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Abstract
This paper introduces LiNR, LinkedIn’s large-scale, GPU-based re-
trieval system. LiNR supports a billion-sized index on GPU models.
We discuss our experiences and challenges in creating scalable, dif-
ferentiable search indexes using TensorFlow and PyTorch at produc-
tion scale. In LiNR, both items andmodel weights are integrated into
the model binary. Viewing index construction as a form of model
training, we describe scaling our system for large indexes, incorpo-
rating full scans and efficient filtering. A key focus is on enabling
attribute-based pre-filtering for exhaustive GPU searches, address-
ing the common challenge of post-filtering in KNN searches that
often reduces system quality. We further provide multi-embedding
retrieval algorithms and strategies for tackling cold start issues in
retrieval. Our advancements in supporting larger indexes through
quantization are also discussed. We believe LiNR represents one of
the industry’s first Live-updated model-based retrieval indexes. Ap-
plied to out-of-network post recommendations on LinkedIn Feed,
LiNR has contributed to a 3% relative increase in professional daily
active users. We envisage LiNR as a step towards integrating re-
trieval and ranking into a single GPU model, simplifying complex
infrastructures and enabling end-to-end optimization of the entire
differentiable infrastructure through gradient descent.
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• Information systems→ Similarity measures; Search engine
indexing; Learning to rank.
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1 Introduction
LinkedIn, the world’s largest professional network, serves over a
billion members globally, offering services from job searches to
content engagement. This paper explores LiNR, LinkedIn’s model-
based GPU retrieval system, focusing on embedding-based retrieval
(EBR). Traditional EBR uses unsupervised nearest neighbor search
solutions [9, 14], indexing item vectors for fast retrieval. Our paper
presents an innovative approach, combining exhaustive search with
pre-filtering in a differentiable GPU model, using neural networks
for distance learning and ranking. In LiNR, item vectors and model
weights coexist within the same model binary, unlike traditional
search indexing methods.

We believe the future of search and recommender systems lies in
differentiable model-based serving, enabling joint optimization of
retrieval and ranking. The K-nearest neighbor (KNN) search algo-
rithm, an essential embedding-based retrieval method, uses learned
query and item embeddings with a specific similarity metric to
select the top-K closest items. Typically, KNN uses dot-product
similarity, a form of matrix multiplication with normalized embed-
dings, which has been significantly sped up on modern GPUs (A100,
H100, etc.) in frameworks like PyTorch and TensorFlow. Several
challenges motivate us to propose model-based KNN algorithms
implemented on GPUs:
• Liquidity challenge: Real-time search systems rely on specific
attributes to filter relevant items. In job recommendation systems,
for example, filters like company names, locations, and skills are
essential. Items meeting these conditions must be prioritized to
avoid exclusion due to low KNN scores from embeddings alone.

• Low latency requirement: Reducing retrieval latency and increas-
ing throughput is a constant priority.

• Huge memory cost: As number item embeddings and clauses
increase, finding ways to lower memory usage and boost compu-
tational speed without compromising retrieval quality presents
a significant challenge.

• Freshness: Demonstrate that model-based approaches can en-
hance traditional nearest neighbor searches in quality and latency
while supporting functionalities like live updates.
In this paper we discuss deployment of large-scale, neural model-

based retrieval system, highlighting key challenges and solutions. A
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major challenge was the absence of efficient pre-filtering in PyTorch
and TensorFlow, addressed by our custom indexing and filtering
methods detailed in §3.1, which also tackle latency issues. We also
cover memory cost management through quantization techniques
for larger indexes in §3.2. LiNR enhanced search quality, utilizing
multi-embedding retrieval algorithms discussed in §3.3. Our work
positions us among the pioneers in the industry in introducing
a retrieval model-based serving infrastructure (§4.2), showcasing
the capability of such model-based retrieval systems to be effec-
tively live-updated at scale (§4.3). We perform our study of model-
based index serving focuses on interest-based recommendations
on LinkedIn’s Feed, also known as out-of-network (OON) recom-
mendations. These recommendations leverage member profiles and
previous interactions with the Feed, enabling LinkedIn members
to access highly relevant content. We integrate OON content into
various LinkedIn surfaces, like Feed and Notifications, based on
predicted user engagement likelihood. The effectiveness of OON
recommendations is gauged by member interactions with OON
content. We use two-tower neural networks to create embeddings
for members and Feed Posts, forming a candidate selection vertical
for OON in the Feed through EBR with a differentiable model-based
search index. LiNR significantly outperforms FAISS-based [8] re-
trieval system in OON recommendations. We support full-scan
model-based index serving on GPUs with latencies as low as 4 ms,
handling indexes from 15 million to a billion entries. This capability,
along with modeling enhancements, significantly boosts quality as
detailed in §5.2.

