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Generating explanations for graph neural networks (GNNs) has been studied to understand their behaviors
in analytical tasks such as graph classification. Existing approaches aim to understand the overall results of
GNNs rather than providing explanations for specific class labels of interest, and may return explanation
structures that are hard to access, nor directly queryable. We propose GVEX, a novel paradigm that generates
Graph Views for GNN EXplanation. (1) We design a two-tier explanation structure called explanation views.
An explanation view consists of a set of graph patterns and a set of induced explanation subgraphs. Given a
database G of multiple graphs and a specific class label 𝑙 assigned by a GNN-based classifier M, it concisely
describes the fraction of G that best explains why 𝑙 is assigned by M. (2) We propose quality measures and
formulate an optimization problem to compute optimal explanation views for GNN explanation. We show that
the problem is Σ2

𝑃
-hard. (3) We present two algorithms. The first one follows an explain-and-summarize strategy

that first generates high-quality explanation subgraphs which best explain GNNs in terms of feature influence
maximization, and then performs a summarization step to generate patterns. We show that this strategy provides
an approximation ratio of 1

2 . Our second algorithm performs a single-pass to an input node stream in batches
to incrementally maintain explanation views, having an anytime quality guarantee of 1

4 -approximation. Using
real-world benchmark data, we experimentally demonstrate the effectiveness, efficiency, and scalability of
GVEX. Through case studies, we showcase the practical applications of GVEX.
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Fig. 1. GNN-based drug classification, with patterns and induced subgraphs that help understand the results.

1 INTRODUCTION
Graph classification is essential for a number of real-world tasks such as drug discovery, text
classification, and recommender system [25, 52, 61]. The rising graph neural networks (GNNs) have
exhibited great potential in graph classification across many real domains, e.g., social networks,
chemistry, and biology [11, 51, 64, 76]. Given a database G as a set of graphs, and a set of class
labels Ł, GNN-based graph classification aims to learn a GNN as a classifier M, such that each graph
𝐺 ∈ G is assigned a correct label M(𝐺) ∈ Ł.

Nevertheless, it remains a desirable yet nontrivial task to explain the results of high-quality GNN-
classifiers for domain experts [66]. Given M and G, one wants to discover a critical fraction of G
that is responsible for the occurrence of specific class labels of interest, assigned by GNNM over G.
In particular, such explanation structures should (1) capture both important features and topological
structural information in G; (2) be queryable, hence are easy for human experts to access and inspect
with domain knowledge.

Existing GNN explanation techniques [28, 62, 65, 67, 72] primarily characterize explanations as
important input features (typically in the form of numerical encodings) directly from GNN layers,
and remain limited to retrieving structural information as needed [66]. These feature encodings
alone cannot easily express “queryable” substructures such as subgraphs and graph patterns [67].
Indeed, graph patterns are often more intuitive to relate useful functionalities and better bridge
human knowledge with GNN results. Moreover, the generated explanations typically aim to clarify
all assigned labels rather than specifically addressing user-specified class labels of interest. Consider
the following real-world example.

Example 1.1. In drug discovery, mutagenicity refers to the ability of a chemical compound to cause
mutation. It is an adverse property of a molecule that hampers its potential to become a marketable
drug and has been of great interest in the field. An emerging application of GNNs is to classify
chemical compound as graphs in terms of mutagenicity to support effective drug discovery [30, 54].

Consider a real-world molecular dataset represented as graphs in Figure 1. A GNN classifies four
graphs {𝐺1,𝐺2,𝐺3,𝐺4} into two groups with class labels “Mutagens” and “Nonmutagens”, respec-
tively, based on whether they have mutagenicity property. A medical analyst seeks to understand
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Table 1. Comparison of our GVEX technique with state-of-the-art GNN explanation methods. Here “Learning”
denotes whether (node/edge mask) learning is required, “Task” means what downstream tasks each method
can be applied to (GC/NC: graph/ node classification), “Target” indicates the output format of explanations
(E/NF: Edge/Node Features), “Model-agnostic”(MA) means if the method treats GNNs as a black-box during
the explanation stage (i.e., the internals of the GNN models are not required), “Label-specific"(LS) means if
the explanations can be generated for a specific class label; “Size-bound”(SB) means if the size of explanation
is bounded; “Coverage” means if the coverage property is involved (§3), “Config” means if users can configure
the method to generate explanations for designated class labels (§2); “Queryable” means if the explanations
are directly queryable.

Methods LEARNING TASK TARGET MA LS SB COVERAGE CONFIG QUERYABLE

SubgraphX [67] ✗ GC/NC Subgraph ✓ ✗ ✗ ✗ ✗ ✗
GNNExplainer [62] ✓ GC/NC E/NF ✓ ✗ ✗ ✗ ✗ ✗
PGExplainer [39] ✓ GC/NC E ✗ ✗ ✗ ✗ ✗ ✗

GStarX [72] ✗ GC Subgraph ✓ ✗ ✗ ✗ ✗ ✗
GCFExplainer [28] ✗ GC Subgraph ✓ ✓ ✗ ✓ ✗ ✗

GVEX (Ours) ✗ GC/NC
Graph Views

(Pattern+Subgraph) ✓ ✓ ✓ ✓ ✓ ✓

“why” in particular the first two chemical compounds {𝐺1,𝐺2} are recognized as mutagens, “what”
are critical molecular substructures that may lead to such classification results, and further wants to
search for and compare the difference between these compounds that contribute to their mutagenicity
using domain knowledge. The large number of chemical graphs makes a direct inspection of GNN
results challenging. For example, it is difficult to discern whether the binding of multiple carbon
rings or the presence of hydrogen atoms on the carbon rings plays a decisive role in GNN-based
classification to decide mutagenicity.

Based on domain knowledge, toxicophores are substructures of chemical compounds that indicate
an increased potential for mutagenicity. For example, the aromatic nitro group is a well-known
toxicophore for mutagenicity [32]. Such structures can be readily encoded as “graph views” with
a two-tier structure, where toxicophores are expressed as graph patterns that summarize common
substructures of a set of “explanation” subgraphs, as illustrated in Figure 1. The upper left corner of
the figure shows two graph patterns {𝑃11, 𝑃12} and corresponding subgraphs that explain “why” the
compounds 𝐺1 and 𝐺2 have mutagenicity. Indeed, we find that (1) if these subgraphs are removed
from 𝐺1 and 𝐺2, the remaining part can no longer be recognized by the same GNN as mutagens; and
(2) two of the patterns 𝑃11 and 𝑃12 are real toxicophores as verified by domain experts. Similarly, the
middle right corner depicts subgraphs with common structures summarized by graph patterns 𝑃21 to
𝑃22, which are responsible for nonmutagens. Surprisingly, 𝑃21 and 𝑃22 are also toxicophores as per
domain knowledge. Therefore, such patterns can be suggested to the analysts for further inspection,
or be conveniently issued as graph queries for downstream analysis, e.g., “which toxicophores occur
in mutagens?” “Which nonmutagens contain the toxicophore pattern 𝑃22”?.

In addition, the analyst wants to understand representative substructures that are discriminative
enough to distinguish mutagens and nonmutagens. This can be captured by the specific toxicophore
𝑃12 that covers the nodes in all two chemical compounds {𝐺1,𝐺2} with label “mutagens”, but does
not occur in nonmutagens {𝐺3,𝐺4}. These graph patterns, along with their matched subgraphs,
provide concise and queryable structures to humans, enabling a more intuitive understanding of the
GNN-based mutagenicity analysis.

The above example illustrates the need to generate queryable explanation structures which can
effectively describe the fraction of graph data that are responsible for the occurrence of user-specified
class labels in GNN-based classification. A desirable paradigm would (1) be model-agnostic, i.e.,
does not require internals of the GNNs to generate explanations; (2) be specific in distinguishing
the explanations for different class labels; (3) be representative to cover important substructure of
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the graphs that are assigned with the labels of interests, without over- or under-representing them
(formally stated in §3); (4) be configurable to enable users with the flexibility to freely select a
designated number of nodes from different classes, to obtain comprehensive and detailed explanations
tailored to their classes of interest (§2); and (5) be queryable to provide direct access for human
experts with (domain-aware) queries. None of the existing GNN explanation methods can address
these desirable properties (Table 1).

Graph views and view selection have been studied as an effective way to access graph data [16,
41, 69]. Given a graph 𝐺 , a graph view contains a graph pattern 𝑃 and a materialized subgraph 𝑃 (𝐺)
that matches 𝑃 via graph pattern matching. We advocate that graph views, as two-tier explanation
structures, fit naturally to explain GNN-based classification. Indeed, the subgraphs possess the ability
to describe the essential structure of original graphs in a manner that is both model-agnostic and
configurable. The ability to configure our GVEX algorithms by ensuring a desirable amount of nodes
from each class label to be covered, enables domain-expert users to extract more relevant information
for their specific inquiries, as presented in our case study (§6.2). Consequently, these subgraphs
inherently exhibit discriminative and informative properties for distinct classes. To enhance user
inspection, we introduce patterns as a queryable structure through pattern mining, it is a summary
of subgraphs and it helps domain experts inspect large-size explanations based on their higher-
tier patterns, thereby facilitating easy access and analysis. We are interested in the following two
questions: (1) How to characterize GNN explanation with graph views? and (2) how can we generate
graph views to extract explanations for GNN in a concise and configurable manner? The answers
to these questions not only provide new perspectives towards explainability, but also enable finer-
grained, class label-specific analysis of GNNs.

Contributions. We summarize our main contributions as follows.
(1) We introduce explanation views, a novel class of explanation structure for GNN-based graph
classification. An explanation view is a two-tier structure that consists of graph patterns and a set of
explanation subgraphs induced from graphs via graph pattern matching, such that (a) the subgraphs
are responsible for the occurrence of specific class label 𝑙 of user’s interest, and (b) the patterns
summarize the details of explanation subgraphs as common substructures for efficient search and
comparison of these subgraphs (§2).
(2) For explanation views, we introduce a set of quality measures in terms of explainability and
coverage properties (§3). We formulate the problem to compute the optimal explanation views for
GNN-based graph classification. The problem is in general Σ2

𝑃
-hard, and even remains 𝑁𝑃-hard for a

special case when G has no edge.
(3) We present GVEX, an algorithmic solution for generating graph views to explain GNNs. (a) We
first introduce an approximation scheme (§4) that follows an “explain-and-summarize” strategy. The
method first computes a set of node-induced subgraphs with guaranteed explainability, by identifying
important nodes with the maximum diversified feature influence. We then summarize these subgraphs
into graph patterns that ensures to cover all such nodes, and meanwhile, introduce small edge
coverage error. This guarantees an overall 1

2 -approximation for the view generation problem. (b) We
further develop a streaming algorithm (§5) that avoids generation of all explanation subgraphs. The
algorithm processes a batched stream of nodes and incrementally maintains explanation views under
the coverage constraint, with an approximation ratio 1

4 relative to the processed fraction of graphs.
(4) Using real-world graphs and representative GNNs, we experimentally verify that our view
generation algorithms can effectively retrieve and summarize substructures to explain GNN-based
classification (§6). We also showcase that our algorithms can support GNN-based drug design and
social analysis well.
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Related Work. We summarize the related work as follows.

Graph Neural Networks. Graph neural networks (GNNs) are deep learning models designed to tackle
graph-related tasks in an end-to-end manner [53]. While GNNs have several variants (e.g., graph
convolutional networks (GCNs) [35], graph attention networks (GATs) [49], graph isomorphism
networks (GINs) [55], APPNP [36], and GraphSAGE [22]), they share a similar feature learning
paradigm: For each node, GNNs update the features of a node by aggregating the counterparts from
its neighbors to update its own features. GNNs have demonstrated their efficacy on various tasks,
including node and graph classification [35, 55, 63, 71], link prediction [70].

Explanation of GNNs. Several approaches have been proposed to generate explanations for GNNs
[27, 28, 39, 44, 45, 62, 65, 67, 68, 72]. Instance-level methods provide input-dependent explanations
for each test graph, whereas model-level methods provide a global understanding of GNNs without
considering specific input instances or class labels [66]. For example, GNNExplainer [62] learns to
optimize soft masks for edges and node features to maximize the mutual information between the orig-
inal and new predictions and induce important substructures from the learned masks. SubgraphX [67]
explains GNN models by identifying important subgraph for an input graph. It employs Shapley
values to measure a subgraph’s importance by considering the interactions among different graph
structures. XGNN [65] aims to explore high-level explanations of GNNs by generating graph patterns
to maximize a specific prediction. GCFExplainer [28] studies the global explainability of GNNs
through counterfactual reasoning. Specifically, it finds a small set of representative counterfactual
graphs that explain all the input graphs rather than label-specific classes of users’ interests.

