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ABSTRACT
Robustness and generalizability are the key properties of artificial
neural network (ANN)-based controllers for maintaining a reliable
performance in case of changes. It is demonstrated that exposing
the ANNs to variations during training processes can improve their
robustness and generalization capabilities. However, the way in
which this variation is introduced can have a significant impact.
In this paper, we define various training schedules to specify how
these variations are introduced during an evolutionary learning
process. In particular, we focus on morphological robustness and
generalizability concerned with finding an ANN-based controller
that can provide sufficient performance on a range of physical vari-
ations. Then, we perform an extensive analysis of the effect of these
training schedules on morphological generalization. Furthermore,
we formalize the process of training sample selection (i.e., morpho-
logical variations) to improve generalization as a reinforcement
learning problem. Overall, our results provide deeper insights into
the role of variability and the ways of enhancing the generalization
property of evolved ANN-based controllers.
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1 INTRODUCTION
The robustness and generalizability of artificial neural network
(ANN)-based controllers are crucial properties for providing reli-
able performance when facing changes. The physical world is, in
fact, highly uncertain and is subject to variations of various kinds.
To operate effectively, controllers must be robust to these varia-
tions, meaning they should be able to perform effectively in diverse
conditions.
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Robustness is typically defined as the ability to maintain suf-
ficient performance in case of small perturbations relative to the
training data. Whereas, generalization is the ability to handle a
wider range of differences, especially concerning scenarios that are
not encountered during the training process [28].

For instance, in the case of a walking robot, an ANN-based
controller should be robust to varying terrains, obstacles, or changes
to the robot morphology, e.g. due to damages. A controller trained
to handle only one specific morphology or one specific environment
would reduce its robustness and generalizability, making it more
fragile to perturbations [7, 27].

Robustness and generalizability can also be vital for reducing
the simulation-to-reality gap (reality gap for short), which refers to
the mismatch between simulated and real-world environments [30].
The training conditions in simulation may not capture the noise
and unexpected situations that can be encountered in the real world.
While optimizing for all possible unexpected situations may not
even be possible (because such situations are most likely unknown),
it is plausible to think that more generalizable controllers should
handle such situations better than highly specialized controllers.

Because of the importance of these properties, there is a growing
interest in developing controllers that exhibit robustness across
a broad spectrum of morphological variations and can generalize
to unseen morphologies [4]. The main approaches to handling
unexpected situations are retraining, relying on repertoires [8],
or online adaptation [23, 29, 38]. However, these approaches can
be costly since they rely on a form of learning or memorizing a
repertoire. On the other hand, a generalist controller may be able to
handle a large range of variability without the need for adaptation
[7].

In various domains, it has been observed that exposing learn-
ers to more variability can be an effective strategy for enhancing
their robustness and generalization capabilities [19]. More variabil-
ity tends to make initial learning more challenging but eventually
leads to more general and robust performance. This core princi-
ple has been discovered in many domains (e.g., visual perception
[39], motor learning [18, 31], and language acquisition [26]). In
supervised learning tasks, training variability can be enhanced, for
instance, through techniques like data augmentation [1, 13, 17].
More variability during training is therefore essential to generalize
learning, as it facilitates the formation of more abstract knowledge
[26]. Variability is also essential for an “antifragile” system, a con-
cept introduced by Taleb [34] to describe systems that can benefit
from exposure to variations. Taleb distinguishes between fragile,
robust, and antifragile systems, asserting that complex systems fall
into the antifragile category due to their opaque nature. ANNs,
with their nonlinear relationships, can benefit from environmental
variations, making adaptive controllers antifragile as they navigate
uncertainties. Introducing too much variability during training,
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however, can be counterproductive, as high variability can make
learning more difficult when learners are in the very early stages of
acquiring a target behavior [19]. It is therefore crucial to understand
the best way of introducing variability to improve generalization.

One approach to improve generalization by introducing vari-
ability is presented in [7], where the authors employ Evolution
Strategies to optimize ANNs to control different body shapes in
locomotion tasks. They enable generalization by introducing a dif-
ferent morphology (generated by modifying body parameters such
as leg length or width) at each generation and use it as the evalua-
tion fitness for that generation.

The present work builds upon a similar idea to study the effects
of different training schedules used to evolve the ANN in depth. Our
main focus is to investigate how variability influences the learning
and generalization of evolved ANN-based controllers. To this aim,
we perform a thorough analysis using three OpenAI Gym tasks:
Bipedal Walker, Walker2D, and Ant. The training methodologies
follow the algorithm presented in [7], introducing morphological
variations in each generation. However, differently from [7], here
we specifically focus on a thorough study of different training
schedules.

In our analysis, we find that increasing the diversity of morpholo-
gies during training improves both robustness and generalization.
Sampling variations from a continuous domain (i.e., modifying
various morphological parameters) during training provides more
robustness than a discrete set of variation possibilities. Moreover,
using the Beta distribution for sampling the variations for training
enhances generalization. We also confirm the observation reported
in [7], that the order in which the morphological variations are
introduced during training significantly impacts generalization per-
formance. Finally, we formalize the process of online learning of
training sample selection as a reinforcement learning problem and
show its learning dynamics. In particular, we study if some samples
(i.e., morphological variations) are preferred, and how this impacts
the final generalization. Taken together, these results highlight the
importance of introducing variation during training and its effects
on the generalization capabilities of ANN-based controllers.