2 Related Work
Industry focus has predominantly been on approximate neighbor
search systems, with FAISS [8], ScaNN [4], SONG [24], RAFT [15]
among notable examples. These support algorithms like HNSW [14],
IVFPQ [9], CAGRA [16] on CPU and GPU platforms. Termed model-
free, these methods use unsupervised algorithms for partitioning
space using existing item embeddings, offering flexibility for any
item set. In contrast, our approach employs deep neural networks
for a model-based search index, fully operational on GPUs. We inte-
grate item indexes with neural network weights within a PyTorch
or TensorFlow model, training during index construction and using
the model for retrieval.

Recently with more performance and memory available on GPUs
several publications have appeared considering model based near-
est neighbor search such as [18, 21–23]. Mixture of logits (MoL)
[22] in its production deployed form implements weighted com-
bination of cosine similarities with neural network gates used to
infer per distance component weights. The MoL paper does not
provide information on examples of implementation of logits com-
ponents, and which embedings have been used in production. We
extend on top of MoL and introduce practical algorithms on how to
learn components of MoL. Conversely, research by [18, 21, 23] has
explored using transformers and generative techniques for search
indexes. Unlike our system, which stores item embeddings directly,
these studies create semantic structures through clustering and
transformers to generate document IDs.

A lot of research has been focused on representation learn-
ing with works representing posts and users in social networks
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Figure 1: KNN with Similarity Masking. An example of five items
with single query is used for illustration. Item similarities are com-
puted andmasked with two 0-1 vectors returned from the two clause
checking. For each item, as long as one attribute is matched with
the query attribute, the clause checking is passed (return one) in the
masking matrix. The 2nd clause is a reverse matching clause. Top-1
selection is used in this example. D is dimension of item embedding.

[12, 17, 19]. As one of the components in MoL we have used ap-
proaches similar to [12, 17, 19], and additionally extended it with
approaches for cold start infrequent users using clustering repre-
sentations. Several previous works have explored the concept of
model live-updates, which we expand on in this paper. These works
include Monolith [13], PERSIA [11], and XDL [7]. In contrast, tra-
ditional search engines, as seen in Facebook Search EBR [6, 12]
via Unicorn [3], and Lucene [2], have primarily focused on live-
update functionality for unsupervised indexing techniques such
as [8]. To the best of our knowledge, our paper represents one of
the pioneering efforts in the realm of retrieval-based techniques for
live-updating TensorFlow (TF) or PyTorch model-based retrieval
indexes at a large-scale production level, with high QPS demands.

3 Modeling Technology
In this section we will describe how we modeled and developed
exhaustive embedding-based search on GPU with attribute-based
matching. We will provide details on how we scaled our model-
based index to billion size on a single GPU with quantization. We
extend Mixture of Logits (MoL) [22] by automatically training clus-
ter embedding components and experimenting with different gating
functions and variety of embedding components.

3.1 Exhaustive Search with Attribute-Based
Matching (ABM)

Considering the post-filtering (filter after similarity-based retrieval)
often suffers from the liquidity issue especially combining with
ANN algorithms implemented on GPUs [25], we first focus on
the KNN-based algorithm with attribute-based pre-filtering and
introduce several basic approaches adopted to tackle the above
challenges. Strategies to further improve the algorithm and tackle
other online serving challenges including the live update problem
will be introduced in §4.

