
Bridging Dynamic Factor Models and Neural Controlled
Differential Equations for Nowcasting GDP

Seonkyu Lim∗

sklim@kftc.or.kr
Korea Financial Telecommunications

and Clearings Institute
Seoul, South Korea

Jeongwhan Choi∗
jeongwhan.choi@yonsei.ac.kr

Yonsei University
Seoul, South Korea

Noseong Park†
noseong@kaist.ac.kr

Korea Advanced Institute of Science
and Technology

Daejeon, South Korea

Sang-Ha Yoon
syoon@kiep.go.kr

Korea Institute for International
Economic Policy

Sejong, South Korea

ShinHyuck Kang
shinkang@kipf.re.kr

Korea Institute of Public Finance
Sejong, South Korea

Young-Min Kim
Hyunjoong Kang

{injesus,kanghj}@etri.re.kr
Electronics and Telecommunications

Research Institute
Daejeon, South Korea

Abstract
Gross domestic product (GDP) nowcasting is crucial for policy-
making as GDP growth is a key indicator of economic conditions.
Dynamic factor models (DFMs) have been widely adopted by gov-
ernment agencies for GDP nowcasting due to their ability to han-
dle irregular or missing macroeconomic indicators and their in-
terpretability. However, DFMs face two main challenges: i) the
lack of capturing economic uncertainties such as sudden reces-
sions or booms, and ii) the limitation of capturing irregular dy-
namics from mixed-frequency data. To address these challenges,
we introduce NCDENow, a novel GDP nowcasting framework that
integrates neural controlled differential equations (NCDEs) with
DFMs. This integration effectively handles the dynamics of ir-
regular time series.NCDENow consists of 3 main modules: i) factor
extraction leveraging DFM, ii) dynamic modeling using NCDE,
and iii) GDP growth prediction through regression. We evalu-
ate NCDENow against 6 baselines on 2 real-world GDP datasets
from South Korea and the United Kingdom, demonstrating its
enhanced predictive capability. Our empirical results favor our
method, highlighting the significant potential of integrating NCDE
into nowcasting models. Our code and dataset are available at
https://github.com/sklim84/NCDENow_CIKM2024.

CCS Concepts
•Computingmethodologies→Machine learning approaches;
• Applied computing→ Economics; • Information systems
→ Data mining.
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Figure 1: Nowcasting vs. ground-truth on South Korea GDP
during COVID-19. NCDENow, our proposed method, captures
sudden drops better than DFM.
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1 Introduction
Nowcasting GDP growth is a crucial task for policymakers and
analysts who need timely information about the current state of
the economy to make decisions. However, official GDP growth
estimates are released with a significant delay and are subject to
revisions. In general, the first advance estimates of GDP growth are
published about 30 days after the end of the quarter. At the same
time, a wealth of information about different aspects of the econ-
omy can be obtained from relevant indicators that are released with
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Figure 2: Example of GDP nowcasting. The macroeconomic
indicators havemulti-frequencies.Wewant to estimate third-
quarter (Q3) GDP growth, but the first estimates are unavail-
able until the end of October. In this case, we nowcast GDP
growth using other indicators released in Q3.

less or more frequent release delays. For example, governmental in-
stitutions such as central banks publish various monthly indicators
of economic activity. As a result, the demand for early economic
estimates modeled using these more frequent observations has
increased, and these initial estimates are called “nowcasting”.

GDP nowcasting is very important for Korean governments be-
cause it helps them monitor the impact of their policies, adjust their
financial and monetary plans accordingly, and respond quickly to
any shocks or crises that may affect the economy. The predicted
GDP growth can also inform the public and private sectors about the
economic outlook and expectations, which can influence their con-
sumption and investment decisions. Therefore, economic research
on GDP nowcasting [3, 4, 6, 14, 18, 22, 26, 34, 37, 38, 42, 43, 45] has
been actively being conducted for ten years and has focused on 3
main issues: i) how one incorporates data into a model with missing
observations caused by mixed or irregular sampling frequencies,
ii) how one handles large numbers of variables, and iii) how one
allows for time-varying parameters.

One of the most prominent methods for nowcasting GDP growth
is the use of DFM, which extracts a small number of latent factors
representing economic conditions from mixed and irregular time-
series data. While there has been remarkable progress in using DFM
for nowcasting, they face two challenges: i) difficulty in capturing
sudden fluctuations and complex patterns (cf. Fig. 1) due to the
lack of non-linear activation, and ii) suboptimal handing of missing
values from mixed frequency data. Real-world economic data, even
within the same monthly or quarterly indicator, may be released at
different times, causing time lags compared to typical sequential
data (cf. Fig. 2). NCDEs, which can theoretically generalize RNNs
and state-space models [13], have recently gained attention as a
possible complement to address these limitations.