The rest of the paper is organized as follows. The next section
presents the background and related works. Section 3 describes our
methods. Then, Section 4 and Section 5 present the experimental
setup and the numerical results. Finally, Section 6 concludes this
work.

2 BACKGROUND AND RELATEDWORKS
Neuroevolution through Evolution Strategies. ANN-based controllers
are used in a wide range of control tasks in simulation and the real
world. Often these tasks require black-box optimization approaches
due to the difficulty of obtaining a closed-form objective function
for which gradient-based approaches can be used. Neuro-evolution
is a derivative-free approach that is used to optimize the weights
(and, potentially, the structure) of ANNs using evolutionary algo-
rithms [11, 32]. Due to the large dimensionality of the ANN search
space, however, neuro-evolutionary approaches typically suffer
from scalability issues. In this regard, Evolution Strategies (ES)
have been shown to scale particularly well, due to their capability
of estimating the gradient based on sampling [9, 35]. Therefore,

ES has been applied on a wide range of control tasks that require
optimization in large dimensional parameter spaces [24, 36].

Morphological Robustness and Generalizability. As outlined by Ra-
viv et al. [19], variability has been demonstrated to be a crucial
aspect in improving the generalization capabilities of learners. In
the real world, one can say that learning intrinsically requires some
form of generalization. The prevailing relation between the effects
of variability and generalization, observed across various domains,
suggests that learning from less variable input tends to occur rapidly
but may struggle to generalize to new stimuli. Conversely, learning
from more varied input typically starts slower but often results in
superior generalization.

Variability, however, has many dimensions. The same authors
of [19] identified four distinct types: Numerosity (more or fewer
examples), Heterogeneity (similarity between samples), Situational
Diversity (more or less variable conditions), and Scheduling (dif-
ferent order of samples). The latter, in particular, is also related to
the timing of variability, which can directly impact the learning
process. It has been shown that the impact of variability can vary
significantly, depending on the stage of the learning process [3, 19].

The common intuition is that excessive variability during the
initial stages of learning can hinder learning. This is because, when
individuals are just starting to acquire a new skill or behavior, they
may encounter difficulties if they are exposed to too much vari-
ability too soon [16, 20]. Instead, beginning with simpler and less
variable examples tends to facilitate learning. This concept is the
foundation of curriculum learning, a methodology inspired by these
learning patterns where skills are progressively built upon simpler
concepts [25]. Eventually, exposing a learner to variability is how-
ever necessary to improve its ability to generalize learning to new
contexts, as it facilitates the formation of more abstract knowledge.
However, deciding when to expose the learner to variability is not
trivial. In the following, we will refer to the way to decide which
variations a learner should be exposed to, and when, with the term
training schedule.

A preliminary study on training schedules was conducted in [7],
aiming to improve the generalization of ANN-based controllers by
exposing them to variations in each generation of an evolution-
ary process. Focusing in particular on the case of morphological
variations, the authors showed that this approach provides bet-
ter generalizability performance relative to a baseline when the
average performance on all morphological variations is maximized.

In the case of morphological variations, finding ways to achieve
robustness can helpmaintain the performance in case of unexpected
changes in the physical structure of the agent without requiring
retraining [7]. We refer to morphological robustness as the abil-
ity of a controller to maintain stable performance despite small
perturbations (w.r.t. the training scenarios [27]) in the morpho-
logical parameters of the agent (e.g., a robot) controlled by that
controller. Whereas,morphological generalizability refers to the abil-
ity to maintain a sufficient performance in case of larger changes
in the morphological parameters of the agents [2].

3 METHODS
The training process of our approach is illustrated in Algorithm 1.
We use a similar approach proposed by [7], as we define a set of



The Effect of Training Schedules on Morphological Robustness and Generalization GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

morphologies that are introduced during the evolutionary process.
These morphologies are concerned with the parameter ranges of
the physical structure of the agents. Thus, we consider a training set
𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑛} that is used during training, and a validation
set𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} that is used for validating the generalization
score.𝑀 and 𝑉 are initialized or sampled from the same morpho-
logical parameter ranges, but they are used differently, because 𝑉
consists of a discrete and predefined set, whereas𝑀 may be defined
before the evolutionary run, or can be generated automatically dur-
ing the process. We then have a training schedule𝑇 that determines
how the morphologies in the training set𝑀 are introduced during
the evolutionary process.

Algorithm 1 Training Process
1: Initialize 𝐺 as an empty set ⊲ Generalist set
2: Initialize𝑀 as the training set of morphologies
3: Initialize 𝑇 as the used training schedule
4: Initialize 𝑉 as the validation set of morphologies
5: function EvolutionaryProcess(𝑀 , 𝑇 , 𝑉 )
6: 𝐼best ← {}
7: 𝑓 ←∞ ⊲ Assuming minimization
8: 𝐼 ← initialize() ⊲ Initialize an individual
9: for 𝑖 < maxGenerations do
10: 𝑚𝑖 ← Ψ(𝑀,𝑇, 𝑖) ⊲ Choose𝑚𝑖 from𝑀 based on 𝑇 and 𝑖
11: 𝑓𝑚𝑖 ← evaluate(𝐼 ,𝑚𝑖 ) ⊲ Sample solutions from 𝐼 and

evaluate them on𝑚𝑖
12: 𝐼best = individual with highest fitness on𝑚𝑖

13: 𝐼 ← updateParameters(𝐼 , 𝑓𝑚𝑖 ) ⊲ Update 𝐼 based
on fitness

14: for each 𝑣 in 𝑉 do
15: 𝑓𝑣 ← evaluate(𝐼best, 𝑣)
16: 𝑓best = mean fitness of 𝐼best on all 𝑣 in 𝑉
17: if 𝑓best < 𝑓 then ⊲ Assuming minimization
18: 𝐺 ← add(𝐼best) ⊲ Add to the generalist set
19: 𝑓 ← 𝑓best

