
High-Fidelity Cellular Network Control-Plane Traffic Generation
without Domain Knowledge

Z. Jonny Kong
Purdue University

West Lafayette, IN, USA

Nathan Hu
Stanford University
Palo Alto, CA, USA

Y. Charlie Hu
Purdue University

West Lafayette, IN, USA

Jiayi Meng
University of Texas at Arlington

Arlington, TX, USA

Yaron Koral
AT&T Labs

Middletown, NJ, USA

ABSTRACT
With rapid evolution of mobile core network (MCN) architectures,
large-scale control-plane traffic (CPT) traces are critical to studying
MCN design and performance optimization by the R&D community.
The prior-art control-plane traffic generator SMM heavily relies on
domain knowledge which requires re-design as the domain evolves.
In this work, we study the feasibility of developing a high-fidelity
MCN control plane traffic generator by leveraging generative ML
models. We identify key challenges in synthesizing high-fidelity
CPT including generic (to data-plane) requirements such as multi-
modality feature relationships and unique requirements such as
stateful semantics and long-term (time-of-day) data variations. We
show state-of-the-art, generative adversarial network (GAN)-based
approaches shown to work well for data-plane traffic cannot meet
these fidelity requirements of CPT, and develop a transformer-based
model, CPT-GPT, that accurately captures complex dependencies
among the samples in each traffic stream (control events by the
same UE) without the need for GAN. Our evaluation of CPT-GPT
on a large-scale control-plane traffic trace shows that (1) it does
not rely on domain knowledge yet synthesizes control-plane traffic
with comparable fidelity as SMM; (2) compared to the prior-art
GAN-based approach, it reduces the fraction of streams that violate
stateful semantics by two orders of magnitude, the max y-distance
of sojourn time distributions of streams by 16.0%, and the transfer
learning time in deriving new hourly models by 3.36×.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies →Modeling methodologies.

KEYWORDS
4G/5G; mobile core network; control plane; traffic modeling and
synthesis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
IMC ’24, November 4–6, 2024, Madrid, Spain.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0592-2/24/11
https://doi.org/10.1145/3646547.3688422

ACM Reference Format:
Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral. 2024.
High-Fidelity Cellular Network Control-Plane Traffic Generation without
Domain Knowledge. In Proceedings of the 2024 ACM Internet Measurement
Conference (IMC ’24), November 4–6, 2024, Madrid, Spain. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3646547.3688422

1 INTRODUCTION
The recently introduced Control-/User-Plane Separation (CUPS)
in 3GPP Release 14 for 4G [1] and in 3GPP Release 15 for 5G [3],
combined with a significant increase in control-plane traffic along-
side explosive growth in data-plane traffic [6, 48], challenge mobile
network operators and designers to innovate on mobile network
architectural design not only for the data plane but also for the
control plane in order to provide sustained mobile user experience.

Indeed, an increasing number of efforts have focused on open-
source development of 3GPP-compliant MCN implementations [18]
and novel MCN designs for improved performance [20, 24, 30]. Ac-
curately assessing the performance of such open-source implemen-
tations or new MCN designs under real deployment scenarios, how-
ever, critically relies on using high-fidelity, large-scale control-plane
traffic to drive the MCN operations. Despite the need, large-scale
control-plane traffic traces in MCN are only accessible by mobile
network operators, who are unlikely to share their traffic traces
due to business and privacy concerns. As a result, the lack of pub-
lic MCN control-plane traffic hinders the in-depth study of MCN
design and performance optimization by the broad networking and
systems communities.

A classic approach to mitigating the lack of real network traffic
traces is to generate synthetic traces. However, the large body of
traffic synthesis work for LTE and 5G has focused on the data plane
of MCN, i.e., on modeling data-plane traffic (e.g., [11, 29, 37, 38, 40]).
On the control-plane side, Dababneh et al. [16] modeled the total
control-plane volume on LTE’s MCN but did not model the fine-
grained inter-arrival time of successive events or the intricate event
dependence specified by 3GPP for each individual UE; they also
ignored the traffic diversity in device types and time-of-day.

Compared to Internet data traffic generation, cellular network
control-plane traffic generation faces some common fidelity require-
ments but also unique new requirements. A control-plane traffic
trace consists of multiple streams of control events (samples), one
stream per UE, typically throughout a day. (1) Stateful semantics.
First and foremost, the traffic generator must accurately capture the
rigid inter-dependence of sample features within a stream, adhering

ar
X

iv
:2

41
1.

07
34

5v
1

 [
cs

.N
I]

 1
1

N
ov

 2
02

4

https://doi.org/10.1145/3646547.3688422
https://doi.org/10.1145/3646547.3688422

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

to domain-specific rules, i.e., 3GPP UE state machines, ensuring
only semantically correct generated streams will be used to drive
the MCN. (2) Multi-modal features. Like data traffic, control-
plane traffic encompasses multiple fields. Specifically, each sample
includes a control event type and a timestamp, and thus the traffic
generator is tasked not only with producing realistic distributions
for individual fields, but also generating realistic correlations be-
tween fields within each sample. (3) Variable flow length. As in
data traffic, the traffic generator needs to capture diversity in UE
flow length. For instance, the number of events within a fixed time
window could vary among clients, which follows from the diversity
in UE activity levels. (4) Long-term data drifts. As control-plane
traffic lasts throughout the day, the traffic generator needs to cap-
ture data distribution drifts that occur over time, such as variations
throughout a day.

To meet these requirements, the state-of-the-art cellular control-
plane traffic generator SMM [45] employs a traditional modeling
methodology. In particular, it derives a statistical model, i.e., a Semi-
Markov model, based on the 3GPP UE state machines and fits the
model parameters (state transitions probabilities and sojourn times)
on the real trace. Such a traditional modeling approach, however,
critically relies on domain knowledge, e.g., the 3GPP standard, and
hence requires re-design as the domain knowledge evolves. First, a
separate model needs to be designed for each generation of cellular
technology (4G or 5G). Second, even for a particular generation
of technology, standards evolve continuously over time as new
3GPP specifications are published. For example, the development
of LTE was carried out through 3GPP Release 8 (2008) to Release 16
(2020) [4]. Therefore, continuous manual effort is required to keep
such domain-knowledge-dependent generators up to date with the
latest standards.

An additional limitation of the above traditional modeling ap-
proach is that the model parameters are rigid, and a single model
cannot capture the diversity of control-plane traffic trace. As a re-
sult, the authors had to cluster control-plane-traffic and instantiate
20,216 models (one per cluster per hour) which are inconvenient to
maintain and deploy.

In light of the limitation of the traditional modeling approach, in
this work, we study the feasibility of developing a high-fidelityMCN
control plane traffic generator by leveraging generative machine
learning (ML) models. Our approach was inspired by the recent
work on using Generative Adversarial Networks (GAN) combined
with LSTM in synthesizing data-plane traffic traces [39, 73] which
showed GAN-based approaches effectively learn the distributions
and correlations of packet- or flow-level header fields in Internet
traffic.

However, when we adapted prior-art GAN-based approaches to
generate control-plane traffic of the cellular network, we found it
suffers a number of limitations. (1) The prior-art approaches such
as NetShare [39] cannot capture the stateful semantics, as 22.10%
of the streams in the synthesized trace contain one or more events
that violate state transition rules stipulated by the 3GPP protocols.
(2) NetShare fails to capture fine-grained temporal properties, such
as the distribution of sojourn times, i.e., the duration that a UE stays
in a particular state of the 3GPP state machine. For example, the
maximum y-distance between the CDFs of the real and synthesized
traces’ sojourn times reaches 61.7%. (3) The GAN-based approach

cannot efficiently adapt to data distribution drifts that occur through
time via transfer learning. In particular, training a model for one
hour and applying transfer learning for each of the next 5 hours
takes almost 2X as long as direct training a 6-hour model from
scratch. (4) These GAN-based LSTM approaches require complex
and specialized enhancements to alleviate mode collapse [36]. (5)
Finally, these approaches require complex enhancements to the
model design to address LSTM’s tendency to forget past states [7,
57] in order to capture long-term dependencies.

To overcome these drawbacks, we develop a transformer-based
framework, CPT-GPT, that accurately captures complex depen-
dencies among the events in each stream to meet the fidelity re-
quirements (stateful semantics and distribution of multiple fea-
tures). In doing so, it not only achieves comparable fidelity in traffic
generation without domain knowledge as needed in SMM, but
also achieves higher fidelity than prior-art GAN/LSTM-based ap-
proaches [39, 73] without the need to use GAN or model enhance-
ments such as dealing with long-term dependencies and mode
collapse. Instead, the design of CPT-GPT only has to focus on a few
challenges in the input layer and output layer design: (1) How to
design tokens for the input layer to capture multi-modal features
per sample? (2) How to introduce generation stochasticity at the
output layer for multi-modal features? (3) How to efficiently update
the model over time?

We implement the complete cellular network control-plane gen-
eration model CPT-GPT in PyTorch, based on a decoder-based
transformer model [62]. We extensively evaluate CPT-GPT by com-
paring it with the traditional modeling-based SMM [45] and the
SOTA GAN-based NetShare [73], on a large-scale control-plane
traffic trace (for 380K UEs) from a leading mobile operator. Our
evaluation shows that (1) Compared to SMM, CPT-GPT requires
no domain knowledge, yet it can achieve close-to-zero semantic
violations, similarly accurate sojourn time distribution in terms
of the max y-distance of the CDFs, and more accurate percentage
breakdown of different event types. For example, averaged over the
three types of UEs (phones, connected cars, and tablets), CPT-GPT’s
differences compared to the real dataset in the breakdown of the
two dominant event types (SRV_REQ and S1_CONN_REL) are 1.01%
and 1.21% lower than SMM, respectively. (2) Compared to NetShare,
CPT-GPT achieves much higher fidelity in control-plane traffic gen-
eration. (i) It reduces the fraction of streams that violate stateful
semantics by two orders of magnitude, from 22.1%, 11.5%, and 16.9%
to 0.2%, 0.4%, and 1.5% for phones, connected cars, and tablets, re-
spectively. (ii) It also improves the sojourn time distribution of the
synthesized traces. For the three device types, the max y-distance
of sojourn time distribution from the real trace is reduced by 10.7%,
9.1%, and 28.3% respectively, averaging over the two 3GPP states.
(iii) CPT-GPT is more efficient in being applied transfer learning to
adapt a pretrained model for a given hour-of-day to the subsequent
hours. Specifically, it reduces the time needed to derive hourly mod-
els by 3.36×. (3) CPT-GPT generates diverse control-plane traffic
without memorizing individual sequences from the training set.
Specifically, when examining generated sub-sequences of length
20, none are repeated from the training set.

