
LogParser-LLM: Advancing Efficient Log Parsing with Large
Language Models

Aoxiao Zhong∗
zhongaoxiao@gmail.com

Harvard University
Cambridge, MA, US

Alibaba Group
Bellevue, WA, US

Dengyao Mo
dengyao.mo@alibaba-inc.com

Alibaba Group
Bellevue, WA, US

Guiyang Liu
wuming.lgy@alibaba-inc.com

Alibaba Group
Hangzhou, Zhejiang, China

Jinbu Liu
liujinbu.ljb@alibaba-inc.com

Alibaba Group
Hangzhou, Zhejiang, China

Qingda Lu
qingda.lu@alibaba-inc.com

Alibaba Group
Bellevue, WA, US

Qi Zhou
jackson.zhouq@alibaba-inc.com

Alibaba Group
Hangzhou, Zhejiang, China

Jiesheng Wu
jiesheng.wu@alibaba-inc.com

Alibaba Group
Bellevue, WA, US

Quanzheng Li
li.quanzheng@mgh.harvard.edu

CAMCA
Harvard Medical School,

Massachusetts General Hospital
Boston, MA, US

Qingsong Wen
qingsongedu@gmail.com

Alibaba Group
Bellevue, WA, US

Abstract
Logs are ubiquitous digital footprints, playing an indispensable role
in system diagnostics, security analysis, and performance optimiza-
tion. The extraction of actionable insights from logs is critically
dependent on the log parsing process, which converts raw logs into
structured formats for downstream analysis. Yet, the complexities of
contemporary systems and the dynamic nature of logs pose signifi-
cant challenges to existing automatic parsing techniques. The emer-
gence of Large Language Models (LLM) offers new horizons. With
their expansive knowledge and contextual prowess, LLMs have
been transformative across diverse applications. Building on this,
we introduce LogParser-LLM, a novel log parser integrated with
LLM capabilities. This union seamlessly blends semantic insights
with statistical nuances, obviating the need for hyper-parameter
tuning and labeled training data, while ensuring rapid adaptability
through online parsing. Further deepening our exploration, we
address the intricate challenge of parsing granularity, proposing a
new metric and integrating human interactions to allow users to
calibrate granularity to their specific needs. Our method’s efficacy
is empirically demonstrated through evaluations on the Loghub-2k
and the large-scale LogPub benchmark. In evaluations on the Log-
Pub benchmark, involving an average of 3.6 million logs per dataset
across 14 datasets, our LogParser-LLM requires only 272.5 LLM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

invocations on average, achieving a 90.6% F1 score for grouping
accuracy and an 81.1% for parsing accuracy. These results demon-
strate the method’s high efficiency and accuracy, outperforming
current state-of-the-art log parsers, including pattern-based, neural
network-based, and existing LLM-enhanced approaches.

CCS Concepts
• Computing methodologies→ Natural language processing;
• Applied computing → Document management and text
processing.

Keywords
Log parsing, Large language models, AIOps
ACM Reference Format:
Aoxiao Zhong, Dengyao Mo, Guiyang Liu, Jinbu Liu, Qingda Lu, Qi Zhou,
Jiesheng Wu, Quanzheng Li, and Qingsong Wen. 2024. LogParser-LLM:
Advancing Efficient Log Parsing with Large Language Models. In . ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Logs are pervasive records in the digital realm, vital for system di-
agnostics, security analysis, and performance optimization. As we
navigate the complexities of contemporary digital environments,
our systems, applications, and networks consistently generate vast
amounts of logs. These abundant logs serve as an invaluable re-
source for understanding system behaviors, tracking activities, and
uncovering hidden patterns. Their importance cannot be overstated,
especially given the sophisticated nature of present-day systems
and the crucial need for maintaining robust and efficient operations.
This rich information source of cloud computing aids in tasks such
as anomaly detection [6, 48, 51], failure prediction [26, 50], and

*This work was completed during an internship at Alibaba Cloud US.

ar
X

iv
:2

40
8.

13
72

7v
1

 [
cs

.S
E

]
 2

5
A

ug
 2

02
4

https://orcid.org/0000-0002-7584-5476
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

failure diagnosis [14, 52]. In this digital age, effective utilization of
logs can be the deciding factor between seamless operations and
significant downtimes, highlighting their paramount importance
in ensuring system reliability and security.

Log parsing is a foundational step for many log-based diagnos-
tic processes. Its main objective is to convert semi-structured log
messages into a structured format, serving as the first step in a
range of log analysis methods (e.g., [1, 6, 23]). This process entails
identifying static components (referred to as log templates) and
variable elements (known as log parameters) within log messages
as shown in Figure 1. Traditional methods for log parsing often
involve comparing raw log messages to logging statements found
in the source code [33, 36, 37] or creating regex patterns manually.
However, with the growing volume and diversity of log messages,
as well as the rapid evolution of modern software systems, these
methods have become increasingly impractical [52]. Consequently,
there has been a significant push towards developing automated
log parsers, given their pivotal role in Artificial Intelligence for IT
Operations (AIOps) [3, 14].

To overcome the limitations of traditional log parsers, data-
driven approaches have been developed by applying data mining
techniques. Syntax-based methods were firstly developed, including
frequent pattern mining [2, 32, 41, 42], clustering [7, 12, 30, 38, 39],
and heuristic-based [5, 13, 18, 27, 28, 49]. These methods operate
on the principle that tokens remaining consistent across logs are
likely templates, while those that differ are treated as parameters.
The task becomes extracting the common parts from raw log mes-
sages. The lack of consideration for semantic meanings in logs leads
to inaccurate identification of parameters, particularly for infre-
quently occurring logs. The reliance on hyper-parameters, such
as pre-defined frequency thresholds or similarity thresholds, is a
notable drawback of syntax-based methods. It necessitates care-
ful tuning for specific log sources, thereby significantly restricting
the parser’s ability to generalize across diverse log data sources.
To take the semantic meaning into consideration, recent studies
utilize neural networks for log parsing. Uniparser [25] uses LSTM
aiming to build a universal parser that works for heterogeneous
log data. LogPPT [21] uses a pretrained transformer with few-shot
learning. The necessity of labeled data for these methods, com-
bined with their demonstrated underperformance on large-scale
evaluations [17], renders them impractical to implement due to the
scarcity of computing resources and labeled data.

Large Language Models (LLMs) have demonstrated remarkable
capabilities across various domains. Given the vast pretraining
datasets that encompass code and logging-related data, LLMs pos-
sess immense potential for log parsing. Pioneering research, as
referenced in studies such as [20, 24, 31, 46], delved into LLM-based
log parsing. However, the predominant focus of these studies has
been on prompt engineering to enhance template extraction. Such
methods parse logs line by line, incurring significant computational
overhead due to the billions of parameters in LLMs. This renders
these approaches somewhat impractical for broader applications.

To harness the capabilities of LLMs for practical log parsing,
we introduce LogParser-LLM, which stands for Log Parser with
Large LanguageModels. At its core, LogParser-LLM blends a prefix
tree with an LLM-based template extractor. The latter capitalizes
on the robustness of LLMs to semantically extract log templates

Figure 1: An example of log parsing.

from individual log messages. Concurrently, the prefix tree provides
efficient log clustering grounded in syntax. On the one hand, the
enhanced accuracy of the LLM template extractor ensures that
the prefix tree is meticulously constructed and updated. On the
other hand, the prefix tree aids in trimming the computational
overhead of LLM by eliminating repetitive LLM calls. We have
also integrated an automatic merging mechanism to rectify any
template imperfections stemming from LLMs. These elements come
together harmoniously to form a synergized parsing framework.
Moreover, we exploit the in-context learning (ICL) capabilities of
LLMs and implement named entity recognition (NER) prompting
to further boost the accuracy of our LLM template extractor.

During the evaluation of our method, we encountered an intrigu-
ing observation. While our method generally produces satisfactory
results, it doesn’t always align with the annotated labels from the
benchmark. This discrepancy can be attributed to what we term
as the Granularity of Log Parsing. Both the annotated labels and
the model’s outputs are logical in their own right. However, these
differences in granularity can significantly impact existing metrics,
as log entries parsed at differing granular levels are deemed incor-
rect. To more accurately quantify and understand this granularity
discrepancy between parsing results, we introduce the metrics of
Granularity Distance. We further integrate human interactions in
our method to allow users to calibrate the granularity based on
their specific needs.