However, these methods do not explicitly support configurable and queryable explanation struc-
tures, and are not optimized to generate explanations for user-specific labels. Meanwhile, they cannot
be easily extended to support such constraints. First, achieving configurable property is computa-
tionally hard (Theorem 3.2), existing solutions do not address such needs, and extending them for
configurability is non-trivial due to the computational hardness. Second, the “queryable” property
involves extracting commonalities within explanations to facilitate direct access to critical insights,
current methods generate large explanations for label explanations and stll lack the ability to include
important patterns, hindering the efficient and effective computation of queryable structures. None
of the prior methods supports all desirable properties at the same time, as illustrated in Table 1.
Consequently, there is a need for more effective and efficient methods for explaining GNNs that can
provide interpretable and accurate explanations of their predictions.

Graph Views. Graph views have been studied as a useful approach to access and query large
graphs [41]. A graph view consists of a graph pattern and a set of subgraphs as its matches via graph
pattern matching. Graph views are shown to be effective in view-based query processing [16], sum-
marization [47], event analysis [73], query suggestion [40], data cleaning [37] and data pricing [10].
Several approaches have also been developed to discover graph views [37, 47].

Graph pattern mining. Graph pattern mining techniques discover frequent or other important struc-
tures within graph data [29, 42, 48, 58, 59], which can help constructing graph views and ensure
generation of higher-tier patterns from lower-tier explanation subgraphs in our two-tier explanation
structure. However, graph mining alone is insufficient to generate GNN explanations, e.g., consistent
and counterfactual lower-tier explanations (§2.2).

To the best of our knowledge, this is the first work that exploits graph views to support queryable
explanation for GNN-based classification. Our approach is a post-hoc method that treats GNNs as
black-box (hence does not require details from GNNs, but only the output from its last layer), does
not require node/edge mask training, and generates explanations as views that are queryable, concise,
and class label-specific, all in a user-configurable manner (Table 1).
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Table 2. Table of notations

Symbol Meaning
𝐺 = (𝑉 , 𝐸) Graph with nodes 𝑉 and edges 𝐸

(𝑋,𝐴) Feature representation of 𝐺 :
(𝑋 : feature matrix; 𝐴: adjacency matrix)

M; 𝑋𝑘 A GNN-based classifier; the embedding of node 𝑣 at layer 𝑘 of M
G; V A set of graphs (graph database) for classification; node group of G

𝐺𝑙
𝑠 = (𝑉𝑠 , 𝐸𝑠 ); G𝑙

𝑠
An explanation subgraph 𝐺𝑙

𝑠 induced by nodes 𝑉𝑠 w.r.t. class label 𝑙 ;
a set of explanation subgraphs G𝑙

𝑠 w.r.t. class label 𝑙
G𝑙 ; V𝑙 Label group (of graphs with label 𝑙); the node set of G𝑙

𝑃 ; P A single graph pattern 𝑃 ; a set of graph patterns P

G𝑙
V = (P𝑙 ,G𝑙

𝑠 )
A single explanation view with

a pattern set P𝑙 and an explanation subgraph set G𝑙
𝑠

C = (𝜃 , r, {[𝑏𝑙 , 𝑢𝑙 ]})
A configuration that specifies

explainability (𝜃 , r) and coverage constraints {[𝑏𝑙 , 𝑢𝑙 ]} (𝑙 ∈ Ł)
GV A set of explanation views

2 PRELIMINARIES
We start with reviewing attributed graphs, GNNs, and graph views in §2.1. We then introduce
view-based explanations in §2.2. For easy reference, important notations are summarized in Table 2.

2.1 Graph Neural Networks and Graph Views
Attributed Graphs. We consider a connected graph 𝐺 = (𝑉 , 𝐸,𝑇 , 𝐿), where 𝑉 is the set of nodes,
and 𝐸 ⊆ 𝑉 ×𝑉 a set of edges. Each node 𝑣 carries a tuple 𝑇 (𝑣) of attributes (or features) and their
values. Each node 𝑣 ∈ 𝑉 (resp. edge 𝑒 ∈ 𝐸) has a type 𝐿(𝑣) (resp. L(e)).

Graph Neural Networks. GNNs are a family of well-established deep learning models that extend
traditional neural networks to transform graphs into proper embedding representations for various
downstream analysis such as graph classification. In a nutshell, GNNs employ a multi-layer message-
passing scheme, through which the feature representation of a node in the next layer is aggregated
from its neighborhood in the current layer. For example, the Graph Convolutional Network (GCN)
[35], a representative GNN model, adopts a general form of the function as:

𝑋𝑘 = 𝛿 (𝐷̂− 1
2𝐴𝐷̂− 1

2𝑋𝑘−1Θ𝑘 ) (1)

Here 𝐴 = 𝐴 + 𝐼 , where 𝐼 represents the identity matrix and 𝐴 is the adjacency matrix of graph
𝐺 . 𝑋𝑘 indicates node feature representation in the 𝑘-th layer, (with 𝑋 0 = 𝑋 a matrix of input node
features), where each row 𝑋𝑣 is a vector (numerical) encoding of a node tuple 𝑇 (𝑣). The encoding
can be obtained by, e.g., word embedding or one-hot encoding [20]. 𝐷̂ represents the diagonal node
degree matrix of 𝐴, 𝛿 (·) is the non-linear activation function, and Θ𝑘 represents the learnable weight
matrix for the 𝑘-th layer.

GNN-based Classification. The task of graph classification is to correctly assign a categorical
class label for a graph. Given a database (a set of graphs) G = {𝐺1,𝐺2, . . . ,𝐺𝑚} and a set of class
labels Ł, a GNN-based classifier M of 𝑘 layers (1) takes as input 𝐺𝑖=(𝑋𝑖 , 𝐴𝑖 ) (𝑖 ∈ [1,𝑚]), learns
to generate feature representations 𝑋𝑘

𝑖 , converts them into class labels that best fit a set of labeled
graphs (“training examples”), and (2) assigns, for each unlabeled “test” graph 𝐺𝑖 ∈ G, a class label
𝑙 ∈ Ł (denoted as M(𝐺𝑖 ) = 𝑙).

We aim to generate queryable structures that can also clarify the class labels of user’s interests
assigned by a GNN-based classifier M over G. To this end, we revisit graph patterns and views as
“building block” structures for view-based GNN explanation.
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Fig. 2. An explanation view for a single class label: explanation subgraphs and patterns

Graph Patterns. A graph pattern is a connected graph 𝑃 (𝑉𝑝 , 𝐸𝑝 , 𝐿𝑝 ), where 𝑉𝑝 is a set of pattern
nodes, 𝐸𝑝 is a set of pattern edges, and 𝐿𝑝 is a function that assigns for each node 𝑣𝑝 ∈ 𝑉𝑝 (resp. edge
𝑒𝑝 ∈ 𝐸𝑝 ) a type 𝐿(𝑣𝑝 ) (resp. 𝐿(𝑒𝑝 )).
Graph Pattern Matching. We use node-induced subgraph isomorphism [17] to characterize graph
pattern matching. Given a graph 𝐺 and a pattern 𝑃 , there is a matching function ℎ between 𝑃 and 𝐺 if
for each pattern node 𝑣𝑝 ∈ 𝑉𝑃 , (1) ℎ(𝑣𝑝 ) is a node in 𝑉 and 𝐿(𝑣) = 𝐿𝑝 (𝑣𝑝 ), (2) (ℎ(𝑣𝑝 ), ℎ(𝑣 ′𝑝 )) is an
edge in 𝐺 if (𝑣𝑝 , 𝑣 ′𝑝 ) ∈ 𝐸𝑝 , and 𝐿(ℎ(𝑣𝑝 ), ℎ(𝑣 ′𝑝 )) = 𝐿𝑝 (𝑣𝑝 , 𝑣 ′𝑝 ). We say that a graph pattern 𝑃 covers a
node 𝑣 (resp. an edge 𝑒) if there is a matching ℎ such that ℎ(𝑣𝑝 ) = 𝑣 (resp. ℎ(𝑒𝑝 )=𝑒) for some 𝑣𝑝 ∈ 𝑉𝑝
(resp. 𝑒𝑝 ∈ 𝐸𝑝 ). Given a set of graph patterns P and a set of graphs G, we say that P covers the
nodes (resp. edges) in G, if for every graph 𝐺 ∈ G and every node 𝑣 (resp. edge 𝑒) in 𝐺 , there exists
a pattern 𝑃 ∈ P, such that 𝑃 covers 𝑣 (resp. 𝑒).

Graph Views. Graph views have been extensively studied to support fast graph access and query
processing [41]. Given a graph database G, we represent a graph view as a “two-tier” structure,
denoted as GV = (P,G𝑠 ), where (1) P = {𝑃1, . . . , 𝑃𝑛} is a set of graph patterns, and (2) G𝑠 is a set
of connected subgraphs of the graphs from G which are induced by the nodes that matches the
patterns in P via node-induced subgraph isomorphism (see “Graph Pattern Matching”). Note that by
definition, P covers all the nodes in G𝑠 .

Remarks. We remark the difference between a “type” 𝐿(·) and a “class label” 𝑙 ∈ Ł. The former
refers to the real-world entity types, as seen in, e.g., ontologies, and are enforced to be consistent in
graph pattern matching; and the latter refers to the task-specific class labels assigned by GNN-based
classifiers. For simplicity, we shall refer to “class labels” as “labels”, “GNN-based classifier” as
“GNN”, and “graph patterns” as “patterns”.

2.2 Explanation Views
We now extend graph views as explanation structures for GNN. We start with the concept of
explanation subgraphs to capture the fraction of a graph that is responsible for its label assigned by a
GNN-based classifier M. We then introduce view-based explanation.

Explanation Subgraphs. Given a GNN M and a single graph 𝐺 ∈ G with label M(𝐺) = 𝑙 ∈ Ł, we
say that a subgraph of 𝐺 is an explanation subgraph of 𝐺 for M w.r.t. a label 𝑙 , denoted as 𝐺𝑙

𝑠 , if

• M(𝐺) = M(𝐺𝑙
𝑠 ) = 𝑙 (“consistent”), and

• M(𝐺 \𝐺𝑙
𝑠 ) ≠ 𝑙 (“counterfactual”).
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Here 𝐺 \𝐺𝑙
𝑠 is the subgraph obtained by removing 𝐺𝑙

𝑠 from 𝐺 . An explanation subgraph 𝐺𝑙
𝑠 of 𝐺

with label 𝑙 is a subgraph of𝐺 that clarifies “why” M(𝐺) = 𝑙 in terms of counterfactual causality [50].
That is, it is consistently assigned the same label 𝑙 by M as 𝐺 , and if “removed” from 𝐺 , M assigns
the remaining fraction of 𝐺 a different label for a graph database G and a set of class labels Ł, one
can fine-tune a set of labels of interests from Ł and generate explanation subgraphs accordingly (as
will be discussed).

Explanation Views. Given a graph database G, a GNN classifier M, and a user-specified label of
interest 𝑙 ∈ Ł, we consider a label group G𝑙 ⊆ G as the set of graphs with assigned label 𝑙 . An
explanation view of G for M w.r.t. 𝑙 is a graph view G𝑙

V = (P𝑙 ,G𝑙
𝑠 ), where

• G𝑙
𝑠 is a set of explanation subgraphs of the label group G𝑙 , such that for each graph 𝐺 ∈ G𝑙 ,

there is an explanation subgraph1𝐺𝑠 of 𝐺 in G𝑙
𝑠 and

• P𝑙 is a set of graph patterns, such that the nodes of G𝑙
𝑠 are covered by the graph patterns in P𝑙 .

Intuitively, an explanation view G𝑙
V provides a two-tier interpretation of GNNs in terms of a

specific label 𝑙 of interest. The “lower-tier” explanation subgraph explains GNN w.r.t. a label of
interest with consistent and counterfactual properties. The “higher-tier” patterns serve as a concise
summary to enable easy accessing, querying, and inspection of the classification and explanation
results. Prior works verify the need and effectiveness of two-level explanation structures: a higher-
level example, global “concept”, or “prototype” patterns of each class (similar to our higher-tier
patterns) for effective querying and summary of lower level detailed explanations [6, 13, 57].