In summary, this work makes the following contributions:
• We develop the first control-plane traffic generator that does not
require domain knowledge yet achieves comparable accuracy as

IMC ’24, November 4–6, 2024, Madrid, Spain.

Table 1: Control-plane event types in 4G and 5G.

4G 5G Description

ATCH REGISTER Register the UE with the MCN
DTCH DEREGISTER De-register the UE from the MCN

SRV_REQ SRV_REQ Create a signaling connection to al-
low UE to send/receive data and
control-plane messages

S1_CONN_REL AN_REL Release the signaling connection
and others resources in both con-
trol and data planes

HO HO Switch the UE from the current cell
coverage serving it to another cell

TAU − Update the UE’s tracking area

the prior-art Semi-Markov-Model-based traffic generator which
heavily relies on domain knowledge.

• We show how transformer-based models can overcome the low
fidelity limitations of prior-art GAN/LSTM-based models in syn-
thesizing control-plane traffic, more efficiently employ transfer
learning to deal with traffic shifts over time, and does not memo-
rize individual sequences from the training set.

2 BACKGROUND & MOTIVATION

2.1 Cellular Network Control-Plane Traffic
The Mobile Core Network (MCN) serves as the central hub of the
cellular network. It not only forwards data traffic between each
user equipment (UE) and the Internet, but also orchestrates various
functions of the cellular network to provide seamless and reliable
communication services to the users. To effectively manage both
data and control traffic within the cellular network, Control-/User-
Plane Separation (CUPS) was first introduced in 3GPP Release 14
for 4G [1] and further refined in 3GPP Release 15 for 5G [3]. This
separation divides the cellular network into a data plane and a
control plane, streamlining the processing of data and control traffic,
respectively.
Control events. To effectively manage and control the commu-
nications in the cellular network, 3GPP defines various types of
control-plane events for both LTE and 5G.

Table 1 lists the primary control-plane events in 4G and 5G and
describes their main functionalities. Note that (1) we ignore the
events that happen only between the UE and the Radio Access
Network (RAN), as they do not involve the MCN; (2) although each
event corresponds to a series of control-plane messages among UE,
RAN, and MCN, traffic synthesis is only concerned with generating
control events originated from UEs, as mapping from a control-
plane event to messages is fixed as dictated by the 3GPP protocol;
and (3) what to do in case of event failure, i.e., due to message
exchange failure, is the responsibility of the downstream applica-
tions, which is beyond the scope of this paper; the traffic generator
is concerned with generating semantically correct sequences of
events.
Stateful semantics of control-plane traffic. In contrast with the
stateless Internet traffic, the control-plane events in the cellular
network are not independent. The 3GPP protocol not only specifies

that every UE has to follow two state machines when interact-
ing with the MCN, but also describes intricate dependence of the
control events on the states in the UE state machines. Specifically,
the two state machines for 4G/5G are EMM/RM (EPS1 Mobility
Mgmt. / Registration Mgmt.) and ECM/CM (EPS Conn. Mgmt. /
Conn. Mgmt.) respectively [2, 3], each with two primary states
(REGISTERED and DEREGISTERED for EMM/RM, and CONNECTED and
IDLE for ECM/CM).

To capture the intricate dependence of the control events on the
above four UE states, [45] developed two-level hierarchical state
machines for 4G and 5G as shown in Figure 1. Figure 1a shows
the two-level state machine of 4G. The top-level state machine
is a merged state machine of the EMM and ECM state machines
with three UE states, DEREGISTERED, CONNECTED, and IDLE, derived
from insights into how a UE transitions in the two state machines.
At the bottom level, there are two sub-state machines embedded
in the top-level CONNECTED and IDLE states, which capture other
dependence of the control events on the top-level states.

While 4G and 5G exhibit similarities in control events and UE
states, it is necessary to customize and re-derive the two-level state
machine of 5G to alignwith the 3GPP protocol as shown in Figure 1b.
Specifically, as TAU is not supported in 5G, the corresponding states
and transitions are removed from the two-level state machine of 4G.
Moreover, several 4G event types, ATCH, DTCH, S1_CONN_REL, are
replaced with REGISTER, DEREGISTER, and AN_REL, respectively.

2.2 Motivation for Generating Control Traffic

To provide sustained mobile user experience, mobile network opera-
tors and designers continuously innovate on mobile network archi-
tectural design not only for the data plane but also for the control
plane. Such innovations rely on realistic, high-fidelity control-plane
traffic traces for evaluation, benchmarking, and optimization. We
describe two motivating use cases in data-driven network design
and management that demand realistic control-plane traffic traces.

Performance evaluation of MCN design. In-depth evaluation
of various aspects of novel MCN design (e.g., [20, 24, 30]), including
throughput, end-to-end latency, scalability, and fault resilience, in
handling control events originating from a large UE population
rely on realistic control-plane workload. For example, right after
the first control-plane traffic generator [45] became available, the
Aether community started using it to study the scalability of Aether
5G core design.

Real-time network management. Network management is
critical to various stakeholders ranging from network operators
to end users, It has been intensively studied for data flows (e.g.,
five-tuples) via telemetry [5, 10, 14, 15, 27, 41, 42, 50, 71, 75] which
critically relies on real-time monitoring of network traffic. Accurate
control-plane traffic models can help to develop effective monitor-
ing schemes, e.g., with better accuracy and smaller memory foot-
prints. For example, such models can help to determine a good sam-
pling rate for sampling-based monitoring when collecting telemetry
metrics.

1EPS: Evolved Packet System, comprising the RAN and the MCN in 4G.

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

*

ATCH DTCH DTCH

SRV_REQ

S1_CONN
_REL

DEREGISTERED

S1_REL_S_1

S1_REL_S_2

TAU_S_IDLE

IDLE

TAU

S1_CONN
_REL TAUSRV_REQ_S

HO_S

TAU_S_CONN

CONNECTED

TAU

HO

HOTAU

TAU

HO

REGISTERED

(a) 4G

REGISTER DEREGISTER DEREGISTER

SRV_REQ

AN_REL

RM-DEREGISTERED

CM-IDLESRV_REQ_SHO_S

CM-CONNECTED

HO HO

REGISTERED

(b) 5G

Figure 1: The two-level hierarchical UE state machines of 4G and 5G [45].

3 OVERVIEW
We formally state the control-plane traffic generation problem and
discuss design challenges and how the prior-art heavily relies on
domain knowledge.

3.1 Problem Formulation

A cellular control traffic dataset 𝐷 = {𝑆1, 𝑆2, ..., 𝑆𝑛} consists of
multiple streams, where each stream 𝑆𝑖 represents a sequence of
events generated by a specific UE. Each stream 𝑆𝑖 = {𝑈𝐸_𝐼𝐷𝑖 ,

𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑦𝑝𝑒𝑖 , 𝑒𝑣𝑒𝑛𝑡𝑠𝑖 } consists of a UE identifier, a UE device type,
and a sequence of events, 𝑒𝑣𝑒𝑛𝑡𝑠𝑖 = {{𝑡𝑖1, 𝑒𝑖1}, {𝑡𝑖2, 𝑒𝑖2}, ..., {𝑡𝑖𝑘 , 𝑒𝑖𝑘 }},
where each event 𝑒𝑖𝑘 is accompanied by a timestamp 𝑡𝑖𝑘 indicating
when it occurred.

Given such a control plane traffic dataset 𝐷 , our objective is to
develop a framework capable of producing a synthesized dataset
𝐷′ of arbitrary size that exhibits high fidelity in terms of a selection
of fidelity metrics of importance to the downstream use cases.

3.2 Challenges

The primary challenges in synthesizing high-fidelity control-plane
traffic datasets come from the generality of such a framework and
from the multiple dimensions of fidelity required by the use cases
of control-plane datasets:

• C1: Generality – requiring minimal domain knowledge. The frame-
work should require as little domain knowledge as possible, since
relying on domain knowledge leads to extra re-design effort
upon domain knowledge changes, e.g., revisions or new releases
of 3GPP standards, or mixed technology deployment scenar-
ios. Furthermore, even within the same generation of network
technology, the standard evolves continuously with new 3GPP
releases. For example, LTE has been developed through 3GPP
Release 8 to 16 [4], whereas 5G began with 3GPP Release 15 and
still actively evolving [22]. As the network standard continuously
evolves, the control-plane traffic of UEs experiences a continuous
shift which requires the models to be re-instantiated repeatedly.

• C2: Stateful semantics. Each stream of the control-plane traffic
trace consists of samples, i.e., control events, each of a particular
event type (Table 1). The framework needs to capture the rigid
inter-dependence of event types, dictated by domain rules (e.g.,
3GPP UE state machines). Semantic correctness is essential since
only semantically correct datasets shall be used, e.g., in comparing
different designs or implementations of an MCN.

• C3: Multimodal features. In addition to event types, the samples
in each control-plane stream also encompass several other fields,
including an associated timestamp, that directly affect the load
on the MCN. Thus, the framework needs to generate control-
plane traffic with realistic distributions for each field, which are
required to evaluate how an MCN operates under real-world
workloads, such as the duration an MCN has to maintain per-
UE states in stateful implementations (e.g., [20]). These include
distributions (breakdowns) of different control event types in the
trace and the sojourn time of a UE staying in each state, as each
type of events will invoke a different set of network functions in
the MCN, and the sojourn time staying in each UE state affects
the average and bursty load incurred by the UEs on the MCN.

• C4: Variable flow length. Like Internet data traffic, the frame-
work needs to generate datasets consisting of streams of varying
lengths, with the length distribution matching that of the real
datasets. Realistic flow length distribution is important because
it reflects the realistic workload experienced by the MCN in real
deployment due to individual streams (UEs).

• C5: Long-term data drifts. The framework needs to capture control-
plane traffic drifts over time, such as diurnal variations, due to
variations of UE activity characteristics throughout different
hours of the day. Accurately modeling control-plane traffic drifts
enables evaluating autoscaling capabilities of MCN implementa-
tions [20, 24].

Fidelity metrics. To quantify how well a framework tackles the
above challenges (C2-C5) in generating high-fidelity control-plane
traffic, we use the list of fidelity metrics shown in Table 2. First,
to calculate the percentage of semantic violations and sojourn time
distributions, we replay the synthesized trace against the 3GPP-
dictated state machine (Figure 1), and record the duration that the
UE stays in each state and the number of events that violate state
transitions, respectively. Second, event type breakdown and flow
length distribution can be directly derived from the synthesized
trace. Finally, to evaluate the adaptability to data drifts, we assume
a transfer learning setup, where the model in the framework is
trained on a trace collected in a particular hour, and subsequently
fine-tuned to a trace collected from another hour that may have data
distribution shift, and measure the re-training time and accuracy
of the adapted model.