3.1.1 KNN with Similarity Masking. Our first KNN algorithm with
ABM is a two-step similarity masking approach. As shown in Fig-
ure 1, given a query, we first compute the similarity between the
query embedding with all item embeddings stored in a matrix to
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Figure 2: KNN with Explicit Pre-Filtering. Clauses are checked one
by one and a joint 0-1 mask vector is returned to retrieve the feasible
items for matrix multiplication and top-K selection (K=1 here).

capture their semantic relationships in a similarity vector. Then, we
filter out irrelevant items by multiplying it with the 0-1 mask vec-
tors given by each clause to map the similarity scores of the filtered
items to zero before the top-K selection. Each query clause could
contain multiple attributes. Feasible items should satisfy all clauses,
requiring at least one of the attribute in each clauses is matched.
Reverse clauses are also supported (such as the company name
attributes in Figure 1). As each item could contain different number
of attributes for each clause, to effectively utilize the GPU memory
for saving and update the clauses, we store all clause attributes
in a single matrix in practice and have an extra counting matrix
to record the number of attributes for each item in each clause
similar to the counting matrix in a CSR format but for each item
separately without having the indexing vector. Each item clause is
sorted before the concatenation for faster judgement (as we can stop
checking early as long as one attribute is matched). We implement
the algorithm in CUDA and registered the clause filtering kernel
as TensorFlow and PyTorch operations to integrate and serve with
other modules.

3.1.2 KNN with Explicit Pre-Filtering. The second iteration of our
KNN with ABM uses a new approach, incorporating explicit fil-
tering before embedding multiplication, as illustrated in Figure 2.
Initially, we slice the matrix to filter out irrelevant items, removing
them early from subsequent computations. This method speeds up
the process by reducing the computational burden during matrix
multiplication and top-K selection, especially beneficial when the
query filters result in a significantly smaller item set. We found that
with custom CUDA implementation [20] to merge the kernels, the
speed could be generally faster than the first version introduced
above. However, without customizing the masked matrix multi-
plication and kernel merging, simply adopting the matrix slicing
in TensorFlow and PyTorch will introduce extra matrix copy and
creation overhead, causing it to be slower than the first version
when the pass rate is high.

3.2 Quantized KNN
Addressing memory constraints, we adopt a quantized KNN strat-
egy using the Sign One Permutation One Random Projection (Sign-
OPORP) method to compress embeddings to 1-bit and approximate
dot-products via bitwise matching. This technique balances predic-
tion accuracy and search speed, akin to typical ANNmethods, but as
an exhaustive search, it seamlessly integrates with attribute-based
pre-filtering, circumventing liquidity issues. OPORP is a variant of
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Figure 3: KNN with Quantized Filtering helps to reduce the number
of retrieved items before the full precision similarity computation.
A bit-wise matching is used to measure the approximated similar-
ity between 1-bit quantized embedding obtained via Sign-OPORP
method. We use bit-wise XOR operation and perform an integer
bit-wise NOT conversion for query or item embedding in advance to
measure the number of matched bits in the packed integer vector.
The quantized KNN module can be used without full precision ma-
trix multiplication when K is large in top-K selection.

count-sketch method. It leverages single random projection with
fixed-length binning scheme to efficiently project embedding to a
low-dimensional embedding. Sign-OPORP takes the sign of the pro-
jected embedding to generate 1-bit embedding that could accurately
approximate the cosine similarity of the original floating-point em-
bedding [10] via bit-wise matching, i.e., counting the number of
matched bits of two quantized 1-bit embedding.

As the bit-wise matching operation is often much faster than reg-
ular matrix multiplication, we can replace the original embedding
with quantized embedding and adopt the bit-wise matching oper-
ations in the above-mentioned KNN algorithm with pre-filtering,
which can help greatly reduce the memory consumption. Compress-
ing 1 billion fp16 embedding of dimension 64 to 1-bit embedding
of the same dimension can reduce the memory by 16 times and
help serve 1 billion items in single V100 GPU. We could adjust the
size of the quantized embedding to balance the trade-off between
the memory/speed and accuracy. Besides, if memory is not the
concern, we could leverage the approximated similarity as an extra
pre-filtering step reduce the computation of the full-precision ma-
trix multiplication (see Figure 3), offering a unique perspective on
exhaustive KNN with ABM. Note that, we call it exhaustive KNN to
discriminate it from the regular ANN method with clustering such
as HNSW and IVFPQ since our approach still computes all item
similarity based on the quantized embeddings, which is easier to
be combined with the pre-filtered ABM and live updates (see §4.3).