We comprehensively evaluated our approach on the loghub-
2k [53] and the extensive logPub [17] datasets provided by the
LogPAI team. Remarkably, LogParser-LLM surpasses previous state-
of-the-art parsers, achieving a 48.3% and 32.0% increase in the F1
score for grouping and template accuracy, all without the need for
domain-specific human effort. Notably, after calibrating granularity
with ICL using a mere 32-shot labeled data for each domain, the
performance enhancement reaches up to 56.8% and 69.7%. Given
that each of the 14 datasets averaged 3.6 million logs, LLMs were
only queried an average of 272.5 times, minimizing overhead and
showcasing the feasibility of our method’s real-world application.

The key contributions of this paper are summarized as follows:
(1) Introduction of LogParser-LLM , a novel method leveraging

LLMs for log parsing that merges syntactic and semantic insights,
featuring an LLM template extractor and prefix tree to reduce LLM
calls while processing millions of log lines efficiently.

LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models Conference’17, July 2017, Washington, DC, USA

(2) Enhancement of template extraction accuracy using ICL
and NER prompting, characterized by low requirements for hyper-
parameter tuning and labeled data, ensuring broad applicability
and quick adaptation to new data.

(3) Development of new metrics for assessing parsing granu-
larity, along with different options for users to adjust granularity
effortlessly, making the parsing process more adaptable.

(4) Comprehensive validation of our approach through extensive
testing on the loghub-2k and logPub benchmarks, demonstrating
its effectiveness and efficiency, and confirming its suitability for
addressing current challenges in log parsing.

2 Related Work and Motivation
Log parsing, extensively explored in research [19, 53], identifies
static templates and dynamic parameters within log entries. As
shown in Figure 1, the template "Successfully connected to <*>
for <*>" includes dynamic elements like "/10.190.173.170:50010"
and “blk_1073742826_2022" as parameters. We categorize log pars-
ing techniques into syntax-based, semantic-based, interactive, and
LLM-based methods. We assess their pros and cons and identify
opportunities for innovation, particularly in leveraging Large Lan-
guage Models to improve log parsing capabilities.

2.1 Syntax-based Log Parsers
Syntax-based parsers detect templates by identifying repeating pat-
terns as static and others as parameters. Frequency-based parsers
like SLCT [41], LFA [32], LogCluster [42], and Logram [2], build
on token recurrence. Similarity-based parsers, including LKE [7],
LogSig [39], LogMine [12], SHISO [30], and LenMa [38] cluster logs
by similarity. Heuristics-based parsers such as AEL [18], IPLoM [27],
Drain [13], Spell [5], Brain [49], and MoLFI [28], apply specific
strategies including the longest common subsequence-based ap-
proach, iterative partitioning, prefix trees, and evolutionary algo-
rithms for template extraction. These methods are fast and cost-
efficient but may miss semantic details and require domain-specific
tuning.

2.2 Semantic-based Log Parsers
Semantic parsers have evolved with neural networks like bidirec-
tional LSTM, as seen in Semparser [16] and Uniparser [25], and
pre-trained language models such as LogPPT [21]. VALB [22] fur-
ther enhances the model’s semantic understanding by classifying
specific parameter categories. These models require labeled data
for training and classify tokens into templates or parameters. They
offer semantic understanding and can generalize across log types,
but also demand resource-intensive training and periodic updates,
presenting significant operational challenges.

2.3 Interactive Log Parsing
Recent studies [43, 44] have incorporated user feedback into log
parsers, facilitating human-in-the-loop log parsing. This approach
not only enables the parser to swiftly adapt to evolving logs but
also enhances the accuracy of template mining.

2.4 LLMs-based Log Parsing
Large Language Models (LLMs) have emerged as transformative
tools in numerous domains, demonstrating their prowess and ver-
satility. Their pre-training on vast datasets, which include diverse
content such as code and log data, makes them particularly adept
for specialized tasks like log parsing. Studies like [20, 24, 31, 47]
have begun to tap into this potential, primarily focusing on prompt
engineering to improve template extraction efficiency. While these
advancements highlight the promise of LLMs in log parsing, they
predominantly utilize a line-by-line parsing approach. This
method, although innovative, leads to high computational demands
due to LLMs’ extensive parameter spaces, making these approaches
impractical for real-world applications due to the significant
computational overhead.

The benefits of LLMs extend beyond their raw computational
ability, offering deep semantic understanding and the capacity
to generalize across different log formats, adapting seamlessly
to new data types. This adaptability is crucial, as it reduces the need
for extensive preprocessing, hyper-parameter tuning, and manual
labeling, streamlining the deployment process.

Despite these advantages, the practical deployment of LLMs in
log parsing is hindered by their high operational costs. Effec-
tive utilization requires careful prompt tuning, a process that
can be as resource-intensive as the computational demands of the
models themselves. This challenge underscores the need for more
efficient approaches that can leverage the strengths of LLMs with-
out incurring prohibitive costs, ensuring their viability for broader,
real-world application.

3 Granularity of Log Parsing
In this section, we delve into the granularity of log parsing. Starting
with Section 3.1, we characterize its two primary facets: Specificity
and Applicability, elucidating them through an illustrative exam-
ple. In Section 3.2, we first highlight the shortcomings of existing
metrics, emphasizing their inability to capture granularity nuances.
Concluding the section, we introduce the granularity distance, a
novel metric adept at gauging granularity discrepancies on two
distinct levels, effectively addressing the gaps in prior metrics.

3.1 Characterization of Granularity
The granularity of log parsing is pivotal for how the parsing re-
sult looks like. We primarily characterized the granularity by two
dimensions: specificity and applicability.

3.1.1 Specificity. Specificity in log parsing indicates the depth of
detail within a template. It is primarily driven by the information
and content of templates. The more detailed they are, the higher
the specificity.

High Specificity (High Granularity): Such templates have
fewer, more detailed variable parts, aligning with a narrower set of
logs due to their intricacy.

Low Specificity (Low Granularity): These are more general,
with numerous variable components, catering to a broader log
range.

The desired level of specificity often varies based on the log
analysis context and user needs.

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

Figure 2: A demonstration of granularity variations in log
parsing. Colors denote groups of templates. Applicability is
represented on the vertical axis, while Specificity is repre-
sented on the horizontal axis.

3.1.2 Applicability. Applicability in log parsing gauges a template’s
adaptability across varied log entries, primarily based on the struc-
ture of its placeholders. The more structurally generic they are, the
broader their reach, translating to higher applicability.

High Applicability (Low Granularity): Templates here have
a wide-reaching, generic structure, suitable for numerous logs.

Low Applicability (High Granularity): These are designed
for specific log subsets, with unique structural placeholders.

Both specificity and applicability play crucial roles in determin-
ing the outcome of log templates, subsequently affecting metrics
that measure grouping and parsing accuracy of log parsing. To-
gether, they delineate the granularity of log parsing. The ideal
granularity often finds a midpoint between these two dimensions
and is shaped by user preferences and the nuances of individual
use cases. Notably, even a minor discrepancy in granularity can
result in substantially different groupings, a difference that can
be exaggerated when using inappropriate metrics. This highlights
the pressing need for a well-conceived metric. It is essential to rec-
ognize the inherently subjective nature of granularity. As such, it
is inappropriate to strictly label a particular granularity as domi-
nant or to view benchmark dataset labels as definitive standards.
Figure 2 illustrates the parsing outcomes at varying granularities,
using three representative log messages from the Windows dataset
in loghub-2k. Applicability is shown through session names, while
specificity is shown through client names. High applicability and
low specificity result in a generic structure that matches more log
entries, indicating lower granularity. The benchmark uses granu-
larity I) as its labeled ground truth.

3.2 Measuring Granularity Discrepancy
Existing evaluation metrics, while versatile, emphasize either the
accuracy of grouping logs or the fidelity in extracting templates
and parameters. Both dimensions are indispensable, especially con-
sidering their implications for downstream tasks like log anomaly

detection. However, these metrics often overlook the subtle gran-
ularity differences inherent in log parsing. Existing benchmark
datasets [17, 53] are anchored to the annotators’ subjective inter-
pretations, suggesting that multiple valid granular interpretations
can exist for a single log. Such diversity challenges the conven-
tional wisdom of treating annotated labels as an unequivocal gold
standard. Instead of amyopic focus on exact matches, a more encom-
passing metric that can quantify and understand this granularity
discrepancy is imperative.