CDE is one of the most suitable ones for building macroeconomic
models. CDE was first proposed by financial mathematicians to
model complicated dynamics in financial markets, which is a spe-
cific application domain of DFM since financial transactions have a
few latent factors. NCDE [31] is a set of techniques to learn CDE
from data with neural networks. Note that NCDE keeps reading
the time-derivative of data over time, and for this reason, NCDE
is, in general, considered as continuous RNN. In addition, NCDE is
known to be superior in processing irregular time series.

We propose NCDENow, a novel GDP nowcasting framework that
integrates DFM with NCDE. The novelty of NCDENow lies in its
strategic design, which synergizes the interpretability of DFMs with
the temporal modeling capabilities of NCDEs. To the best of our
knowledge, this is the first research to integrate NCDE with DFMs
for economic indicators, offering extensibility to DFM variants.

NCDENow consists of 3 modules: i) the factor extraction module,
which extracts latent factors through DFM; ii) the exposure esti-
mation module, which uses NCDE to estimate factor loadings and
idiosyncratic disturbances; and iii) the regression module, which
integrates the results from these modules to nowcast GDP growth.

We evaluate NCDENow against 6 baselines using GDP datasets
from South Korea and the UK. Our method, NCDENow, shows out-
standing performance in terms of GDP nowcasting, handling miss-
ing data and sudden drop, and interpretability. Our contributions
can be summarized as follows:

• We propose NCDENow, a novel framework that integrates the
strengths of DFM strengths in extracting latent factors with
the capabilities of NCDE in handling irregular time series
data (Section 3).
• NCDENow outperforms the baselines in terms of nowcasting
accuracy (Section 4.2), particularly in scenarios with irregu-
lar data (Section 4.3) and volatile economic conditions such
as COVID-19 (Section 4.4).
• NCDENow provides meaningful insights into the relationships
between extracted factors and GDP growth (Section 4.5),
thereby contributing to a deeper understanding of economic
conditions and assisting policymakers in making informed
decisions.

2 Preliminaries & Related Work
This section presents recent GDP nowcasting research and provides
background for understanding.

2.1 GDP Nowcasting
The Atlanta Fed introduces GDPNow [22], which combines the
econometric approach from top-down GDP nowcasting with a
detailed bottom-up approach. The New York Fed’s online GDP
nowcasting1 uses DFM and a big data framework [1, 5, 8]. Similarly,
Hayashi and Tachi [21] also employ DFM for GDP nowcasting.
The OECD integrates insights from macroeconomics to construct
improved tree-based models [42]. Wu et al. [43] employ LSTM with
comprehensive datasets. However, these models face challenges
under high economic uncertainty, such as COVID-19.

Recently, the Bank of Korea introduces a GDP nowcasting sys-
tem [45] that combines DFM and LSTM. They use DFM only for
data imputation and rely on LSTM for nowcasting, which may not
effectively capture the dynamics of macroeconomic indicators.

2.2 Dynamic Factor Models
DFM extends the factor model for cross-sectional data to a time-
series domain [17]. It assumes that a small number of latent dynamic
factors drive the co-movement of high-dimensional time-series data,

1https://www.newyorkfed.org/research/policy/nowcast#/nowcast
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influenced by idiosyncratic disturbances with zero mean. These fac-
tors are estimated by assuming an autoregressive (AR) process [39].
The equation of DFM is as follows:

y𝑡 = Λz𝑡 + 𝝐𝑡 , (1)
z𝑡 = A1z𝑡−1 + · · · + A𝑝z𝑡−𝑝 + 𝝁𝑡 , (2)

where y𝑡 is observed data at time 𝑡 , and 𝝐𝑡 is idiosyncratic distur-
bance at time 𝑡 . z𝑡 is latent dynamic factor at time 𝑡 , and 𝝁𝑡 is factor
disturbance at time 𝑡 . Λ is matrix of factor loadings, and A𝑖 is matrix
of autoregression coefficient. Eq. (1) is referred to as the observation
equation, while Eq. (2) is denoted as the transition equation.