IMC ’24, November 4–6, 2024, Madrid, Spain.

Table 2: Fidelity metrics used for evaluating the synthesized dataset.

Metric Definition Goal

Semantic violation Percentage of events and streams that violates 3GPP-defined state transitions Evaluate C2
Sojourn time distribution The average time a client stays in a particular state Evaluate C3
Event type breakdown Percentage of each event type Evaluate C3
Flow length distribution Number of events in each stream Evaluate C4
Adaptability to data drifts Training time needed to adapt to another dataset of different characteristics Evaluate C5

3.3 Prior-art Control-plane Traffic Generation

The state-of-the-art control-plane traffic generator SMM [45] re-
lies heavily on domain-specific knowledge. (1) To satisfy stateful
semantics (C2), the authors manually derived the above two-level
hierarchical state machines for 4G and 5G (Figure 1) based on 3GPP
standard to capture the intricate inter-dependence of the control
events on the four UE states. (2) They then manually converted the
two-level state machine into a Semi-Markov Model (SMM) to model
the probability of the transition from one state to another and the
duration of a UE staying in one UE state before switching to another
(referred to as SMM sojourn time). (3) In fitting the parameters of
the SMM (to satisfy C3 and C4), the authors applied further domain
knowledge. They discovered high diversity of control-plane traffic
in terms of device types, time-of-the-day, and across individual UEs,
and then clustered the UEs in the real trace into hundreds of UE
clusters, each with similar features such as flow length and variation
of sojourn time which are domain-specific, and then instantiated
an SMM for every UE cluster for each device type and hour-of-day.
(4) To finally model sojourn time - a key SMM model parameter (to
satisfy C3), they again applied domain knowledge; they derived one
CDF model for each transition in the SMM, after discovering that
traditional probability distributions used for modeling the inter-
arrival time of Internet traffic (e.g., Poisson, Pareto, Weibull, and
TCPlib) cannot accurately model the control-plane traffic in cellular
networks. As a result, a total of 20,216 Semi-Markov models were
derived to cover all 24 hours of the day and three device types, i.e.,
phones, connected cars, and tablets, which required deriving a total
of 283,024 CDFs to model the sojourn time in all the models.

As SMM’s design heavily relies on domain knowledge, e.g., the
3GPP standard, it needs to be re-designed and re-instantiated as
the domain knowledge evolves. In summary, prior-art control-plane
generator SMM heavily relies on domain knowledge which not only
incurs significant manual effort but also requires repeating the effort
in reacting to changes and complications in domain knowledge.

4 SYNTHESIZING CONTROL-PLANE TRAFFIC
WITHOUT DOMAIN KNOWLEDGE

To design a traffic generator that does not rely on domain-specific
knowledge, we leverage generative ML models which can be di-
rectly trained end-to-end on raw traces, without needing domain
knowledge such as 3GPP protocols. We begin by exploring prior-art
ML-based methods for generating network time series, which have
been shown to generate Internet data traffic with high fidelity, to
understand their limitations in generating cellular network control-
plane traffic traces. We then present the design of CPT-GPT, which
addresses the limitations of existing ML-based approaches.

4.1 Dataset Overview
To enable our study of control-plane traffic generation, we collected
a cellular control-plane traffic dataset in collaboration with a major
carrier in the US. The dataset is collected on the operator’s LTE
network by randomly sampling from UEs across the entire U.S. over
a span of 8 days in 2022. In total, the dataset contains 73,153,370
control events, from 430,939 UEs belonging to three device types:
phones (278,389), connected cars (113,182), and tablets (39,368).

4.2 Prior-art ML-based Approach and Limitations
Encouraged by the effectiveness of Generative Adversarial Net-
works (GANs) applied to generating time sequences such as NLP [12],
systems researchers have applied GANs to develop generators for
networked traffic [13, 28, 39, 55, 73], webpage views [39], and clus-
ter job traces [39] with encouraging results. Compared with classic
simulation-based or statistical-based approaches, the GAN-based
approach requires minimal domain knowledge and thus has the
potential to support diverse types of network time series with little
to no customization.

DoppelGANger [39] and NetShare [73] are state-of-the-art GAN-
based frameworks designed for network traffic generation. Their
key ingredient is to generate the metadata per stream (e.g., 5-tuples
of a TCP connection) and the stream of samples (e.g., IP headers)
conditioned on the metadata separately, using an MLP-based gener-
ator and an LSTM-based generator, respectively. Such a decoupled
two-model architecture demonstrates superior fidelity over several
previous GAN-based traffic generators (e.g., [19, 74]) in generating
Internet data traffic such as webpage access and cluster usage traces.
NetShare builds upon DoppelGANger and specializes in generating
IP header and flow traces. By incorporating domain knowledge such
as domain-specific encoding schemes (e.g., bitwise encoding [69]
for IP addresses and IP2Vec [54] for ports), NetShare is shown to
generate such traces with improved fidelity.

4.2.1 Limitations ofGAN-basedApproach. However, our eval-
uation reveals several limitations of prior-art GAN-based approaches
in synthesizing cellular network control-plane traffic datasets.
Adapting NetShare to control traffic. We adapt NetShare to
synthesize cellular control-plane traffic as follows. The original Net-
Share uses an MLP-based generator and LSTM-based generator to
respectively generate a “metadata” and a “time series” that together
form a stream, where metadata refers to fields that are universal
to the entire stream (e.g., the 5-tuple). The equivalent metadata in
cellular network control-plane traffic is the UE ID. However, since a
UE ID is a hashed string without semantic meaning, it is not mean-
ingful to generate it with a model or evaluate its fidelity. Instead,
we use a random string generator to generate UE IDs separately.

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

Table 3: Semantic violations in control-plane traffic synthe-
sized by NetShare.

Perc. event violations 2.61%
Perc. streams w/ at least one violating event 22.10%

State and event of top 3 violation
S1_REL_S, S1_CONN_REL 1.16%
S1_REL_S, HO 0.76%
CONNECTED, SRV_REQ 0.41%

Therefore, we discard the metadata generator, and only use Net-
Share’s LSTM-based generator to generate time series where each
sample in the time series contains three fields: event type, interar-
rival time, and a “stop flag” that indicates whether the current sam-
ple is the last in the stream. 2 Other model hyperparameters of Net-
Share are kept unchanged. For comparison, we present the dataset
generated by both NetShare and CPT-GPT, with a detailed descrip-
tion of CPT-GPT’s design deferred to §4. The model is trained
following the methodologies that will be described in §5.1, and the
inference setup is deferred to §5.1, §5.2 and §5.5.

Limitation 1 (L1): State-of-the-artML-based traffic generators
do not achieve stateful semantic correctness.

Many network datasets exhibit stateful semantics [21, 35, 45, 51],
because they are usually produced by end hosts or middleboxes that
operate according to some network protocols, upper-layer applica-
tion rules, or middlebox policies. In the case of cellular control-plane
traffic, the stream of control events produced by each UE is the
outcome of a series of state transitions on the UE state machine
derived from the 3GPP standard (Fig. 1).

We evaluate the semantic correctness of NetShare-generated
trace by feeding each stream into the 3GPP state machine, and count
how many events violate the state transitions. Table 3 shows that
2.614% of the events in the dataset synthesized by NetShare violate
the 3GPP-defined state transitions. Such a degree of event violations
translates to 22.10% of the streams generated containing at least
one semantic-violating events, rendering these streams potentially
useless for downstream applications. A detailed analysis shows the
reason for such a high degree of stateful semantics violations is that
NetShare fails to capture the fact that S1_CONN_REL and HO events
should not occur when the UE is in S1_REL_S state (Fig. 1a).

Limitation 2 (L2): State-of-the-artML-based traffic generators
do not synthesize high-fidelity traces in terms of sojourn
times.

Figure 2 compares the CDF of the average sojourn times per UE
in the CONNECTED state for each synthesized dataset as well as the
real dataset, for phone UEs. We see that NetShare does not per-
form as well in generating high fidelity sojourn times. Specifically,
while the majority of streams in the real dataset have an averaged
CONNECTED state sojourn time ranging from 5 to 50 seconds, Net-
Share frequently generates streams with sojourn times spanning

2NetShare could potentially be enhanced by replacing the LSTM model in its GAN
generator with a transformer model. However, as we will demonstrate with CPT-GPT,
a transformer model can achieve sufficient performance with supervised learning,
eliminating the need for GAN-based training.

100 101 102

Sojourn time
(CONNECTED)

0

50

100

CD
F

Real
NetShare
CPT-GPT

Figure 2: Distributions of the average sojourn time in the
CONNECTED of each UE, comparing real and synthesized traces,
for phone UEs.

Table 4: Time needed to train NetShare from scratch, or per-
form transfer learning on an existing model to adapt to dif-
ferent workloads. Training stops when fidelity metrics show
diminishing returns. Measurement is done on an NVIDIA
A100 GPU.

6-hour model from scratch 108.36 mins

1-hour model from scratch 43.08 mins
1-hour model from finetuning from another hour 30.41 mins
6 1-hour models total from transfer learning 195.12 mins

2 to 100 seconds with a non-negligible probability. This results in
a significant difference in the maximum y-distance between the
CDFs of the synthesized and real dataset, at 27.9% and 6.4% for
NetShare and CPT-GPT, respectively. We refer readers to §5.2 for
the results for the other two types of UEs.

Limitation 3 (L3): State-of-the-artML-based traffic generators
cannot efficiently adapt to different workloads via transfer
learning.

Just like Internet data traffic, the control-plane traffic of cellular
networks generated by UEs exhibits variations over time, which
can be attributed to diurnal, weekly, or seasonal fluctuations in UE
behavior, as well as network changes resulting from the continuous
cellular network evolution or incremental deployment of a given
generation of cellular networks. Therefore, the traffic generation
framework may need to re-train a new ML model that captures the
resulting variations in control-plane traffic, e.g., once every month.
To reduce the model training cost for such drifting workloads,
instead of training a new ensemble of hourly models from scratch,
a potentially efficient approach is to train a base model for a specific
hour-of-day from scratch, and then adapt it using transfer learning
to generate a model for each remaining hour of the day [8, 52, 68].

However, we found that state-of-the-art GAN-based frameworks
are inefficient in performing such transfer learning. We measure
NetShare’s training time on trace collected over 6 hours for the
phone device type, and compare it with training NetShare just
on the first hour of the trace and then re-trained to adapt to the
five subsequent hours recursively (we refer readers to §5.5 for the
detailed methodology). Table 4 compares the training time for the
two approaches. We observe that it takes 108.36 minutes to train
a single NetShare model covering 6 hours of traces from scratch.
In contrast, the time needed to train an ensemble of specialized

IMC ’24, November 4–6, 2024, Madrid, Spain.

models via transfer learning is 195.12 minutes, almost twice as long.
This indicates that the GAN/LSTM design cannot leverage transfer
learning to adapt to shifting workloads effectively, which has been
shown in prior works [49, 65, 66].