The training process begins with an empty “generalist set” 𝐺 ,
followed by the generation of the initial population, where each
individual represents the weights of the ANN. Then, at each gen-
eration 𝑖 , the population is evaluated based on the fitness value
obtained on a morphology𝑚𝑖 . Once each individual is evaluated,
the one with the best-obtained score is selected, and its average
fitness (𝑓best) across all morphologies in𝑉 is computed. The perfor-
mance of a controller 𝐼best on a set of different morphologies 𝑉 is
defined as the average performance evaluated on all morphologies
in 𝑉 . This is mathematically expressed as:

𝑓best =
1
|𝑉 |
|𝑉 |∑︁
𝑗=1

evaluate(𝐼best, 𝑣 𝑗 ) (1)

where 𝑓best represents the average performance of the controller
𝐼best over morphologies in 𝑉 , |𝑉 | denotes the total number of mor-
phologies in set𝑉 , and evaluate(𝐼best, 𝑣 𝑗 ) is the evaluation function
that returns the score of the controller 𝐼best on morphology 𝑣 𝑗 .

During the evolution process, every time a controller achieves a
better average fitness score on the validation set 𝑉 , this controller
is added to the generalist set𝐺 . Therefore, at the end of the process,

the last controller added has the highest average fitness score on
𝑉 . Note that in the algorithm, the Ψ function determines which
morphology to select at generation 𝑡 based on the type of the
training schedule 𝑇 .

For the evolutionary process, we use the eXponential Natural
Evolution Strategy (xNES) algorithm [12] available in the EvoTorch
implementation [22]1.

3.1 Training Schedules
To examine the impact of various ways of introducing variabil-
ity during the evolutionary process, we define several training
schedules. We refer the reader to the Supplementary Material for
visualization and additional information regarding these training
schedules, which are detailed next.

Discrete Random. This training schedule serves as a baseline. It
involves a training set comprising 36 morphologies, generated with
parameters with equal intervals within the possible morphological
parameter space. At each generation, the morphology is chosen
randomly with uniform probability from one of these morphologies.

Discrete Incremental. The discrete incremental training schedule
uses the same morphology set as the discrete random but it se-
lects the morphological variations in an incremental order on 2-
dimensional parameter space starting from the initial x and y mor-
phological parameters and incrementing the parameters along the
x-axis first, followed by the increments on the parameters along
the y-axis. Morphologies therefore are defined first with small body
parameters (e.g., leg length) and then such parameters gradually
increase. When the maximum parameter for x and y is reached,
the process returns to the initial state. Defining morphologies in
this way ensures a gradual transition between morphologies, min-
imizing large leaps from one morphology to another, and thus
facilitating the learning process.

Uniform. This schedule samples morphology parameters randomly
with uniform probability from the 2-dimensional continuous space
at each generation. This differs from the discrete case in providing
more variability.

Gaussian. Gaussian training schedule uses a Gaussian distribution
that is centered in the center of the 2-dimensional morphology pa-
rameter space with Σ =

(
𝜎2 0
0 𝜎2

)
. The rationale behind this choice is

to moderate the extent of variation introduced during the sampling
focused in the center of the morphology space.

Cauchy. To introduce more variability, but still centered around the
center of the morphology space, we used the Cauchy distribution.
By leveraging a fat-tailed distribution like Cauchy, there is more
probability of selection of variation far from the center.

Beta. We use the Beta distribution to sample the morphology pa-
rameters with 𝛼 and 𝛽 parameters set both to 0.1. This schedule
primarily samples from the outer edges of the parameter space,
resulting in significant variability during training. Each generation
encounters markedly different morphologies, potentially leading to
diverse behaviors required for effective control. This strategy aims
1The code of our algorithm is publicly accessible at: https://github.com/edoardobarba/
evolving-generalist-controllers
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to enhance generalization capability by exposing the trained ANN
to a wide range of morphologies.

3.2 Multi-armed Bandit Approach
This section presents a method to learn to dynamically select train-
ing morphologies during the evolutionary process. Indeed, certain
morphologies may be more useful than others for improving the
generalizability of the controllers. Thus, to achieve that, we formal-
ize the learning process as a reinforcement learning approach on
a Multi-Armed Bandit (MAB) problem [15, 33, 37]. Based on this
formalization, we can keep a utility estimate of each morphological
variation. Then, we can make a selection based on the utilities. After
this selection and evaluation, we can update the estimate of the
utility of the selected variation based on its reward, that is whether
or not this selection provided an improvement in generalization.