Example 2.1. For a pretrained GNN model M in Example 1.1, we observe (and experimentally
verified) the following. (1) For the label group mutagen {𝐺1,𝐺2} classified by the GNNM, an expla-
nation view G𝑚𝑢𝑡𝑎𝑔𝑒𝑛

V = (P𝑚𝑢𝑡𝑎𝑔𝑒𝑛,G𝑚𝑢𝑡𝑎𝑔𝑒𝑛
𝑠 ). (a) G𝑚𝑢𝑡𝑎𝑔𝑒𝑛

𝑠 = {𝐺𝑠1,𝐺𝑠2} contains two explanation
subgraphs 𝐺𝑠1 of 𝐺1 and 𝐺𝑠2 of 𝐺2. M will incorrectly classify the remaining fraction of 𝐺1 (resp.
𝐺2) obtained by removing 𝐺𝑠1 (resp. 𝐺𝑠2) as nonmutagen. (b) P𝑚𝑢𝑡𝑎𝑔𝑒𝑛 = {𝑃11, 𝑃12} contains two
graph patterns that concisely summarize the structural information of all the explanation subgraphs
in G𝑚𝑢𝑡𝑎𝑔𝑒𝑛

𝑠 , with all the nodes covered by P𝑚𝑢𝑡𝑎𝑔𝑒𝑛. (2) Similarly, for the label nonmutagens, an
explanation view G𝑛𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛

V contains explanation subgraph set G𝑛𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛
𝑠 as {𝐺𝑠3,𝐺𝑠4}, and a set

of patterns P𝑛𝑜𝑛𝑚𝑢𝑡𝑎𝑔𝑒𝑛 = {𝑃21, 𝑃22}.
Consider adding two more graphs {𝐺5,𝐺6} in Figure 2 to mutagen group classified by M. An

explanation view of {𝐺5,𝐺6} for M with label mutagen is illustrated on the right side, which contains
two new explanation subgraphs 𝐺𝑠5 and 𝐺𝑠6, and a pattern set {𝑃31, 𝑃32, 𝑃33}. Ideally, one wants to
efficiently maintain the explanation view G𝑚𝑢𝑡𝑎𝑔𝑒𝑛

V by properly enlarging P𝑚𝑢𝑡𝑎𝑔𝑒𝑛 and G𝑚𝑢𝑡𝑎𝑔𝑒𝑛
𝑠

only when necessary. For example, it suffices to keep only 𝑃11 or 𝑃32, and 𝑃12 or 𝑃31, in P𝑚𝑢𝑡𝑎𝑔𝑒𝑛 .

Given a set of interested labels2 Ł, and graph database G where each graph 𝐺 ∈ G is assigned one
of the labels 𝑙 ∈ Ł, we are interested in generating and maintaining a set of |Ł| explanation views
GŁ
V = {G𝑙

V |𝑙 ∈ Ł}, one for each label group. Note that a label group may have multiple potential
explanation views. We will elucidate the quality measures to determine the optimal explanation views
for a given label group, and introduce algorithms to compute and maintain explanation views in the
following sections.

3 VIEW-BASED EXPLANATION
Given a graph database G and a GNN M, there naturally exist multiple explanation views for the
classification results of M over G. How to measure their “goodness”? We start with desirable
1We remark that 𝐺𝑠 may be disconnected; for this case, each disconnected component can be considered as an explanation
subgraph “corresponding” to 𝐺 .
2We abuse the notation Ł and let it denote a set of user’s interested labels.
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properties and introduce quality measurements (§3.1), followed by the problem formulation (§3.2)
and an analysis of properties and complexity (§3.3).

3.1 Quality Measures
Explainability. Our first measure quantifies how well the “lower tier” explanation subgraphs of
explanation views interpret a GNN M, naturally under the influence maximization principle: An
explanation view has better explainability if its explanation subgraphs involve more nodes with
features that can maximize their influence via a random walk-based message passing process
(following Eq. 1). For GNNs that learn and infer via feature propagation, this principle has been
consistently adopted to understand the accuracy of GNNs [56, 74] and their robustness [4], i.e., the
likelihood the labels are changed when the features of such nodes are changed.

Given a label group G𝑙 = {𝐺1, . . . ,𝐺𝑛} and 𝑘-layer GNN M, the explainability of an explanation
view G𝑙

V = (P𝑙 ,G𝑙
𝑠 ) for M over G𝑙 is quantified as:

𝑓 (G𝑙
V) =

∑︁
𝐺𝑠𝑖 ∈G𝑙

𝑠

𝐼 (𝑉𝑠𝑖 ) + 𝛾𝐷 (𝑉𝑠𝑖 )
|𝑉𝑖 |

(2)

where (1)𝑉𝑠𝑖 is the node set of an explanation subgraph𝐺𝑠𝑖 of𝐺 (𝐺𝑠𝑖 ∈ G𝑙
𝑠 , and𝐺𝑖 ∈ G for 𝑖 ∈ [1, 𝑛]),

and 𝑉𝑖 is the node set of 𝐺𝑖 (𝑉𝑠𝑖 ⊆ 𝑉𝑖); (2) 𝐼 (𝑉𝑠𝑖 ) is a function that quantifies the “influence” of the
features of the node set V𝑠 via feature propagation in the inference process of M, and (3) 𝐷 (𝑉𝑠𝑖 )
is a diversity measure to capture influence maximization. Here a weight 𝛾 ∈ [0, 1] is introduced to
balance between feature influence and diversity.

We next introduce the two functions 𝐼 (·) and 𝐷 (·).
Feature Influence. Following feature sensitivity and influence analysis in GNNs [56, 74], we intro-
duce an influence score. Given a graph 𝐺 with node set 𝑉 , the influence of a node 𝑢 on another node
𝑣 at the 𝑘-layer propagation is defined as the L1-norm of the expected Jacobian matrix [56]:

𝐼1 (𝑣,𝑢) =
����E[𝜕𝑋𝑘

𝑣 /𝜕𝑋 0
𝑢 ]
����
1 (3)

Intuitively, 𝐼1 (𝑣,𝑢) quantifies how “sensitive” the representation 𝑋𝑘
𝑣 of a node 𝑣 at the 𝑘-th layer of

M is, upon changes of the representation 𝑋 0
𝑢 at the input layer of M for a given connected node 𝑢;

in other words, how “influential” 𝑢 to 𝑣 is via feature propagation.
Given a targeted node 𝑣 , the influence score of a node 𝑢 ∈ 𝑉 to 𝑣 can be normalized as

𝐼2 (𝑢, 𝑣) =
𝐼1 (𝑣,𝑢)∑

𝑤∈𝑉 𝐼1 (𝑣,𝑤) (4)

Given a threshold 𝜃 and a set of nodes 𝑉𝑠 ⊆ 𝑉 , we say that a node 𝑣 is influenced by 𝑉𝑠 if there
exists a node 𝑢 ∈ 𝑉𝑠 , such that 𝐼2 (𝑢, 𝑣) ≥ 𝜃 . The influence score of 𝑉𝑠 , denoted as 𝐼 (𝑉𝑠 ), is in turn
defined as the size of nodes influenced by 𝑉𝑠 , i.e.,

𝐼 (𝑉𝑠 ) = |{𝑣 |𝐼2 (𝑢, 𝑣) ≥ 𝜃,𝑢 ∈ 𝑉𝑠 , 𝑣 ∈ 𝑉 }| (5)

Neighborhood Diversity. The second function aggregates a diversity measure among the neighbor-
ing nodes influenced by the explanation subgraphs via feature propagation. Recall that the node
representation of 𝑣 at the output layer (the 𝑘-th layer) of the GNNM is 𝑋𝑘

𝑣 . Let 𝑟 (𝑣, 𝑑) be the set of
nodes in 𝑉 such that for each node 𝑣 ′ ∈ 𝑟 (𝑣, 𝑑), the distance 𝑑 (𝑋𝑘

𝑣 , 𝑋
𝑘
𝑣′ ) between nodes 𝑣 and 𝑣 ′ is

bounded by a threshold 𝑟 , i.e., 𝑟 (𝑣, 𝑑) = {𝑣 ′ |𝑑 (𝑋𝑘
𝑣 , 𝑋

𝑘
𝑣′ ) ≤ 𝑟, 𝑣, 𝑣 ′ ∈ 𝑉 }.
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The function 𝐷 (𝑉𝑠 ) quantifies a neighborhood diversity as size of the union of 𝑟 (𝑢,𝑑) for each
node 𝑢 influenced by 𝑉𝑠 , i.e.,

𝐷 (𝑉𝑠 ) =

������ ⋃
𝑣:𝐼2 (𝑉𝑠 ,𝑢,𝑣)≥𝜃

𝑟 (𝑣, 𝑑)

������ (6)

Here the distance function 𝑑 (·) can be any embedding distance measure, such as the normalized
Euclidean distance.

Putting these together, an explanation view with higher explainability favors explanation subgraphs
that (1) have greater feature influence following feature propagation process, and (2) influence more
nodes with larger neighborhood diversity.

Coverage. Besides “lower-tier” explainability, we also expect the “higher-tier” patterns of an expla-
nation view to cover a desirable amount of nodes for each label group of interests. Better still, such
coverage constraints should be explicitly configurable by users. These coverage constraints become
especially valuable when conducting label-specific analyses on multiple labeled groups [38, 69].

Given a label group G𝑙 = {𝐺1, . . . 𝐺𝑛}, and its node set V𝑙 =
⋃

𝐺𝑖 ∈G𝑙 𝑉𝑖 , a coverage constraint is a
range [𝑏𝑙 , 𝑢𝑙 ], where 0 ≤ 𝑏𝑙 ≤ 𝑢𝑙 ≤ |V𝑙 |. We say that an explanation view G𝑙

V = (P𝑙 ,G𝑙
𝑠 ) properly

covers the label group G𝑙 if the explanation subgraphs G𝑙
𝑠 contain in total 𝑛 nodes from V𝑙 where

𝑛 ∈ [𝑏𝑙 , 𝑢𝑙 ]. Note that by definition of graph views, P𝑙 also covers all the nodes from G𝑙
𝑠 .

3.2 Explanation View Generation Problem

Configuration. A configuration C specifies the following parameters: (1) a pair of thresholds (𝜃, 𝑟 )
to determine the influence and diversity scores in explainability measure; and (2) a set of coverage
constraints {[𝑏𝑙 , 𝑢𝑙 ]} for each class label 𝑙 ∈ Ł.

We now formulate the problem of Explanation View Generation.

PROBLEM 1. Given a graph database G, a set of interested labels Ł s.t. |Ł| = 𝑡 , a GNNM, and a
configuration C, the explanation view generation problem, denoted as EVG, is to compute a set of
graph views GV = {G𝑙1

V , . . .G𝑙𝑡
V }, such that (𝑖 ∈ [1, 𝑡]):

• Each graph view G𝑙𝑖
V = (P𝑙𝑖 ,G𝑙𝑖

𝑠 ) ∈ GV is an explanation view of G for M w.r.t. 𝑙𝑖 ∈ Ł;
• Each G𝑙𝑖

V properly covers the label group G𝑙𝑖 ; and
• GV maximizes an aggregated explainability, i.e.,

GV = argmax
∑︁

G𝑙𝑖
V ∈GV

𝑓 (G𝑙𝑖
V) (7)

That is, we are interested in generating a set of explanation views which maximizes the explain-
ability and simultaneously properly covers G w.r.t. the configuration for each labeled group.

3.3 Hardness and Properties
To understand the hardness and feasibility of generating explanation views for GNNs, we study
several fundamental issues and properties. Our results are established for a fixed GNN model M.
We follow the convention in cost analysis of GNNs [21], and say that M is “fixed” if it is given,
pretrained (thus, its architecture and weights no longer change), and incurs an inference cost in
polynomial time (PTIME).

View Verification. To understand the hardness of EVG, we first investigate a “building block”
decision problem, notably, view verification. Given G, C, Ł, a fixed GNNM, and a two-tier structure
GV = (P,G𝑠 ) with a pattern set P and a set of subgraphs G𝑠 of the graphs from G, it verifies if
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GV satisfies three constraints simultaneously: (C1): it is a graph view of G, (C2): if so, if it is an
explanation view of the label group G𝑙 = {𝐺}, where M(𝐺) = 𝑙 ; and (C3): if so, if it properly covers
G𝑙 under the coverage constraint in C.

The hardness of verification provides the lower bound results for EVG, and its solution will be
used as a primitive operator in GVEX view generation framework (see §4). And then we present the
following result.

LEMMA 3.1. Given a graph database G, configuration C, and a two-tier structure (P,G𝑠 ), the
view verification problem is NP-complete when the GNNM is fixed.