Limitation 4 (L4): State-of-the-art ML-based traffic genera-
tors use LSTMs which are insufficient in learning long-term
dependencies in the traces.

DoppelGANger and NetShare use LSTMs to capture dependen-
cies in sequential data. However, using off-the-shelf LSTMs to syn-
thesize control plane traffic, i.e., one step at a time, suffers from an
inherent limitation to forget states over long sequences, as shown
by authors of DoppelGANger and NetShare [39, 73]. To overcome
this problem, DoppelGANger and NetShare employ batch genera-
tion, i.e., generating multiple samples in each LSTM step, thereby
reducing the number of passes to produce a stream of a certain
length and hence the amount of forgotten states. However, since
batch generation produces multiple samples each step, it sacrifices
intra-batch dependencies, which could compromise fidelity, as each
cellular control event depends on the event immediately preceding
it. This potentially contributed to the low fidelity measures in L1 –
L3.

Limitation 5 (L5): State-of-the-artML-based traffic generators
use GANs which suffer from mode collapse.

GAN training is known to suffer from mode collapse [36, 60, 61],
where the generator learns to generate only one or few plausible
outputs, rather than a wide variety of outputs as in the training
dataset. Rather than using general solutions for mode collapse, Dop-
pelGANger and NetShare alleviate mode collapse with a specialized
normalization scheme. Specifically, each stream is normalized indi-
vidually, using the min and max values within the stream, rather
than a global min/max value. This shows off-the-shelf GAN-based
traffic generators are susceptible to mode collapse, and require tai-
lored, traffic type- and model-dependent enhancements to mitigate
the issue.

4.3 Why Transformers?
A transformer [62] is a deep learning architecture built around the
“attention” mechanism. Input text is represented as a sequence of
tokens, and at each layer, an attention score is computed between
every pair of tokens through a multi-head attention mechanism.
The attention mechanism facilitates the learning of dependencies
between distant tokens, in contrast to RNNs or LSTMs which pro-
cess a stream of tokens sequentially. Moreover, such design allows
for the parallel processing of the tokens which are highly efficient
on today’s hardware accelerators such as GPUs.

Transformers have the potential to address the aforementioned
limitations (L1-L5) of existing ML-based traffic generators. (1)
Transformers have been shown to perform well for a variety of gen-
erative tasks, such as generating code that conforms to a rigid gram-
mar (L1) [34], as well as capturing complex dependencies among
multiple fields in tokens in a stream (L2) for multi-modality tasks
such as music generation [26]. (2) Furthermore, since their attention
mechanism allows the input sequence to be processed in parallel,
they have the potential to reduce the training time on today’s hard-
ware, compared to LSTMs which process the input sequentially

(L3) [62]. (3) Transformer is known to have superior performance
than LSTMs on learning long-term dependencies (L4) [33], as its
attention mechanism models the dependencies without regard to
their distance in the sequence. (4) Finally, they are typically trained
in a supervised fashion and thus do not suffer from mode collapse
like GANs (L5) [36].

4.4 CPT-GPT Design

Design 1: We employ a multi-modal tokenization scheme
tailored for cellular network control traffic.

The powerful attention mechanism at the core of transformers
was originally designed to capture pair-wise dependencies of finite-
sized, single-modality tokens in NLP tasks that process streams
of words from a finite set of vocabulary, e.g., the state-of-the-art
Llama-3 [47] employs a vocabulary size of 32,000. The finite-sized
vocabulary of words allows them to be effectively encoded into one-
hot tokens. In contrast, in network traffic, streams of samples, e.g.,
UE control events in cellular networks, contain multiple modalities
(e.g., continuous interarrival time and categorical event types in
control-plane traffic), and furthermore, the continuous field has a
significantly larger input space than categorical fields. Together the
mixed types of fields in network traffic result in a significantly larger
input and output space than NLP tasks, rendering language-style
one-hot tokenization inapplicable to network traffic.

Similarly, vision transformers designed for CV tasks [17] convert
image patches to floating point matrices and then encode them
into tokens, which also have a single modality although a large
token space. In comparison, network traffic has multiple modalities
of different types, either continuous or numerical, that need to
be treated differently, and thus the tokenization scheme in vision
transformers cannot be easily applied in network traffic either.

While one may concatenate multiple fields in each sample of
network traffic stream and treat them as a single field, it is not clear
whether language or vision transformers can learn the distribution
of each individual field or capture the correlation across the fields.
Our solution. To integrate multi-modality data with the trans-
former architecture, we designed a specialized tokenization strategy
where each token is the concatenation of multiple sub-tokens, each
representing a specific modality, as illustrated in Figure 3. For cate-
gorical fields, such as event type, we convert them into sub-tokens
using one-hot encoding. Numerical fields, such as interarrival time,
are applied log scaling (i.e., 𝑥 ′ = 𝑙𝑜𝑔(𝑥 + 1)) and then linear scaled
to a range of 0 – 1, where 0 and 1 correspond to the minimum and
maximum interarrival times across the dataset3. Additionally, gen-
erating streams of varying lengths requires an additional “stop flag”
sub-token, marking whether the token is the last in a stream. The
stop flag is a categorical field taking values of zero or one, similarly
as in NetShare [73].

Correspondingly, as shown in Figure 3, the “embedding” layer in
classic NLP transformers is replaced with a linear layer that maps a
𝑑𝑡𝑜𝑘𝑒𝑛-dimension space to a 𝑑𝑚𝑜𝑑𝑒𝑙 -dimension space, where 𝑑𝑡𝑜𝑘𝑒𝑛
is the dimension of the tokens (9 in our case, concatenating the

3The rationale behind log scaling is that interarrival time spans several orders of
magnitude, where the majority of the data is concentrated in smaller ranges, as shown
in Figure 7 in Appendix B. Log scaling expands the range of smaller values and
compresses the range of larger ones, making the data more uniformly distributed.

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

t1: ATCH t2: DTCH tN: TAU…

……

Transformer
Decoder BlocksN×

tokenize

Linear Layer &
Positional Emb.

dtoken

dmodel

MLP Heads

……

……

eventN+1
interarrival

timeN+1
stop

flagN+1

event

inter-
arrival
time

stop
flag

6

1

2

tokens

hidden
state

vectors

Figure 3: CPT-GPT architecture and tokenization scheme.

three sub-tokens 1+6+2), and 𝑑𝑚𝑜𝑑𝑒𝑙 is a model hyperparameter
representing the attention hidden size. Furthermore, to produce
multi-modality outputs, CPT-GPT employs three multi-layer per-
ception (MLP) heads following the final attention block, each mak-
ing predictions for a particular field.

Design 2:We design themodel to output distribution parame-
ters for numerical fields to improve generation stochasticity.

Model architecture design for producingmulti-modality output is
fairly standard. For instance, in NetShare, each modality is assigned
its ownMLP head. For fields of a categorical modality, such as event
type or the “stop flag”, the MLP head uses a SoftMax in the last
layer to output a vector representing the probability distribution
over possible values. During inference, the output is selected either
by sampling from the probability distribution, as commonly done
in language models [53], or by simply choosing the element with
the highest possibility, as in NetShare.

However, the interarrival time field in cellular control-plane
traffic is of numerical modality with continuous values. Previous
designs, such as NetShare, output a single numerical value from the
corresponding MLP head. But as we will show in the ablation study
(§5.3), such a design results in a lack of generation stochasticity, i.e.,
the model tends to generate the mean value instead of producing
a diverse range of values, failing to address C3 & C4. Overcoming
this limitation requires designing alternative mechanisms to ensure
generation stochasticity for such numerical fields.
Our solution.We enhance the MLP head for the numerical field
in CPT-GPT (i.e., interarrival time) by configuring it to output the
parameters of a probability distribution, rather than a single nu-
merical value. We empirically chose normal distribution and make
the model output both a mean and a standard deviation. During
training, the Gaussian negative log-likelihood (NLL) loss function
is used for numerical fields, while categorical fields continue to
use cross-entropy loss, and the training minimizes the weighted
sum of these losses across fields. During inference, values for nu-
merical fields are randomly sampled from the predicted probability
distributions, similarly as in the approach used for categorical fields.

build first token

Real data

Training

Event type
distribution
of first event

Transformer
model release

to public

Inference

…

Synthesized
data

…

…

tokenize

train & extract

Figure 4: Operational architecture overview.

Design 3: We employ transfer learning to efficiently generate
models for network traffic shifts.

As mentioned in §3.2 (C5), the ML model needs to be updated to
reflect time-varying characteristics in the dataset, stemming from
short-term UE behavior fluctuations (e.g., diurnal and weekly), as
well as longer-term changes due to evolving cellular network de-
ployments or technologies. Therefore, the traffic generation frame-
work needs to periodically retrain the model on the latest collected
network traces, which potentially incurs significant training costs.
Our solution. To reduce the training time needed to train new
models as the dataset characteristics drift through time, we employ
a transfer learning strategy where the transformer model is first
trained on a specific hour, and then we perform transfer learning
on it to generate models recursively for each subsequent hour. Such
a transfer-learning scheme would provide significant time savings,
as we will show that training based on a pretrained model from
another hour is much faster than training a model from scratch.

4.5 Architecture Overview
Combining the design insights above, the overall architecture and
workflow of CPT-GPT are shown in Figure 4.
Training. The traffic generation framework developer, e.g., a cel-
lular operator, collects a control-plane traffic dataset and applies
CPT-GPT’s tokenization scheme to tokenize it, and subsequently
uses it to train the transformer model. Additionally, the developer
extracts the event type distribution of the initial events across all
streams in the dataset, which will be used to bootstrap the CPT-
GPT inference as explained in the next paragraph. The trained
model weights, along with the initial-event-type distribution, will
be packaged together and released to the public.
Inference. To synthesize a control-plane traffic trace for a UE
population of size 𝑁 , a CPT-GPT user invokes the transformer-
decoder-based CPT-GPT 𝑁 times.

In each inference, CPT-GPT first randomly samples an event type
from the released initial-event-type distribution. It then constructs
a token with the event type and with the remaining two fields, i.e.,
the interarrival time and the stop flag, set to zero. This is consistent

IMC ’24, November 4–6, 2024, Madrid, Spain.

with model training where the first token always has an interarrival
time and stop flag of zero (streams of length 1, i.e., with the first
token having a stop flag of 1, are excluded from the training). Finally,
CPT-GPT uses the token as the prompt to bootstrap the inference; it
runs CPT-GPT inference recursively, predicting the (K+1)-th token
in the stream based on previous K tokens, until encountering a
token containing a stop flag of 1.