Formalization. We have a 𝑁 number of arms {𝑎1, . . . , 𝑎𝑁 } corre-
sponding to the set of morphological variations {𝐷1, . . . , 𝐷𝑁 }. At
each generation, we choose a morphology to evaluate, and sub-
sequently update its utility based on the observed reward 𝑟 . We
characterize the utility of each morphological variation 𝑘 with
a value 𝜃𝑘 ranging between 0 and 1. The agent initially holds a
prior probability distribution, which is subsequently updated. The
distribution is represented by Beta distributions, characterized by
parameters 𝛼𝑘 and 𝛽𝑘 . Therefore each morphology 𝑘 is associated
with its own𝛼𝑘 and 𝛽𝑘 parameters. The probability density function
is given by:

𝑓 (𝜃𝑘 |𝛼𝑘 , 𝛽𝑘 ) =
1

𝐵(𝛼𝑘 , 𝛽𝑘 )
𝜃𝛼𝑘−1
𝑘

(1 − 𝜃𝑘 )𝛽𝑘−1 . (2)

Reward and Update. After each generation 𝑡 of the training process,
the 𝛼 and 𝛽 parameters of all morphologies are updated based on a
reward. The generalization capability 𝑓 , defined as the average score
across all morphologies in the validation set, serves as the basis for
determining the reward. Specifically, a reward 𝑟𝑡 is granted if the
chosen morphology yields an improvement in the generalization
capability compared to the moving average of the capability over
the preceding 𝑠 generations:

𝑟𝑡 =

{
1, if 𝑓𝑡 > average of 𝑓 over the last 𝑠 generations
0, otherwise

(3)

where 𝑠 represents a hyper-parameter, set to 10 for our experiments.
We can then leverage the “conjugacy” property of the Beta dis-

tribution, which states that the posterior distribution of a Beta
distribution is also a Beta distribution. This property simplifies the
updating process of the parameters 𝛼𝑘 and 𝛽𝑘 after each training
iteration. Specifically, after each generation, the parameters 𝛼𝑘 and
𝛽𝑘 of all the morphologies in the validation set can be updated with
the following rule [10]:

(𝛼𝑘 , 𝛽𝑘 ) =
{
(𝛼𝑘 , 𝛽𝑘 ), if 𝑘 ≠ 𝑥𝑡

(𝛼𝑘 , 𝛽𝑘 ) + (𝑟𝑡𝑏 , 1 − 𝑟𝑡𝑏 ), if 𝑘 = 𝑥𝑡
(4)

where

𝛼𝑘 = (1 − 𝛾)𝛼𝑘 + 𝛾𝛼0 and 𝛽𝑘 = (1 − 𝛾)𝛽𝑘 + 𝛾𝛽0,
and 𝛾 controls how quickly uncertainty is injected into the system.
Moreover, 𝑥𝑡 denotes the morphology chosen at time step 𝑡 (i.e., at

generation 𝑡 ), whereas 𝛼0 and 𝛽0 represent the prior probabilities.
Since the utility of each morphology varies during the training pro-
cess (e.g., some morphologies can be more useful at the beginning
of the training process while others at the end), we can consider the
system as non-stationary. To address this system property, inspired
by the methodology proposed in [15], one simple approach involves
diminishing the significance of past observations at each step with
the introduction of a tunable decay ratio 𝛾 .

Morphological Variation Choice. At each generation, the choice
of which morphology to use relies on Thompson Sampling [10],
namely, We choose the morphology corresponding to the highest
𝜃𝑘 value (i.e., argmax𝑘𝜃𝑘 ). In essence, Thompson Sampling intro-
duces a balance between exploration (trying out newmorphologies)
and exploitation (sticking with the best-known ones), allowing the
model to learn and adapt based on the outcomes of its actions,
leading to more informed and effective decisions over time.

4 EXPERIMENTAL SETUP
Environments. Experiments were conducted in various OpenAI
Gym continuous control problems [14], typically employed for
testing reinforcement learning algorithms. Specifically, we em-
ployed the Bipedal Walker environment from Box2D [5], along
withWalker2D and Ant fromMuJoCo [36]. In each of these environ-
ments, two body parameters were varied to train and test the ANNs
on diverse morphologies. These body parameters are leg width and
leg length for Bipedal Walker, and upper leg length and lower leg
length for both Walker2D and Ant. The parameter ranges for the
training and test sets differ across control tasks and are reported in
Table 1.

The ANN-based Controllers. The controller used in this work is a
fully connected feedforward ANN with the same topology across
all tasks. This topology comprises input, hidden, and output layers,
with the variation among tasks lying in the number of neurons.
The network structures utilized in this paper are derived from [7],
which, in turn, draws from prior investigations [24]. The hidden
layer comprises 20 neurons, including one bias neuron, across all
three tasks. The input layer consists of 24 neurons for the Bipedal
Walker task, 17 neurons for the Walker2D task, and 27 neurons
for the Ant task, respectively. Conversely, the output layer con-
sists of 4 neurons for the Bipedal Walker task, 6 neurons for the
Walker2D task, and 8 neurons for the Ant task, respectively. Finally,
the tangent hyperbolic (tanh) activation function is employed for
all neurons in the network.

