feature columns against the label column for preparing a
training dataset. If a model is matched for the query, we identify the
feature values indicated in the query and feed them to the model,
using the prompt as below.

Given the columns {self.columns} in a dataset
and a user's query related to regression analysis,
the user's query '{self.query}', the task
is to predict a numerical outcome based on
various input features. Please suggest the most
appropriate column names for:
1. Input variables: columns that will serve as input
features for predicting the outcome.
2. Output variable: the single column that represents
the target outcome to predict.
Other format requests ...

Figure 4 presents the process of identifying features for these
two scenarios, i.e., model training and model inference. We use an
example prediction query of predicting the insurance charges of a
19-year-old female, non-smoker, with BMI of 27.9. When training a
new model, LLM-PQA sends the column names of the dataset along
with the user’s query to the LLM. The LLM identifies input features
and output label column, such as suggesting ‘age, BMI, gender’ for
input features and ‘insurance charges’ as the target label, as in the
left panel in Figure 4. The feature columns used for training will

 Insurance        
age BMI gender ...

 Query
 Predict the insurance charges of a 19-year-old 
 female with BMI of 27.9.  Query

 Predict the insurance charges of a 19-year-old 
 female with BMI of 27.9.

LinearRegression([19, 27.9, 'female')

 Model Training Model Inference

Model input features: [age, BMI, gender]

Feature Mapping

Figure 4: Identifying feature (values) from the query

be recorded along with the trained model. An example prompt is
shown above for identifying the features used for model training.

For model inference, the LLM extracts relevant feature values
given the user query and model input information, i.e., types and
order of the features, as in the right panel of Figure 4. For instance,
from the same query, the LLM identifies the values, ‘19, 27.9, female’,
for the corresponding input features, i.e., age, BMI, and gender.

Model inference. If a model is verified to match the query,
model inference is performed in this stage (step ⑤). The value of
different features is identified during feature mapping process, as
in Figure 4. With the feature values being fed to the model, results
will be returned to the user. We performed various end-to-end tasks
with model inference, achieving average times of 6.5 seconds for
regression and 12.6 seconds for classification tasks.

Model training and profiling. There are also situations when
no model is identified to answer the task, and thus model training
is necessary. A user needs to choose an ML algorithm to train, e.g.,
decision tree. The dataset will be preprocessed for training with
features and labels identified, as indicated previously in feature
mapping step. With the features and model algorithm selected, we
train a model in an online mode. After it is trained, a profile will
be generated automatically and stored in the database, and can be
further used during retrieval. In the profile, certain information
will be recorded, e.g., training dataset, features, type of algorithm,
performance, etc. We outline the structure of a model profile below.

Model Name: customerproductrecommender7172
Dataset Name: trx_data
Model Overview: Aiming for a recommendation task, ...
Intended Use: ...
Technical Details:

- Algorithm Type: ...
Model Performance:

- Accuracy: 0.807
Limitations: ...

3 DEMONSTRATION
LLM-PQA is developed in Python and utilizes the langchain library2
for tasks such as encoding entities and interfacing with the LLM
API. Data storage, including model and dataset files as well as in-
dex vectors, is handled by MongoDB Atlas3. The user interface
2https://python.langchain.com/v0.2/docs/introduction/
3https://www.mongodb.com/products/platform/atlas-database

https://python.langchain.com/v0.2/docs/introduction/
https://www.mongodb.com/products/platform/atlas-database
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Figure 5: Interface: query answering with matched model

Figure 6: Interface:model trainingwhen nomodel ismatched

is designed as a chatbox, enabling users to interact with LLM-PQA
by submitting queries and providing any required intermediate
inputs. This interaction is processed by the backend, with results
subsequently displayed in the interface. In this demo, we enable
to address two types of prediction tasks, i.e., regression and clas-
sification (binary classification, and multi-label classification for
recommendation). In Figure 5 and Figure 6, we showcase a scenario
for regression task where a user would like to predict a student’s

performance. The features provided are: studied 7 hours, previous
scores of 99, with extra-curricular activities, 9 hours of sleep and
practiced 1 sample question paper.

Model inference with matched model. In Figure 5, LLM-PQA
first takes the user query as input, and encodes it into a vector, with
the same encoding model vectorizing the model and dataset profiles,
as explained in Section 2.2. Amodel (‘performance_linear_regression’)
and a dataset (i.e., ‘Student_Performance’) are returned by retriev-
ing the most similar vectors compared to the query vector. A brief
model profile is then presented as a response. The description in-
cludes training details and performance of the model. Once the
user verify and confirm the combination of model and dataset pair,
LLM-PQAwill perform model inference. The predicted result for this
query is 91.89.

Online model training. In Figure 6, we showcase a scenario
where no model is matched to answer the query. As seen in the
figure, LLM-PQA cannot provide information on the ML model. No
model is identified to answer the query, while a dataset is matched
for the task. Subsequently, the tool would suggest the user to train
a model given the matched dataset. Then, the user can specify the
type of model to be trained. For each type of task, e.g., regression,
there is a default type of model that will be recommended.

Afterwards, as described above, feature identification is per-
formed to select the features and labels from the dataset. When a
model being trained, the weight file and profile are generated and
stored, ready for retrieval in the future. With the trained model,
model inference is applied and the result is returned.

4 CONCLUSION AND FUTUREWORK
In this work, we propose LLM-PQA, which facilitates prediction
query answering in natural language. The vector searchmechanism,
matching model with given query vector, ensures that the model
prediction is both precise and relevant to the query’s requirements.
By integrating a data lake and model zoo, LLM-PQA provides access
to a vast array of heterogeneous data and ML models, enhancing
its capability to answer queries from a broad spectrum.

For future work, we will conduct more exploration with the
LLM-PQA framework. To enhance retrieval results, one future di-
rection is to improve the exploitation of dataset and model infor-
mation, such as using statistical and histogram data. Our recent
work, TransferGraph [13], has shown that these relationships can
be informative for predicting model performance on specific tasks.
Moreover, future work can explore optimizing the design of entity
profiles or representations to better leverage their intrinsic proper-
ties. Additionally, further research can incorporate advanced data
discovery techniques to enhance dataset searches.
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