5 EVALUATION

5.1 Evaluation Setup

Baselines.We compare CPT-GPTwith both the traditionalmodeling-
based and the state-of-the-art GAN-based approaches, i.e., SMM [45]
and NetShare [39]. Considering SMM requires more than 20K Semi-
Markov models and 200K CDFs to cover all 24 hours of the day
and the three device types, which is extremely cumbersome to
derive and use, we also consider a variation of SMM (denoted as
SMM-1), which generates a single Semi-Markov model per device
type, and the original SMM model is referred to as SMM-20k. We
already described in detail how NetShare was adapted to synthesize
control-plane traffic in §4.2.1.
Training. We use a dataset collected over seven days in June 2022
as the training set, and use another dataset collected over one day in
August 2022 for testing. The trace for the same UE across different
days is treated as different UEs, and the 24-hour-long traces are
divided into 24 traces of one hour in length each. Furthermore, both
NetShare and CPT-GPT generate sequences up to a preconfigured
maximum length. To enable a fair comparison between them, we
configure and train their models to synthesize streams with a max-
imum length of 500, disregarding those exceeding this threshold
(only 0.07% of the 1-hour flows exceed a length of 500). We tuned
the hyperparameters for CPT-GPT to identify the largest model
that does not overfit on the testing set with the “phone” device type.
The tuning process led to models with 2 attention blocks, each with
embedding dimension of 128 and MLP hidden size of 1024, for a
total of 725K parameters and a weight size of 2.9 MB.

We initially train a NetShare and a CPT-GPT model from scratch
on the subset of the dataset recorded by UEs with the “phone”
device type. We then continue training these models using transfer
learning (discussed in §4.4) to adapt them to the other two device
types, connected cars and tablets.
Inference. The fidelity evaluation involves synthesizing 1000 UE
streams for every traffic generator.
Time measurements. To ensure consistent runtime measurements
across models, all experiments are run on servers equipped with
an NVIDIA A100 GPU, an AMD EPYC 7543 CPU, and 256 GB of
memory.

5.2 Overall Results

5.2.1 Stateful Semantic Correctness. We first quantify the se-
mantic correctness of the synthesized dataset as follows. For each
synthesized stream, we sequentially replay the events against the
UE state machine (Figure 1a). On encountering a state-violating
event, a counter is incremented and the state machine stays in the
same state. To bootstrap the initial state of the state machine, we
employ a heuristic that looks for the first ATCH, DTCH, SRV_REQ, or
HO event, as these events lead to a deterministic destination UE state

regardless of the source state and thus can be used to determine the
subsequent states. Events preceding the state machine bootstrap-
ping are excluded from the semantic correctness calculation.

Table 5 shows the percentage of state-violating events as well as
the percentage of streams that contain at least one state-violating
event. Since SMM-1 and SMM-20k have state machines built-in,
they naturally do not generate any state-violating events and thus
their results are not shown. In terms of the percentage of events
that violate the stateful semantics, CPT-GPT consistently results
in minimal violations, at 0.004%, 0.034%, and 0.079% for the three
device types, respectively. This is two order-of-magnitude lower
than that of NetShare, which results in 2.614%, 3.915%, and 3.572%
events triggering violations.

The percentage of stream violations is naturally higher than
event violations for both models, as a stream is deemed to violate
the semantics if it contains at least one violating event. However,
the stark contrast between NetShare and CPT-GPT remains. Net-
Share generates 22.1%, 11.5%, and 16.9% streams with violations
for the three device types respectively, while CPT-GPT results in
much lower violations of 0.2%, 0.4%, and 1.5%. This shows the
transformer-based CPT-GPT is highly effective in comprehending
and generating control-plane traffic with stateful semantics au-
tonomously, without reliance on domain knowledge as in SMM-1
and SMM-20k, a strength that NetShare fails to achieve.

5.2.2 Distribution Metrics. Next, we compare the fidelity of the
synthesized datasets of different approaches in terms of the three
distribution-related metrics shown in Table 2, namely, sojourn time
distribution, event breakdown, and flow length distribution.
Sojourn time. Table 6 shows the maximum y-distances of the so-
journ time CDFs for each synthesized dataset and the real dataset,
for both the CONNECTED and IDLE states. First, compared with SMM-
20k, CPT-GPT achieves comparable fidelity out of the 6 scenarios
(2 states × 3 device types). Specifically, CPT-GPT outperforms in
3 scenarios, for both states with tablet UEs (11.3% v.s. 17.6% for
CONNECTED, 11.5% v.s. 15.4$ for IDLE) as well as in the CONNECTED
state with phone UEs (6.4% v.s. 14.8%), while achieving lower accu-
racy in the remaining 3 scenarios. Second, compared to SMM-1 and
NetShare, CPT-GPT achieves superior fidelity in the CONNECTED
state sojourn time across all 3 device types, with maximum y-
distances of 6.4% / 26.4% / 11.3% respectively, significantly lower
than SMM-1’s 40.1% / 45.1% / 44.0%, and NetShare’s 27.9% / 61.7% /
53.6%. For IDLE state sojourn time, CPT-GPT’s consistently outper-
forms SMM-1 across all device types and shows comparable fidelity
to NetShare (i.e., better for tablets, equal for phones, and worse for
connected cars).

In Figure 5, we show the actual CDFs for different types of UEs.
Examining the sojourn time distributions (left two columns), we
observe that: (1) Generally, CPT-GPT and SMM-20k are the two
most accurate generators, with distributions most closely mirroring
that of the real dataset across all device types. (2) SMM-1 is the least
accurate generator. For the CONNECTED state, it tends to generate
longer-than-realistic sojourn times for phones and connected cars,
but shorter-than-realistic times for tablets. For the IDLE state, it
tends to generate too many sojourn times that are around 100
seconds for phones and tablets and too many sojourn times of
around 200-300 seconds for connected cars. (3) While NetShare

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

Table 5: Percentage of events and streams that violate the stateful semantics defined by 3GPP standards. The results for SMM
are omitted as it does not generate any state violations.

Phone Connected Car Tablets
NetShare CPT-GPT NetShare CPT-GPT NetShare CPT-GPT

Event violations (%) 2.614% 0.004% 3.915% 0.034% 3.572% 0.079%
Streams w/ at least one violating event (%) 22.1% 0.2% 11.5% 0.4% 16.9% 1.5%

Table 6: Maximum y-distance between the CDFs of the real and synthesized dataset.

Phone Connected Car Tablet
SMM-1 SMM-20k NetShare Ours SMM-1 SMM-20k NetShare Ours SMM-1 SMM-20k NetShare Ours

Sojourn time CONNECTED 40.1% 14.8% 27.9% 6.4% 45.1% 16.8% 61.7% 26.4% 44.0% 17.6% 53.6% 11.3%
IDLE 37.6% 9.6% 12.0% 12.0% 46.8% 14.8% 16.2% 33.3% 35.5% 15.4% 25.7% 11.5%

Flow length
All events 44.2% 1.9% 1.6% 3.8% 54.7% 9.6% 1.4% 4.5% 60.2% 18.7% 3.8% 3.6%
SRV_REQ 41.9% 3.7% 2.4% 4.3% 55.4% 9.7% 4.0% 5.9% 56.5% 13.1% 4.4% 5.0%

S1_CONN_REL 43.5% 1.7% 1.5% 4.0% 56.0% 7.1% 3.5% 5.0% 60.0% 18.3% 3.4% 3.5%

100 101 102
0

50

100

CD
F

(P
ho

ne
)

Sojourn time
(CONNECTED)

101 102 103

Sojourn time
(IDLE)

100 101 102

Flow length
(All events)

100 101 102

Flow length
(SRV_REQ)

100 101 102

Flow length
(S1_CONN_REL)

100 101 102
0

50

100

CD
F

(C
on

ne
ct

ed
 C

ar
)

101 102 103 100 101 102 100 101 102 100 101 102

100 101 102

Time (s)

0

50

100

CD
F

(Ta
bl

et
)

101 102 103

Time (s)
100 101 102

Length
100 101 102

Length
100 101 102

Length

Real SMM-1 SMM-20k NetShare CPT-GPTReal SMM-1 SMM-20k NetShare CPT-GPTReal SMM-1 SMM-20k NetShare CPT-GPT

Figure 5: Distributions of fidelity metrics for different types of UEs.

generates IDLE sojourn times as realistic as CPT-GPT, it generates
much less accurate CONNECTED state sojourn times, especially for
connected cars and tablets, where it tends to generate too long and
too short sojourn times, respectively.

In summary, CPT-GPT achieves superior sojourn time fidelity
compared to NetShare and SMM-1 in most scenarios – on average,
the average max y-distance over the two 3GPP states and three
device types is reduced by 24.7% and 16.0%, respectively. More
importantly, CPT-GPT achieves comparable accuracy (within 2.0%
max y-distance) as SMM-20k.

Flow length. Figure 5 (middle column) shows the distribution of
the number of events per stream. We refer readers to Table 6 which
shows the maximum y-distances between the CDFs of real and syn-
thesized dataset, with the values presented in percentages, where a
smaller difference implies better accuracy in replicating the distri-
bution of the real dataset. In addition to the flow length across all
event types, we specifically highlight the length for SRV_REQ and
S1_CONN_REL events (i.e., the number of respective events in each
stream), the two dominant event types, in the right two columns in
Figure 5.

IMC ’24, November 4–6, 2024, Madrid, Spain.

Table 7: Breakdown of event types of real dataset, and of each synthesized dataset shown as difference compared to the real
dataset. A lower difference is more accurate.