The representation of a few factors is an effective approach to
capturing large-scale economic indicators. Therefore, DFM is one of
the primary tools for macroeconomists. Banbura et al. [7] propose
dividing observed data into groups based on domain knowledge
and extracting factors for each group. Banbura et al. [7], Mariano
and Murasawa [36] demonstrate the capability to handle mixed
frequency data. However, DFM’s assumption of linear relationships
between variables limits its ability to capture nonlinearities present
in real-world data, particularly during high economic uncertainty.

Recently, various models have been proposed to enhance DFM
by leveraging machine learning or deep learning methods. Bon-
tempi et al. [9] combine DFM principles with deep learning for
nonlinear modeling and multi-step-ahead forecasting. Duan et al.
[16] propose FactorVAE that probabilistically extracts factors based
on the variational autoencoder (VAE). While these studies aim to
improve forecasting, we focus on nowcasting GDP growth.

2.3 Neural Controlled Differential Equations
NCDE [31] is normally regarded as a continuous analogue to RNN
and can be written as follows:

h(𝑡𝑏 ) = h(𝑡𝑎) +
∫ 𝑡𝑏

𝑡𝑎

𝑓 (h(𝑡);𝜃 𝑓 )𝑑𝑋 (𝑡)

= h(𝑡𝑎) +
∫ 𝑡𝑏

𝑡𝑎

𝑓 (h(𝑡);𝜃 𝑓 )
𝑑𝑋 (𝑡)
𝑑𝑡

𝑑𝑡,

(3)

where 𝑓 is a CDE function, and h(𝑡) is a hidden vector at time
𝑡 . 𝑋 (𝑡) is a continuous path created from discrete sequential ob-
servations, denoted as {(x𝑖 , 𝑡𝑖 )}𝑏𝑖=𝑎 . Especially, NCDE keeps their
continuous properties by using the interpolated path 𝑋 and solving
the Riemann-Stieltjes integral to get h(𝑡𝑏 ) from h(𝑡𝑎) as shown
in Eq. (3) — in particular, this problem to derive h(𝑡𝑏 ) from the
initial condition h(𝑡𝑎) is known as an initial value problem (IVP).
We rely on various ODE solvers to solve the integral problem, such
as the explicit Euler method to the 4th order Runge–Kutta (RK4).
To make the interpolated continuous path 𝑋 , linear interpolation
or natural cubic spline interpolation is generally used among sev-
eral interpolation methods. Studies using NCDE are being actively
researched in various fields ranging from time-series forecasting to
generation [11, 12, 24, 27–30, 33, 41].

We propose a GDP nowcasting model suitable for uncertain
real-world economic conditions. Our model applies the continuous
dynamic modeling technique in NCDE to DFM. Moreover, it allows
us to analyze the nowcasting results based on factors.

3 Proposed Method
We design NCDENow based on the DFM and the NCDE. In this section,
we first review its overall workflow and then introduce the details.

3.1 Overall Workflow
Fig. 3 shows comprehensive designs of our NCDENow. Our method
includes exposure estimation, factor extraction, and regression
modules. The overall workflow is as follows:

(1) The exposure estimation module first creates a continuous
path 𝑋 from mixed-frequency macroeconomic time-series
{F𝑖 }𝑁𝑖=1 = {(x𝑖 , 𝑡𝑖 )}

𝑁
𝑖=1, where x𝑖 ∈ R

𝐷 represents 𝐷 macroe-
conomic indicators at time 𝑡𝑖 . We use natural cubic spline
interpolation to create the continuous path. This process
happens before training our model. Then, the module cre-
ates the last hidden vectors for the idiosyncratic disturbance
and the factor loading, denoted h𝛼 (𝑡𝑁 ) ∈ Rdim(h

𝛼 ) and
h𝛽 (𝑡𝑁 ) ∈ Rdim(h

𝛽 ) , respectively. Finally, the exposure de-
coder outputs the scalar value of the idiosyncratic distur-
bance 𝛼𝑡𝑁 +1 and the vector of factor loading 𝜷𝑡𝑁 +1 ∈ R𝐾 ,
where 𝐾 is the number of factors. The shapes of idiosyn-
cratic disturbance and factor loading differ from the original
DFM due to our method’s focus on nowcasting GDP, while
DFM predicts all economic indicators.

(2) In the pipeline that passes through the factor extraction
module, data F and factor group information provided by
economists are input and latent factor z𝑡𝑁 +1 ∈ R𝐾 is output
through Kalman filter and smoother.