Validation Sets. Avalidation set is utilized to test the generalizability
of controllers during training. For all three tasks, the validation set
encompasses 36 morphologies, with the parameter values within
the ranges outlined in Table 1, under the “Training set” column.
For visual representations of the validation sets for the three tasks,
please consult the Supplementary Material.

Experimental parameters. For the Bipedal Walker task, the experi-
ment employs 3000 generations, with each episode consisting of
1000 steps. For the Walker2D and Ant tasks, the number of genera-
tions is set to 5000, with each episode comprising 1000 steps.
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Table 1: Ranges of parameters for each task.

Task Parameter Set Training set Testing Set Step

Bipedal walker Leg Length [7, 17] [3, 6] ∪ [18, 21] 2
Leg Width [24, 44] [16, 23] ∪ [45, 52] 4

Walker2d Lower leg length [0.3, 0.425] [0.225, 0.25] ∪ [0.45, 0.5] 0.025
Upper leg length [0.4, 0.65] [0.25, 0.35] ∪ [0.7, 0.8] 0.05

Ant Lower leg length [0.5, 1.5] [0.2, 0.4] ∪ [1.6, 1.9] 0.1
Upper leg length [0.7, 1.7] [0.4, 0.6] ∪ [1.8, 2.1] 0.1

Evaluation Metrics. The evaluation phase aims to measure the ro-
bustness and generalization capabilities of the ANN. As mentioned,
we refer to robustness as the ability to control morphologies within
the parameter ranges of the training set, while to generalization as
the ability to control morphologies outside these parameter ranges,
which have not been encountered during the training process. The
evaluation approach draws inspiration from the methodology in-
troduced by Packer et al. [6] for assessing the generalization of
deep reinforcement learning controllers. Namely, we test robust-
ness to in-distribution samples (interpolation) and generalization
to out-of-distribution samples (extrapolation). Interpolation implies
that agents should perform well in controlling morphologies where
parameters are similar to those seen during training. Extrapolation
requires agents to perform well in morphologies where parameters
are different from those seen during training. We utilize two distinct
evaluation sets to address these aspects:
(1) Training morphologies: a set of morphologies with the same

parameter ranges used for training allows us to assess the ro-
bustness of the controller on in-distribution samples.

(2) Testing morphologies: a set of morphologies with parameters
ranges outside those used for training, to evaluate the ability to
generalize on out-of-distribution samples.
We can therefore define the average performance obtained on

morphologies on the training set as a measure of robustness within
the context of the data the controller has been exposed to during
training. Meanwhile, the average scores on morphologies on the
test set provide insight into its ability to generalize beyond the
data it has seen during training. For a visual representation of the
training and testing sets, refer to the Supplementary Material.

Statistical Analysis. The results presented in the following Section
represent the median values obtained from 30 independent evo-
lutionary training runs. To determine the statistical significance
of the observed differences, the Mann-Whitney U test [21] was
utilized with confidence level 𝛼 = 0.05. In the figures presenting
the results, the statistical test outcomes are depicted using bars
with red asterisks placed above the box plots, denoting groups that
exhibit significant differences.

5 RESULTS
We present our results separately analyzing first the effect of the
heterogeneity and of the scheduling of the training morphologies.
Then, we present the results of the MAB approach. Finally, we
analyze the distribution of morphologies selected during training.

5.1 Effect of the Heterogeneity of Morphologies
For this analysis, we consider only the Bipedal Walker task. Figure
1 illustrates the performance results on Bipedal Walker of the dif-
ferent training schedules based on sampling distributions on the
testing morphologies that are not introduced during training.

Random Uniform Gaussian Cauchy BetaRandom Uniform Gaussian Cauchy Beta
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Figure 1: Performance comparison of training schedules on
the testing morphologies on Bipedal Walker. * indicates 𝑝 <
0.05, ** indicates 𝑝 < 0.01, denoting statistical significance
levels.

The figure shows the average, lower, and upper quartile obtained
by 30 independent evolutionary runs. The Beta training schedule
obtains better performance on the testing morphologies (assuming
minimization), with a median score of −35.99. The p-values show
that there is a statistically significant difference between Beta and
all the other distributions.

Analyzing the performance of the morphologies on the train-
ing morphologies, we observe a different trend where the Uniform
distribution stands out as the most effective, with a median per-
formance of −254.40, and Beta as the worst one, with a median
performance of −218.66. However, a statistically significant dif-
ference exists only between the Uniform and Beta distributions,
evidenced by a p-value of 0.004.

While the differences between these training schedules on the
training morphologies are not as pronounced, we see that on the
testing morphologies, the Beta training schedule leads to more
generalization. This can be attributed to the fact that morphologies
sampled with the Beta distribution lie closer to the “border” of the
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training parameter space, thereby resembling the morphologies
encountered during testing.

Similarly, if we compare the results on all morphologies com-
bining the training and test sets, the Beta training schedule still
demonstrates superior performance, achieving a score of −123.55,
with a statistically significant difference from all other approaches.
This aligns with our earlier discussion: introducing increased vari-
ability during training, especially in the bordering cases, tends
to improve the controller’s ability to extend its performance to
unfamiliar scenarios.