Phones Connected Car Tablets
Real SMM-1 SMM-20k NetShare Ours Real SMM-1 SMM-20k NetShare Ours Real SMM-1 SMM-20k NetShare Ours

ATCH 0.12% -0.01% 0.02% -0.09% -0.01% 1.00% -0.04% 0.14% -0.61% -0.12% 1.13% -0.50% -0.37% -0.70% 0.06%
DTCH 0.11% 0.01% 0.04% -0.05% -0.02% 0.97% 0.02% 0.21% -0.53% -0.18% 1.08% -0.45% -0.29% -0.63% -0.08%

SRV_REQ 47.06% 0.99% 0.75% 0.28% 0.66% 39.75% 6.11% 5.67% 1.38% 2.15% 44.51% 3.52% 3.03% 2.26% -3.62%
S1_CONN_REL 48.25% 0.69% 0.64% 0.43% 0.34% 44.14% 3.63% 3.30% 0.08% 0.96% 47.70% 1.22% 1.03% 1.49% 0.03%

HO 2.88% -1.13% -1.12% 0.42% -0.50% 8.59% -6.17% -5.92% 1.23% -1.70% 2.61% -1.50% -1.36% -1.41% 0.00%
TAU 1.59% -0.56% -0.35% -1.00% -0.47% 5.55% -3.55% -3.40% -1.55% -1.12% 2.97% -2.29% -2.05% -1.01% 3.61%

For the flow length consisting of all events (see “All events” in
Table 6), we observe the following: (1) CPT-GPT and NetShare are
generally rank as the top two generators in terms of flow length
distribution fidelity, with maximum y-distances of 3.6%–4.5% and
1.4%–3.8% respectively. Although NetShare shows superior fidelity
than CPT-GPT on 2 out of 3 device types (phones and connected
cars), the differences are marginal (2.2% and 3.1%) when compared
with the discrepancies observed with the other generators. (2) SMM-
1 produces highly inaccurate flow length distribution, resulting in a
maximum y-distance of 44.2%, 54.7%, and 60.2% for the three device
types, respectively, showing that a single Semi-Markov model is
insufficient in accurately modeling the flow length distributions.
The reason for such low fidelity, as shown in Figure 5, is that SMM-1
generates excessive flows of length between approximately 20 to
100 for phones and tablets and 10 to 20 connected cars. (3) SMM-20k,
which utilizes over 20k Semi-Markov models, generates much more
accurate flow length distributions than SMM-1, with maximum
y-distances of 1.9%, 9.6%, and 18.7% respectively. However, while
SMM-20k achieves a high fidelity of 1.9% that is comparable to
NetShare and CPT-GPT for phones, its accuracy for connected cars
and tablets is significantly lower, at 9.6% and 18.7%, respectively. As
shown in Figure 5, SMM-20k performs poorly on connected cars
and tablets as it tends to generate too short and too long flows for
the two device types, respectively.

For the flow length of the two dominating events SRV_REQ and
S1_CONN_REL, Table 6 shows that CPT-GPT and NetShare remain
as the top two generators, both demonstrating significantly higher
fidelity than SMM-1, and for connected cars and tablets, also out-
performing SMM-20k. For example, in the case of phones, NetShare
produces maximum CDF y-distances of 2.4% and 1.5% for the two
event types respectively, and CPT-GPT results in 4.3% and 2.4%.
While NetShare is slightly more accurate than CPT-GPT, their dif-
ference is marginal when compared SMM-1, which yields maximum
y-distances of 41.9% and 43.5%; as Figure 5 shows, SMM-1 fails to
learn the distribution of flow lengths and tends to generate toomany
flows of length 100-200 for phones and tablets, and 50-100 for con-
nected cars. When compared to SMM-20k, CPT-GPT and NetShare
again demonstrate comparable accuracy for phones (2.4%/4.3% v.s.
3.7%), and superior accuracy for connected cars (4.0%/5.9% v.s. 9.7%)
and tablets (4.4%/5.0% v.s. 13.1%) as Figure 5 shows, SMM-20k tends
to generate flows that are too short for connected cars and too long
for tablets.

In summary, both CPT-GPT and NetShare demonstrate high fi-
delity in flow length modeling, significantly outperforming other

Table 8: Fidelity of CPT-GPT varying the loss weights of
different fields, and predicting the interarrival time directly
instead of its distribution.

Ours
(1:1:1)

Varying loss weights
(event : arrival : stop_flag) No dist.

pred.3:1:1 1:3:1 1:1:3

Violation Events 0.04‰ 0.04‰ 0.20‰ 0.48‰ 0.10‰
Streams 0.2% 0.2% 0.8% 0.4% 0.5%

Max y
distance

Sojourn (CONN) 6.4% 8.4% 9.1% 6.7% 60.8%
Sojourn (IDLE) 12.0% 11.8% 9.3% 10.3% 75.4%
Flow length 3.8% 5.0% 2.4% 3.5% 69.9%

Avg. breakdown diff 0.7% 0.4% 0.2% 0.2% 0.3%

generators. While NetShare outperforms CPT-GPT in more scenar-
ios, the difference is marginal.
Event breakdown. Table 7 compares the differences in event break-
down between the real and the synthesized datasets of each gen-
erator. Compared with SMM-1 and SMM-20k, CPT-GPT achieves
comparable or smaller discrepancies across the six event types, i.e.,
within 0.66%, 2.15%, and 3.62% for the three device types respec-
tively, while SMM-1/SMM-20k has discrepancies up to 1.13%/1.12%,
6.17%/5.92%, and 3.52%/3.03%. When compared to NetShare, CPT-
GPT achieves much smaller discrepancies with the real dataset for
ATCH and DTCH, within 0.02%, 0.18%, and 0.08%, while NetShare ex-
hibits differences up to 0.09%, 0.53%, and 0.70%, for the three device
types respectively. For the remaining event types, CPT-GPT and
NetShare achieve similar levels of accuracy.

In summary, in terms of event breakdown, CPT-GPT is capable
of synthesizing event distributions with equal or better accuracy
than other generators despite not requiring any domain knowledge.

5.3 Sensitivity Analysis and Ablation Study

Varying Loss Weights. Up to now, CPT-GPT is trained to mini-
mize the summation of the losses of the three fields (event type,
interarrival time, and stop flag) with equal weights. Next, we study
how CPT-GPT reacts to varying weights used in the summation
of the total loss. We increase the weight of each field by 3x, while
keeping the weights of the other two fields unchanged. For com-
parison, we show again the results for CPT-GPT trained with equal
weights (1:1:1). Table 8 (middle column) shows that varying the
weights results in little variations for all fidelity metrics. For ex-
ample, across all weight combinations, the maximum y-distance of
the sojourn time CDFs varies from 6.4% to 9.1% for the CONNECTED

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

10k 20k 40k 80k 160k
UE count

0.000

0.005

0.010

Pe
rc

en
ta

ge
 (%

) Breakdown diff.
(Avg. over events)

10k 20k 40k 80k 160k
UE count

0

5

10
Flow length CDF
y-dist (All events)

10k 20k 40k 80k 160k
UE count

0

1

2

3
Flow length CDF
y-dist (SRV_REQ)

10k 20k 40k 80k 160k
UE count

0

5

10
Flow length CDF y-dist

(S1_CONN_REL)

10k 20k 40k 80k 160k
UE count

0

10

20
Sojourn time CDF

y-dist (CONN)

10k 20k 40k 80k 160k
UE count

0

10

20
Sojourn time CDF

y-dist (IDLE)

10k 20k 40k 80k 160k
UE count

0.00

0.05

0.10
Percentage of

event violations

10k 20k 40k 80k 160k
UE count

0.0

0.5

1.0
Percentage of

stream violations

Figure 6: Fidelity of synthesized datasets compared to the real dataset, for varying UE population.

Table 9: Training time in minutes w/ and w/o transfer leran-
ing on an NVIDIA A100 GPU.

NetShare CPT-GPT

No transfer learning 108.36 104.40

Transfer
learning

First hour 43.08 21.81
Finetune to each

subsequent hour (avg.) 30.41 9.06

Total 195.12 67.12

state and 9.3% to 12.0% for the IDLE state. This shows the training
of CPT-GPT is insensitive to the specific weights chosen.
Disabling the Prediction of Distribution Parameters.We next
study CPT-GPT without design insight 2 (predict distribution pa-
rameters for numerical fields). To this end, we modify CPT-GPT
to output a single scalar representing the interarrival time, instead
of predicting its mean and variance. Consequently, during genera-
tion, there is no random sampling from the predicted distribution
performed. Table 8 (right column) shows that doing so impacts
fidelity metrics significantly. While the fidelity in terms of event
breakdown remains unaffected, the maximum y-distances of flow
length and sojourn time distributions increase sharply. For instance,
the maximum y-distance of the flow length CDF increased by 15x,
from 3.8% to 69.9%. This shows that predicting the interarrival time
distribution parameters is critical in ensuring CPT-GPT’s fidelity.

5.4 Scalability Study
To understand whether CPT-GPT is scalable in generating datasets
with arbitrary sizes with high fidelity, we run CPT-GPT inference
for varying numbers of times to generate synthesized datasets
containing 10k, 20k, 40k, 80k, and 160k UEs, respectively. For each
synthesized dataset, we compare it with a subset of the real dataset
of the same size that is randomly sampled from the full testing
dataset, which contains 380k UEs. As shown in Figure 6, the size
of the synthesized dataset has minimal influence on all the fidelity
metrics. This shows that CPT-GPT is capable of generating datasets
of arbitrary sizes with high fidelity.

5.5 Adapting to Data Drifts
Next, we measure the training time needed to train each model to
capture data drift across different hours of the day. To synthesize
traffic across multiple hours, the operator can either train a single
model on the entire dataset spanning over multiple hours, or train
multiple specialized models, each tailored to a specific hour. In the
latter setup, the operator may train one specialized model from
scratch, and subsequently perform transfer learning on it to gen-
erate the remaining models. We measure the training time under
both setups.

Table 10: Maximum CDF y-distances w/ and w/o transfer
learning.

w/o xfer learning w/ xfer learning
NetShare CPT-GPT NetShare CPT-GPT

Violation Events 2.78% 0.07% 3.39% 0.05%
Streams 34.58% 0.40% 37.57% 1.00%

Max y
distance

Sojourn (CONN) 36.28% 9.39% 13.21% 12.48%
Sojourn (IDLE) 21.16% 13.40% 28.43% 8.98%
Flow length 3.30% 7.32% 2.24% 3.08%

Since the traditional training loss for GAN does not necessarily
correlate with the quality of the generated samples [43, 46] 4, we
devise the following heuristics to compare the training time of
NetShare and CPT-GPT in a fair manner: For each model, we save
checkpoints every 𝑁 epochs, producing 𝐾/𝑁 checkpoints in total,
where𝐾 is the model’s total number of epochs. For each checkpoint,
we generate synthetic datasets and compute the fidelity metrics
against the validation set. We then rank the checkpointed models
for each fidelity metric, ranging from 1 (best) to N (worst). Finally,
we sum the rankings for each checkpoint across fidelity metrics,
select the top 20% checkpoints with the smallest ranking sums, and
pick the earliest checkpoint among them.

Table 9 shows the training time for a single model on 6-hour
traces, or six specialized models through transfer learning. Without
transfer learning, NetShare and CPT-GPT require a similar time
to train a model on 6-hour traces, taking 108.36 and 104.40 min-
utes, respectively. Employing transfer learning, CPT-GPT shows
significantly reduced training time for adapting a 1-hour model
to another hour, requiring only 9.06 minutes, much shorter than
NetShare’s 30.41 minutes. This difference may be attributed to CPT-
GPT’s use of supervised training, as opposed to NetShare’s GAN
training which is known to be difficult to converge [36, 60, 61]. Con-
sequently, it takes merely 67.12 minutes to generate all six CPT-GPT
models each for a specific hour. In comparison, NetShare cannot
benefit from transfer learning, taking 195.12 minutes in total.