3.2.1 Existing metrics. We examine four prevalent metrics in this
section. The widely recognized message-level metrics, Grouping
Accuracy (GA) [53] and Parsing Accuracy (PA) [2], focus on the
volume of messages associated with each template, often prioritiz-
ing templates with a larger number of log messages. To address
this bias, template-level metrics like F1-score of Group Accuracy
(FGA) [17] and F1-score of Template Accuracy (FTA) [19] have been
introduced, ensuring an equitable evaluation of each template. The
detailed definitions can be found in Appendix B.

GA and PA primarily evaluate based on the volume of log mes-
sages, making them susceptible to biases from imbalanced templates.
In real-world scenarios, less frequent templates, such as error mes-
sages, might be of paramount importance. Their misinterpretation
could be detrimental, yet thismight not be reflected effectively using
these metrics. Template-level metrics ensures a holistic evaluation
of log parsers, giving equal importance to each template. However,
while these metrics minimize biases from frequent templates, they
still present challenges. If a token is interpreted differently based
on granularity nuances, whether designated as a static part or a
parameter, it might result in considerable variances in template
counts. Additionally, such metrics don’t provide a clear insight into
granularity differences.

3.2.2 Granularity Distance (GD). In light of the discussions above
and the sensitivity of existing metrics to subtle granularity discrep-
ancies, we introduce the Granularity Distance metric. Inspired by
the traditional edit distance, this metric calculates the minimum
operations necessary to transform one parsing result into another.
It serves as a quantitative reflection of the least human interven-
tion needed to attain the desired granularity. This metric can be
dissected into two main components:

Grouping Granularity Distance(GGD): This aspect empha-
sizes the grouping of log messages. The aim is to match the expected
grouping of log messages without mandating identical templates
within those groups.

Parsing Granularity Distance(PGD): This is a more rigorous
metric requiring an exact match for each log template. Disparities
in the parsed templates increment the distance.

For the operations contributing to this distance:
Operations on GGD: 1) Merge: Combine groups by changing

one static section to variable. 2) Split: Separate groups by switching
one variable to static section.

Operations on PGD: 1) Static to Variable: Convert a static sec-
tion of the template to a variable. 2) Variable to Static: Revert a
variable within the template to a static section.

Similar to the edit distance, granularity distance possesses sym-
metrical properties, meaning the distance from one log template
to another is the same as the distance from the second to the first.

LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models Conference’17, July 2017, Washington, DC, USA

Additionally, granularity distance satisfies the properties of non-
negativity and identity of indiscernibles, akin to the traditional
metrics in distance measurement. This ensures a consistent and
logical comparison of log parsing granularity between different
parsing results.

It is straightforward to compute GD when logs are accurately
tokenized, and each token is categorized as either a parameter or
a template. However, such precise labeling and tokenization are
often absent. To circumvent this, an approximate version of GGD
can be derived by merely tallying the merge and split operations
required to transition from one grouping to another.

4 Methodology
In this section, we introduce LogParser-LLM tailored to tackle
the challenges previously highlighted. Our approach is built upon
four key pillars: 1) Enhanced Template Extraction: Leveraging
the prowess of LLMs, we aim to boost the accuracy of template
extraction. 2) Efficient LLM Use: We design an algorithm that har-
nesses the advanced capabilities of LLMs while optimizing resource
consumption. 3) Reduced Human Effort with Broad Applica-
bility: Our method minimizes human intervention, especially in
label annotation and hyper-parameter tuning, yet remains versatile
across various domains and log formats. 4) Interactive Feedback
Integration: Our method is integrated with human feedback for
parsing granularity calibration. The following sections delve deeper
into these principles, elucidating the techniques and decisions un-
derpinning our approach.

4.1 Preprocessing
Our method hinges on minimal preprocessing, using only a basic
regular expression to extract log content. While many approaches
demand greater domain knowledge, often employing regular ex-
pressions to substitute common variables like IP addresses and
block IDs [13], we retain the original message, ensuring the LLM
grasps the log’s full context. Unlike other strategies that use distinct
separators for log tokenization [9, 25, 49], we consistently tokenize
using spaces. Hence, unless otherwise specified, tokens in follow-
ing sections are space-separated, capitalizing on the LLM’s native
tokenizer. This streamlined preprocessing minimizes the need for
specialized expertise, yet upholds strong log parsing efficacy.

4.2 Base Algorithm with Prefix Parse Tree
Central to our methodology is a base algorithm employing a prefix
parse tree, inspired by the efficiency demonstrated in Drain [13].
This section elaborates on the data structures integral to the al-
gorithm, detailing their design and their roles in addressing the
aforementioned principles. Specifically, we’ll elucidate how incom-
ing logs are matched with existing clusters during tree traversal,
how and when LLMs are invoked for template extraction, and the
dynamics of updating the tree with new templates obtained from
the LLM extractor.

4.2.1 Data Structures. Three primary data structures form the
backbone of our approach: a set of log clusters, a template pool,
and a prefix parse tree. Figure 3 offers a visual representation of
this organizational structure. The subsequent discussion delineates
their respective functionalities:

Log Cluster: A log cluster is a collection of logs with the same
template. It keeps track of the individual log IDs and stores a log
embedding, created by an LLM encoder, for future use. Each cluster
is characterized by its log template, extracted via LLM, and possibly
multiple syntax templates aiding the prefix tree in its traversal and
template matching processes. While syntax templates correspond
directly with the tokens of the raw logs, identifying static and
variable parts, the log templates from the LLMmay represent several
tokens with a single placeholder. These syntax templates are stored
in a dictionary, utilizing token counts as keys and corresponding
template lists as values.

Template Pool: The template pool establishes a linkage, map-
ping log templates to their respective log clusters.

Prefix Parse Tree: In this tree structure, every node—bar the
root—symbolizes a token. The wildcard token "<*>" serves as a
universal matcher for any token. Crucially, not just the leaf nodes,
but virtually all nodes (excluding the root) can possess pointers
to log clusters matching the token sequence extending from the
root. A unique feature to note is that a single log cluster might be
accessible from multiple nodes, courtesy of the potential existence
of various syntax template variants for a given log cluster.

4.2.2 cluster matching with tree search. Upon receiving a new log,
our first step is tokenization. Tokens are then processed sequentially,
with each token checked against nodes in the prefix tree. After
matching the initial token, we proceed to the subsequent token,
considering only the children of the previously matched node. This
progression continues either until all tokens are matched or when
no further matching tokens exist. Throughout this traversal, log
clusters referenced by the encountered nodes are shortlisted as
potential candidates for a thorough match evaluation.

At this juncture, we have pinpointed a subset of log clusters
consistent with the rules encoded in the tree path. Our task now is
to determine the genuine match from these candidates. Contrary
to existing methodologies such as those in [13, 49], which deploy
similarity metrics and predefined, dataset-specific thresholds, our
approach crystallizes outcomes into three distinct categories: i)
Strict match, ii) Loose match, and iii) No match. For each prospec-
tive cluster, an initial check compares the token count between the
incoming log and the cluster’s syntax templates. Discrepant token
counts immediately exclude the possibility of a match. Following
this, a ’loose match’ is attempted, aligning tokens from the syntax
template and the log. Here, any token within the syntax template
containing the "<*>" wildcard can align with any log token. To
illustrate, a token such as "prefetching...<*>" can loosely align with
any log entry with a singular token. After achieving a loose match,
regular expressions ensure a rigorous alignment with elements
outside the "<*>" in the syntax template. A complete token align-
ment signifies a strict match. It is worth noting that the matching
process stops upon achieving a strict match. In scenarios where a
strict match is identified, the log is straightforwardly added to the
matched cluster. Conversely, in the absence of a strict match, the
LLM template extractor is invoked for template extraction, followed
by the necessary updates to the data structures.

Our method’s precision, rooted in the capabilities of LLMs, elim-
inates the need for meticulous hyperparameter tuning across log

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

Root

Send
Clusters: None

Receive
Clusters:#3

<*>
Clusters: #1,#2

<*>
Clusters: #1

Log_Cluster#1

Log Template: ‘Receive <*>’
Syntax Templates:
{3: [[‘receive’, ‘<*>’, ‘KB’],
 [‘receive’, ‘<*>’, ‘Bytes’]]}

Template Pool

<*>
Clusters: #n

{‘Receive <*>’:Log_Cluster#1,
 …
 ‘Send <*>’: Log_Cluster#n}

Log_Cluster#n

……

(a)
(b)

(c)

Figure 3: An example demonstrating the data structures in our method: (a) A prefix parse tree with nodes linking to log clusters,
(b) a Template Pool mapping log templates to log clusters, and (c) Log Clusters containing collections of logs with the same log
template.

sources. Leveraging LLMs’ proficiency, which typically yields se-
mantically accurate templates for individual logs, facilitates this
stringent matching paradigm. Not only does it simplify the tuning
process, but it also optimizes the number of calls to the LLM. Ideally,
if we operate under the assumption that LLMs generate templates
mirroring the ground truth, the volume of LLM calls is effectively
capped at the total number of distinct syntax templates. This count
is in the ballpark of the total number of log templates, offering a
scalable approach.