3.3 Similarity Modeling
3.3.1 Hadamard MLP. Dot Product or cosine similarity has been
common in retrieval and it’s computationally efficient. On the other
hand, the multilayer perceptron (MLP)-based learned similarity
functions has been reported inferior compared to properly tuned
dot product. To balance the computation cost/latency and retrieval
metrics, we attempted to boost the MLP-based learned similarity
function through hadamard product. The architecture is shown on
the left of Figure 4. A MLP block is applied to member and item
embedding respectively, whose output performs hadamard product
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Figure 4: Illustration of Hadamard MLP (left) and learning cluster
id embedding for Mixture-of-Logits(right)

and then passes to another MLP block to output the final logit.
With proper hyper-parameter tuning, it can reliably outperform
dot product.

3.3.2 Mixture-of-Logits with Clustering. Mixture-of-logits [22] de-
fines a model for computing high rank similarity based on adaptive
gating of elementary logits across multiple embedding components
𝜙𝑀𝑜𝐿 (𝑥,𝑢) =

∑
𝑘

𝜋𝑘,𝜃 (𝑥,𝑢)𝛿𝑘,𝜃 (𝑥,𝑢), where 𝜋𝑘,𝜃 (𝑥,𝑢) represents a

learnt gating function, which gives per component weight using
soft-max gate given input of user and item features. The parameters
𝜃 are learnt through Adam optimization of gradients of a sampled
soft-max loss.

Mixture-of-logits requires the availability of multiple features to
leverage the gates, because the gates will collapse to a value of 1 if
there is only one feature for user and item pair. We augment the
feature with learnt cluster id embedding that obviate the necessity
for having multiple features. In §5.1 we show that learnt cluster id
embedding leveraged through Mixture-of-Logits can significantly
improve on top of dot product in production settings.

Across LinkedIn we observed variety of member behaviour with
some members coming frequently and some coming from time to
time. For the infrequent members we aimed to improve retrieval
system performance. To achieve this we learn cluster id embeddings,
which represent interests of cohorts of members and topics of posts.
We describe the process on the right of Figure 4.

For training LiNR, we obtain two-tower embeddings for posts
and members as part of the training data, along with available
engagement labels. We initialize cluster ID embeddings using K-
means on millions of post embeddings. During training for both
members and posts, we find the closest cluster ID embedding based
on cosine similarity to their two-tower embedding. These cluster
IDs for members and posts are integrated into Mixture-of-Logits,
along with the original two-tower embedding and other embed-
dings we developed for our use cases. We experimented with using
K-means-initialized cluster ID embeddings as is and fine-tuning
them through back propagation. We report the experiment results
in §5.1.

4 System Architecture
4.1 Out-of-Network Recommendations
Out of Network Recommendations is one of the many sources (first
pass rankers) of Linkedin Homepage Feed. When a member vis-
its Linkedin feed, a request is triggered from the front end and
sent to feed service. Feed service passes this request to many first
pass rankers including feed-OON mid tier (a.k.a. interest discovery).

Figure 5: Feed OON Architechture.

This service is responsible for retrieving the top-K most eligible
items for the member to send back to feed. Today, the underlying
index used for retrieval is a lucene based index. The runtime of the
query of OON is depicted at Figure 5. For every member query, a
embedding based search is performed across all eligible item em-
beddings, followed by a layer 1 (L1) ranking model, which decides
top-K items. These are then sent to feed service and ranked by
more sophisticated layer 2 (L2) ranking model for members con-
sumption. LiNR aims to provide an online service to run model
based retrieval algorithms that can outperform our baselines: (1)
dot-product based EBR, and (2) FAISS-IVFPQ, which is supported
at Linkedin for lucene systems.