Table 10 shows the fidelity metrics for the trace generated for
the 4-th hour, with and without transfer learning. We observe
that the use of transfer learning does not have an obvious impact
on accuracy for either NetShare or CPT-GPT. For instance, when
trained with transfer learning, NetShare shows better CONNECTED
state sojourn time and flow length distributions, but worse semantic
violations and IDLE state sojourn times. For CPT-GPT, employing
transfer learning results in better IDLE state sojourn times and flow
4Generator and discriminator losses can oscillate, and a decrease in loss is not a
reliable indicator of improved generator performance. To assess whether training has
converged, it is more effective to evaluate the models at various epochs throughout
the training process.

IMC ’24, November 4–6, 2024, Madrid, Spain.

Table 11: Percentage of n-grams in the generated dataset that
repeats from the training dataset.

𝜖=10% 𝜖=20%

n=5 57.879% 80.305%
n=10 0.003% 0.287%
n=20 0.000% 0.000%

length distributions, but worse CONNECTED state sojourn times and
slightly more state violations.

In summary, CPT-GPT demonstrates much higher training ef-
ficiency on transfer learning, resulting in substantially reduced
training time to synthesize multi-hour traces, with minimal impact
on fidelity.

5.6 Data Memorization
Ideally, the generated dataset should closely mirror the real dataset
in terms of aggregated statistical behavior, yet maintains diversity,
i.e., the generator should not memorize or replicate the training
dataset. Achieving this is crucial for ensuring that downstream
applications are exposed to a wide variety of traffic behavior, while
also preventing leakage of private information.
Methodology. We adopt the methodology from the natural lan-
guage domain [9, 44, 72] to quantify data memorization in CPT-
GPT. Specifically, we extract all n-grams from both the generated
and real dataset, where an n-gram is a continuous subsequence of
length n. For each n-gram in the generated dataset, we scan through
the n-grams in the training set and check for repeats. We report
the percentage of n-grams from the generated dataset with at least
one repeat found.

Unlike natural languages, cellular control-plane traffic is multi-
modal, consisting of categorical (event type) and numerical (in-
terarrival time) fields. We consider two n-grams to repeat if they
share the same sequence of event types, and every correspond-
ing pair of interarrival times fall within a relative tolerance 𝜖 , i.e.,
(1 − 𝜖) < 𝑡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑,𝑖/𝑡𝑟𝑒𝑎𝑙,𝑖 < (1 + 𝜖), for 𝑖 = 1, 2, .., 𝑛.

Generally, a larger 𝑛 reduces the likelihood of repetitions as
longer sequences are less likely to repeat, while a larger 𝜖 increases
the likelihood of repetitions. We examine various ranges of 𝑛 and 𝜖 .
Results. Table 11 shows the percentage of n-grams in the gener-
ated dataset that are repeated from the training dataset, for UEs of
phone device type. We make the following observations: (1) Short
sequences of length 5 have a high likelihood of repetition. However,
such very short repetitions should not be considered memorization,
as they are often constrained by control-plane protocols, rather
than driven by end user behaviors. For example, HO is always fol-
lowed by TAO in the CONNECTED state, and consecutively alternating
SRV_REQ and S1_CONN_REL are common. (2) Sub-sequences longer
than 10 are rarely repeated, even under loose tolerances of 𝜖 = 10%
and 20%. For example, with 𝑛 = 10, only 0.003% and 0.287% of
n-grams are found to be repetitions under 10% and 20% tolerances;
with 𝑛 = 20, no repeating n-grams are found under either tolerance.

In summary, CPT-GPT learns generalized information from the
training set, instead of memorizing and repeating any samples from
the training set.

6 RELATEDWORKS
Traditional Modeling-based Traffic Generators. There have
been a large body of work on using statistical models to model
and generate traffic, e.g., [56, 59, 63, 67]. However, these works rely
on observed statistics from Internet traffic, which do not apply to
control-plane traffic of cellular networks [45]. For the control-plane
traffic of mobile networks, [16] models the total traffic volume in-
stead of interarrival times and the dependence between events. The
state-of-the-art control traffic generator, SMM [45], requires do-
main knowledge and suffers from its model complexity as discussed
in §3.3.
ML-based Generators for Data Traffic. Many works study mod-
eling Internet traffic using ML-based approaches. STAN [70] uses
autoregressive neural models to synthesize flow-level traffic but
fails to capture fine-grained features such as packet interarrival
times. The GAN-based solutions (e.g., [23, 39, 64, 69]) ignore tempo-
ral aspects of the traffic and are shown to have suboptimal fidelity
compared with NetShare [73]. A few recent works [31, 58] model
each pcap flow into a 2D image, and employ stable diffusion mod-
els to generate synthetic images and convert them to pacp flows.
However, [31] is only capable of generate fixed-length flows, and
requires domain knowledge to post-process the generate traffic
to maintain high fidelity, whereas [58] can only generate single-
modality traffic.

7 CONCLUSIONS AND FUTUREWORK
We proposed a transformer-based traffic generator framework for
cellular network control-plane traffic critically needed in research
and innovation on mobile core network design and implementation.
CPT-GPT is based on a key observation that the generative model
requires no domain knowledge and its attention mechanism has
the potential to capture complex dependencies among the stream
of control events by each UE. Our evaluation shows CPT-GPT syn-
thesizes control-plane traffic with comparable fidelity as prior-art
SMM but without domain knowledge, significantly higher fidelity
than the state-of-the-art GAN-based scheme in terms of stateful
semantics and interarrival time of control events, and does not
memorize streams from training traffic.

Due to the lack of systematic support for 5G trace collection,
in this paper, we could only use LTE’s trace to showcase our
transformer-based approach. The versatility of CPT-GPT from not
relying on domain knowledge makes it generally applicable to syn-
thesizing control-plane traffic in a wide variety of scenarios. In
future work, we plan to evaluate CPT-GPT for next-generation net-
works (5G, 6G, et al.) and complex scenarios such as mixed LTE/5G
networks involving frequent inter-RAT handovers. Additionally,
given the coexistence of 4G and 5G in current deployments [32], we
intend to evaluate CPT-GPT’s performance on 4G/5G co-existing
traffic, once such datasets become available. Finally, we plan to
evaluate CPT-GPT’s effectiveness on downstream applications as
such applications become publicly available in the future.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Chase Jiang
for their helpful comments. This work is supported in part by NSF
grant CNS-2312834.

IMC ’24, November 4–6, 2024, Madrid, Spain. Z. Jonny Kong, Nathan Hu, Y. Charlie Hu, Jiayi Meng, and Yaron Koral

REFERENCES
[1] 3GPP. 2016. Architecture Enhancements for Control and User Plane Separation

of EPC Nodes. Technical Specification (TS) 23.214. https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3077

[2] 3GPP. 2016. General Packet Radio Service (GPRS) Enhancements for Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) Access. Technical Spec-
ification (TS) 23.401. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=849

[3] 3GPP. 2016. System Architecture for the 5G System. Technical Specifi-
cation (TS) 23.501. https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3144

[4] 3GPP. 2024. About 3GPP. https://www.3gpp.org/about-us. (2024).
[5] Anup Agarwal, Zaoxing Liu, and Srinivasan Seshan. 2022. HeteroSketch: Coordi-

nating Network-Wide Monitoring in Heterogeneous and Dynamic Networks. In
Proc. of USENIX NSDI.

[6] Strategy Analytics. 2021. 5G Signaling and Control Plane Traffic Depends on Ser-
vice Communications Proxy (SCP). https://carrier.huawei.com/~/media/cnbgv2/
download/products/core/strategy-analytics-5g-signaling-en.pdf. (2021).

[7] Gaurav Arora, Afshin Rahimi, and Timothy Baldwin. 2019. Does an LSTM Forget
More than a CNN? An Empirical Study of Catastrophic Forgetting in NLP. In Proc.
of the Annual Workshop of the Australasian Language Technology Association.

[8] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang, Yuan-
chao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Stoica. 2022.
Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers.
In Proc. of USENIX NSDI.

[9] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian
Tramer, and Chiyuan Zhang. 2022. Quantifying Memorization across Neural
Language Models. arXiv preprint arXiv:2202.07646 (2022).

[10] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent
Items in Data Streams. In International Colloquium on Automata, Languages, and
Programming. Springer.

[11] Aleksandra Checko, Lars Ellegaard, and Michael Berger. 2012. Capacity Planning
for Carrier Ethernet LTE Backhaul Networks. In Proc. of IEEE WCNC.

[12] Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan
Shen, Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, and Lawrence Carin. 2018.
Adversarial Text Generation via Feature-mover’s Distance. Advances in NeurIPS
31 (2018).

[13] Adriel Cheng. 2019. PAC-GAN: Packet Generation of Network Traffic Using
Generative Adversarial Networks. In Proc. of IEEE IEMCON.

[14] B. Claise. 2004. Cisco Systems NetFlow Services Export Version 9. (2004).
[15] Graham Cormode. 2008. Count-Min Sketch. Encyclopedia of Algorithms (2008).
[16] Dima Dababneh, Marc St-Hilaire, and Christian Makaya. 2015. Data and Control

Plane Traffic Modelling for LTE Networks. Mobile Networks and Applications
(2015).

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale. arXiv 2020. arXiv preprint arXiv:2010.11929
(2020).

[18] Ericsson. 2023. free5GC. https://free5gc.org/. (2023).
[19] Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. 2017. Real-valued

(Medical) Time Series Generation with Recurrent Conditional GANs. arXiv
preprint arXiv:1706.02633 (2017).

[20] Andrew E Ferguson, Jon Larrea, and Mahesh K Marina. 2023. CoreKube: An Effi-
cient, Autoscaling and Resilient Mobile Core System. In Proc. of ACM MobiCom.

[21] Rodrigo Fonseca, George Porter, Randy H Katz, and Scott Shenker. 2007. X-trace:
A Pervasive Network Tracing Framework. In Proc. of USENIX NSDI.

[22] Amitabha Ghosh, Andreas Maeder, Matthew Baker, and Devaki Chandramouli.
2019. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15.
IEEE access 7 (2019), 127639–127651.

[23] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. 2017. Improved Training of Wasserstein GANs. Advances in
NeurIPS 30 (2017).

[24] Shaddi Hasan, Amar Padmanabhan, Bruce Davie, Jennifer Rexford, Ulas Kozat,
Hunter Gatewood, Shruti Sanadhya, Nick Yurchenko, Tariq Al-Khasib, Oriol
Batalla, et al. 2023. Building Flexible,{Low-Cost} Wireless Access Networks
With Magma. In Proc. of USENIX NSDI.