Proof sketch: It is not hard to verify that view verification is NP-hard, given that it requires subgraph
isomorphism tests alone to verify constraint C1, which is known to be NP-hard [17]. We next outline
an NP algorithm for the verification problem. It performs a three-step verification below. (1) For C1,
it guesses a finite number of matching functions in PTIME (for patterns P and G with bounded size),
and verifies if the patterns induce accordingly G𝑠 via the matching functions in PTIME. If so, GV is
a graph view. (2) To check C2, for each graph 𝐺 ∈ G and its corresponding subgraphs 𝐺𝑠 ∈ G𝑠 , it
applies M to verify if M(𝐺𝑠 ) = 𝑙 and M(𝐺 \𝐺𝑠 ) ≠ 𝑙 . If so, GV is an explanation view for G. For a
fixed GNN M, it takes PTIME to do the inference. (3) It takes PTIME to verify the coverage given
that subgraph isomorphism tests have been performed in steps (1) and (2). These verify the upper
bound of view verification.

Hardness of EVG. Given a threshold ℎ, the decision problem of EVG is to determine if there exists a
set of explanation views GV for GNN M with explainability at least ℎ under the constraints in C.
We present a hardness result below for EVG.

THEOREM 3.2. For a fixed GNN M, EVG is (1) Σ2
𝑃

-complete, and (2) remains 𝑁𝑃-hard even
when G has no edges.

Here a problem is in Σ2
𝑃

if an NP algorithm exists to solve it with an NP oracle. Theorem 3.2
verifies that it is beyond NP to generate explanation views under coverage constraints, thus the
general EVG problem is hard even for fixed GNNs. We outline the hardness analysis below and
present the detailed proof in the appendix.

Proof sketch: (1) EVG is solvable in Σ2
𝑃

since we can devise an NP oracle for view verification
by guessesing a set of two-tier view structures GV = {(P,G𝑠 )𝑖 } (𝑖 ∈ [1, |Ł|]) and calling the NP
algorithm in the proof of Lemma 3.1 𝑂 ( |Ł| |P | |G|) times to check the fulfillment of the three
constraints. If so, it then computes 𝑓 (G𝑙

V) and checks if 𝑓 (G𝑙
V) ≥ ℎ in PTIME. (2) To see that EVG

is Σ2
𝑃

-hard, we construct a reduction from graph satisfiability, a known Σ2
𝑃

-complete problem [43]. (3)
To see Theorem 3.2(2), we consider a special case of EVG. Let G contains two single graphs 𝐺1 and
𝐺2, each has no edge. For such a case, we prove that EVG remains to be NP-hard through a reduction
from the red-blue set cover problem [8], which is NP-complete. This verifies the hardness of EVG
for identifying explanation with coverage requirement alone, as in such case, subgraph isomorphism
test is no longer intractable.

While Theorem 3.2 tells us that EVG is in general hard, we next show its properties that indicate
feasible algorithms with provable quality guarantees in practice.

Monotone Submodularity. We first show that the explainability 𝑓 (GV) of an explanation view GV
is essentially a monotone submodular set function [7], determined by the nodes from its explanation
subgraphs. Clearly, 𝑓 (GV) is non-negative. Denote the set of nodes from G𝑙

V as 𝑉𝑠 , with 𝑉𝑠 ranges
over the node set of 𝐺𝑠 in G𝑙

𝑠 .

LEMMA 3.3. Given G, Ł, C, and a fixed GNNM, 𝑓 (GV) is a monotone submodular function.
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Proof sketch: We first show that the monotonicity and submodularity of 𝑓 (·) depend on the two
components 𝐼 (·) and 𝐷 (·). Then we show that enlarging the node set will never downgrade the
feature influence, thus 𝐼 (·) is monotonic. Next we systematically discuss the marginal gain of
𝐼 (·) for any set 𝑉𝑠′′ ⊆ 𝑉𝑠′ and any node 𝑢 ∉ 𝑉𝑠′ under several cases, leading to a conclusion that
|Inf (𝑉𝑠′′∪{𝑢}) |− |Inf (𝑉𝑠′′ ) | ≥ |Inf (𝑉𝑠′∪{𝑢}) |− |Inf (𝑉𝑠′ ) |. Finally, we show that the similar properties
of 𝐷 (·) can be analyzed in the same manner. The complete proof is in the appendix.

We next present an algorithm framework, denoted as GVEX, to solve the EVG problem. We show
that there exists feasible approximations for EVG in §4, and then introduce an efficient algorithm to
maintain explanation views in §5.

4 GENERATING EXPLANATION VIEWS
Our main results below show that there exist feasible algorithms to generate explanation views with
guarantees on both explainability and coverage constraints, for GNN-based graph classification.

THEOREM 4.1. Given a configuration C, graph database G, and a 𝑘-layer GNNM over label
set Ł, there is a 1

2 -approximate algorithm for generating explanation views, and takes 𝑂 ( |G||𝑉𝑚 |3 +
|G||𝑉𝑚 | |Ł|𝑘 · C.𝑢𝑙 (𝑑𝐷 + 𝐷2) + 𝑁 (𝑁 +𝑇 )) time.

Here, |G| is the number of graphs in G; 𝑉𝑚 refers to the largest node set of a graph in G, 𝑑 and 𝐷

are the average degree and the number of features per node, and 𝑁 and 𝑇 are the total number of
verified patterns and the cost for single isomorphism test, respectively.

We start by presenting an approximation algorithm that generates an explanation view for a single
label 𝑙 ∈ Ł and a single graph 𝐺 ∈ G𝑙 . Our general approximation scheme calls this algorithm for
each graph 𝐺 ∈ G𝑙 to assemble an explanation view G𝑙

V , and then returns a set of explanation views
GV as

⋃
𝑙∈Ł G𝑙

V .

“Explain-and-Summarize”. Our general idea is to follow a two-step “explain-and-summarize”
strategy. (1) In the “explain” stage, the algorithm selects high-quality nodes to induce “lower-tier”
explanation subgraphs for M that can maximize the explainability score, and meanwhile, ensures
the coverage constraints in the configuration C. (2) The “summarize” stage produces, as “higher-tier”
structure, a set of graph patterns that ensures to cover the nodes of the explanation subgraphs. The
computed components are then assembled to yield the desired explanation views. The output of the
two stages captures explainability and provides queryable property, respectively.

To ensure the quality guarantee and efficiency, the algorithm adopts several primitive operators,
which are described below.

Verifiers. The verifiers are efficient operators that implement the view verification to check the
constraints C1-C3 as specified by configuration C (see the proof of Lemma 3.1), whenever a two-tier
structure (P,G𝑠 ) is in place. GVEX calls two primitive verifiers:

• a GNN inference operator EVerify, which efficiently infers the label of a subgraph 𝐺𝑠 of 𝐺 and
its counterpart 𝐺 \𝐺𝑠 with M (constraint C2); and

• a pattern matching operator PMatch, that performs fast node-induced subgraph isomorphism
and checks whether the nodes in explanation subgraphs are covered by patterns (constraint
C1), and are also properly covered (constraint C3).

Since the view verification problem is NP-complete, we approach it by addressing constraints using
two efficient primitive verifiers. It allows us to offer a feasible solution and establishes lower bound
results for EVG. In practice, they can be supported by invoking established solutions, e.g., parallel
GNN inference [19, 31] and subgraph pattern matching [23, 46], respectively.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 40. Publication date: February 2024.



View-based Explanations for Graph Neural Networks 40:13

Algorithm 1 Algorithm ApproxGVEX (for a single graph 𝐺)

Input: A graph 𝐺 , a GNN M, a label 𝑙 , a configuration C;
Output: an explanation view G𝑙

V for 𝐺 and 𝑙 .
1: set 𝑉𝑆 := ∅; set 𝑉𝑢 := ∅; set G𝑙

𝑠 := ∅; set G𝑙
V := ∅; set P:=∅;

2: Invoke EVerify to precompute Jacobian Matrix 𝑀𝐼 of 𝐺 ;
/* explanation phase */

3: while |𝑉𝑆 | < C.𝑢𝑙 and 𝑉 \𝑉𝑆 ≠ ∅ do
4: for 𝑣 ∈ 𝑉 \𝑉𝑆 do
5: if VpExtend (𝑣 ,𝑉𝑆 ,𝐺 ,𝐺𝑙

𝑠 , C,M) then
6: 𝑉𝑢 := 𝑉𝑢 ∪ {𝑣};
7: 𝑣∗ := argmax𝑣′∈𝑉𝑢 (𝑓 (𝑉𝑆 ∪ 𝑣 ′) − 𝑓 (𝑉𝑆 ));
8: 𝑉𝑆 := 𝑉𝑆 ∪ {𝑣∗};
9: extend G𝑙

𝑠 with the selected node 𝑣∗;
/* use candidate set 𝑉𝑢 to satisfy lower bound requirement */

10: while |𝑉𝑆 | < C.𝑏𝑙 and 𝑉𝑢 ≠ ∅ do
11: for 𝑣 ′ ∈ 𝑉𝑢 do
12: if VpExtend (𝑣 ′,𝑉𝑆 ,𝐺 ,𝐺𝑙

𝑠 , C,M) then
13: 𝑣∗ := argmax𝑣′∈𝑉𝑢 (𝑓 (𝑉𝑆 ∪ 𝑣 ′) − 𝑓 (𝑉𝑆 ));
14: 𝑉𝑆 := 𝑉𝑆 ∪ {𝑣∗};
15: extend G𝑙

𝑠 with the selected node 𝑣∗;
/* no “large enough” explanation that satisfy lower bound */

16: if 𝑉𝑢 = ∅ and |𝑉𝑆 | < C.𝑏𝑙 then
17: return ∅;

/* summary phase */
18: G𝑙

V := Psum (G𝑙
𝑠 ,𝑉𝑆 );

19: return G𝑙
V ;

Pattern generators. We use a second operator PGen to extract a set of pattern candidates to be verified
by PMatch, from a set of explanation subgraphs. The operator exploits minimum description length
(MDL) principle and conducts a constrained graph pattern mining process. It can be implemented by
invoking scalable pattern mining algorithms, e.g., [59]. Advanced mining algorithms developed in
the future can be used to enhance the PGen method further.

Algorithm. The algorithm, denoted as ApproxGVEX (Algorithm 1), computes an explanation view
G𝑙
V for a label 𝑙 ∈ Ł and a graph 𝐺 .

Initialization (lines 1-2). ApproxGVEX initializes and maintains the following auxiliary structures
(i.e., initialized globally once, and not re-initialized for each graph): (1) two node-sets 𝑉𝑢 and 𝑉𝑆 , to
store the candidate nodes and the selected ones that contribute to inducing explanation subgraphs,
respectively; (2) a set G𝑙

𝑠 of explanation subgraphs to be summarized, and the explanation view G𝑙
V .

In addition, it also pre-computes the Jacobian matrix 𝑀𝐼 with the operator EVerify. Note that this
once-for-all inference also prepares node representations that are needed to compute 𝐼 (·) and 𝐷 (·).
Explanation phase (lines 3-10). In this phase, ApproxGVEX dynamically expands a set of selected
nodes 𝑉𝑆 with high influence scores to construct explanation subgraphs. (1) It first checks if a new
node in V \ 𝑉𝑆 can contribute to “extend” an existing explanation subgraph in its original graph
𝐺 ∈ G, by invoking procedure VpExtend (line 7, to be discussed). (2) Upon the enlargement of 𝑉𝑢 ,
it adopts a greedy selection strategy to iteratively choose the node 𝑣∗ from 𝑉𝑢 that can maximize
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Fig. 3. “Explain-and-Summarize”: an illustration

the marginal gain (line 9). It then extends 𝑉𝑆 with 𝑣∗, and updates the current set of explanation
subgraphs by including 𝑣∗ and its induced edges in 𝐺 until finish condition (line 3). ApproxGVEX
then takes care of the lower bound requirement (lines 10-17). If G𝑙

𝑠 contains too few nodes 𝑉𝑆 to
satisfy the lower bound requirement C.𝑏𝑙 (line 10), it repeats the greedy selection from the candidate
set 𝑉𝑢 , until G𝑙

𝑠 grows to desired size or no candidate node is available (line 10). If all candidates are
processed and G𝑙

𝑠 is still small, ApproxGVEX returns ∅ (lines 16-17).

Summary phase (line 18). In this phase, ApproxGVEX invokes procedure Psum to construct patterns
that cover 𝑉𝑆 with a small number of patterns. It then constructs and returns G𝑙

V .
We next present the details of the procedures VpExtend and Psum.

Procedure 2 Procedure VpExtend (𝑣 , 𝑉𝑆 ,𝐺 ,𝐺𝑠 ,C,M)

1: Update explanation subgraph 𝐺𝑠 with 𝑣 to 𝐺𝑡 ;
/*invokes EVerify to verify constraint C2 (“View verification”; § 3.3)*/

2: if M(𝐺𝑡 ) ≠ M(𝐺) or M(𝐺\𝐺𝑡 ) = M(𝐺) then
3: return false
4: set 𝑉𝑡 := 𝑉𝑆 ∪ {𝑣};
5: if |𝑉𝑡 | ≥ C.𝑢𝑙 then
6: return false;
7: return true;

Procedure VpExtend. The procedure VpExtend implements the view verification algorithm (see
§3). It invokes the two verifier operators to determine if the explanation subgraphs, in particular, the
nodes 𝑉𝑆 that are used to induce them, can be “extended”. It first constructs an explanation subgraph
by augmenting the current fraction that belongs to G𝑙

𝑠 with the node 𝑣 to be verified, and follows the
verification process to check the invariant conditions, i.e., consistency, counterfactual explanation,
and coverage conditions.