(3) The final step is the regression module for GDP nowcasting.
We use the learned 𝛼𝑡𝑁 +1 and 𝜷𝑡𝑁 +1 with the latent factor
from the factor extraction modules. Finally, Eq. (12) outputs
the predicted GDP growth 𝑦𝑇𝑁 +1 .

We provide more detailed descriptions for each step in the fol-
lowing subsections.

3.2 Exposure Estimation Module
The exposure estimation module of NCDENow uses cubic spline in-
terpolation to generate continuous paths from economic indica-
tors, preserving the natural dynamics of time series. NCDE learns
from these paths to identify idiosyncratic disturbances and factor
loadings. A key part of our method is training 𝜃 𝑓 to generate a
hidden vector h𝛼 (𝑡𝑁 ) of idiosyncratic disturbances and a hidden
vector h𝛽 (𝑡𝑁 ) of factor loadings. To ensure the theoretical accuracy
of our proposed method, we share important properties with the
path 𝑋 and at the same time produce better factor loadings and
idiosyncratic disturbances. For this purpose, we define the exposure
estimation module as an augmented NCDE as follows:

h(𝑡𝑁 ) = h(𝑡1) +
∫ 𝑡𝑁

𝑡1

𝑓 (h(𝑡);𝜃 𝑓 )𝑑𝑋 (𝑡), h(𝑡1) =
[
h𝛼 (𝑡1)
h𝛽 (𝑡1)

]
, (4)

where h(𝑡) ∈ Rdim(h𝛼 )+dim(h𝛽 ) is the hidden trajectory of the factor
loadings and idiosyncratic disturbances, X is generated through
the natural cubic spline from raw observations. The initial values
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Figure 3: NCDENow workflow illustrating GDP nowcasting for Q4 2021 using macroeconomic indicators from Q4 2020 to Q4 2021.

h𝛼 (𝑡1) and h𝛽 (𝑡1) are created from F𝑡1 as follows:

h𝛼 (𝑡1) = FC𝐷→dim(h𝛼 ) (F𝑡1 ), (5)

h𝛽 (𝑡1) = FC𝐷→dim(h𝛽 ) (F𝑡1 ), (6)

where FC𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒→𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 means a fully-connected layerwhose
input size is 𝑖𝑛𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 and output size is also 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑖𝑧𝑒 .

The neural network 𝑓 (·) used in Eq. (4) is defined as follows:

𝑓 (h(𝑡);𝜃 𝑓 ) = Tanh(FCdim(h)→𝑑𝑖𝑚 (h) (m𝐿)),
· · ·

m1 = ReLU(FCdim(h)→dim(h) (m0)),
m0 = ReLU(FCdim(h)→dim(h) (h(𝑡))),

(7)

which consists of fully-connected layers with ReLU or hyperbolic
tangent (Tanh) activation. The size of dim(h) is the sum of dim(h𝛼 )
and dim(h𝛽 ). The number of layers 𝐿 is a hyperparameter.

Let h(𝑡𝑁 ) be the last hidden vector, we have an output layer (i.e.,
exposure decoder) with a typical construction based on h(𝑡𝑁 ). For
the final regression step, the following exposure decoder produces
𝛼𝑡𝑁 +1 and 𝜷𝑡𝑁 +1 :

𝛼𝑡𝑁 +1 = FCdim(h𝛼 )→1 (h𝛼 (𝑡𝑁 )), (8)

𝜷𝑡𝑁 +1 = FCdim(h𝛽 )→𝐾 (h
𝛽 (𝑡𝑁 )) . (9)

This module can incorporate various time series models beyond
NCDE, allowing for comparison with RNN-based models in our
framework.

3.3 Factor Extraction Module
In order to estimate the factors, we use the EM algorithm-based
Kalman filtering and smoothing method. The estimated factor load-
ings (Λ) and idiosyncratic disturbances (𝝐) in this process are dis-
regarded, as we use the factor loadings (𝜷 ) and idiosyncratic dis-
turbance (𝛼) re-estimated in the exposure estimation module. The
observation and transition equations of DFM are as follows:

z𝑡𝑁 +1 = Az𝑡𝑁 + 𝝁𝑡𝑁 +1 ,
y𝑡𝑁 +1 = Λz𝑡𝑁 +1 + 𝝐𝑡𝑁 +1 ,

(10)

where 𝝁𝑡𝑁 +1 follows N(0,Q), 𝝐𝑡𝑁 +1 follows N(0,R), Q is the vari-
ance of 𝝁𝑡𝑁 , andR is the variance of 𝝐𝑡𝑁 . The conditional probability
distributions of factor z and observed data y are as follows:

𝑃 (z𝑡𝑁 +1 |z𝑡𝑁 ) = N(z𝑡𝑁 +1 |Az𝑡𝑁 ,Q),
𝑃 (y𝑡𝑁 +1 |z𝑡𝑁 +1 ) = N(y𝑡𝑁 +1 |Λz𝑡𝑁 +1 ,R) .