5.2 Effect of Scheduling of Morphologies
This section shows the results of the investigation on whether al-
tering the order in which morphology variations are introduced
during the evolutionary process yields different outcomes in terms
of robustness and generalization. The central question we aim to
address through this experiment is: “Does modifying the order of
samples impact learning and generalization?” In order to answer
this question, we conducted a comparative analysis between two
training methodologies, namely the Random and the Incremental
training schedules. In terms of heterogeneity, the training mor-
phologies utilized are the same for both schedules. For this analysis,
we consider Bipedal Walker and Walker2D.

Bipedal Walker. On the Bipedal Walker, the controllers trained
using the Incremental training schedule achieved a median score
of −248.94 on the training morphologies while scoring a median
of −2.21 on the testing morphologies. In contrast, the controllers
trained with the Random schedule achieved scores of −217.25 and
11.92 on the training and testing morphologies, respectively. Al-
though the performances on the testing morphologies are compa-
rable, with no significant difference, a notable disparity emerges on
the training morphologies, further evidenced by a 𝑝-value of 0.01.
Figure 2 illustrates these results. As can be seen from the figure,
the controllers obtained with the Incremental training morpholo-
gies exhibit superior performance on the training morphologies
compared to the one obtained with the Random schedule.

Random IncrementalRandom Incremental
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Figure 2: Performance comparison on the trainingmorpholo-
gies on Bipedal Walker. * indicates 𝑝 < 0.05, ** indicates
𝑝 < 0.01, denoting statistical significance levels.

Walker2D. We observe similar trends on the Walker2D task. No-
tably, the controllers trained with the Incremental training schedule
led to a better performance compared to those trained with the
Random schedule on both the training and testing morphologies.
Specifically, they achieved a median score of −1450.41 and −991.89
on the training and testing morphologies, respectively, while the
Random schedule yielded scores of −1094.39 and −887.98. However,
no statistically significant difference is observed in both sets.

These results highlight the significant impact of the order in
which morphologies are presented during training. It is worth em-
phasizing once more that the set of morphologies remains identical;
only the selection order differs. It is very interesting to observe the
significant impact on performance that arises simply from altering
the order in which morphologies are presented. Incrementally in-
creasing the values of body parameters fosters the development of
controllers that exhibit greater resilience to changes in morpholo-
gies, as also found in [7].

5.3 Multi-armed Bandit Approach
This section presents the results of the MAB approach for mor-
phology selection during training, taking the Random schedule
as the baseline. It is important to highlight that all the training
morphologies are the same; the only difference lies in the order
in which morphologies are selected. In this set of experiments, we
consider the three tasks, namely Bipedal Walker, Walker2D, and
Ant. Figure 3 visualizes these results.

Bipedal Walker. Although the difference was not statistically
significant, the MAB approach achieved a better median score of
−245.41 on training (relative to −217.26 for Random) and a median
score of 5.52 on testing morphologies (relative to 11.92 for Random)
On the training morphologies, the ANN controllers trained with the
MAB approach demonstrated performance superior to the Random
schedule, meaning that the MAB strategy used for training was ef-
fective. On the testing morphologies instead, it reached comparable
performances with Random.

Walker2D. In the Walker2D task, the MAB approach was sig-
nificantly better relative to Random. It achieved a median score
of −1433.21 on the training morphologies, compared to −1325.01
for the Random schedule. Conversely, on the testing morpholo-
gies, it reached a median score of −756.76, whereas the Random
schedule scored −562.05. Remarkably, on both the training and
testing morphologies, the network trained with the MAB approach
outperformed the Random training schedule, with a statistically
significant difference on the test set.

Ant. Finally, on the Ant task, the MAB approach showed supe-
rior performance when compared to the Random schedule, both
in the training and testing morphologies, although statistical sig-
nificance was not achieved. On the training morphologies, the
MAB approach achieved a median score of −3824.95, compared to
−3779.36 obtained by the Random schedule. On the testing mor-
phologies, instead, the MAB approach yields a median score of
−2169.75, while the Random schedule achieves −2139.04.
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Figure 3: Performance comparison of Random schedule and the Multi-Armed Bandit approach on the testing morphologies on
Bipedal Walker, Walker2D, and Ant. * indicates 𝑝 < 0.05, ** indicates 𝑝 < 0.01, denoting statistical significance levels.
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Figure 4: Heatmap illustrating the frequency of selection for
each morphology during training on Walker2D. Each cell
in the heatmap represents a unique morphology, and the
numerical value within the cell indicates the frequency with
which that morphology was selected during training. This
frequency is computed as the average occurrence across 30
independent training runs.

5.4 Analysis on Morphology Selection
An interesting analysis to perform is to look at which morphologies
are selected most frequently, averaged over the 30 runs, during
training.

Walker2D. Figure 4 presents a heatmap illustrating the frequency
of each morphology’s usage for Walker2D. The morphologies se-
lected the most are represented by darker colors. Analysing the
heatmap we can see that the morphologies selected the most are
the ones in the upper-right region of the morphological parameter
space. The MAB approach exhibits a non-uniform selection pattern
for morphologies, particularly focusing on the upper-right quad-
rant (morphologies with high upper leg length and high lower leg
length). The morphology selected the most is the one with an upper
leg length of 0.4 and lower leg length of 0.6, used 180 times, while
the least used was used 114 times. The MAB approach identifies

this region as prone to improvements, while other regions (such
as the lower-left quadrant) may present challenges, resulting in
limited enhancements.