4.2.3 Parse tree update. The comprehensive update rule is elu-
cidated in Algorithm 1. As outlined in lines 8-9, for scenarios of
either a loose match or no match, the LLM is invoked to derive a log
template. If this extracted template already resides in the template
pool, it suggests that the current log pertains to an existing cluster
but with an alternative syntax template variant. In such cases, the
associated cluster can be swiftly identified via the template pool
mapping. It then becomes essential to integrate the novel syntax
template into the cluster and adjust the tree to accommodate nodes
that align with this new syntax template.

Conversely, if the template isn’t found in the template pool yet a
loose match has been identified, the LLM is once more consulted. Its
task here is to determine if the loosely matched cluster can integrate
this new log. A positive outcome leads to the generation of a merged
template. Subsequently, both the syntax and log templates of the
cluster undergo an update, with the merged template being added
to the template pool.

If a log, after undergoing the entire aforementioned process, still
has not been allocated to an existing cluster, it is indicative of a
unique log template. Such instances mandate the creation of a new
cluster, with corresponding updates made to the tree.

4.3 Enhancing LLM Template Extraction
While the base algorithm already paves the way for efficient and
precise log cluster matching, there remains room to refine the ac-
curacy of the LLM template extractor. To this end, we introduce
variable-aware prompting, amalgamating it with in-context learn-
ing. This fusion not only amplifies the LLM’s task comprehension
but also augments its overall performance.

Algorithm 1 LogParser-LLM

Input: 𝑙𝑜𝑔𝑠 , 𝑟𝑜𝑜𝑡_𝑛𝑜𝑑𝑒 Result: 𝑙𝑜𝑔_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 , 𝑡𝑟𝑒𝑒
1: 𝑙𝑜𝑔_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← {}
2: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑝𝑜𝑜𝑙 ← {}
3: for 𝑙𝑜𝑔 in 𝑙𝑜𝑔𝑠 do
4: 𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ← search(𝑡𝑟𝑒𝑒, 𝑙𝑜𝑔)
5: if strict_match then
6: 𝑠𝑡𝑟𝑖𝑐𝑡_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .add(𝑙𝑜𝑔)
7: 𝑎𝑑𝑑𝑒𝑑 ← True
8: else if loose_match or no_match then
9: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← get_llm_template(𝑙𝑜𝑔, 𝑙𝑜𝑔_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)
10: if 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 in 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑝𝑜𝑜𝑙 then
11: update_tree(𝑡𝑟𝑒𝑒, 𝑙𝑜𝑔, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑝𝑜𝑜𝑙 [𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒])
12: 𝑎𝑑𝑑𝑒𝑑 ← True
13: else
14: for 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 in 𝑙𝑜𝑜𝑠𝑒_𝑚𝑎𝑡𝑐ℎ𝑒𝑑_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 do
15: check_merge(𝑙𝑜𝑔, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
16: if merge then
17: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .update(𝑚𝑒𝑟𝑔𝑒𝑑_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
18: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 .add(𝑙𝑜𝑔)
19: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑝𝑜𝑜𝑙 [𝑚𝑒𝑟𝑔𝑒𝑑_𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒] = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

20: break
21: 𝑎𝑑𝑑𝑒𝑑 ← True
22: end if
23: end for
24: end if
25: end if
26: if not 𝑎𝑑𝑑𝑒𝑑 then
27: 𝑛𝑒𝑤_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← create_cluster(𝑙𝑜𝑔, 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
28: update_tree(𝑡𝑟𝑒𝑒, 𝑙𝑜𝑔, 𝑛𝑒𝑤_𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
29: 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑝𝑜𝑜𝑙 [𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒] = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

30: end if
31: end for

Additionally, there exist other straightforward avenues to bolster
template extraction capabilities. One could leverage more powerful
LLMs available in the ever-evolving landscape of language models.

LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models Conference’17, July 2017, Washington, DC, USA

Alternatively, supervised fine-tuning of an LLM using labeled data
presents another viable strategy.

4.3.1 Variable-Aware Prompting. Past research [22] has highlighted
the benefits of identifying and classifying specific variables within
logs. By categorizing these variables, not only is the accuracy of
template extraction enhanced, but it also proves advantageous for
subsequent tasks. Drawing inspiration from this research and the
concept of chain-of-thought prompting [45], we restructure our
prompts. These prompts now serve dual purposes: they identify
variables and categorize them into one of the ten classifications
as outlined in [22]. This refined approach prompts the model to
understand and determine which components should be classified
as variables and the reasoning behind such categorization.

4.3.2 In-Context Learning with K-Shot Demonstrations. In-context
learning (ICL) has become a favored approach when using LLMs
for downstream tasks without the need for finetuning [4]. Typ-
ically, ICL-based prompts contain three elements: Instruction: A
task-specific description. Demonstrations: A set of examples, es-
sentially pairs of queries coupled with their ground truth answers.
Query: The direct question to which the LLM provides a response.
Each time the LLM is called upon for template extraction, we draw
a sample of 𝑘 = 3 examples from our existing pool of log template
pairs. Incorporating the principles of Variable-Aware Prompting,
we include ten examples, each representing a distinct type of log pa-
rameter, as seed examples. Subsequent template extraction results
expand this pool. To obtain these samples, we calculate cosine sim-
ilarity between LLM embedding of query log and all embeddings
present in the example pool. The top-k samples are then chosen as
k-shot demonstrations within the prompt.

4.4 Optimal Granularity via Human-in-Loop
Integrating human expertise into the automated log parsing pro-
cess is key to achieving the right granularity. Human input can be
seamlessly incorporated at various stages of the parsing pipeline to
enhance accuracy and maintain consistency:

1) Pre-Processing Intervention: Experts annotate a sample of
logs before parsing begins. These annotations serve dual purposes:
they can be used as seed examples for In-Context Learning (ICL) or
to fine-tune LLMs, ensuring the model’s output aligns more closely
with specific parsing needs.

2) Real-Time Calibration: During the parsing process, human
judgment can be applied to guide decisions on template merging,
ensuring the parsing maintains the desired level of granularity
throughout.

3) Post-Processing Refinement: After parsing, the system
identifies potential merges or splits based on semantic similarity
or template variability. Experts review these suggestions, making
adjustments to achieve the optimal granularity.

In Table 1, we demonstrate how LogParser-LLM-C incorporates
pre-processing intervention, enhancing the base LogParser-LLM’s
capabilities. For real-time calibration, human expertise can be used
to refine the merging process in line with desired granularity levels,
as outlined in line 15 of Algorithm 1. Post-processing refinement
can integrate methods like those suggested in [43] for effective final

adjustments, ensuring parsed logs accurately reflect the intended
granularity.

5 Experiments
We assess the effectiveness of our method using two datasets:
loghub-2k [53] and logPub [17]. First, we detail the experimental
settings. Subsequently, we outline the evaluation metrics employed,
highlighting a novel metric we introduce to gauge the granularity
distance of parsing outcomes. In examining results from the loghub-
2k dataset, our primary objective is to elucidate the contribution of
each design component of our method.With the logPub benchmark,
our intent is to demonstrate both the effectiveness and efficiency
of our approach when handling large-scale datasets in practice.

5.1 Experimental Settings
5.1.1 Datasets. Loghub-2k is a widely recognized benchmark in
the field of log parsing. It encompasses logs from 16 diverse systems,
including distributed systems, supercomputers, operating systems,
mobile platforms, server applications, and individual software pack-
ages. For every system source, 2,000 log messages are meticulously
annotated. Complementing this, LogPub is a more recent, expansive
iteration of Loghub-2k. It features 14 systems, with each averaging
a substantial 3.6 million log lines, and showcases a pronounced
increase in the number of log templates. This dataset offers a real-
istic, large-scale environment, paving the way for comprehensive
evaluations of log parsing methodologies.