As shown in the figure, interest-discovery will call model-cloud-
L0 to fetch candidate items for the member. Model-cloud-L0 hosts
the RARmodel that does (1) item attribute-based filtering (2) embed-
ding based retrieval with ranking using model. The model consists
of the item embeddings, features needed for filtering and the trained
model weights. Item embeddings are generated on a nearline fash-
ion as and when a document is created at Linkedin so as to keep the
index up to date. The filters required for filtering are also ingested
nearline.

4.2 ML Infra Architecture
We enhance Model Cloud, our hosted solution for serving model
inferences, to support retrieval as ranking as shown in Figure 5.

4.2.1 Retriever. This component performs attribute-based filter-
ing and embedding-based retrieval of the top-k documents for a
query. At startup, retriever initializes with the retrieval model and
bootstrapped data. Its framework-agnostic design allows easy exten-
sion to any framework, such as Torch or TensorFlow. AI engineers
can experiment with new methods by developing and deploying
corresponding models to this system.

4.2.2 Ingestor. Model-based retrieval requires the entire document
corpus to reside in GPUmemory for low latency. To provide fresh re-
sults, this corpus must be updated near real-time (nearline). Several
following components work together to achieve this functionality.

Index Store:Attributes and embeddings come from offline sources
and nearline data streams. We use Apache Beam to join and trans-
form feature data for the entire document corpus. Offline, the full
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Figure 6: Model Cloud LiNR Architecture

corpus is batch-pushed to a Venice Store. Nearline updates are also
written to this Venice Store.

Updator: Updator subscribes to the Index Store’s Change-Data-
Capture (CDC) Stream. As the feature data gets batch pushed and
live updated, the Updator gets notified to further process them and
write to the model.

Bootstrapper: At startup, the Ingestor bootstraps from the Venice
CDC client by replaying all data from the beginning. The entire
data corpus is transformed into the required format and copied to
the GPU. To minimize bootstrapping time, we regularly compact
the bootstrap data and store a snapshot on disk for a fast warm
start.

4.2.3 Service. To meet our performance needs, we avoid the la-
tency and unpredictability ofmanaged, garbage-collected languages.
We also minimize network hops, data copies, and transformations.
Our Model Cloud L0 service is written in a native language with
minimal data transformations. User queries from the L0 client land
directly on our service, ensuring we meet latency requirements.

4.3 Model Live Update
Live Update Ingestor subscribes to Venice CDC [5] from the boot-
strapped offset, classifying changes into upserts and deletes, then
transforming and copying them to the GPU.

The system’s effectiveness depends on the quality of the docu-
ment index, which must remain fresh. This can be done by either
regularly rebuilding the index or updating it in near-real-time via a
data change stream. We chose the latter for two reasons: it keeps
the corpus current, reflecting changes within seconds, and it’s more
efficient, avoiding the cost of rebuilding and replacing the entire
index. To implement this, we modified the PyTorch model to expose
Upsert and Delete APIs, ensuring safe and efficient concurrent index
updates during inference. Techniques used include pre-allocating
larger tensors, using a high-watermark to track theworking set, and
making thread-safe in-memory tensor manipulations with minimal
data access serialization. These methods ensure that modifications
have minimal to no impact on the inference path, as detailed in the
Model Inference Benchmarking section.

4.4 Inference on Native Stack
We built a native serving system as we made performance and
efficiency our top priorities. To serve the PyTorch model in this
system, we had to convert it to a compatible format. There are a few
alternatives for this purpose such as TorchScipt and torch.export.

PyTorch supports two execution modes: eager mode and graph
mode. Optimal performance is achieved by executing everything
in graph mode as the operators are first synthesized into a graph,
which are compiled and executed as a whole. We picked TorchScript
for our initial implementation to execute the model in graph mode.
However, by doing so we traded off the performance with ease
of development. TorchScript is a subset of Python and comes up
with some constraints. It requires static typing and does not sup-
port things like exceptions and data-dependent control flows. We
found executing this conversion quite challenging and concluded
that it should be a part of the model development rather than an
afterthought. We also decided to pursue other options which are
deemed to be more recent technologies such as torch.export.

5 Experiments
In this section we provide results on modeling ablation studies,
online A/B experiments with OON application and infrastructure
model-based retrieval inference benchmarking for production in-
dexes.