Figure 5 presents heatmaps illustrating the average performances
across all morphologies obtained using two different scheduling
strategies: the Random schedule (Figure 5a) and the MAB approach
(Figure 5b). The same analyses for Bipedal Walker and Ant are re-
ported in the SupplementaryMaterial. Each cell in the heatmaps cor-
responds to a specific morphology. Unlike the frequency heatmap,
this visualization incorporates morphologies from both the training
(inside the red square) and testing morphologies. The shading of
each cell indicates the average performance of the ANN controllers
on that particular morphology, with darker shades indicating better
scores. These averages are computed over all controllers obtained
from 30 runs. Observing the performance on the training morpholo-
gies, in the case of the MAB approach, the most significant improve-
ment is notably concentrated in the upper-right region of the space
(within the red square), coinciding with the most frequently chosen
morphologies. This indicates that the MAB approach has effec-
tively enhanced performance in a specific area of the space where
improvement was feasible. Selecting more morphologies in that
region of the space allowed to evolve ANN-based controllers with a
greater capability to control those types of morphologies, without
affecting performances in other parts of the morphological space.

Bipedal Walker. In Bipedal Walker (heatmap reported in the
Supplementary Material), the MAB approach favors morphologies
located in the lower-right region of the morphology space (high
leg width and low leg length). Morphologies in this region are uti-
lized roughly twice as often as those in the left upper quadrant. For
instance, the morphology with leg width of 17 and leg height of
24 was selected an average of 135 times, whereas the morphology
with leg width of 7 and leg height of 44 was chosen an average
of 61 times. While it may seem logical to assume that the lower-
right part was prioritized because it is the more complex part of
the morphology space to control, this interpretation is not entirely
accurate. The most challenging area within the morphology space
is not the lower-right part, but rather the upper-right section ap-
pears to pose greater difficulty for the ANN-based controller. This
is also evident from the heatmaps provided in the Supplementary
Material, where the controller achieves higher scores in the upper
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Figure 5: Heatmap illustrating the average performance achieved on all morphological variations on Walker2D using the
Random and MAB training schedules. The cells that are within the square with red borders show the training morphologies.
The morphological parameters that are beyond these borders are used for the testing morphologies.

right region, indicating poorer performance. The focus on training
with morphologies in the lower right section could be attributed to
the potential for performance improvement in this area. In contrast,
the upper right section may have reached a point where further
improvements are no longer possible. Therefore it may be benefi-
cial to focus on that part because improvements are more readily
achievable. Overall, on this task the strategy employed by the MAB
approach improves the performances compared to the Random
training schedule, focusing on a region of the morphology space in
which performances can be increased without negatively affecting
performances in other parts of the space.

Ant. Upon analyzing the frequency of morphology selection
during training on Ant, we observed an imbalance in the utilization
of morphologies also in this case, particularly skewed towards
the left-central region of morphology space (heatmap reported
in the Supplementary Material). The focus of the MAB approach
on this specific region of the space leads to an improvement in
performance within that area. The controllers trained with the
Random schedule achieved higher scores predominantly on the
right side of the morphology space, whereas the networks trained
with the MAB schedule slightly enhanced performance towards the
left region. Nonetheless, this improvement comes at the expense
of slightly degraded performance on the right side of the space.
While we may not observe a significant difference in results, it is
interesting to observe that even in this case, the MAB approach
chooses to focus on a specific region of the morphology space rather
than uniformly utilizing all available morphologies.

6 CONCLUSIONS
In this study, we examined the impact of variability on the learning
and generalization of ANN-based controllers. Alongside several
predefined training schedules to select morphologies to train on,
we employed a reinforcement learning-based approach to the auto-
matic selection of these morphologies formalizing the selection as

a multi-armed bandit problem. Our analysis focused on two types
of variability: heterogeneity of samples and scheduling of samples.
The analysis of different training schedules highlighted the im-
portance of increasing heterogeneity for improved robustness and
generalization. Notably, using a uniform distribution for training
morphologies generation led to better performance on the training
morphologies compared to using discrete morphologies. The Beta
training schedule showed the best approach to enhance generaliza-
tion to previously unseen morphologies. Furthermore, we explored
how altering the scheduling of the training morphologies affects the
results. In this case, the Incremental training schedule showed the
best performance. The MAB approach for automatic morphology
selection during training revealed a non-uniform selection strategy
by focusing on certain regions, which in turn led to significant
improvements relative to Random selection.

Future research can deepen our understanding of how variabil-
ity influences generalization. Investigating discriminative and non-
discriminative features within tasks may provide valuable insights;
for instance, we found that modifying the leg length in Bipedal
Walker had a greater impact on performance than the leg width,
which suggests that this parameter is more discriminative. One
approach could be extended to prioritize variability introduction on
non-discriminative features before moving to discriminative ones,
a strategy that has been shown to enhance learning [19]. Explor-
ing automated scheduling through meta-learning approaches like
(Deep) Q-learning is another avenue for investigation. Additionally,
evolutionary algorithms hold the potential for optimizing the order
of samples, though computational challenges must be addressed.
Furthermore, future studies could compare the performance of
non-stationary MAB approaches against stationary ones, shedding
light on their relative effectiveness. These research directions offer
promising avenues for advancing our understanding of variability
and optimization in complex tasks.
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A DATASET VISUALIZATION

A.1 Training and testing sets
Figure 1 presents a visual depiction of the training and testing sets for the Bipedal Walker task. The dots
representing the training set are depicted with a red background, while those representing the testing set have a
blue background. Each dot on the plot represents a specific morphology characterized by a combination of leg
width and leg length parameters.

