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ABSTRACT
Adversarial examples, designed to trick Artificial Neural Networks
(ANNs) into producing wrong outputs, highlight vulnerabilities in
these models. Exploring these weaknesses is crucial for developing
defenses, and so, we propose a method to assess the adversarial
robustness of image-classifying ANNs. The t-distributed Stochas-
tic Neighbor Embedding (t-SNE) technique is used for visual in-
spection, and a metric, which compares the clean and perturbed
embeddings, helps pinpoint weak spots in the layers. Analyzing
two ANNs on CIFAR-10, one designed by humans and another via
NeuroEvolution, we found that differences between clean and per-
turbed representations emerge early on, in the feature extraction
layers, affecting subsequent classification. The findings with our
metric are supported by the visual analysis of the t-SNE maps.
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1 INTRODUCTION
Adversarial examples [8, 14] are a threat to the robustness of Arti-
ficial Neural Networks (ANNs). They are carefully crafted to fool
these models by adding perturbations, often small and impercepti-
ble, to benign data samples [3]. There is a vast literature showing
that manually-designed ANNs [4, 10, 13], as well as ANNs designed
in an automated way [7, 15], suffer from this vulnerability.

The robustness of a model against adversarial examples can
be estimated by performing attacks and computing their success
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rate [5]. This gives us a general idea of how the model would
perform in similar conditions, but does not provide any insight into
its inner workings. To tackle this, we propose a method to visualize
and examine changes in the representation of the input data as it
goes through the different layers of an ANN.

Our proposal is based on the t-distributed Stochastic Neighbor
Embedding (t-SNE) [17] technique. Relying on a visual analysis
to quantify differences between original and altered data in many
layers is a daunting task. Thus, we suggest a metric for measuring
clean-perturbed data overlap in the t-SNE space.

We focused on Convolutional Neural Networks (CNNs) designed
to solve image classification tasks. We inspected pre-trained mod-
els for the CIFAR-10 dataset [11], namely a manually-designed
Wide Residual Network (WRN) [18] and a CNN designed by Neu-
roEvolution (NE) [1], trained without any defense against adver-
sarial perturbations. Following recent works [5], we considered 𝐿2
and 𝐿∞-robustness, using three variants of the Auto-PGD (APGD)
method [6] as attacks.

The metric shows that network deterioration begins in the fea-
ture extraction layers, affecting how CNNs distinguish between
clean and perturbed images. This is also visible in their separation
on the t-SNE maps.

The paper is organized as follows. Section 2 provides some back-
ground. The proposed approach and metric are described in Sec-
tion 3. Section 4 details the general setup of our experiments and
Section 5 presents the main findings. Section 6 concludes the paper
and points toward future directions.

2 BACKGROUND AND RELATEDWORK
An adversarial example [8, 14] is an input similar to a valid data
point to which a model gives a highly different prediction [14]. In
the image domain, it is common to add small 𝐿𝑝 -norm perturbations,
bounded by a budget 𝜖 , to the benign sample [2]. An attack can
cause a misclassification of a sample as a specific class (targeted) or
as any class as long as it is not the right one (untargeted) [3].

AutoAttack [6] is an ensemble of white-box and black-box at-
tacks that can be used as a heuristic evaluation method of the adver-
sarial robustness of a model. It is adopted by the RobustBench [5]
benchmark, which uses standardized evaluation methodologies to
keep track of the progress made in adversarial robustness. The
APGD method [6], a variation of the Projected Gradient Descent
(PGD) method [13] used by AutoAttack, progressively reduces the
step size in an automated way, based on how the optimization is
proceeding. Croce and Hein [6] also propose the Difference of Log-
its Ratio (DLR) loss, an alternative to the cross-entropy (CE) loss
that is both invariant to shifts of the logits and to rescaling.
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Cianfarani et al. [4] inspect the layerwise representations of
CNNs using representation similarity metrics. The authors investi-
gate the similarity between the representations of clean and adver-
sarially perturbed images, which closely relates to our work. Their
findings suggest that this similarity score is typically high in earlier
layers of the networks and, for undefended models, gets close to
zero once the final layer is reached. This work does not include any
method to visualize the representations themselves.

3 METHODOLOGY
The proposed methodology to analyze the different layers of a CNN
from an adversarial robustness perspective is presented in Figure 1.
We do not use the training set of the dataset while analyzing a
model. Moreover, we create several random splits from the test set
so as to be able to have access to validation data (used to analyze
the model), while also putting aside test data.

The first step is to select and perform an adversarial attack, only
considering correctly classified images. Pixel values are normalized
beforehand and any pre-processing specific to a model is included
in its definition. Once the attack is applied, both the perturbed
images and the clean ones are passed through the ANN up until
the desired target layer to extract the hidden representations.

Due to being high-dimensional, it is not possible to visualize
this latent data. Thus, for each layer that we want to inspect, we
apply the t-SNE method to the extracted representations to get a
two-dimensional map. We also apply the t-SNE method to the clean
images incorrectly classified by the model (not used as inputs to
the adversarial attacks).