5.1 Model offline evaluation
We evaluated LiNR model on our internal dataset. The dataset
consists of millions of examples where a member interacted with an
item. The member and item are represented by embeddings learnt
from a two-tower model. The two-tower model contains variety
of features including member interaction history modeled by [19]
and member profile features, which usually contains member job
title, job location, company, skills and professional summary of
the member. Posts usually contain text, image, video or external
link information. Therefore, such content features from member
and posts can help us to identify topics of interests of posts or
professional topics of members.

We used Hit Rate @ 400 over evaluation dataset to report the
metrics. We use cosine similarity with exhaustive search as baseline
to evaluate against LiNR. We report results of Hadamard MLP for
single embedding feature and extended Mixture-of-Logits with
clustering for both single and multi-embedding features in Table 1.

Hadamard MLP is favored for production due to its simplicity for
deployment and low latency. However, we found Hadamard MLP
is very sensitive to weight initialization and general initialization
methods such as GlorotNormal or HeNormal can’t stabilize the
performance. Empirically we observed that the initial few steps
determine the overall training trend, Thus we reinitialize the model
if the first 100 steps go south.

In addition to the two-tower model and cluster ID features, we
enhanced Mixture-of-Logits by introducing multiple embedding
features developed at LinkedIn. We incorporated Graph Neural
Network (GNN) embeddings for members and posts mapped to the
same space using a heterogeneous GNN [1]. We found that adding
more embeddings improved the Hit Rate @ 400 (see Table 1).

Our extended Mixture-of-Logits with clustering perform well
for both single and multi-embedding features. One surprise finding
is that fixed clusters (non-trainble) outperform trainable clusters in
all cases we explored, one possible explanation is the convergence
pace of the clustering and other trainable parameters are different,
we’ll further investigate it in our future work. Another interesting
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observation is that it was important to carefully tune the number
of clusters: having either too high or too low a value can cause
performance to degrade.

Method Gain in Hit Rate @ 400
Cosine similarity –
Single Embedding Feature
Hadamard(Member & Item MLP [50]+[10, 1]) 10.21%
MoL with 70 trained | non-trained clusters 1.33% | 10.11%
MoL with 100 trained | non-trained clusters 11.97% | 15.16%
MoL with 150 trained | non-trained clusters 4.26% | 11.17%
Multiple Embedding Features
MoL without clustering 12.80%
MoL with 140 trained | non-trained clusters 20.75% | 22.61%
MoL with 200 trained | non-trained clusters 16.49% | 22.34%
MoL with 300 trained | non-trained clusters 19.04% | 23.67%

Table 1: Hit Rate @ 400 for single embedding of two-tower model
alone in Hadamard or combined with cluster id inMoL, andmultiple
embeddings combining two-tower, GNN, and cluster ID in MoL.

5.2 A/B test of LiNR
For our baseline a dot-product EBR is done across all eligible items
given member embedding query. We enabled cache on a cloud
based storage for online lookup of computed results. This top K is
retrieved bymid tier service when an online feed request is received.
We leveraged this retrieval framework to test RAR based algorithms
to understand relevance impact. The baseline for these experiments
are full scan dot-product.

Metric Name Metric Lift
Total professional interactions +7%
Daily Unique Gold Professional Interactors +3%
Feed Update Views With 30+ Secs Dwell +2%
Feed Update Viewers With 30+ Secs Dwell +5%
Skipped Update Rate -20%
Table 2: LiNR A/B test relative metric improvements.

Table 2 shows the A/B test results from ramp of LiNR. Total
professional interactions are the total amount of high quality in-
teractions in the form of reshares, reposts, comments, message
responses, reacts, votes, saves, and long dwells. Daily Unique Gold
Professional Interactors is the daily moving average of the number of
members or companies generating high quality interactions. Feed
Update Views With 30+ Secs Dwell counts the total number of feed
updates viewed with 30+ secs dwell time. Feed Update Viewers With
30 Plus Secs Dwell counts the total number of unique members that
viewed a feed update for 30+ secs. Skipped Update Rate is the ratio of
updates that are skipped (viewed for less than 2 seconds) compared
to all viewed updates.