(11)

We estimate the parameters of Eqs. (10) and (11) using the expectation-
maximization (EM) algorithm [15, 39, 40]. In the first step, the initial
values of parameters A,Λ,Q, and R are estimated through principal
component analysis (PCA). In the E-step, the factor z is computed
using the Kalman smoothing method, given the observed data and
parameters A,Λ,Q, and R. In the M-step, the parameters A,Λ,Q,
and R are updated to maximize the expected log-likelihood.

The factor extraction process is applied independently to groups
of correlated indicators, divided based on domain knowledge. This
approach follows the method proposed by Banbura et al. [7].

3.4 Regression Module
The variables 𝛼 and 𝜷 at time 𝑡𝑁+1, estimated through exposure
estimationmodule, are regressedwith the factor z extracted through



Bridging Dynamic Factor Models and Neural Controlled Differential Equations for Nowcasting GDP CIKM ’24, October 21–25, 2024, Boise, ID, USA

Algorithm 1: Training procedure for NCDENow
Input: Training data T, Maximum epochs𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 , EM

algorithm maximum iterations𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 , Convergence
tolerance 𝑐𝑜𝑛𝑣_𝑡𝑜𝑙

Output: Trained model parameters
1: Initialize all the parameters of NCDENow
2: 𝑒𝑝𝑜𝑐ℎ𝑠 ← 0
3: while 𝑒𝑝𝑜𝑐ℎ𝑠 <𝑚𝑎𝑥_𝑒𝑝𝑜𝑐ℎ𝑠 do
4: Sample a mini-batch {x𝑖 }𝑆𝑖=1 ∈ T
5: Compute continuous hidden representation h(𝑡 ) using NCDE and

ODE solver
6: 𝑖𝑡𝑒𝑟 ← 0
7: 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 ← 0
8: while 𝑖𝑡𝑒𝑟 <𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 and 𝑐𝑜𝑛𝑣_𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 > 𝑐𝑜𝑛𝑣_𝑡𝑜𝑙 do
9: E-step: compute distributions in Eq. (11)
10: M-step: Update parameters to maximize expected log-likelihood
11: end while
12: Calculate a ŷ𝑁 +1 with 𝛼 , 𝜷 , and z
13: Update model parameters using loss function (Eq. (13))
14: if has not decreased for 5 consecutive epochs then
15: break
16: end if
17: 𝑒𝑝𝑜𝑐ℎ𝑠 ← 𝑒𝑝𝑜𝑐ℎ𝑠 + 1;
18: end while
19: return Trained model parameters;

factor extraction module, as shown in Eq. (12):

𝑦𝑡𝑁 +1 = 𝛼𝑡𝑁 +1 +
𝐾∑︁
𝑘=1

𝛽
(𝑘 )
𝑡𝑁 +1

𝑧
(𝑘 )
𝑡𝑁 +1

, (12)

where z is factors, 𝐾 is the number of factors, 𝑦𝑡𝑁 +1 is predicted
GDP growth at time 𝑡𝑁+1. Eq. (12) is of the same form as the obser-
vation equation in Eq. (10). However, the reason for formulating
this equation again is that we re-estimate the variables 𝛼 and 𝜷
through the exposure estimation module.

NCDENow utilizes dynamic factors extracted from DFM to re-
estimate factor loadings and an idiosyncratic disturbance. By doing
so, our model employs NCDE to capture the continuous dynamics
of macroeconomic indicators. In terms of accuracy, GDP nowcast-
ing in our model outperforms conventional approaches that rely
solely on Kalman filtering and smoothing.

3.5 How to Train
The overall training algorithm in Alg. 1. Our model is trained using
the following MSE loss function:

L =

∑
𝜏∈T (𝑦

(𝜏 )
𝑁+1 − 𝑦

(𝜏 )
𝑁+1)

2

|T | , (13)

where T is a training set, 𝜏 is a training sample, 𝑦𝑁+1 is the ground
truth, and 𝑦𝑁+1 is the predicted value.