Generating adversarial examples occurs once per validation set,
but extracting latent layer representations and computing the t-SNE
map must be repeated for each inspected layer. For each validation
set and target layer, we examine the 2D maps and compute a metric
that measures layer robustness by comparing clean and perturbed
image embeddings.

3.1 Robustness Metric
To summarize the layer’s outputs, we propose a robustness metric
based on the differences between the clean and the corresponding
adversarially perturbed representations on the t-SNE map. The
rationale behind the proposed metric is based on the notion that,
for a representation learned by a layer to be robust, the clean image
and the adversarially perturbed one should be mapped to the same
point in the t-SNE space.

We restrict the computation of the metric to pairs of clean-
perturbed images, even though the t-SNE technique is also applied
to clean images for which adversarial attacks are not generated.
For each analyzed layer, we calculate the t-SNE for both clean and
attacked images. We find the shortest Euclidean distance between
each clean image and a clean instance from a different class. If the
distance between a clean image and its perturbed counterpart is
less than this minimum, we consider that they overlap.

The final metric value corresponds to the ratio of clean-perturbed
pairs that overlap according to that heuristic:

robustness metric =
∑𝑛
𝑖=1 OverlappingEmbeddings (𝑖,𝐶,𝐴,𝑌 )

𝑛
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Figure 1: Proposed methodology to analyze the adversarial
robustness of different layers of a CNN.

whereOverlappingEmbeddings is the algorithm described to detect
overlaps, 𝐶 and 𝐴 are the t-SNE representations of the clean and
adversarially perturbed images, respectively, 𝑌 is the set of true
labels of the clean images, and 𝑛 is the number of perturbed images
that were generated (and, thus, the number of clean-perturbed
pairs). Metric values range from 0 to 1, with higher values indicating
that more clean and perturbed images overlap on the t-SNE map,
which suggests layerwise robustness. This metric requires attacking
instances from multiple classes, as detecting overlaps depends on
the minimum distance to an instance of a different class.

4 EXPERIMENTAL SETUP
All experiments were run in Python 3.8, using Tensorflow 2.5.0 and
PyTorch 1.10.1.

4.1 Dataset and Models
Using 10 random seeds and maintaining data balance through strat-
ification, the test set of the CIFAR-10 dataset [11] was splitted into a
validation set and a final test set, each with 5000 images. Adversarial
examples were generated for validation images.

Given the remarkable results achieved by some NeuroEvolution-
ary approaches [1, 12], we included a CNN designed by NE [1]
in our experiments. Additionally, we used a handcrafted architec-
ture [18] as a baseline, specifically the WRN-28-10 model1 trained
by the RobustBench team. Regarding DENSER [1], we chose the
best performing architecture2 over the original evolutionary runs.
To avoid introducing bias from our end, we used the pre-trained
models directly, without any form of re-training.

4.2 Threat Models, Attacks, and t-SNE
We performed white-box attacks, since an attacker can easily have
full access to the models. Furthermore, we considered 𝐿∞ perturba-
tions with 𝜖 = 8/255, as well as 𝐿2 perturbations with 𝜖 = 0.5 [5].

1https://github.com/RobustBench/robustbench/tree/master/robustbench/model_zoo
2https://github.com/fillassuncao/denser-models/tree/master/CIFAR-10/net_1
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Running the complete AutoAttack ensemble [6] on undefended
models would be unnecessarily expensive. Thus, we performed
some of the attacks from the ensemble in isolation: an untargeted
APGD on the CE loss (APGD-CE), an untargeted APGD on the DLR
loss (APGD-DLR), and an APGD on the targeted DLR loss with 9
target classes (denoted by APGD-T). The number of iterations for
all the attacks is 100 and neither performs random restarts.

These attacks operate over the logits. As such, a slight modifica-
tion had to be introduced in the definition of the DENSER model,
whose original architecture has the softmax activation directly
incorporated in the last fully-connected (FC) layer. We used the
original Python implementations3 of the attacks.

For visualization, we used a t-SNE implementation which relies
on Barnes-Hut approximations of the gradient [16]. We considered
the default value of 0.5 for the parameter that controls the trade-off
between speed and accuracy. Instead of randomly initializing the
solution (i.e., the two-dimensional embedding), the PCAmethod [9]
is applied to the input data to get the initial low-dimensional repre-
sentation. We considered 1500 iterations and a perplexity of 50 [17].

5 INSPECTING THE NETWORKS
We attack only correctly classified images, leading to varying attack
counts per model. The reported post-attack accuracy includes all
validation images, covering both generalization errors and adver-
sarial robustness. This promotes a fair comparison between models.

The WRN-28-10 model has a mean accuracy of 94.84% ± 0.25%,
which is slightly higher than that of DENSER (mean accuracy of
93.68% ± 0.31%). This refers to the accuracy of the pre-trained
models on the validation sets of clean images from CIFAR-10.