5.3 Model Inference Benchmarking
We conducted offline experiments to benchmark the effectiveness
of different framework implementations of two KNN variants with
ABM on datasets with different pass-rate scenarios. V1 represents
KNN with similarity masking, and V2 represents KNN with explicit
pre-filtering. Both are implemented in TF and PyTorch with CUDA
kernel for attribute matching registered as a custom operator. We
selected the Job recommendation index for benchmarking due to its

variety of filters, providing multi-dimensional performance insights
for LiNR. The high-pass-rate and low-pass-rate datasets are derived
from job search tasks, containing around 15.5 million jobs with 25
thousand queries. The high-pass-rate dataset includes two clauses:
geo-location matching and company name reverse matching (mis-
matched items are returned), with an average of 1.7 million items
passing the clauses. The low-pass-rate dataset includes an addi-
tional job title exact matching clause, with a maximum pass rate of
1.2 million for single title matching and most queries having only
thousands of passed items. Each item and query has one attribute
per clause, converted to 64-bit integers before GPU comparison. The
embedding dimension is 128, stored as fp16 values. Performance
is measured by average latency, p95 latency in milliseconds, and
recall label@2000.

Method Batch
Avg. Latency
(ms/batch)

P95 Latency
(ms/batch) Recall@2k

TF-V1 1 6.3 6.9 0.688
TF-V2 1 6.9 14.4 0.688
PyTorch-V1 1 4.8 4.9 0.688
PyTorch-V2 1 14.6 47.8 0.688
TF-V1 16 34.8 36.6 0.688
PyTorch-V1 16 22.8 23.1 0.688
Table 3: Comparison of implementations on high-pass-rate dataset.

5.3.1 High-Pass-Rate ABM Dataset Benchmarking. From Table 3,
we see that on the high-pass-rate dataset, both TF and PyTorch im-
plementations of V1 (exhaustive search) are faster than V2 (explicit
pre-filtering). This is likely due to the native slicing and copying
operations in TF and PyTorch, which are especially slow for large
matrices, as in V2 with high-pass-rate filters. Benchmarking in-
dividual operations revealed that the top-K selection in the latest
TF version is slower than in PyTorch, while large-matrix slicing is
slower in PyTorch than in TF, leading to performance differences
between frameworks. V1’s implementation in the high-pass-rate
dataset benefits more from the PyTorch implementation with in-
creased batch sizes. Testing the V3 quantized KNN version showed
further latency improvements with a trade-off in recall. In this
experiment, we used 512-bit quantized embeddings and explored
filtering different percentages of items based on quantized em-
bedding similarity before full-precision similarity calculation. The
trade-off between latency and recall, correlated with the filter size
hyperparameter, is shown in Figure 7. By retaining 1% of items with
an additional approximate ranking stage, we achieved around 10%
further latency improvement with nearly parity performance.

Method Batch
Avg. Latency
(ms/batch)

P95 Latency
(ms/batch)

TF-V2 1 3.4 4.5
PyTorch-V2 1 1.9 2.1
TF-V2 16 14.2 14.8
PyTorch-V2 16 21.4 21.9

Table 4: Comparison of implementations on low-pass-rate dataset.

5.3.2 Low-Pass-Rate ABM Dataset Benchmarking. As V2 version
has the superiority on the low-pass-rate dataset compared to the
other two versions (V3 may introduce redundant quantize matrix
computation and filtering in the low-pass-rate case), we compare
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Figure 7: Trade-off of latency and recall correlated with the filter
size of V3 quantized KNN with ABM on high-pass-rate dataset.

the its performance implemented with TF and PyTorch in Table 5.
One single query, PyTorch still shows its advantage, but TF performs
better on larger batch size. We attribute this to the fact the TF
has better parallel schema for our case to conduct the retrieval in
parallel. Though the queries are fetched in batch, since each query
has different filters leading to different sets and number of retrieved
items, we split the query batch and conduct the retrieval in parallel
for each query independently. Considering that V2 is an exhaustive
KNN search without liquidity issue, no recall drop and results are
reported here.