To assess the performance of an individual on the training set, its score is computed for each morphology
within the training set. These individual scores are then averaged to derive a single metric representing the
individual’s performance on the training set. The same methodology is applied to compute the individual’s
score on the testing set. This systematic approach facilitates a thorough evaluation of the individual’s ability to
generalize across a diverse range of morphologies present in both the training and testing sets.

Fig. 1. Visual representation of the Training and Testing sets for the Bipedal Walker task. Each point represents a specific
morphology characterized by a combination of leg width and leg length parameters. The training set consists of 36 mor-
phologies, while the testing set consists of 64 morphologies.
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A.2 Validation sets
Figures 2a-2c illustrate the validation sets utilized during the training phase for the respective tasks. Each point
in these plots represents a morphology characterized by specific parameter combinations. During training, the
validation set serves to evaluate the generalization ability of the top-performing individual on the morphology
presented in that generation. This process entails computing the score achieved by the individual on each of
these 36 morphologies separately and then averaging these scores to obtain a single metric.
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Fig. 2. Validation sets on the three tasks.

B DISTRIBUTION VISUALIZATION
Figures 3a-3d provide visual representations of the training sets utilized on the Ant task by the Uniform, Gaussian,
Beta, and Cauchy training schedules, respectively. In these plots, each point signifies a morphology, with
parameters sampled independently from the given distribution. The background colors serve to reflect the density
of the samples, providing insights into the distribution of morphologies across the parameter space.

C PERFORMANCE ANALYSIS
Figures 4a and 4b present boxplots representing the performance of artificial neural networks (ANNs) trained
using various training schedules on Bipedal Walker, respectively on the training and testing sets.

C.1 Scheduling
Figures 5a and 5b show the performance of ANNs trained using Random schedule and Incremental schedule
on the Ant task, respectively on the training and testing sets. The network trained with the Random schedule
achieved a median performance of -3779.36 on the training set and -2139.04 on the testing set. Conversely, the
network trained with the Incremental schedule reached -3590.29 and -2375.35 on the respective sets.

D MULTI-ARMED BANDIT SCHEDULE

D.1 Performance comparison
Figures 6a and 6b illustrate a performance comparison between the Random and Multi-Armed Bandit (MAB)
schedules on the testing set, specifically for the Bipedal Walker and Ant tasks, respectively. Figure 7 and 8
presents, respectively for Bipedal Walker and Ant, heatmaps illustrating the average performances of ANNs
(across all the morphologies) trained using two different scheduling strategies: Random and MAB. Each cell in
the heatmaps corresponds to a specific morphology. This visualization incorporates morphologies from both the
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Fig. 3. Distribution on Ant.

training (inside the red square) and testing sets. The shading of each cell indicates the average performance of
the ANN controller on that particular morphology, with darker shades indicating better scores. These averages
are computed over all controllers obtained from 30 runs.

D.2 Morphology frequency
Figures 9a and 9b display heatmaps showing the frequency of each morphology’s selection during training for
the Bipedal Walker and Ant tasks, respectively. Each cell in the heatmap represents a unique morphology, and
the numerical value within the cell indicates the frequency with which that morphology was selected during
training. This frequency is computed as the average occurrence across 30 independent training runs.
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Fig. 4. Performance of all the training schedules on Bipedal Walker. * and ** indicate statistical significance with 𝑝 < 0.05
and 𝑝 < 0.01, respectively.

Random IncrementalRandom Incremental

−4500

−4000

−3500

−3000

M
ed

ia
n 

Pe
rfo

rm
an

ce

TRAIN set

(a) Training set

Random IncrementalRandom Incremental
−4000

−3500

−3000

−2500

−2000

−1500

−1000

−500

M
ed

ia
n 

Pe
rfo

rm
an

ce

TEST set

(b) Testing set

Fig. 5. Performance comparison between Random and Incremental schedules on Ant.
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Fig. 6. Performance comparison between Random and Multi-Armed Bandit on the test morphologies.
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Fig. 7. Average performance across morphologies for Bipedal Walker.
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Fig. 8. Average performance across morphologies for Ant.

5



7.0 9.0 11.0 13.0 15.0 17.0
Leg Width

44
.0

40
.0

36
.0

32
.0

28
.0

24
.0

Le
g 

He
ig

ht

61 63 63 66 66 60

59 61 69 75 79 79

60 66 69 71 88 99

65 70 72 79 94 107

69 76 78 98 110 130

105 105 112 113 124 135
60

70

80

90

100

110

120

130

(a) Bipedal Walker

0.4 0.5 0.6 0.7 0.8 0.9
Upper Leg Length

1.
1

1.
0

0.
9

0.
8

0.
7

0.
6

Lo
we

r L
eg

 L
en

gt
h

141 140 130 113 96 85

156 162 151 128 105 89

163 186 173 148 114 98

168 177 174 150 128 103

158 173 179 154 131 106

144 153 155 139 124 106
100

120

140

160

180

(b) Ant

Fig. 9. Frequency of each morphology’s selection during training.
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