Example 4.2. Figure 3 illustrates the "Explain-and-Summarize" process, with a configuration C =
(0.14, 2, (0, 15)). (1) In the explanation phase, ApproxGVEX identifies four candidate nodes {𝑣1, 𝑣2,
𝑣3, 𝑣4}, which pass the verification in VpExtend. These nodes are stored in 𝑉𝑢 . (2) It then greedily
selects the node 𝑣1 with the highest gain on explainability for𝐺𝑙

𝑠 (with a score 0.53 in our experiment).
This repeats until 𝑉𝑢 are processed and an explanation subgraph is induced as 𝐺𝑠5. Since the upper
bound 𝑢𝑙 = 15 is reached, 𝐺𝑠5 is returned as an explanation subgraph.
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Procedure Psum. Given the explanation subgraphs G𝑙
𝑠 induced from explanation phase, procedure

Psum computes a set of “higher-tier” patterns P to cover the nodes of G𝑙
𝑠 . Meanwhile, it is desirable

for P to cover the edge set of G𝑙
𝑠 as much as possible. Given a pattern 𝑃 ∈ P and graphs G𝑙

𝑠 with node
set 𝑉𝑆 and edge set 𝐸𝑆 , we denote the nodes and edges in G𝑙

𝑠 it covers as 𝑃𝑉𝑆 and 𝑃𝐸𝑆 , respectively.
Let each 𝑃 be “penalized” by a normalized weight (as the Jaccard distance) between 𝐸𝑆 and 𝑃𝐸𝑆 ,
i.e., 𝑤 (𝑃) = 1-

|𝑃𝐸𝑆 |
|𝐸𝑆 | (note 𝑃𝐸𝑆 ⊆ 𝐸𝑆 ). The above requirements can be further formulated as an

optimization problem:
• Input: explanation subgraphs G𝑙

𝑠 ;
• Output: a pattern set P𝑙 , such that (1)

⋃
𝑃∈P𝑙 (𝑃𝑉𝑆 ) = 𝑉𝑆 and (2) P𝑙 = argmin

∑
𝑃∈P𝑙 𝑤 (𝑃).

The procedure Psum solves the above problem by conducting a constrained pattern mining on
explanation subgraphs G𝑙

𝑠 . It invokes operator PGen to iteratively generate a set of pattern candidates
(line 3), and subsequently adopts a greedy strategy to dynamically select a pattern 𝑃∗ that maximizes
a gain ascertained by covered nodes P∗

𝑉𝑆
in 𝑉𝑆 with the smallest weight. P𝑙 is enlarged with P∗

accordingly. Post the selection of the currently optimal patterns, the matched nodes in𝑉𝑆 are reduced;
and the weights of the patterns are updated accordingly. This allows us to gradually acquire the final
explanation view and reduce the edges “missed” by P𝑙 .

LEMMA 4.3. For a given set of explanation subgraphs G𝑙
𝑠 , procedure Psum is an𝐻𝑢𝑙 -approximation

of optimal P𝑙 that ensures node coverage (hence satisfies coverage constraint in C). Here, 𝐻𝑢𝑙 =∑
𝑖∈[1,C.𝑢𝑙 ]

1
𝑖

is the 𝑢𝑙 -th Harmonic number (C.𝑢𝑙 ≥ 1).

The quality guarantee can be verified by performing an approximate preserving reduction from
the optimization problem to the minimum weighted set cover problem, for which a greedy selection
strategy ensures an 𝐻𝑑 -approximation with 𝑑 the largest subset size [2], which is in turn bounded
by C.𝑢𝑙 for the patterns over node-induced subgraphs G𝑙

𝑠 . We present the detailed analysis in the
appendix.

Example 4.4. Continuing Example 4.2, given 𝐺𝑠5 , Psum generates a small set of 2 pattern candi-
dates: 𝑃31 and 𝑃32. It finds that 𝑃31 covers 9 nodes in 𝐺𝑠5, and specifically, capturing the presence of
three nitro groups. Consequently, 𝑃31 is selected as the best pattern. The nodes already covered by 𝑃31
are masked, and a next pattern, 𝑃32 (carbon ring), is chosen as the second pattern that further covers
6 nodes in the remaining part. The two patterns properly cover all nodes of 𝐺𝑠5, with a small number
(3) of edges uncovered. By incorporating 𝐺𝑠5 with a pattern set P = {𝑃31, 𝑃32}, an explaination view
G𝑙
V is constructed as (P,𝐺𝑠5).

Correctness & Approximability. Algorithm ApproxGVEX terminates when: all nodes in 𝑉 are
processed (𝑉 \𝑉𝑆 = ∅), or all candidates in 𝑉𝑢 are exhausted (𝑉𝑢 is ∅). When it terminates with a
non-empty 𝐺𝑙

𝑠 , it correctly ensures that 𝐺𝑙
𝑠 is an explanation subgraph, as guarded by the verification

of the three constraints C1-C3 in view verification (by invoking procedures VpExtend and Psum).
To see the approximation guarantee, observe that ApproxGVEX generates G𝑙

𝑠 by carefully con-
structing 𝑉𝑆 that satisfies the coverage constraint (|𝑉𝑆 | ∈ [𝑏𝑙 , 𝑢𝑙 ]). Given Lemma 3.3, it essentially
solves EVG as a monotone submodular maximization problem under a range cardinality constraint.
This allows us to reduce EVG to a fair submodular maximization problem [14]. The latter chooses a
node set that maximizes a monotone submodular function under ranged coverage constraint (which
is set as ([C.𝑏𝑙 , C.𝑢𝑙 ] in our case). The 1

2 -approximation [14] carries over for EVG, as ApproxGVEX
carefully selects nodes with two invariants: (1) whenever |𝑉𝑆 | ≤ C.𝑢𝑙 , it improves explainability of
G𝑙
𝑠 via greedy strategy that ensures 1

2 -approximation by submodular maximization under metroid
constraints [9], and (2) if |𝑉𝑆 | ≤ C.𝑏𝑙 , it continues enlarging G𝑙

𝑠 with𝑉𝑢 that gathers “back up” nodes,
this does not hurt the guarantee on explainability due to its monotonic non-decreasing property.
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Algorithm 3 Algorithm StreamGVEX (for a single graph 𝐺)

Input: a graph 𝐺 with label 𝑙 , a GNN M, a configuration C;
Output: An explanation view G𝑙

V ;
1: set 𝑉𝑆 := ∅; set G𝑙

V := ∅; set P𝑐 := ∅; set 𝑉𝑢 := ∅;
2: for each arriving node 𝑣 ∈ 𝑉 (as a node stream) do
3: invoke IncEVerify to update Jacobian Matrix;
4: 𝑤 (𝑣) := 𝑓 (𝑉𝑆 ∪ {𝑣}) − 𝑓 (𝑉𝑆 );
5: 𝑉𝑢 := 𝑉𝑢 ∪ {𝑣};
6: if VpExtend (𝑣,𝑉𝑆 ,𝐺,𝐺𝑠 , C,M) then
7: 𝑉𝑆 :=IncUpdateVS (𝑣,𝑉𝑆 ,𝑉 ,𝐺,𝐺𝑠 );
8: if 𝑣 ∈ 𝑉𝑆 then
9: P𝑐 := IncUpdateP (𝑣,𝑉𝑆 ,P𝑐 );

10: use set 𝑉𝑢 to update 𝑉𝑆 to satisfy lower bound constraint C.𝑏𝑙 ;
11: return G𝑙

𝑠 as (P,G𝑠 );

Time Cost. ApproxGVEX incurs a one-time cost in 𝑂 ( |𝑉 |3) to compute Jacobian matrix (line 2).
It takes at most |𝑉 | rounds in generating 𝑉𝑆 . For a fixed GNN with 𝑘-layers, a full inference takes
𝑂 (𝑘 |𝑉𝑆 | (𝑑𝐷 +𝐷2)) [75], where 𝑑 and 𝐷 refer to the average degree of 𝐺𝑙

𝑠 and the number of features
per node. Thus in each round, VpExtend takes 𝑂 (𝑘 · C.𝑢𝑙 (𝑑𝐷 + 𝐷2)) time to verify if 𝐺𝑙

𝑠 remains to
be an explanation subgraph. The total time cost of Psum is 𝑂 (𝑁 ∗𝑇 + 𝑁 2), where 𝑁 is the number
of verified patterns (each with at most C.𝑢𝑙 nodes) from 𝐺𝑙

𝑠 , and 𝑇 is the time cost of PMatch. Hence
the total cost is 𝑂 ( |𝑉 |3 + 𝑘 · C.𝑢𝑙 (𝑑𝐷 + 𝐷2) + 𝑁 (𝑁 +𝑇 )). In practice, 𝑑 and 𝐷 are small, and 𝑁 and
𝑇 are also small due to bounded pattern and graph size.

To generate GV over G and Ł, one invokes ApproxGVEX at most |G| times. The overall time cost
is: 𝑂 ( |G||𝑉𝑚 |3 + |G||𝑉𝑚 | |Ł|𝑘 · C.𝑢𝑙 (𝑑𝐷 + 𝐷2) + 𝑁 (𝑁 +𝑇 )), with 𝑉𝑚 the largest node set of a graph
in G, and the rest terms scale to their counterparts for G.

5 FAST STREAMING-BASED ALGORITHM
Algorithm ApproxGVEX requires the generation of all explanation subgraphs to complete the gen-
eration of explanation views. As such, GNN inference or pattern generation alone can be major
bottlenecks when𝐺 is large. Moreover, users may also want to interrupt view generation to investigate
and ad-hocly query for specific explanation structures. In response, we next outline an algorithm to
incrementally maintain explanation views as it scans over 𝐺 as a stream of nodes.

THEOREM 5.1. Given a configuration C, graph database G, GNNM, there is an online algorithm
that maintains explanation views with a 1

4 -approximation.

The above approximation ratio holds for an optimal explanation view on the “seen” fraction of G,
thus is a weaker form of guarantee; yet this provides a pragmatic solution for large G.

Our idea is to treat the node set of 𝐺 as a stream, and incrementalize the update of “lower-tier”
explanation graph 𝐺𝑙

𝑠 and accordingly the “affected” higher-tier patterns P, to reduce unnecessary
verification. To this end, it uses the following procedures: (1) IncEVerify and IncPMatch: Upon the
arrival of a node 𝑣 , IncEVerify only updates the feature influence 𝐼1 (., 𝑣), diversity 𝐷 (𝑣), and updates
𝐼 (𝑉𝑆 ∪ {𝑣}) and 𝐷 (𝑉𝑆 ∪ {𝑣}) incrementally; IncPMatch invokes fast incremental and streaming
subgraph matching algorithms, e.g., [15, 33] to check graph views, explanation views, and proper
coverage. (2) IncPGen: unlike PGen, it takes as input a small subgraph induced by the 𝑟 -hop
neighbors of 𝑣 (where 𝑟 is specified in C for neighborhood influence), and only generates new
patterns ΔP not in P𝑙 , to be verified by IncPMatch; (3) IncUpdateP and IncUpdateVS maintain P𝑙
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Fig. 4. Incremental generation of explanation views

and 𝐺𝑙
𝑠 respectively, with a space-efficient “swapping” strategy (to be discussed) to dynamically

decide whether to replace patterns.

Algorithm. The algorithm, denoted as StreamGVEX, is outlined in Algorithm 3. Upon the arrival
of a node 𝑣 , it invokes IncEVerify to maintain the Jacobian matrix, updates the marginal gain, and
enlarges the candidate set 𝑉𝑢 . It then tests the extendability of 𝑉𝑆 , and invokes IncUpdateVS and
IncUpdateP to update P𝑙 and G𝑙

𝑠 respectively. The “post processing” is similar as its counterpart in
ApproxGVEX (line 10) ensures the lower bound.