For both models and robustness scenarios, the accuracy drops to
near-zero values after performing either of the three attacks (APGD-
CE, APGD-DLR, or APGD-T). Considering 𝐿2 perturbations, not
all validation images can be successfully perturbed with APGD-CE
and APGD-DLR, but the accuracy is always below 0.45%, showing
that neither model is robust against any of these attacks.

5.1 Robustness Metric across Layers
Next, we computed the robustness metric for some of the layers
of the models. Figure 2 shows the results for APGD-CE, with each
point representing a run with one of the 10 validation sets. The
WRN-28-10 model comprises three groups (denoted by b1, b2, and
b3) of four residual blocks (from layer.0 to layer.3). As such,
b3.layer.1.add corresponds to the output of the second residual
block in the last group. Figure 2a shows the results for that model,
while Figure 2b presents the results for DENSER.

The first layers of both models seem to keep the representations
of clean and perturbed samples close to one another, as shown by
metric values close to 1. Moreover, the robustness degrades earlier
on in the network with 𝐿∞ perturbations than with 𝐿2.

For WRN-28-10, the most drastic drops in the robustness of the
hidden representations seem to occur in the last group of residual
blocks. In the 𝐿2 scenario, the metric drops to almost zero after the
second residual block in that group, while in the 𝐿∞ case, it is almost
zero for all layers following the first residual block. Metric values

3https://github.com/fra31/auto-attack
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Figure 2: Layerwise robustness of the models under APGD-
CE with 𝐿2 (blue) and 𝐿∞ (orange) perturbations.

close to zero mean that there is practically no overlap between
clean and perturbed images on the low-dimensional t-SNE map.

Regarding DENSER, the layers between conv2d and conv2d_3
are omitted since the metric does not drop from 1. In the 𝐿2 scenario,
the layerwise robustness starts decreasing after activation_5, but
the biggest drop occurs after activation_6. It only gets close to
zero with the last ReLU activation (i.e., activation_7). For 𝐿∞
perturbations, the results deviate from what we have observed so
far. There is a significant drop in conv2d_3, but the model seems to
recover, with the values for activation_5 being close to 1. From
this point onward, the metric drops significantly again, reaching
zero with conv2d_9 and all the following layers.

The DENSER model has considerably less convolutional layers
than WRN-28-10 (10 vs. 28), but more of those layers from the latter
model seem to learn representations that are less robust. Focusing
on 𝐿2-robustness, the metric at the 23rd convolution of WRN-28-10
(b3.layer.1.conv1) drops below 0.4 and does not increase in any
layers that follow, while that only happens at the last convolution
of DENSER. That represents more than 20% of the convolutional
layers of WRN-28-10, but only 10% of DENSER.

Due to space restrictions, we do not show the obtained results
with the remaining two attacks, but similar trends can be observed.
We just note that, for DENSER, the metric values remain higher
until later in the model than with APGD-CE.

5.2 Visual Inspection
Figure 3a shows the 2Dmap for the activation_6 layer of DENSER,
only considering the points (both clean and perturbed) that, accord-
ing to the metric, do not overlap. Differences between clean and per-
turbed representations are relatively scarce. These representations
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start to diverge in the layer that immediately follows activation_6,
i.e., conv2d_9. Figure 3b shows the non-overlapping points for that
layer, which are noticeably more than on Figure 3a. Additionally,
the perturbed points seem to encircle the clean ones.
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Figure 3: Non-overlapping clean (green) and perturbed (red)
points on the t-SNE map of different intermediate layers of
the DENSER model, considering an APGD-CE attack in 𝐿2.

Lastly, Figures 4a and 4b show the representation of clean and
perturbed images at the final FC layer of DENSER, before softmax.
Clean images cluster by true labels, while perturbed images cluster
with instances from different classes. Almost no clean-perturbed
points overlap once they reach this layer.
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(b) Adversarially perturbed.

Figure 4: t-SNE map for the last layer of DENSER and an
APGD-CE attack in 𝐿2. Colors represent true labels.

The t-SNE maps of WRN-28-10 layers further validate our metric.
For instance, the map of the b3.layer.0.add layer resembles the
one obtained for the activation_6 layer of DENSER. In the last
layer, clean points once again cluster by class and do not overlap
with perturbed ones, which are more scattered in the space but still
form clusters of mixed labels.

6 CONCLUSION AND FUTUREWORK
Adversarial examples compromise ANN robustness. Since tradi-
tional evaluations fall short in multi-layer analysis, we propose
a method that quantifies and visually examines the discrepancies
between the latent representations of clean and adversarial samples.

Our results show that discrepancies between clean and perturbed
data appear still during feature extraction, even before the final
convolutional layer. Our layerwise robustness metric aids defense
development, with potential uses in improving NE fitness functions
or selecting layers for detection-based defenses.

For each architecture, we used a single pre-trained model, which
may raise questions on generalizability. Attempts to retrain the
models and reproduce the results with the pre-trained WRN were
unsuccessful, highlighting the potential influence of the learning
strategy on the adversarial robustness of a model.

In the future, the proposed approach needs to be evaluated on
more datasets, and with models that have been explicitly designed
to be adversarially robust.
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