3.6 Well-posedness of NCDENow
The concept of well-posedness, which refers to a problem where a
solution exists uniquely and alters continuously with variations in
input data, has been established for NCDE as shown in Lyons et al.
[35, Theorem 1.3] given the Lipschitz continuity condition. Many
activation functions, for instance, ReLU, LeakyReLU, SoftPlus, Tanh,

Sigmoid, ArcTan, and Softsign, possess a Lipschitz constant value
of 1. Other prevalent neural network layers like dropout, batch
normalization, and various pooling techniques also have known
Lipschitz constants. As such, in certain scenarios of NCDENow, the
Lipschitz continuity for 𝑓 (·) can be achieved, ensuring that the
initial value problem represented in Eq. (4) is well-posed.

3.7 Properties of NCDENow
Our key innovation is the integration of DFMwith the NCDE frame-
work. NCDENow uses the Kalman filter from DFM flexibly, allowing
it to work with different DFMs. Furthermore, our proposed method
not only unifies CDEs, but can also be theoretically linked to linear
CDEs, including S4 [20] and Mamba [19], which have shown signif-
icant advancements in sequence modeling. This enables NCDENow
to perform continuous dynamic modeling for lagged or missing
data and estimate significant variables in DFM to make accurate
nowcasts even under challenging patterns of economic uncertainty.

4 Experiments
We conduct experiments with our proposed GDP nowcasting model
to address the following research questions:
• RQ1: Is the performance of our proposed NCDENow superior
to the baseline model?
• RQ2: How is the performance change of NCDENow compared
to the baseline according to the missing data rate?
• RQ3: How well can NCDENow forecast compare to baselines
when the volatility of underlying economic data changes?
• RQ4: How can we interpret the GDP nowcasting results?
• RQ5: How do different ODE solvers affect the performance
of NCDENow?
• RQ6: How do the different models compare in terms of the
number of model parameters?

4.1 Experimental Settings
4.1.1 Datasets. To evaluate NCDENow, we use 2 GDP datasets from
South Korea and the United Kingdom. For South Korea GDP, we
collect macroeconomic indicators from Economics Statistics Sys-
tem2. We include 33 indicators, including 28 months and 5 quarters,
collected from Jan. 2002 to Dec. 2021, and following the same setting
to Yi et al. [45].

Macroeconomic indicators are categorized into 4 groups: “Global”,
“Real”, “Labor”, and “Soft”, utilized to extract factors: the global
group includes all economic indicators; the real group includes in-
dicators related to the real economy; the soft group includes survey
data, considering the importance of soft indicators in GDP nowcast-
ing [32]; the labor group consists of indicators related to the labor
market. These settings are identical to Yi et al. [45] and Y. Lee [44].

UK GDP dataset is from Anesti et al. [2], which is available for
download on the Bank of England website 3. Due to the proprietary
nature of the series within this dataset, several indicators are not
disclosed. Consequently, we use 20 publicly available macroeco-
nomic indicators from Oct. 1996 to Dec. 2017, with 12 months and

2https://ecos.bok.or.kr
3https://www.bankofengland.co.uk/working-paper/2018/uncertain-kingdom-
nowcasting-gdp-and-its-revisions

https://ecos.bok.or.kr
https://www.bankofengland.co.uk/working-paper/2018/uncertain-kingdom-nowcasting-gdp-and-its-revisions
https://www.bankofengland.co.uk/working-paper/2018/uncertain-kingdom-nowcasting-gdp-and-its-revisions
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Table 1: Best hyperparameters of baselines

Model Korean GDP UK GDP

lr dim(h) 𝐿 lr dim(h) 𝐿

DFM-RNN 1 × 10−2 512 2 1 × 10−2 256 6
DFM-LSTM 1 × 10−3 512 4 1 × 10−3 256 5
DFM-GRU 1 × 10−3 512 5 1 × 10−2 128 6
DFM-NCDE 1 × 10−2 128 4 1 × 10−3 512 5

NCDE 1 × 10−2 128 3 1 × 10−2 64 4

Table 2: Best hyperparameters of NCDENow

Model Korean GDP UK GDP

lr dim(h𝛼 ) dim(h𝛽 ) 𝐿 lr dim(h𝛼 ) dim(h𝛽 ) 𝐿

NCDENow 1 × 10−2 128 128 1 1 × 10−3 256 256 1

8 quarters. Macroeconomic indicators are categorized into 8 groups
and detailed information is included in the dataset we provide.