Local Incremental Update. IncUpdateVS maintains𝑉𝑆 as a node cache of size up to C.𝑢𝑙 . For a node
𝑣 that passes extendable test (line 6), it consults a greedy swapping strategy to decide whether to
replace a node 𝑣 ′ ∈ 𝑉𝑆 with 𝑣 or reject 𝑣 , and put the node 𝑣 ′ into 𝑉𝑢 . Specifically, it performs a case
analysis: (a) if |𝑉𝑆 | < C.𝑢𝑙 , it simply adds 𝑣 to 𝑉𝑆 ; (b) otherwise, if P𝑙 already covers 𝑣 , or 𝑣 alone
does not contribute new patterns to P𝑙 (ΔP = ∅, as determined by IncPGen), it skips processing 𝑣 ,
as this does not hurt the quality of the current explanation view; (b) otherwise, it chooses the node
𝑣 ′ ∈ 𝑉𝑆 whose removal has the smallest “loss” of explainability score, and replaces 𝑣 ′ with 𝑣 only
when such a replacement ensures a gain that is at least twice as much as the loss. In other words, the
replacement does not hurt the original approximation ratio.

Upon the formation of new explanation subgraphs, IncUpdateP performs a similar case analysis,
yet on patterns P𝑙 , and conducts a swapping strategy to ensure node coverage and small edge misses.
We present the details of IncUpdateVS and IncUpdateP in the appendix.

Example 5.2. Figure 4 illustrates the maintenance of an explanation view with four explanation
subgraphs ({𝐺𝑠7,𝐺𝑠8,𝐺𝑠9,𝐺𝑠10} that are properly covered by four patterns {𝑃41, 𝑃42, 𝑃43, 𝑃44}). Upon
the processing of a new node, a newly induced explanation subgraph 𝐺𝑠11 is to be processed. As
existing patterns {𝑃41, 𝑃42, 𝑃43, 𝑃44} already cover a fraction of 𝐺𝑠11, StreamGVEX masks the nodes
that are covered and proceeds to generate a new pattern 𝑃45 from 𝐺𝑠11 to cover its remaining fraction.
The explanation view is eventually enriched with 𝐺𝑠11 and a new pattern 𝑃45.
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Analysis. The approximation guarantee of StreamGVEX comes from the 1
4 -approximation ensured

by the streaming submodular maximization [14], as well as the online optimization of full coverage
during the explanation generation. Specifically, its greedy local replacement strategy ensures an
invariant that the selected nodes do not impact the 1

4 approximation ratio. Online pattern generation
does not affect the full coverage property, thus assuring quality. StreamGVEX offers the advantage
of not requiring a comparison of information from all nodes each time, allowing anytime access of
explanation views. As the processing is performed “one node at a time”, the pattern generation is
expedited, further enhancing its speed.

StreamGVEX does not require any prior node order. (i) It ensures “anytime” quality guarantees
regardless of node orders (Theorem 5.1). (ii) Prioritizing some nodes may allow the early discovery
of certain frequent patterns. IncUpdateP maintains P𝑙 with a space-efficient “swapping” strategy to
dynamically decide whether to replace patterns and nodes. Thus, the higher-tier patterns may vary
slightly under different node orders, though a significant majority of the important patterns captured
will be similar. (iii) Different node orders in StreamGVEX does not affect the worst case time cost.

Parallel Implementation. To generate GV over G with multiple labels, one can readily apply a
parallel scheme with |G| processes, each processes a node stream by invoking StreamGVEX. We
present a detailed analysis in the appendix.

6 EXPERIMENTAL STUDY
We conduct an empirical evaluation of our solutions and existing approaches using both real-world
and synthetic graph databases (Table 3). All methods are implemented in Python. The experiments
are executed on a Ubuntu machine with one NVIDIA GeForce RTX 3090 GPU and 128G RAM on
Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz CPU. We employ multi-processing to demonstrate
the parallelism of our algorithms. Our code and datasets are at [1].

Table 3. Dataset statistics. NF inidicates node features.

Dataset Avg # Edges Avg # Nodes # NF # Graphs # Classes
per graph per graph per node

MUTANGENICITY 31 30 14 4337 2
REEDIT-BINARY 996 430 - 2000 2

ENZYMES 62 33 3 600 6
MALNET-TINY 2860 1522 - 5000 5

PCQM4Mv2 31 15 9 3 746 619 3
PRODUCTS 5 728 239 1 184 330 100 1 47
SYNTHETIC 1 999 975 400 275 - 100 2

6.1 Experimental Setup
Datasets. (1) MUTAGENICITY (MUT) [32] is a molecular dataset for binary classification task.
Each graph represents a chemical compound, where nodes are atoms and undirected edges denote
bonds. The one-hot node feature indicates the atom type, e.g., carbon, oxygen. (2) REDDIT-BINARY
(RED) [60] is a social network dataset comprising 2000 online discussion threads on Reddit. Nodes are
users participating in a certain thread, while an edge denotes that a user responded to another. These
graphs are labeled based on two types of user interactions, question-answer and online-discussion,
in the threads. (3) ENZYMES (ENZ) [5] is a protein dataset, containing hundreds of undirected
protein-protein interaction structures for up to six types of enzymes. One-hot node features indicate
the type of protein. (4) MALNET-TINY (MAL) [18] is an ontology of malicious software function
call graphs (FCGs). Each FCG captures calling relationships between functions within a program,
with nodes representing functions and directed edges indicating inter-procedural calls. The individual
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graph size in this dataset is considerably larger, posing additional challenges for identifying concise
explanation substructures. (5) PCQM4Mv2 (PCQ) [24] is a quantum chemistry dataset originally
curated under the PubChemQC project. It provides molecules as the SMILES strings, from which
2D molecule undirected graphs (nodes are atoms and edges are chemical bonds) are constructed,
where each node is associated with a 9-dimensional feature fingerprint. (6) PRODUCTS (PRO) [26]
represents an Amazon product co-purchasing network and consists of an undirected, unweighted
graph containing 2,449,029 nodes and 61,859,140 edges. The task is to predict the category of a
product, where the 47 top-level categories are used as target labels. Originally it was designed for
node classification and we transform this dataset for a graph classification task by sampling 400
subgraphs from the original graph. (7) SYNTHETIC (SYN) is a synthetically generated graph dataset
through the PyTorch Geometric library. This dataset leverages the BA-graph (Barabasi-Albert graph)
as its base graph and incorporates HouseMotif and CycleMotif as motif generators, each assigned to
separate two classes [62]. One single graph of this dataset contains approximately 0.4 million nodes
and 2 million edges.

Classifier. In line with recent works [28, 62, 67, 72], we employ a classic message-passing GNN,
namely a graph convolutional network (GCN) with three convolution layers, each having an embed-
ding dimension of 128. To facilitate classification, the GCN model is enhanced with a max pooling
layer and a fully connected layer. For datasets without node features, we assign each node a default
feature. During training, we utilize the Adam optimizer [34] with a learning rate of 0.001 for 2000
epochs. The datasets are split into 80% for training, 10% for validation, and 10% for testing. The
explanations are generated based on the classification results of the test set. Recall that our proposed
solutions are model-agnostic, making them adaptable to any GNN employing message-passing.

Competitors. To our best knowledge, GVEX is the first configurable label-level explainer. To
demonstrate its effectiveness, we compare it with 4 state-of-the-art GNN explainers, making minor
adjustments as necessary to ensure fair comparison. We denote our two-step method as ApproxGVEX
(AG) (§4) and our steaming method as SteamGVEX (SG) (§5). (1) GNNExplainer (GE) [62] learns
soft masks based on mutual information to select critical edges and node features that influence
instance-level classification results. (2) SubgraphX (SX) [67] employs the Monte Carlo tree search to
efficiently explore different subgraphs via node pruning and select the most important subgraph as the
explanation for instance-level graph classification. (3) GStarX (GX) [72] designs node importance
scoring functions using a new structure-aware value from cooperative game theory. It identifies critical
nodes and generates an induced subgraph as the explanation for each input graph. (4) GCFExplainer
(GCF) [28] explores the global explainability of GNNs through counterfactual reasoning. It identifies
a set of counterfactual graphs that explain all input graphs of a specific label.

We do not compare against XGNN [65] and PGExplainer [39] since (1) unlike ours and above
competitors, XGNN is a model-level explainer, it does not rely on input graphs to generate explana-
tions. As a result, calculating fidelity (see below) becomes difficult. (2) PGExplainer is similar to
GNNExplainer, it focuses on edge-level explanation rather than subgraph-level and is not a black
box. Therefore, we opted for the more representative method, GNNExplainer.

Evaluation metrics. We evaluate the quality of explanations considering explanation faithfulness
and conciseness.
Explanation faithfulness. Fidelity+ and Fidelity- [66] are two widely-used metrics for assessing if
explanations are faithful to the model, that is, capable of identifying input features important for
the model. Fidelity+ quantifies the deviations caused by a targeted intervention, i.e., removing the
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explanation substructure from the input graph.

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦+ =
1
|G|

∑︁
𝐺∈G

(𝑃𝑟 (M(𝐺) = 𝑙𝐺 ) − 𝑃𝑟 (M(𝐺 ′) = 𝑙𝐺 )) (8)

where 𝑙𝐺 is the original prediction for the graph 𝐺 . 𝐺 ′ represents the updated graph obtained by
masking the explanation substructure from the original graph 𝐺 . Fidelity+ metric measures the
difference in probabilities between the new predictions and the original ones. A higher Fidelity+
score indicates better distinction.

In contrast, Fidelity- metric measures how close the prediction results of the explanation substruc-
tures are to the original inputs.

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦− =
1
|G|

∑︁
𝐺∈G

(𝑃𝑟 (M(𝐺) = 𝑙𝐺 ) − 𝑃𝑟 (M(𝐺𝑠 ) = 𝑙𝐺 )) (9)

A desirable Fidelity- score should be close to or even smaller than zero, indicating perfect-matched
or even stronger predictions.

We evaluate the explainability of the subgraphs in our explanation views. As clarified earlier
in Section 2.2, the “lower-tier” subgraphs are responsible for explaining GNNs with consistent
(Fidelity-) and counterfactual (Fidelity+) properties. On the other hand, the “higher-tier” patterns are
provided to facilitate better query-ability, as assessed through the following metrics.
Conciseness. To assess the conciseness of explanation subgraphs produced by ours and various
competitors, we employ the well-known sparsity metric [66], computed as:

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 =
1
|G|

∑︁
𝐺∈G

(1 − |𝑉𝑠 | + |𝐸𝑠 |
|𝑉 | + |𝐸 | ) (10)

where the nodes and edges in the input graph 𝐺 and its explanation subgraph 𝐺𝑠 are denoted by
(𝑉 , 𝐸) and (𝑉𝑠 , 𝐸𝑠 ), respectively. Higher Sparsity values indicate more concise explanations.

Finally, we assess the compression due to “higher level” explanation patterns, which act as
summaries of the “lower level” subgraphs. This metric is applicable only for our two-tier explanation
views, where the nodes and edges of explanation subgraphs and patterns are denoted as (V𝑆 , E𝑆 ) and
(VP , EP), respectively.

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 1 − |VP | + |EP |
|V𝑆 | + |E𝑆 |

(11)

6.2 Experimental Results

Exp-1: Effectiveness. Below we report the effectiveness of GVEX.
Explanation faithfulness. To validate the consistency and counterfactual nature of our explanation
subgraphs, we generate explanations for one label of user’s interest, and vary the configuration
constraint 𝑢𝑙 to control the maximum number of nodes in explanation subgraphs. For competitors, as
they do not have configurable options, we consider their overall qualities for this specific label. If a
competitor is absent in the evaluation of a dataset, it indicates that the method took a longer time, i.e.,
> 24 hours, on that dataset.

Figure 5 and Figure 6 showcase the fidelity metrics with varying 𝑢𝑙 . Notably, our proposed
ApproxGVEX and StreamGVEX methods consistently outperform all other competitors. They achieve
higher Fidelity+ scores (consistent) on all datasets (except for the MUT dataset) and lower Fidelity-
scores (counterfactual) on all datasets. Unlike GNNExplainer and SubgraphX, our objective in
capturing explainability (Eq. 2) focuses on feature influence and diversity, rather than explicitly
optimizing for differences with respect to original prediction results. This shows that our extracted
message-passing substructures indeed carry critical information that faithfully corresponds to the
classification results.
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(a) RED (b) ENZ (c) MUT (d) MAL

Fig. 5. The Fidelity+ comparison across various GNN explainers under different configuration constraints

(a) RED (b) ENZ (c) MUT (d) MAL

Fig. 6. The Fidelity- comparison across various GNN explainers under different configuration constraints

(a) Fidelity+ via (𝜃, 𝑟 ) (b) Fidelity- via (𝜃, 𝑟 ) (c) Fidelity+ via 𝛾 (d) Fidelity- via 𝛾

Fig. 7. Configuration parameters anayses

(a) Sparsity (b) Compression (c) Edge Loss (MUT) (d) Edge Loss (RED)

Fig. 8. Conciseness analyses

ApproxGVEX and StreamGVEX have minor quality gaps up to 0.023 (Fidelity). StreamGVEX
is more fluctuating than ApproxGVEX. For instance, in MAL, the effectiveness of StreamGVEX
diminishes more rapidly, falling behind ApproxGVEX when the explanation sizes becomes larger. In
contrast, ApproxGVEX maintains a more consistent and uniform trend and performs better due to
tighter approximation.