5.1.2 Implementation Details. Our experimental setup involves a
server powered by Ubuntu 20.04.3 LTS with 512GB of RAM. We
use both ChatGPT (version gpt-3.5-turbo-0301) and GPT-4 (version
gpt-4-0613) for template extraction. For embedding the logs, the
text-embedding-ada-002 method is adopted. All interactions with
these models are facilitated through the official OpenAI API. To
guarantee consistency in our findings and support reproducibility,
we maintain the temperature parameter at 0 to minimize variability.
For fine-tuning our LLM, the Llama-2-13b model [40] serves as
the foundation. Comprehensive details regarding this fine-tuning
process can be found in Appendix B.2. For in-context learning, we
uniformly sample 32 log-template pairs from the first 10% of each
dataset based on token length as candidate logs. The same samples
are employed for fine-tuning.

5.2 Evaluation Metrics
In alignment with prevailing methods outlined in [17, 19, 25], we
utilize the GA, PA, FGA, PTA, RTA and FTA metrics delineated
in Appendix B for evaluation. Furthermore, we use the Grouping
Granularity Distance (GGD) proposed in Section 3.2.2 as a more
intuitive metric to gauge the granularity discrepancies in parsing
outcomes.

5.3 Evaluation on Loghub-2k
Our primary objective in conducting experiments with the smaller-
scale Loghub-2k dataset is to assess the efficacy of our method’s
key components. Additionally, we employ this dataset as a devel-
opment set, refining our prompts for LLM template extraction,
merging check and verification. The final prompts we adopted are

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

Table 1: Comparison of various log parser algorithms on large-scale logPub dataset. The best results are in bold.

Drain Uniparser LogPPT LogParser-LLM LogParser-LLM-C
GA PA FGA FTA GGD PGD GA PA FGA FTA GGD PGD GA PA FGA FTA GGD PGD GA PA FGA FTA GGD PGD GA PA FGA FTA GGD PGD

Proxifier 69.2 68.8 20.6 17.6 4 14 50.9 63.4 28.6 45.7 5 10 98.9 100.0 87.0 95.7 1 1 51.0 63.4 40.0 53.3 5 9 98.9 100.0 87.0 95.7 1 1
Linux 68.6 11.1 77.8 25.9 30 432 28.5 16.4 45.1 23.2 108 274 20.5 16.8 71.2 42.8 29 104 27.0 16.3 80.1 46.6 18 81 53.4 49.4 91.1 74.0 10 68
Apache 100.0 72.7 100.0 51.7 0 21 94.8 94.2 68.7 26.9 11 31 78.6 94.8 60.5 36.8 6 23 100.0 85.7 100.0 65.5 0 8 100.0 99.5 100.0 82.8 0 5

Zookeeper 99.4 84.3 90.4 61.4 2 30 98.8 98.8 66.1 51.0 14 31 96.7 84.5 91.8 80.9 4 10 98.8 81.9 86.2 72.4 2 19 99.5 96.8 92.9 85.7 1 13
Hadoop 92.1 54.1 78.5 38.4 18 210 69.1 88.9 62.8 47.6 38 119 48.3 66.6 52.6 43.4 46 81 93.8 67.6 87.3 55.0 14 108 94.5 90.6 88.9 81.0 11 41

HealthApp 86.2 31.2 1.0 0.4 11 138 46.1 81.7 74.5 46.2 16 60 99.8 99.7 94.7 82.2 4 8 99.8 58.2 95.6 81.8 4 5 100.0 98.2 96.5 89.0 3 7
OpenStack 75.2 2.9 0.7 0.2 6618 23** 100.0 51.6 96.9 28.9 1 7 53.4 40.6 87.4 73.8 4 4 100.0 49.6 100.0 79.2 0 11 100.0 100.0 100.0 97.9 0 1

HPC 79.3 72.1 30.9 15.2 10 178 77.7 94.1 66.0 35.1 10 58 78.2 99.7 78.0 76.8 12 31 86.4 94.2 76.0 72.6 6 180 86.4 99.8 76.8 74.6 6 29
Mac 76.1 35.7 22.9 6.9 102 1347 73.7 68.8 69.9 28.3 73 624 54.4 39.0 49.3 27.4 177 489 89.7 30.3 84.7 36.2 42 444 91.5 76.4 86.4 60.6 33 297

OpenSSH 70.7 58.6 87.2 48.7 3 33 27.5 28.9 0.9 0.5 15 26 27.7 65.4 8.1 10.5 17 26 78.0 69.0 96.1 88.3 1 9 78.0 100.0 96.1 98.7 1 2
Spark 88.8 39.4 86.1 41.2 18 239 85.4 79.5 2.0 1.2 62 186 47.6 95.2 37.4 29.9 75 221 97.6 80.2 85.2 46.3 16 148 97.6 99.7 88.2 68.1 11 101

Thunderbird 83.1 21.6 23.7 7.1 137 2043 57.9 65.4 68.2 29.0 194 976 56.4 40.1 21.6 11.7 282 1012 73 57.1 80.0 56.0 104 662 67.5 64.3 83.1 59.3 88 615
BGL 91.9 40.7 62.4 19.3 48 434 91.8 94.9 62.4 21.9 43 209 24.5 93.8 25.3 26.1 69 164 93.8 81.0 78.9 50.0 34 154 88.9 97.6 84.0 71.6 24 85
HDFS 99.9 62.1 93.5 60.9 2 6 100.0 94.8 96.8 58.1 1 1 72.1 94.3 39.1 31.2 18 59 100.0 94.8 74.7 57.8 5 26 100.0 100.0 96.8 96.8 1 1

Average 84.3 46.8 55.4 28.2 500.2 394.2 71.6 73.0 57.8 31.7 42.2 186.6 61.2 73.6 57.4 47.8 53.1 159.5 90.9 68.3 85.7 63.1 17.9 133.1 89.7 90.9 90.6 81.1 13.6 90.4

Table 2: Efficiency and effectiveness of the LogParser-LLM with different LLMs. The best results are in bold.

Avg. # of Avg. Time(s) Avg. Metrics
LLM Calls Per Infer. Base Total GA PA FGA FTA GGD PGD

LogParser-LLM w/ GPT-3.5-turbo 566.4 0.52 522.88 817.33 82.0 64.5 81.6 58.3 26.9 198.9
LogParser-LLM-C w/ GPT-3.5-turbo (32shot) 289.7 0.52 461.67 612.31 91.3 90.5 90.2 77.5 15.4 120.7
LogParser-LLM with GPT-4 427.2 4.18 452.15 2237.85 90.9 68.3 85.7 63.1 17.6 133.1
LogParser-LLM-C w/ GPT-4 (32shot) 272.5 4.18 433.22 1572.27 89.7 90.9 90.6 81.1 13.6 90.4
LogParser-LLM w/ fine-tuned Llama-2-13b(32shot) 6620.3 2.54 621.33 2272.63 78.5 72.0 66.8 49.9 45.9 194.0

presented in Appendix. B. The most effective configurations deter-
mined through Loghub-2k are subsequently applied unchanged to
the LogPub dataset for evaluation.

Table 3: Comparison with existing LLM-based method on
Loghub-2k.

of labeled logs GA PA PTA RTA

Eval of chatgpt[20] 0 72.1 54.3 / /
4 76.1 79.0 / /

DivLog[47] 200 92.8 98.1 92.0 92.9

LogParser-LLM 0 91.8 69.9 67.8 66.8
4 92.1 74.7 72.6 74.9
32 94.8 90.5 84.9 85.3
200 95.9 98.0 96.8 96.9

Comparisonwith Existing LLM-based Parsers Existing LLM-
based parsers, which process logs line-by-line, are impractical for
evaluation on the expansive LogPub dataset due to the immense
number of LLM calls required. We therefore use the Loghub-2k
dataset for comparison, but advise caution in interpreting these
results because of the dataset’s limited scope and the possibility
that a few well-chosen labeled samples might cover the majority
of templates. In Table 3’s results, our method either matches or
exceeds the performance of existing approaches with an equivalent
number of labeled logs, highlighting our method’s effective use of
LLMs for log parsing despite the constraints.

Accuracy Evaluation We compare our model to three state-
of-the-art methods: two syntax-based methods, Drain [13] and
Brain [49], and one semantic-based method, LogPPT [21]. As in-
dicated in Table 4, the previous state-of-the-art methods achieved

higher GA and PA values because they were meticulously tuned
with hyperparameters on each dataset to optimize these metrics.
However, these values alone do not necessarily indicate superior
performance. When evaluating with template-level metrics such as
FGA and FTA, as well as our proposed GGD, our model outperforms
them without the need for any domain-specific configuration.