4.1.2 Evaluation Metrics. To evaluate the NCDENow model, we use
mean squared error (MSE) and mean absolute percentage error
(MAPE). These metrics are as follows:

MSE =

∑
𝑠∈S (𝑦

(𝑠 )
𝑁+1 − 𝑦

(𝑠 )
𝑁+1)

2

|S| , MAPE =
1
|S|

∑︁
𝑠∈S
|
𝑦
(𝑠 )
𝑁+1 − 𝑦

(𝑠 )
𝑁+1

𝑦 (𝑠 )
|,

where S is a test set, 𝑠 is a test sample, 𝑦𝑁+1 is the ground truth,
and 𝑦𝑁+1 is the predicted value.

4.1.3 Baselines. We select RNN-based models such as LSTM [23]
and GRU [10], NCDE, and DFM as baselines. Since RNN-based mod-
els cannot handle irregular data, they have limitations. Therefore, to
transform irregular macroeconomic indicators into regular data, we
use DFM as a pre-processor and then conduct training and testing.
We consider the following baselines:
• DFM [7, 36] conducts GDP nowcasting by utilizing macroe-
conomic indicators of mixed frequencies.
• DFM-RNN, DFM-LSTM, DFM-GRU, and DFM-NCDE use
DFM for data pre-processing, interpolating quarterly macroe-
conomic indicators into monthly estimates. For simplicity,
we group DFM-RNN, DFM-LSTM, and DFM-GRU into RNN-
based baselines, excluding DFM-NCDE.
• NCDE [31] is generally a continuous analogue of RNN, and
we use the function of CDE as MLP.

4.1.4 Hyperparameter Settings. We extract a single factor for each
macroeconomic indicator from all baselines using DFM and the
exposure estimation module in NCDENow. The order of vector au-
toregression governing all group dynamics is 1. Each idiosyncratic
disturbance for macroeconomic indicators is modeled using a first-
order autoregressive process. The EM algorithm runs for a maxi-
mum of 500 iterations with 1 × 10−6 tolerance.

For RNN-based baselines, DFM-NCDE, NCDE, and NCDENow, we
train for 1000 epochs using the Adam optimizer, with a batch size
of 128 on all datasets. With the validation dataset, an early-stop
approach with a patience of 5 iterations is applied. The learning
rates are in {0.01, 0.001, 0.0001}, the dimensions of h𝛼 and h𝛽 are in

Table 3: The results of GDP nowcasting. The best results
are in boldface and the second-best results are underlined.
‘Improv.’ indicates the improvement against the best baseline
performance.

Model South Korea GDP UK GDP

MSE MAPE MSE MAPE

DFM-RNN 1.9605 0.8676 0.0155 0.2508
DFM-LSTM 1.9715 0.9732 0.0154 0.2515
DFM-GRU 1.9763 0.9830 0.0161 0.2381
DFM-NCDE 1.9606 0.8790 0.0163 0.2669

NCDE 1.9640 0.9550 0.0155 0.2487
DFM 1.5044 1.1199 0.0299 0.3396

NCDENow 0.5104 0.7049 0.0070 0.1385

Improv. 66.08% 29.11% 54.78% 41.84%

Table 4: Nowcasting error on missing data

Dataset Missing Rate Metrics DFM NCDENow

South Korea GDP
10% MSE 1.7402 0.9438

MAPE 1.2356 0.6039

20% MSE 1.3915 1.1887
MAPE 1.0973 0.7979

UK GDP
10% MSE 0.0247 0.0091

MAPE 0.3000 0.1802

20% MSE 0.0247 0.0103
MAPE 0.3000 0.1815

{64, 128, 256, 512}, and the number of layers 𝐿 is in {1, 2, . . . , 6}. In
NCDENow and NCDE, we consider Euler and RK4 as the ODE solver.

For GDP nowcasting, the look-back window 𝑁 = 15. We also list
the best hyperparameters for each dataset in Tables 1 to 2. In RNN-
based baselines, dim(h) represents the dimension of the hidden
state and 𝐿 denotes the number of recurrent layers.

4.2 Performance Comparison (RQ1)
Table 3 shows the experimental results of GDP nowcasting for all
models. The best results are highlighted in bold. NCDENow, a novel
framework, outperforms DFM, RNN-based baselines, DFM-NCDE,
and NCDE. In particular, for South Korea GDP nowcasting, sig-
nificant performance improvements of 66.08% on MSE and 45.08%
on MAPE are achieved compared to DFM. Similarly, for UK GDP
nowcasting, we achieve improved performance with 76.59% onMSE
and 59.22% on MAPE.