The parameter 𝑢𝑙 enforces an upper bound on the size of explanations. Thus, a larger 𝑢𝑙 leads to
more comprehensive explanations for a class at the expense of higher time cost.

Furthermore, on MUT dataset, we vary the parameters to observe how the fidelity values respond
to various combinations of (𝜃, 𝑟 ). We also adjust the values of 𝛾 for the fixed (𝜃, 𝑟 ) combinations.
𝜃 is used to control the boundary of feature influence, 𝑟 controls the neighborhood diversity, 𝛾 is
a trade-off between the two. The parameter setting is optimized by grid search. For MUT dataset,
we set (𝜃, 𝑟 ) to (0.08, 0.25) and 𝛾 to 0.5. This serves the dual purpose of enabling the algorithm to
identify influential nodes possessing diversity while striking a suitable balance between them.

Conciseness. Figure 8(a) depicts the results of sparsity. It is evident that both ApproxGVEX and
StreamGVEX consistently generate more compact explanation subgraphs across all datasets. The
performance gap can be as high as 0.2 compared to GNNExplainer, which fails to effectively prune
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(a) Runtime (MUT) (b) Runtime (ENZ) (c) Runtime

(d) Scalability (PCQ) (e) Parallelization (f) Anytime Efficiency (PCQ)

Fig. 9. Efficiency, scalability, and parallelization analyses

unessential topological structures. Overall, ApproxGVEX and StreamGVEX significantly reduce the
total number of nodes and edges by 60% to 80%, and retain important information to be explored
by human experts. ApproxGVEX and StreamGVEX differ only slightly on all datasets because our
configuration parameters bound the number of nodes in explanations, which in turn produces slight
differences in the number of edges in explanations generated by the two algorithms.

Figure 8(b) demonstrates an excellent reduction in the number of nodes and edges achieved by our
“higher-tier” patterns relative to “lower-tier” subgraphs. It reveals that more than 95% of nodes can be
further compressed. Recall that our algorithms ensure full coverage of the nodes in the explanation
subgraphs by patterns set via node-induced subgraph isomorphism. This observation highlights that
the explanation subgraphs can be effectively represented by several significantly smaller substructures.
Furthermore, our case study shows that the patterns exhibit significant variation when the labels of
interest change. These indicate that GVEX can identify both compact and highly informative patterns,
enabling domain experts to explore the critical information from the graphs.

Figure 8(c), 8(d) show the the impact of 𝑢𝑙 on edge loss. Edge loss is the percentage of edges that
our high-tier patterns fail to cover in the low-tier explanation subgraphs while we satisfy the node
coverage constraints in C (see Lemma 4.3). We vary the configuration constraint 𝑢𝑙 to control the
maximum number of nodes in explanation subgraphs. It depicts that the percentage of edges that the
algorithm failed to cover increases when 𝑢𝑙 increases. Specifically, in MUT dataset, as 𝑢𝑙 varies, the
percentage of edges remaining uncovered manifests as {1.43%, 1.71%, 1.75%, 1.95%, 2.10%}.

Exp-2: Efficiency and Scalability. We next demonstrate that our methods consistently generate
graph explanations in a more efficient manner, even when dealing with graph databases that have
relatively larger individual graphs (e.g., PRO, SYN, MAL) or a large number of graph instances (e.g.,
PCQ). Figures 9(a)-9(b) present the running times of our ApproxGVEX and StreamGVEX methods,
showcasing their significantly faster performance compared to various competitors by 1-2 orders
of magnitude. Both ApproxGVEX and StreamGVEX complete their execution within hundreds of
seconds on MUT and ENZ, providing substantial improvements in efficiency.

Figure 9(c) provides a more comprehensive overview of the running times of all explainers across
various datasets. Notice that all competitors are absent in MAL dataset, which contains relatively
larger individual graphs. Additionally, when considering more input graphs on the PCQ dataset,
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Fig. 10. Case study 1 on GNN-based drug design

Fig. 11. Case study 2 on GNN-based social analysis

all competitors require > 24 hours with 100k graphs as shown in Figure 9(d). In contrast, GVEX
successfully completes the task in approximately 8 hours with 100k graphs. These demonstrate the
superiority of GVEX solution’s in scalability in terms of relatively larger as well as more graphs.

Figure 9(e) shows that our running time reduces by nearly 2× with parallel processing. For
PRO dataset, we observe that a node’s classification is influenced by message-passing among its
neighboring nodes. So we adopt a strategy where we select a specific number of nodes and consider
their neighboring nodes to construct subgraphs. The label assigned to a node becomes the label
for the entire subgraph. We sample approximately 400 subgraphs, each containing roughly 3000
nodes, resulting in a subgraph classification task involving approximately 1 million nodes and 6
million edges. It takes GVEX about 7 hours to complete this task. For SYN dataset, we use sparse
matrix multiplication and random walk technique [3, 12] to optimize the computation on large
graphs, and parallelize on multi-processes. With 4 processes, GVEX successfully completes the task
in approximately 10 hours. These results demonstrate the efficiency and scalability of the GVEX
algorithm when confronted with large, connected graph datasets.

Finally, our streaming method, StreamGVEX, exhibits linear growth in running time with batch
size, measued by the percentage of test graphs, making it highly scalable (Figure 9(f)). It also remains
more efficient than the 4-processor parallel version of ApproxGVEX, emphasizing its suitability for
handling large-scale graph datasets.

Exp-3: Case Studies. In our first case study, we compare the explanation subgraphs identified for one
mutagen by different explainers, highlighting them with thicker lines on the input graph (Figure 10).
It is evident that GVEX produces smaller subgraphs compared to GNNExplainer and SubgraphX.
Furthermore, our explanation view breaks down such subgraphs into smaller components that may
appear multiple times, facilitating easier access and exploration. GVEX successfully identifies the real
toxicophore, 𝑁𝑂2, allowing for correct and efficient query answering in downstream analytical tasks
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such as “which toxicophore occurs in mutagens?”. Among the competitors, only GNNExplainer
includes 𝑁𝑂2 in its output, albeit with an explanation subgraph consisting of 14 atoms.

Figure 11 provides another case study using the REDDIT-BINARY social network dataset in
three different configuration scenarios, where our GVEX explanation view successfully determines
representative patterns for different labels of interest. The three configuration scenarios indicate
whether the user prefers only one class or is interested in the nature of both classes. For online-
discussion threads, user interactions typically resemble star-like structures, where many strangers
post their thoughts on a popular topic. Our explanation pattern 𝑃61 aids in distinguishing these topic
groups within explanation subgraphs. On the other hand, in question-answer threads, users exhibit
biclique-like patterns 𝑃81, capturing the phenomenon where a few domain experts actively provide
answers to various questions raised by different users in closely related domains. When user attempts
to understand both classes, GVEX presents the salient patterns of both classes, shedding light on
important patterns that underpin the classification of this social network dataset.

7 CONCLUSION
We proposed GVEX, a novel graph view-based two-tier structure to explain GNN-based graph
classification. We established hardness results for explanation view generation, and provided efficient
algorithms with provable performance guarantees. We experimentally verified that GVEX-based
explaination outperforms existing techniques in terms of conciseness, explanability, and efficiency.
Our algorithms show good performance on different domains: (social networks, chemistry, biology)
and types: (directed/undirected, sparser/denser, with/without node features) of graphs, considering
both binary and multi-class classification problems, under static and streaming settings. In future, we
shall consider the impact of edge features and develop distributed view-based GNN explanation.
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A APPENDIX: PROOFS, ALGORITHMS & EXPERIMENTAL STUDY
A.1 Proof of Lemma 3.1
Given a graph database G, configuration C, and a two-tier structure (P,G𝑠 ), the view verification
problem is NP-complete when the GNNM is fixed.

Proof: It is not hard to verify that view verification is NP-hard, given that it requires subgraph
isomorphism tests alone to verify constraint C1, which is known to be NP-hard [17].

We next outline an NP algorithm for the verification problem. It performs a three-step verification
below. (1) For C1, it guesses a finite number of matching functions in PTIME (for patterns P and
G with bounded size), and verifies if the patterns induce accordingly G𝑠 via the matching functions
in PTIME. If so, GV is a graph view. (2) To check C2, for each graph 𝐺 ∈ G and its corresponding
subgraphs 𝐺𝑠 ∈ G𝑠 , it applies M to verify if M(𝐺𝑠 ) = 𝑙 and M(𝐺 \ 𝐺𝑠 ) ≠ 𝑙 . If so, GV is an
explanation view for G. For a fixed GNN M, it takes PTIME to do the inference. (3) It takes PTIME
to verify the coverage given that subgraph isomorphism tests have been performed in steps (1) and
(2). These verify the upper bound of the verification problem.
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A.2 Proof of Theorem 3.2
For a fixed GNN M, EVG is (1) Σ2

𝑃
-complete, and (2) remains 𝑁𝑃-hard even when G has no edges.

Proof: We first show that EVG is solvable in Σ2
𝑃

. We set an NP oracle for view verification, which
calls the NP algorithm in the proof of Lemma 3.1 to check if a pair (P,G𝑠 ) satisfies the three
constraints to be an explanation view under the configuration C for a single label 𝑙 ∈ Ł and a single
graph 𝐺 ∈ G. We outline a second NP algorithm below that consults the above NP oracle. The
nondeterministic algorithm guesses a set of two-tier view structures G𝑙

V = {(P,G𝑠 )𝑖 } (𝑖 ∈ [1, |Ł|]),
and determines if for each label group G𝑙 , it contains an explanation view (P𝑙 ,G𝑙

𝑠 ), by calling the
above NP oracle, in 𝑂 ( |Ł| |P | |G|) time. If so, it then computes 𝑓 (G𝑙

V) and checks if 𝑓 (G𝑙
V) ≥ ℎ in

PTIME.
(2) To see that EVG is Σ2

𝑃
-hard, we construct a reduction from graph satisfiability, a known Σ2

𝑃
-

complete problem [43]. Given two sets G+ and G− of graphs with labels ’+’ and ’-’ respectively,
graph satisfiability problem determines whether there exists a graph𝐺𝑜 such that each graph𝐺+ ∈ G+

is isomorphic to a subgraph of 𝐺𝑜 , and each 𝐺− ∈ G− is not isomorphic to any subgraph of 𝐺𝑜 .
Our reduction assumes that a fixed GNN M as a binary classifier is provided, and performs a
preprocessing step in PTIME as follows. (i) Given an instance of graph satisfiability, we first apply
M to G+ and G− and “regroup” them into two new groups G+

M and G−
M , according to the result

of M. (ii) We then augment G+
M (resp. G−

M) into a new set G+′
M (resp. G−′

M), where for each graph
𝐺+
𝑖 ∈ G+

M (resp. 𝐺−
𝑗 ∈ G−

M), a single independent node 𝑣−𝑖 (resp. 𝑣+𝑗 ) with a class label ’-’ (resp.
’+’) verified by M is added, i.e., M(𝑣𝑖 ) = ’-’ (resp. M(𝑣 𝑗 ) = ’+’). Such nodes can be obtained with
M inference over all the single nodes (as independent nodes) in G, hence in PTIME. We set graph
database G = G+′

M ∪ G−′

M . (3) We set in C the coverage constraints [|G+′
M |, |G+′

M |] for label ’+’ (resp.
[0, 0] for ’-’). One can verify that there exists a solution for graph satisfiability if and only if there is
an explanation view for G that satisfies C.
(3) To see Theorem 3.2(2), we consider a special case of EVG. Let G contains two single graphs
𝐺1 and 𝐺2, each has no edge. A pre-trained GNN M as a binary classifier assigns labels on graph
nodes (i.e., Ł contains two labels). For such a case, EVG remains to be NP-hard. To see this, we
construct a reduction from the red-blue set cover problem [8], which is NP-complete. This verifies
the hardness of EVG for identifying explanation with coverage requirement alone, as in such case,
subgraph isomorphism test is no longer intractable.

A.3 Proof of Lemma 3.3
Given G, Ł, C and a fixed GNNM, 𝑓 (GV) is a monotone submodular function.