Ablation The results of our ablation study for different compo-
nents, including in-context learning (ICL), variable-aware prompt
(VA), and automatic template merge (Merge), are presented in Ta-
ble 4. The numbers clearly demonstrate that each proposed compo-
nent positively impacts the method’s performance, as evidenced
by the reduction in GGD. Notably, the most significant perfor-
mance boost comes from the transition from GPT-3.5 to GPT-4.
Furthermore, the enhancements from other components are even
more pronounced with GPT-4, underscoring the potency of more
powerful LLMs. Using GPT-4 on its own, even without ICL, yields
impressive results, showcasing its capacity to adhere to specific in-
structions and complete tasks in a zero-shot scenario. However, it is
important to note that integrating these components also increases
the associated costs when invoking the LLM.

Table 4: Ablation studies of LogParser-LLM on Loghub-2k.

GA PA FGA FTA GGD

Drain 87.2 40.0 75.1 34.4 9.00
Brain 96.6 40.4 90.8 42.7 3.35
LogPPT 92.3 86.5 89.2 69.5 6.25

GPT-3.5 91.5 68.4 86.0 64.7 5.88
GPT-3.5+ICL+VA 89.8 67.2 86.1 64.8 5.81
GPT-3.5+ICL+VA+Merge 90.1 61.7 86.9 59.7 5.50
GPT-4 92.5 75.6 91.6 75.7 3.69
GPT-4+ICL+VA+Merge 91.8 78.5 92.2 67.2 2.88

LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models Conference’17, July 2017, Washington, DC, USA

5.4 Evaluation on LogPub
Accuracy and Generalizability Results from the expansive log-
Pub dataset are shown in Table 1. We use LogParser-LLM-C to
denote calibrated variants of our method. It is clear that our model,
LogParser-LLM , even without granularity calibration, significantly
surpasses all baseline methods in GA, FGA, and PTA, marking im-
provements of 7.8%, 48.3%, and 32.0% compared to the best baseline
results. However, PA performance lags, mostly due to granularity
nuances complicating the LLM’s ability to generate templates that
perfectly match annotated labels. A standout point is the consistent
performance of our method across the 14 datasets, achieved without
domain-specific tweaks, maintaining uniform settings throughout.
Upon introducing domain-specific granularity calibration with ICL
in LogParser-LLM-C, there is a noticeable boost, especially in tem-
plate parsing metrics such as PA and FTA. This highlights the
reduced discrepancy in the applicability of log parsing achieved
through ICL.

Granularity Discrepancy Evaluation Both Grouping Granu-
larity Distance (GGD) and Parsing Granularity Distance (PGD) are
calculated and shown in Table 1 . PGD is computed using spaces as
delimiters for tokenization, representing a lower bound since pre-
cise tokenization isn’t feasible for such large datasets. This approxi-
mation remains valuable for consistent cross-method comparisons.

Unlike message-level GA and PA metrics, which depend on log
volume, the proposedmetrics avoid template imbalance and provide
a clearer performance indicator. For example, in the Linux dataset,
Drain’s GA is 68.6 compared to our 53.4. However, Drain’s GGD
is 30 versus our 10, indicating significantly more effort needed to
align Drain’s results with the ground truth.

Compared to template-level metrics, GGD and PGD show that
smaller GD correlates with higher FGA and FTA. However, FGA
and FTA can overly penalize repetitive differences. For example,
if a ground truth template "instance: <*>" has many instance IDs
not correctly identified as variables, it increases the number of
identified templates, skewing precision calculations. GGD and PGD
count such differences only once, offering a fairer measurement.
For instance, GA and PA for Uniparser on OpenSSH are 0.9 and
0.5, respectively—values that indicate a significant gap compared to
other methods and are not informative. Conversely, GGD and PGD
for Uniparser on OpenSSH are 15 and 26, respectively, providing
an informative and intuitive comparison. This robustness is also
observed in HealthApp, OpenStack, and Thunderbird datasets.

Evaluation with Different LLMs By design, our framework is
versatile enough to be compatible with any language model that can
process individual log messages and accordingly generate log tem-
plates. This evaluation’s primary objective is to assess the impact
of different LLMs on the efficacy and efficiency of our approach.

Our results, as presented in Table 2, demonstrate that using
GPT-4 as the LLM template extractor paired with ICL yields op-
timal performance. However, this comes at the cost of increased

**The reason Drain has a GGD of 6618 but a PGD of 23 is that its preprocessing converts
all numbers to the variable "<*>". Complicated instance IDs such as "3edec1e4-9678-
4a3a" are preprocessed to"<*>edec<*>e<*>-<*>-<*>a<*>a". This results in a significant
number of redundant log clusters, leading to a high GGD. However, when calculating
the PGD, this is considered a single variable token which is correctly parsed and thus
does not contribute to the PGD.

computational time due to GPT-4’s extensive parameter count. No-
tably, both granularity calibration and ICL enhance performance
and concurrently decrease the number of required LLM calls. This
is congruent with our framework’s foundational assumption that
LLMs can generate nearly perfect log templates. For the fine-tuned
LLM, we commenced with the widely-recognized open-source LLM,
Llama-2-13b. Despite its performance not being optimal, it remains
competitive, closely paralleling the results of prior state-of-the-art
semantic-based models like Uniparser and LogPPT. This subpar
performance may be attributed to our not having meticulously
curated the fine-tuning dataset and its limited size. While a more
thoughtfully curated, expansive training dataset and hyperparame-
ter tuning could enhance its performance, this conflicts with our
intent: to construct a robust log parser that necessitates minimal
human intervention and domain-specific knowledge.

For runtime efficiency, we delineate runtime into two facets:
the time required for LLM calls and the time for our log parser’s
other operations. This distinction is crucial, given that OpenAI
service calls depend on service availability and are subject to rate
limitations, which complicates consistent performance evaluation.
To estimate cumulative processing time, we multiply the average
response time (in optimal scenarios) by the total number of LLM
calls. Our base algorithm’s average runtimes stand at 461.67s and
433.22s. If we disregard potential rate caps, the mean response times
are 0.52s for GPT-3.5 and 4.18s for GPT-4. With an average of 272.5
LLM calls, this equates to overall runtimes of 612.31s for GPT-3.5
and 1572.27s for GPT-4. For comparison, Drain, one of the fastest ex-
isting methods, averages 483.2s to process about 3.6 million logs. In
contrast, a conventional line-by-line LLM parsing approach would
necessitate 3.6 million LLM calls, leading to an impractical runtime
of approximately 22 days for GPT-3.5, not accounting for other oper-
ational overheads. This analysis not only emphasizes our method’s
competitive efficiency but also its practicality, overcoming the in-
herent impracticality of existing LLM-based parsers by significantly
reducing the number of necessary LLM calls.

6 Conclusion
In this study, we introduce LogParser-LLM, a novel approach to log
parsing that seamlessly integrates the strengths of Large Language
Models (LLMs). Centralizing around a prefix tree and an LLM-based
template extractor, LogParser-LLM not only streamlines the extrac-
tion of semantically rich log templates but also ensures efficiency
through strategic LLM call reductions. While demonstrating com-
pelling results, we also uncovered nuances in parsing granularity,
prompting the creation of the Granularity Distance metric. Our
rigorous tests on benchmark datasets reveal that LogParser-LLM
significantly outshines existing parsers in accuracy and efficiency,
demonstrating its potential as a valuable tool for both researchers
and practitioners in the field of log analysis.

Acknowledgments
This work was supported by Alibaba Group through Alibaba Re-
search Intern Program.

References
[1] Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. 2004.

Failure diagnosis using decision trees. In International Conference on Autonomic

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

Computing, 2004. Proceedings. IEEE, 36–43.
[2] Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.

Logram: Efficient Log Parsing Using 𝑛 n-Gram Dictionaries. IEEE Transactions
on Software Engineering 48, 3 (2020), 879–892.

[3] Yingnong Dang, Qingwei Lin, and Peng Huang. 2019. Aiops: real-world chal-
lenges and research innovations. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 4–5.

[4] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey for in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

[5] Min Du and Feifei Li. 2016. Spell: Streaming parsing of system event logs. In 2016
IEEE 16th International Conference on Data Mining (ICDM). IEEE, 859–864.

[6] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[7] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158.

[8] Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution anomaly
detection in distributed systems through unstructured log analysis. In 2009 ninth
IEEE international conference on data mining. IEEE, 149–158.