Update Per Sec Batch QPS
Avg. Latency
(ms/batch)

P95 Latency
(ms/batch)

0 1 218 4.57 4.79
300 1 215 4.64 4.93
600 1 217 4.58 4.80
0 5 93 10.66 11.10
300 5 93 10.70 11.15
600 5 93 10.70 11.16
Table 5: Inference latency with concurrent model update.

We also conduct a stretch testing on single A100 GPU to mea-
sure the capacity of the exhaustive search method on handling
large amount of items. For plain KNN with ABM (V1 & V2) on
the high-pass-rate dataset, we are able to handle upto 240 million
embeddings with 128 dim and fp16 precision for top-2k selection
with single query. For the quantized KNN on an internal notifi-
cation use case, which we select top-50million members from 1
billion members (64 dimensional embedding saved as fp16) to send
relevant notifications, the 1-bit quantized KNN method with 64 bits
quantized embedding size can reduce the original 120GB embed-
ding memory to 7.5GB. When processing single query on an A100
GPU, it achieves maximum 21GB high-bandwidth memory with
97.6ms p95 latency.

5.3.3 Impact of Live Model Update on Inference. We run a bench-
mark to measure the impact of live model update on the inference
latency on a single A100 GPU using our native serving system and
bench marking tool. The bench marking tool uses a client for the na-
tive serving service and issues requests serially. We use plain KNN
model with ABM (V1) and repeat the runs with various concurrent

update rates and request batch sizes. We observe no measurable
impact on the latency with increased update rate.

6 Deployment lessons
Freshness: We initially deployed LiNR with offline inference and
found it missed some fresh candidates. A/B tests revealed that
live updates are crucial for serving newly created LinkedIn posts.
Enabling live updates resulted in a +6% gain in our production
systems, highlighting their importance for improved performance.

Pre-filtering: Our system employs EBR with pre-filtering, signifi-
cantly enhancing retrieval quality. Many existing EBR infrastruc-
tures use KNN search with post-filtering, where results are first
retrieved by KNN distance and then filtered. This post-filtering
approach reduces system recall and quality by wasting candidate
slots on items that don’t meet attribute constraints. By enabling
pre-filtering on GPU retrieval, we greatly improved the quality
of results compared to our production FAISS and lucene-based
systems.

Custom filtering kernel: One lesson we learned early is that na-
tive TF or PyTorch do not effectively support filtering operations
because deep learning frameworks weren’t initially designed for
model-based retrieval indexes. Native boolean masking and index-
ing cause a 100X latency increase, making them impractical for
production. Therefore, we implemented a custom CUDA solution
for pre-filtering on the GPU, which scans items in memory to find
those that meet constraints. One approach is to create a CUDA
filtering kernel and fuse it with the matrix multiplication kernel to
perform masked-matrix multiplication for KNN with pre-filtering.
However, this solution is hard to generalize to other similarity
measures or operations, as each new architecture would require
re-implementation and fine-tuning, slowing down model develop-
ment and deployment. In practice, we could make a trade-off of fully
fused kernels and separately implemented kernels. For products
needing regular KNN support, fusing the entire kernel with top-k
selection and quantization improves serving speed. For general use
cases, we create individual custom operations, like pre-filtering
and quantization, to allow flexible development and deployment of
advanced selection strategy with native neural network operations
supported by TF and PyTorch. It is noteworthy that all the results
reported in the paper are based on the second solution (even for
the three plain KNN version) without extra custom kernel fusion
for the purpose of self-consistency and generalizability.

7 Conclusion
In this paper, we introduced LiNR, a state-of-the-art model-based
embedding retrieval solution for LinkedIn’s production system. De-
ploying LiNR to our online systems resulted in significant improve-
ments in Out-Of-Network post recommendations on the LinkedIn
Feed. We believe we are among the first in the industry to support
live-updated, differentiable model-based indexing for recommenda-
tion and search applications. Looking forward, LiNR paves the way
for unifying retrieval and ranking into a single GPU model, simpli-
fying complex infrastructure and allowing end-to-end optimization
of the entire differentiable system with gradient descent.
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