4.3 Study on Missing Data (RQ2)
NCDENow uses NCDE to estimate factor loadings and idiosyncratic
disturbances, handling irregular time series. To investigate the
impact of increased irregularity on performance, we conduct an
experiment by randomly removing 10% and 20% of the collected
macroeconomic indicators. The processed dataset is then used to
conduct GDP nowcasting using NCDENow and DFM. In the experi-
mental results Table 4, the performance of NCDENow overperforms
that of DFM. Therefore, we conjecture that NCDENow is more robust
to nonlinearity caused by missing data compared to DFM.



Bridging Dynamic Factor Models and Neural Controlled Differential Equations for Nowcasting GDP CIKM ’24, October 21–25, 2024, Boise, ID, USA

4.4 GDP Nowcasting in COVID-19 (RQ3)
We evaluate the effectiveness of NCDENow in capturing sudden eco-
nomic shifts. The continuous dynamic modeling capabilities of
NCDE allow NCDENow to potentially capture nonlinear patterns and
abrupt changes in economic indicators more effectively than DFM.

Table 5: Results during the
sudden drop in SouthKorea
GDP

Model MSE MAPE

DFM 4.6265 0.9954
NCDENow 0.9900 0.5387

Table 5 shows the result of
GDP nowcasting during the
initial phase of the COVID-
19 pandemic (from Q1 to Q3
2020). As shown in Fig. 1, GDP
growth shows a sudden drop
during this period. In this con-
text, NCDENow demonstrates
superior performance compared to DFM in both MSE and MAPE
metrics. Hence, it can be inferred that NCDENow exhibits better cap-
ture capabilities of GDP growth during periods of increased eco-
nomic uncertainty.

4.5 Factor Analysis (RQ4)
In Fig. 4, we can observe an inverse relationship between the real fac-
tor, which reflects real economic activity, and GDP growth. Global
factors show a strong connection with GDP growth. In the first
half of 2020, the global economic downturn and a sharp contraction
due to the COVID-19 pandemic closely resemble the changes in
global factors. The substantial increase in the real factor during
this period is attributed to actions taken in response to COVID-19,
including quantitative easing, disaster relief payments, and vacci-
nation efforts. Furthermore, the rapid increase in global factors in
the second half of 2020 can be attributed to effective COVID-19
response measures.
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Figure 4: Estimated latent factors from the South Korea GDP
dataset. Gray shading indicates the 11th business cycle and
COVID-19 economic shock.

4.6 Impact of ODE Solvers (RQ5)
We evaluate the influence of ODE solver choice on the performance
of NCDENow by comparing the Euler and RK4 methods. RK4 is gener-
ally considered more accurate for non-linear differential equations,
as it performs four calculations per time step compared to a sin-
gle Euler computation [25]. Table 6 shows that RK4 consistently
outperforms Euler.

Table 6: Comparison of ODE solvers of NCDENow

ODE Solver South Korea GDP UK GDP

MSE MAPE MSE MAPE

Euler 1.5470 1.3629 0.0988 0.5553
RK4 0.5104 0.7049 0.0070 0.1385
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Figure 5: MAPE versus number of parameters

4.7 Model Efficiency Analyses (RQ6)
Fig. 5 shows the number of parameters and the MAPE. Models in
the bottom left corner of this figure are preferred. Our NCDENow
models are located around the bottom left. On both datasets, RNN-
based baselines and DFM-NCDE show low efficiencies. NCDE is
located in the upper left corner and has few parameters but low per-
formance. For South Korea GDP nowcasting, NCDENow uses about
4% of the average parameters of DFM-RNN but outperforms it by
approximately 3.86 times in MSE. With about twice as many pa-
rameters as NCDE, NCDENow shows a performance improvement of
approximately 3.85 times in MSE.

5 Conclusion and Limitation
We introduced a novel model, NCDENow, that combines the strengths
of DFM and NCDE for GDP nowcasting. Designed to handle sudden
drops and irregular data, NCDENow has been tested under various
scenarios, such as different rates of missing data and data volatility.
The findings reveal that NCDENow outperforms 6 baselines in accu-
racy. Furthermore, the analysis of factors extracted by our model
provides valuable insights for economic policy-making.

Our experiments focusing only on 2 datasets might limit the
applicability and generalizability of NCDENow in global economic
contexts. We will broaden the range of datasets for future work
and incorporate continuous modeling of the parameter estimation
process within Kalman filtering and smoothing.
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