[9] Ying Fu, Meng Yan, Jian Xu, Jianguo Li, Zhongxin Liu, Xiaohong Zhang, and Dan
Yang. 2022. Investigating and improving log parsing in practice. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1566–1577.

[10] Justine Gangneux. 2019. Rethinking social media for qualitative research: The
use of Facebook Activity Logs and Search History in interview settings. The
Sociological Review 67, 6 (2019), 1249–1264.

[11] Nentawe Gurumdimma, Arshad Jhumka, Maria Liakata, Edward Chuah, and
James Browne. 2015. Towards detecting patterns in failure logs of large-scale
distributed systems. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. IEEE, 1052–1061.

[12] Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573–1582.

[13] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. 2017. Drain: An online
log parsing approach with fixed depth tree. In 2017 IEEE international conference
on web services (ICWS). IEEE, 33–40.

[14] Shilin He, Qingwei Lin, Jian-Guang Lou, Hongyu Zhang, Michael R Lyu, and
Dongmei Zhang. 2018. Identifying impactful service system problems via log
analysis. In Proceedings of the 2018 26th ACM joint meeting on European software
engineering conference and symposium on the foundations of software engineering.
60–70.

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

[16] Yintong Huo, Yuxin Su, Cheryl Lee, and Michael R Lyu. 2023. SemParser: A
Semantic Parser for LogAnalytics. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). IEEE, 881–893.

[17] Zhihan Jiang, Jinyang Liu, Junjie Huang, Yichen Li, Yintong Huo, Jiazhen Gu,
Zhuangbin Chen, Jieming Zhu, and Michael R Lyu. 2023. A Large-scale Bench-
mark for Log Parsing. arXiv preprint arXiv:2308.10828 (2023).

[18] Zhen Ming Jiang, Ahmed E Hassan, Parminder Flora, and Gilbert Hamann. 2008.
Abstracting execution logs to execution events for enterprise applications (short
paper). In 2008 The Eighth International Conference on Quality Software. IEEE,
181–186.

[19] Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for assessing the accuracy of log message template identification tech-
niques. In Proceedings of the 44th International Conference on Software Engineering.
1095–1106.

[20] Van-Hoang Le and Hongyu Zhang. 2023. An Evaluation of Log Parsing with
ChatGPT. arXiv preprint arXiv:2306.01590 (2023).

[21] Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-based Few-
shot Learning. arXiv preprint arXiv:2302.07435 (2023).

[22] Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He, Qingwei Lin,
and Dongmei Zhang. 2023. Did We Miss Something Important? Studying and Ex-
ploring Variable-Aware Log Abstraction. arXiv preprint arXiv:2304.11391 (2023).

[23] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen. 2016.
Log clustering based problem identification for online service systems. In Pro-
ceedings of the 38th International Conference on Software Engineering Companion.
102–111.

[24] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yanqing Zhao,
Yuhang Chen, Hao Yang, Yanfei Jiang, and Xun Chen. 2023. LogPrompt: Prompt
Engineering Towards Zero-Shot and Interpretable Log Analysis. arXiv preprint
arXiv:2308.07610 (2023).

[25] Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uniparser: A unified log
parser for heterogeneous log data. In Proceedings of the ACM Web Conference
2022. 1893–1901.

[26] Chuan Luo, Pu Zhao, Bo Qiao, Youjiang Wu, Hongyu Zhang, Wei Wu, Weihai
Lu, Yingnong Dang, Saravanakumar Rajmohan, Qingwei Lin, et al. 2021. NTAM:
Neighborhood-temporal attention model for disk failure prediction in cloud
platforms. In Proceedings of the Web Conference 2021. 1181–1191.

[27] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. 2009.
Clustering event logs using iterative partitioning. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1255–1264.

[28] Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In Proceedings of the 26th Conference on Program
Comprehension. 167–177.

[29] Meta. 2023. Meta Reports First Quarter 2023 Results. https://investor.fb.com/
investor-news/press-release-details/2023/Meta-Reports-First-Quarter-2023-
Results/default.aspx

[30] Masayoshi Mizutani. 2013. Incremental mining of system log format. In 2013
IEEE International Conference on Services Computing. IEEE, 595–602.

[31] Priyanka Mudgal and Rita Wouhaybi. 2023. An Assessment of ChatGPT on Log
Data. arXiv preprint arXiv:2309.07938 (2023).

[32] Meiyappan Nagappan and Mladen A Vouk. 2010. Abstracting log lines to log
event types for mining software system logs. In 2010 7th IEEE Working Conference
on Mining Software Repositories (MSR 2010). IEEE, 114–117.

[33] Antonio Pecchia, Marcello Cinque, Gabriella Carrozza, and Domenico Cotroneo.
2015. Industry practices and event logging: Assessment of a critical software
development process. In 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2. IEEE, 169–178.

[34] Xiang Rao, Huaimin Wang, Dianxi Shi, Zhenbang Chen, Hua Cai, Qi Zhou, and
Tingtao Sun. 2011. Identifying faults in large-scale distributed systems by filtering
noisy error logs. In 2011 IEEE/IFIP 41st International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE, 140–145.

[35] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[36] Daan Schipper, Maurício Aniche, and Arie van Deursen. 2019. Tracing back
log data to its log statement: from research to practice. In 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR). IEEE, 545–549.

[37] Weiyi Shang. 2012. Bridging the divide between software developers and op-
erators using logs. In 2012 34th international conference on software engineering
(ICSE). IEEE, 1583–1586.

[38] Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv preprint arXiv:1611.03213 (2016).

[39] Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating sys-
tem events from raw textual logs. In Proceedings of the 20th ACM international
conference on Information and knowledge management. 785–794.

[40] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[41] Risto Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 119–126.

[42] Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1–7.

[43] Liming Wang, Hong Xie, Ye Li, Jian Tan, and John Lui. 2023. Interactive Log
Parsing via Light-weight User Feedbacks. arXiv preprint arXiv:2301.12225 (2023).

[44] Xuheng Wang, Xu Zhang, Liqun Li, Shilin He, Hongyu Zhang, Yudong Liu,
Lingling Zheng, Yu Kang, Qingwei Lin, Yingnong Dang, et al. 2022. SPINE: a
scalable log parser with feedback guidance. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1198–1208.

[45] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in Neural Information Processing Systems 35
(2022), 24824–24837.

[46] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He.
2023. Prompting for Automatic Log Template Extraction. arXiv preprint
arXiv:2307.09950 (2023).

[47] Junjielong Xu, Ruichun Yang, Yintong Huo, Chengyu Zhang, and Pinjia He. 2024.
DivLog: Log Parsing with Prompt Enhanced In-Context Learning. In 2024 46th
international conference on software engineering (ICSE). IEEE.

[48] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. 2009.
Detecting large-scale system problems by mining console logs. In Proceedings of

https://investor.fb.com/investor-news/press-release-details/2023/Meta-Reports-First-Quarter-2023-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2023/Meta-Reports-First-Quarter-2023-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2023/Meta-Reports-First-Quarter-2023-Results/default.aspx

LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models Conference’17, July 2017, Washington, DC, USA

the ACM SIGOPS 22nd symposium on Operating systems principles. 117–132.
[49] Siyu Yu, Pinjia He, Ningjiang Chen, and Yifan Wu. 2023. Brain: Log Parsing with

Bidirectional Parallel Tree. IEEE Transactions on Services Computing (2023).
[50] Shenglin Zhang, Ying Liu,WeibinMeng, Zhiling Luo, Jiahao Bu, Sen Yang, Peixian

Liang, Dan Pei, Jun Xu, Yuzhi Zhang, et al. 2018. Prefix: Switch failure prediction
in datacenter networks. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (2018), 1–29.

[51] Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807–817.

[52] Xu Zhang, Yong Xu, Si Qin, Shilin He, Bo Qiao, Ze Li, Hongyu Zhang, Xukun Li,
Yingnong Dang, Qingwei Lin, et al. 2021. Onion: identifying incident-indicating
logs for cloud systems. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 1253–1263.

[53] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, andMichael R
Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). Los Alamitos, CA, USA (2019), 121–130.

A Additional Discussion
A.1 Challenges of Log Parsing in Practice
The challenges associated with log parsing encompass several key
aspects.

Huge Volume. Modern systems generate vast amounts of log
data, which are difficult to manage, store, and analyze. For instance,
services like Amazon, Alibaba, and Facebook generate billions
of visits per day, each creating multiple log entries [10, 29]. Log
parsing, along with tasks like anomaly detection and root cause
analysis, is crucial for minimizing system downtime and financial
loss [8, 11, 34]. The requirement for real-time, streaming log parsing
makes handling such vast volumes challenging.