Proof: As 𝑓 (GV) is the sum of 𝑓 (G𝑙
V), where 𝑙 ranges over Ł, and (1) each 𝑓 (G𝑙

V) is the sum of a
node set function 𝑓 ′ (𝑉𝑠𝑖 ) for each graph 𝐺𝑖 in label group G𝑙 , and (2) each 𝑓 ′ (𝑉𝑠𝑖 ) is in turn only
determined by two component node set functions 𝐼 (𝑉𝑠𝑖 ) and 𝐷 (𝑉𝑠𝑖 ), one only needs to show that
both its components 𝐼 (𝑉𝑠 ) and 𝐷 (𝑉𝑠 ) are monotone submodular (see Equation 2).

A function 𝑓 ′ (𝑉𝑠 ) is submodular if for any subsets 𝑉𝑠′′ ⊆ 𝑉𝑠′ ⊆ 𝑉𝑠 and any node 𝑢 ∉ 𝑉𝑠′ , (i)
𝑓 ′ (𝑉𝑠′′ ) ≤ 𝑓 ′ (𝑉𝑠′ ), and (ii) 𝑓 ′ (𝑉𝑠′′ ∪ {𝑢}) − 𝑓 ′ (𝑉𝑠′′ ) ≥ 𝑓 ′ (𝑉𝑠′ ∪ {𝑢}) − 𝑓 ′ (𝑉𝑠′ ) [7].
(1) We first show that 𝐼 (·) is monotone submodular. Given the node set 𝑉𝑠 , we denote as Inf (𝑉𝑠 ) the
node set influenced by𝑉𝑠 w.r.t. thresholds (𝜃, 𝑟 ) (as specified in configuration C); i.e., 𝐼 (𝑉𝑠 ) = |Inf (𝑉𝑠 ) |.
(a) Clearly, for any subset 𝑉𝑠′′ ⊆ 𝑉𝑠′ , Inf (𝑉𝑠′′ ) ⊆ Inf (𝑉 ′

𝑠 ), thus 𝐼 (𝑉𝑠′ )= |Inf (𝑉𝑠′ ) | ≥ |Inf (𝑉𝑠′′ ) |=𝐼 (𝑉𝑠′ ).
(b) To see its submodularity, we next show that for any set 𝑉𝑠′′ ⊆ 𝑉𝑠′ and any node 𝑢 ∉ 𝑉𝑠′ ,

|Inf (𝑉𝑠′′ ∪ {𝑢}) | − |Inf (𝑉𝑠′′ ) | ≥ |Inf (𝑉𝑠′ ∪ {𝑢}) | − |Inf (𝑉𝑠′ ) | (12)
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It then suffices to show that |Inf (𝑉𝑠′∪{𝑢}) | - |Inf (Vs′′ ∪ {u}) | ≤ |Inf (𝑉𝑠′ ) |-|Inf (𝑉𝑠′′ ) |. Note that𝑢 ∉

𝑉𝑠′ , and𝑢 ∉ 𝑉𝑠′′ . Thus |Inf (𝑉𝑠′ ∪{𝑢}) | - |Inf (𝑉𝑠′′ ∪{𝑢}) | = |Inf (𝑉𝑠′ )∪ Inf ({𝑢}) | - |Inf (𝑉𝑠′′ )∪ Inf ({𝑢}) |.
(i) If Inf ({𝑢}) ∩ Inf (𝑉𝑠′ ) = ∅, then we have the above equation trivially equals |Inf (𝑉𝑠′ ) | + |Inf ({𝑢}) |
- ( |Inf (𝑉𝑠′′ ) + |Inf ({𝑢}) |) = |Inf (𝑉𝑠′ ) | - |Inf (𝑉𝑠′′ ) |. (ii) Otherwise, Inf ({𝑢}) ∩ Inf (𝑉𝑠′ ) ≠ ∅. Note that
|Inf (𝑉𝑠′ ) |- |Inf (𝑉𝑠′′ ) | = |Inf (𝑉𝑠′ ) \ Inf (𝑉𝑠′′ ) |. Then, |Inf (𝑉𝑠′ ) ∪ Inf ({𝑢}) | - |Inf (𝑉𝑠′′ ) ∪ Inf ({𝑢}) | =
| (Inf (𝑉𝑠′ ) \ Inf (𝑉𝑠′′ )) \ Inf ({𝑢}) | ≤ |Inf (𝑉𝑠′ ) \ Inf (𝑉𝑠′′ ) |. Putting these together, the submodularity
of 𝐼 (·) hence follows.
(2) Following a similar analysis, we can show that 𝐷 (𝑉𝑠 ) is also monotone submodular. As both
𝐼 (𝑉𝑠 ) and 𝐷 (𝑉𝑠 ) are monotone submodular, and the sum of monotone submodular functions remain
to be monotone submodular, Lemma 3.3 follows.

A.4 Proof of Lemma 4.3
For a given set of explanation subgraphs G𝑙

𝑠 , procedure Psum is an 𝐻𝑢𝑙 -approximation of optimal P𝑙

that ensures node coverage (hence satisfies coverage constraint in C). Here, 𝐻𝑢𝑙 =
∑

𝑖∈[1,C.𝑢𝑙 ]
1
𝑖

is
the 𝑢𝑙 -th Harmonic number (C.𝑢𝑙 ≥ 1).

Proof: We show the optimality guarantee by performing a reduction to the minimum weighted
set cover problem (MWSC). The problem of MWSC takes as input a universal set 𝑋 and a set of
weighted subsets X= {𝑋1, . . . , 𝑋𝑛}. Each subset 𝑋𝑖 ∈ X has a weight 𝑤𝑖 . The problem is to select
up to 𝑘 subsets X𝑘 ⊆ X = {𝑋1, . . . 𝑋𝑘 } such that 𝑋 =

⋃
𝑗∈[1,𝑘 ] 𝑋 𝑗 , with a minimized total sum of

weights. (1) Given a set of explanation subgraphs G𝑙
𝑠 , we set the union of the nodes 𝑉§ as 𝑋 . we

consider the pattern candidates P generated from procedure PGen. For each pattern 𝑃𝑖 ∈ P, we set
the node set 𝑃𝑉𝑆 that are covered by 𝑃 in 𝑉§ as a subset 𝑋𝑖 , and associate the number of uncovered
edges in G𝑙

𝑠 as 𝑤 (𝑃𝑖 ). This transforms our problem to an instance of an MWSC problem. (2) Given a
solution 𝑋𝑘 , we simply set P𝑙 to the set of patterns that are corresponding to the selected subsets
in 𝑋𝑘 . This transforms the solution back to the solution to our problem. Then we can readily verify
the following. (a) The above constructions are in PTIME (in terms of input sizes). (2) Assume there
exists a solution 𝑋𝑘 that approximates an optimal solution 𝑋∗𝑘 for MWSC with ratio 𝛼 , then the
corresponding solution P𝑙 is an 𝛼-approximation for our problem. This is because the weights are
consistently defined as the edge cover loss for each pattern independently. Given the above analysis,
Lemma 4.3 follows.

A.5 Procedure IncUpdateVS
IncUpdateVS consults a greedy swapping strategy to decide whether to replace a node 𝑣 ′ ∈ 𝑉𝑆 with
𝑣 or reject 𝑣 and put the node 𝑣 ′ into 𝑉𝑢 . It performs a case analysis: (a) if it can simply adds 𝑣 to
𝑉𝑆 ; (b) otherwise, if P𝑙 already covers 𝑣 , or 𝑣 alone does not contribute new patterns to P𝑙 (ΔP = ∅,
as determined by invoke IncPGen), it skips processing 𝑣; (c) otherwise, it chooses the node 𝑣 ′ ∈ 𝑉𝑆
whose removal has the smallest “loss” of explainability score (Line 1) and replaces 𝑣 ′ with 𝑣 only
when such a replacement ensures a gain that is at least twice as much as the loss (Line 2-5). The
detail of case(c) is shown in Procedure 4.

A.6 Procedure IncUpdateP
IncUpdateP performs a similar case analysis, yet on patterns P𝑙 , and conducts a swapping strategy
to ensure node coverage and small edge misses. For newly maintained 𝑉𝑆 , first, ensure meeting node
coverage constraints (Line 4-8) by generating new patterns based on the unseen induced explanation
subgraph (Line 9-11); second, based on the normalized weight 𝑤 (𝑃) (Line 12), swapping patterns
that have no contribution to the node coverage and have the biggest edge misses (Line 13-14). The
detail is shown in Procedure 5.
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Procedure 4 IncUpdateVS (𝑣,𝑉𝑆 ,𝑉 ,𝐺,𝐺𝑠 )
1: 𝑣− := argmin𝑣′∈𝑉𝑆 (𝑓 (𝑉𝑆 ) − 𝑓 (𝑉𝑆\𝑣 ′))
2: 𝑉𝑢 := 𝑉𝑆\{𝑣−}
3: 𝑤 (𝑣) = 𝑓 (𝑉𝑢 ∪ 𝑣) − 𝑓 (𝑉𝑢);𝑤 (𝑣−) = 𝑓 (𝑉𝑢 ∪ 𝑣−) − 𝑓 (𝑉𝑢)
4: if 𝑤 (𝑣) ≥ 2𝑤 (𝑣−) then
5: 𝑉𝑆 := 𝑉𝑆\{𝑣−} ∪ {𝑣}
6: return 𝑉𝑆

Procedure 5 IncUpdateP (𝑣,𝑉𝑆 ,P𝑐 )
1: set P′ := ∅; 𝑣 induced subgraph 𝐺𝑠𝑣 ; and corresponding node set 𝑉𝑣;
2: for 𝑣 ′ ∈ 𝑉𝑆 do
3: 𝑈 := ∅
4: for 𝑃 ∈ P𝑐 do
5: if 𝑃 and 𝐺𝑠𝑣′ are isomorphic then
6: 𝑈 := 𝑈 ∪ {𝑉𝑃 }
7: if 𝑃 ∉ P′ then
8: P′ := P′ ∪ {𝑃}
9: if 𝑈 ≠ 𝑉𝑣′ then

10: 𝑃𝑛𝑒𝑤 := 𝐺𝑠𝑣′ (𝑉𝑣′\𝑈 )
11: P′ := P′ ∪ 𝑃𝑛𝑒𝑤
12: 𝑤 (𝑃) = 1 − |𝑃𝐸𝑆 |\|𝐸𝑆 |
13: P− ∈ P𝑐\P′ and has biggest 𝑤 (P−)
14: P𝑐 := P𝑐\P− ∪ P′

15: return P𝑐

A.7 Parallel Implementation
Within our algorithm, the calculation of Feature Influence and Neighborhood Diversity for each graph
is carried out independently. This observation presents a valuable opportunity for the parallelization
of our algorithm. Consequently, we are not constrained to relying on a single process to handle all the
graphs simultaneously. By employing multi-process execution on a 48-core CPU, we can efficiently
distribute the computational load among multiple processes, allowing each process to compute the
respective graph autonomously. This approach enables us to enhance the efficiency of the GVEX
algorithm. Additionally, these similar concepts can be readily extended to distributed systems.

A.8 Node order analysis w.r.t.StreamGVEX.
The streaming setting does not require a predefined order of nodes. StreamGVEX ascertains an
"anytime" quality guarantee, regardless of the node sequences (Theorem 5.1). Our approximation
ratio holds w.r.t. an optimal explanation view on the “seen” fraction of G, thus, providing a pragmatic
solution for large G. The node arrival sequence inherently impacts the order of pattern discovery,
potentially resulting in the early identification of certain patterns. Furthermore, due to our replacement
strategies such as IncUpdateVS and IncUpdateP, the arrangement of higher-tier patterns may undergo
slight modifications. These strategies intelligently oversee the management of patterns within P𝑙

through efficient "swapping", allowing for real-time decisions on patterns and node replacement.
Consequently, subtle variations may arise in higher-tier patterns contingent upon distinct node
processing orders. However, given the approximation guarantee within our algorithm, coupled with
the continuous update of pattern information, the vast majority of crucial patterns will persist, even
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(a) Explanation views for different node orders (b) Runtime for different node orders

Fig. 12. Different node orders in StreamGVEX, MUT dataset

under varying node orders, thus exhibiting minimal alterations in the ultimate result. Our additional
example (Figure 12(a)) illustrates that there exists a slight difference in the higher-tier patterns from
those shown in Figure 4 under different processing orders. Notably, node orders do not affect the
worst-case time cost of StreamGVEX. Figure 12(b) validates similar running times on the MUT
dataset for various node execution orders obtained via random shuffles.

Explanation View 1 Explanation View 2 Explanation View 3

Class A Class B Class C

Fig. 13. Explananion views on ENZ dataset

A.9 Case study on ENZYMES.
We further extend the current case studies. We added an analysis of the ENZ dataset (biology),
from which three classes are taken out as examples for the generation of the explanation views
(Figure 13). This shows that the proposed methods are effective in terms of identifying different
subgraph structures.
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