Constantly Evolving. Systems and technologies continuously
evolve, leading to changes in log entry types, formats, structures,
and content. New features and components introduce novel log
formats, necessitating updates to log templates for accurate parsing.
Without timely template updates, parsing algorithms may fail to
extract relevant information, leading to inaccuracies and incom-
plete analysis. Proactively updating log templates ensures effective
parsing and adaptation to dynamic log generation.

Diverse Sources. Logs from different systems often have diverse
formats, posing a challenge for log parsing algorithms. Each sys-
tem’s unique log format can vary significantly in structure, syntax,
and content. Effective log parsing algorithms must generalize to
handle various formats without relying on system-specific rules or
assumptions.

A.2 Insights and Opportunities of Log Parsing
with LLMs

The relentless growth in log volumes, the ever-evolving nature of
logs, and the vast diversity in log sources have presented daunting
challenges in the realm of log parsing. Syntax-based parsers, while
efficient, often grapple with the dynamic nuances introduced by
log evolution and diverse sources. LLMs, with their deep semantic
understanding and adaptability, are poised as a promising solution
but need prompt tuning and optimization to handle vast volumes.

Moreover, the vital role of log data in modern systems under-
scores the need for log parsing tools that embody certain foun-
dational principles. In practice, a log parser must be Accurate,

ensuring accurate interpretation of every piece of information. Effi-
ciency is paramount to handling the voluminous log data churned
out by popular platforms and sprawling systems. The parser’s
Evolvabilitywill be its asset, granting it the flexibility to keep pace
with system updates and new feature integrations. To confront the
multifarious log formats from diverse sources, it is imperative that
a parser is Generalizable, ensuring it doesn’t rely too heavily on
system-specific constructs.

Furthermore, for real-time responsiveness, the parser needs to
operate in an Online manner. This demands the tool’s agility to
adapt and recalibrate as new log entries stream in. Addressing the
challenge of different granularities in log parsing is also of utmost
importance. Ensuring the capability to Calibrate Granularity
provides flexibility in parsing logs, given that a single log can be
interpreted in multiple, yet reasonable, ways based on granularity.

Given the unique strengths and challenges of each approach, a
compellingmotivation emerges: to amalgamate the adaptability and
depth of LLMs with the efficiency intrinsic to syntax-based parsers.
This convergence promises a robust and versatile log parsing solu-
tion, aptly suited to address both present and future challenges in
log management.

B Existing metrics
Grouping Accuracy (GA) GA measures the ratio of correctly
grouped log messages. A message is considered correctly grouped
if and only if its template group is exactly aligned with ground
truth grouping.

Parsing Accuracy (PA) PA assesses the ability to extract tem-
plates accurately, critical for tasks like anomaly detection. it is the
fraction of messages parsed correctly, meaning all template and
variable tokens are identified accurately.

F1 score of Grouping Accuracy (FGA) FGA is a template-level
metric that evaluates the fraction of correctly grouped templates.
Using the true number of templates (𝑁𝑔), parsed templates (𝑁𝑝),
and correctly parsed templates (𝑁𝑐), we calculate the Precision
(𝑃𝐺𝐴 =

𝑁𝑐

𝑁𝑝
) and Recall (𝑅𝐺𝐴 =

𝑁𝑐

𝑁𝑔
) of Grouping Accuracy. FGA is

their harmonic mean.
F1 score of Template Accuracy (FTA) FTA is the harmonic

mean of Recall of Template Accuracy (RTA) and Precision
of Template Accuracy (PTA). Like FGA, FTA evaluates correct
template identification at the template level. A template is correct
if log messages with the same parsed template share the same
ground-truth template and the parsed template matches the ground-
truth template exactly. Using 𝑁𝑐 to denote the number of templates
identified accurately by a parser, PTA is then given by 𝑁𝑐

𝑁𝑝
, and RTA

by 𝑁𝑐

𝑁𝑔
, allowing us to compute FTA as 2 × 𝑃𝑇𝐴×𝑅𝑇𝐴

𝑃𝑇𝐴+𝑅𝑇𝐴 .

C Additional Implementation Details
Fine-tuning Settings The llmama-2-13b model was finetuned
on a server equipped with 8 Tesla A100 80GB GPUs using the
Hugging Face Transformers package. The model was finetuned
for 50 epochs with 32 samples for each dataset. During inference,
we utilized DeepSpeed[35] with 8-bit quantization to expedite the
inference process on a single Tesla A100 80GB GPU. Additionally,
the model was fine-tuned using LoRA [15] with rank 𝑟 set to 64. For

Conference’17, July 2017, Washington, DC, USA Aoxiao Zhong et al.

"""Below is an instruction that describes a task. Write
a response that appropriately completes the request
Instruction:
Analyze the input log and identify dynamic variables.
Substitute dynamic variables with <XXX>.
Input:
{log}
Response:
{template}
End """

Figure 5: Prompt for fine-tuning

"""
{task prompt in Figure 4}

Given the following logs, output the parse result for
each of them first, then determine whether they are
instances from the same event template. The output
should use the following format:

EventTemplate_1: {parse result for Log_1}
EventTemplate_2: {parse result for Log_2}
...
EventTemplate_N: {parse result for Log_N}

Reason: {brief reason whether they should be unified}

Answer: {"Yes" or "No"}

Unified Template: {one unified template if yes. Make
sure there are static parts in the template. "None" if
the anwser is no}
"""

Figure 6: Prompt for Merge Verification

""" {task prompt in Figure 4}
Does the template: "{merged_template}" apply to the
following logs? Please answer with yes or no.

Answer:
"""

Figure 7: Prompt for Merge Checking

optimization, we employed the AdamW optimizer with an initial

learning rate of 2e-4, which was linearly scheduled down to 0. The
batch size was 16.

Prompts We demonstrate the final prompt used for the ICL-
based method in Figure 4 and the fine-tuning-based method in
Figure 5. The prompts for automatic template merge check and
verification are shown in Figure 6 and Figure 7, respectively.

"""As a log parser, your task is to analyze logs
and identify dynamic variables. These variables
are distinct from static parts, which are hardcoded
sections in the logging code. The categories of dynamic
variables are concluded as:

Object ID (OID): Includes variables like session IDs
and user IDs.
Location Indicator (LOI): Path information, URIs, and
IP addresses.
Object Name (OBN): Domain names, task names, job names.
Type Indicator (TID): Category for type indicators.
Switch Indicator (SID): Category for switch indicators
(only numerical ones).
Time/Duration of an Action (TDA): Timespan or duration
of actions.
Computing Resources (CRS): Memory, disk space, number
of bytes.
Object Amount (OBA): Number of errors, nodes, etc.
Status Code (STC): Error codes (only numerical ones).
Other Parameters (OTP): All other types of variables.

To parse the logs, substitute dynamic variables with
their respective category tokens, denoted by <XXX>.
Everything outside the <XXX> should remain exactly
unchanged! Do not fix any typo! If a variable comprises
several smaller, fine-grained variables, don’t dissect
it. Instead, replace the entire compound variable with
a single <XXX> token. Do not substitute all content in
the log as a variable; only genuine dynamic variables
should be replaced.

Examples:
Log: {example log message}
Parsed Log: {example template}
...
Log: {log to be parsed}
Parsed Log: """

Figure 4: Variable-aware Prompt for Log Parsing

	Abstract
	1 Introduction
	2 Related Work and Motivation
	2.1 Syntax-based Log Parsers
	2.2 Semantic-based Log Parsers
	2.3 Interactive Log Parsing
	2.4 LLMs-based Log Parsing

	3 Granularity of Log Parsing
	3.1 Characterization of Granularity
	3.2 Measuring Granularity Discrepancy

	4 Methodology
	4.1 Preprocessing
	4.2 Base Algorithm with Prefix Parse Tree
	4.3 Enhancing LLM Template Extraction
	4.4 Optimal Granularity via Human-in-Loop

	5 Experiments
	5.1 Experimental Settings
	5.2 Evaluation Metrics
	5.3 Evaluation on Loghub-2k
	5.4 Evaluation on LogPub

	6 Conclusion
	Acknowledgments
	References
	A Additional Discussion
	A.1 Challenges of Log Parsing in Practice
	A.2 Insights and Opportunities of Log Parsing with LLMs

	B Existing metrics
	C Additional Implementation Details