[25] Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. 2017.
Logan: Membership Inference Attacks against Generative Models. arXiv preprint
arXiv:1705.07663 (2017).

[26] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Si-
mon, Curtis Hawthorne, AndrewMDai, MatthewDHoffman,Monica Dinculescu,
and Douglas Eck. 2018. Music Transformer. arXiv preprint arXiv:1809.04281
(2018).

[27] Qun Huang, Xin Jin, Patrick PC Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and
Gong Zhang. 2017. Sketchvisor: Robust Network Measurement for Software
Packet Processing. In Proc. of ACM SIGCOMM.

[28] Shuodi Hui, Huandong Wang, Zhenhua Wang, Xinghao Yang, Zhongjin Liu, De-
peng Jin, and Yong Li. 2022. Knowledge Enhanced GAN for IoT Traffic Generation.
In Proc. of ACM WWW.

[29] Elias Jailani, Muhamad Ibrahim, and Ruhani Ab Rahman. 2012. LTE Speech
Traffic Estimation for Network Dimensioning. In Proc. of IEEE ISWTA.

[30] Vivek Jain, Hao-Tse Chu, Shixiong Qi, Chia-An Lee, Hung-Cheng Chang, Cheng-
Ying Hsieh, KK Ramakrishnan, and Jyh-Cheng Chen. 2022. L25GC: a Low Latency
5G Core Network Based on High-Performance NFV Platforms. In Proc. of ACM
SIGCOMM.

[31] Xi Jiang, Shinan Liu, Aaron Gember-Jacobson, Arjun Nitin Bhagoji, Paul Schmitt,
Francesco Bronzino, and Nick Feamster. 2024. NetDiffusion: Network Data
Augmentation through Protocol-constrained Traffic Generation. Proc. of ACM
SIGMETRICS (2024).

[32] Rostand A K. Fezeu, Claudio Fiandrino, Eman Ramadan, Jason Carpenter, Lil-
ian Coelho de Freitas, Faaiq Bilal, Wei Ye, Joerg Widmer, Feng Qian, and Zhi-Li
Zhang. 2024. Unveiling the 5G Mid-Band Landscape: From Network Deployment
to Performance and Application QoE. In Proc. of ACM SIGCOMM.

[33] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, Takaaki Hori, Hirofumi Inaguma,
Ziyan Jiang, Masao Someki, Nelson Enrique Yalta Soplin, Ryuichi Yamamoto,
XiaofeiWang, et al. 2019. A Comparative Study on Transformer vs RNN in Speech
Applications. In Proc. of IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU).

[34] Anisia Katinskaia and Roman Yangarber. 2021. Assessing Grammatical Correct-
ness in Language Learning. In Proc. of the 16th Workshop on Innovative Use of
NLP for Building Educational Applications.

[35] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster,
and Russ Clark. 2015. Kinetic: Verifiable Dynamic Network Control. In Proc. of
USENIX NSDI.

[36] Naveen Kodali, Jacob Abernethy, James Hays, and Zsolt Kira. 2017. On Conver-
gence and Stability of GANs. arXiv preprint arXiv:1705.07215 (2017).

[37] Xi Li, Umar Toseef, Thushara Weerawardane, Wojciech Bigos, Dominik Dulas,
Carmelita Goerg, Andreas Timm-Giel, and Andreas Klug. 2010. Dimensioning of
the LTE Access Transport Network for Elastic Internet Traffic. In Proc. of IEEE
WiMob.

[38] Xi Li, Umar Toseef, Thushara Weerawardane, Wojciech Bigos, Dominik Dulas,
Carmelita Goerg, Andreas Timm-Giel, and Andreas Klug. 2010. Dimensioning of
the LTE S1 Interface. In Proc. of IEEE WMNC.

[39] Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. 2020. Using
GANs for Sharing Networked Time Series Data: Challenges, Initial Promise, and
Open Questions. In Proc. of ACM IMC.

[40] Karl Lindberger. 1999. Balancing Quality of Service, Pricing and Utilisation in
Multiservice Networks with Stream and Elastic Traffic. Teletraffic Science and
Engineering (1999).

[41] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir Braverman,
Roy Friedman, and Vyas Sekar. 2019. Nitrosketch: Robust and General Sketch-
Based Monitoring in Software Switches. In Proc. of ACM SIGCOMM.

[42] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with Univmon. In Proc. of ACM SIGCOMM.

[43] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, and Olivier Bousquet.
2018. Are GANs Created Equal? A Large-scale Study. Advances in NeurIPS 31
(2018).

[44] R Thomas McCoy, Paul Smolensky, Tal Linzen, Jianfeng Gao, and Asli Celiky-
ilmaz. 2023. How Much do Language Models Copy from their Training Data?
Evaluating Linguistic Novelty in Text Generation using RAVEN. Transactions of
the Association for Computational Linguistics 11 (2023), 652–670.

[45] Jiayi Meng, Jingqi Huang, Y Charlie Hu, Yaron Koral, Xiaojun Lin, Muhammad
Shahbaz, and Abhigyan Sharma. 2023. Modeling and Generating Control-Plane
Traffic for Cellular Networks. In Proc. of ACM IMC.

[46] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. 2018. Which Training
Methods for GANs do actually Converge?. In International conference on machine
learning. PMLR, 3481–3490.

[47] Meta. 2024. Meta Llama 3. https://llama.meta.com/llama3. (2024).
[48] Nokia Siemens Networks. 2016. Signaling is Growing 50% Faster than Data

Traffic. http://goo.gl/uwnRiO. (2016).
[49] Atsuhiro Noguchi and Tatsuya Harada. 2019. Image Generation from Small

Datasets via Batch Statistics Adaptation. In Proc. of IEEE/CVF ICCV.
[50] Peter Phaal, Sonia Panchen, and Neil McKee. 2001. RFC3176: InMonCorporation’s

sFlow: A Method for Monitoring Traffic in Switched and Routed Networks.
(2001).

[51] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone, Marco
Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano, Antonio Capone,
Michio Honda, et al. 2019. Flowblaze: Stateful Packet Processing in Hardware. In
Proc. of USENIX NSDI.

[52] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving Language Understanding by Generative Pre-training. (2018).

[53] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language Models are Unsupervised Multitask Learners. OpenAI blog

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3077
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3077
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=849
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=849
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144
https://www.3gpp.org/about-us
https://carrier.huawei.com/~/media/cnbgv2/download/products/core/strategy-analytics-5g-signaling-en.pdf
https://carrier.huawei.com/~/media/cnbgv2/download/products/core/strategy-analytics-5g-signaling-en.pdf
https://free5gc.org/
https://llama.meta.com/llama3
http://goo.gl/uwnRiO

IMC ’24, November 4–6, 2024, Madrid, Spain.

1, 8 (2019), 9.
[54] Markus Ring, Alexander Dallmann, Dieter Landes, and Andreas Hotho. 2017.

Ip2vec: Learning Similarities between IP Addresses. In Proc. of IEEE International
Conference on Data Mining Workshops (ICDMW).

[55] Markus Ring, Daniel Schlör, Dieter Landes, and Andreas Hotho. 2019. Flow-Based
Network Traffic Generation Using Generative Adversarial Networks. Computers
& Security 82 (2019), 156–172.

[56] Chloé Rolland, Julien Ridoux, and Bruno Baynat. 2007. LiTGen, a Lightweight
Traffic Generator: Application to P2P and Mail Wireless Traffic. In Proc. of PAM.

[57] Monika Schak and Alexander Gepperth. 2019. A Study on Catastrophic Forgetting
in Deep LSTM Networks. In Artificial Neural Networks and Machine Learning–
ICANN 2019: Deep Learning: 28th International Conference on Artificial Neural
Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part II 28.

[58] Nirhoshan Sivaroopan, Dumindu Bandara, Chamara Madarasingha, Guillaume
Jourjon, Anura P Jayasumana, and Kanchana Thilakarathna. 2024. NetDiffus:
Network Traffic Generation by Diffusion Models through Time-series Imaging.
Computer Networks 251 (2024), 110616.

[59] Joel Sommers, Hyungsuk Kim, and Paul Barford. 2004. Harpoon: a Flow-level
Traffic Generator for Router and Network Tests. ACM SIGMETRICS Performance
Evaluation Review 32, 1 (2004), 392–392.

[60] Akash Srivastava, Lazar Valkov, Chris Russell, Michael U Gutmann, and Charles
Sutton. 2017. Veegan: ReducingMode Collapse in GANs using Implicit Variational
Learning. Advances in NeurIPS 30 (2017).

[61] Hoang Thanh-Tung and Truyen Tran. 2020. Catastrophic Forgetting and Mode
Collapse in GANs. In Proc. of IJCNN.

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. Advances in NeurIPS 30 (2017).

[63] Kashi Venkatesh Vishwanath and Amin Vahdat. 2009. Swing: Realistic and
Responsive Network Traffic Generation. IEEE/ACM Transactions on Networking
17, 3 (2009), 712–725.

[64] PanWang, Shuhang Li, Feng Ye, ZixuanWang, andMoxuan Zhang. 2020. PacketC-
GAN: Exploratory Study of Class Imbalance for Encrypted Traffic Classification
using CGAN. In Proc. of IEEE International Conference on Communications (ICC).

[65] Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz
Khan, and Joost van de Weijer. 2020. Minegan: Wffective Knowledge Transfer
from GANs to Target Domains with Few Images. In Proc. of IEEE/CVF CVPR.
9332–9341.

[66] Yaxing Wang, Chenshen Wu, Luis Herranz, Joost Van de Weijer, Abel Gonzalez-
Garcia, and Bogdan Raducanu. 2018. Transferring GANs: Generating Images
from Limited Data. In Proc. of ECCV.

[67] Michele CWeigle, Prashanth Adurthi, Félix Hernández-Campos, Kevin Jeffay, and
F Donelson Smith. 2006. Tmix: A Tool for Generating Realistic TCP Application
Workloads in ns-2. ACM SIGCOMM Computer Communication Review 36, 3 (2006),
65–76.

[68] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. 2016. A Survey of
Transfer Learning. Journal of Big data 3, 1 (2016), 1–40.

[69] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
2019. Modeling Tabular Data using Conditional Gan. Advances in NeurIPS 32
(2019).

[70] Shengzhe Xu, Manish Marwah, and Naren Ramakrishnan. 2020. STAN: Synthetic
Network Traffic Generation using Autoregressive Neural Models. arXiv preprint
arXiv:2009.12740 (2020).

[71] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou, Rui Miao,
Xiaoming Li, and Steve Uhlig. 2018. Elastic Sketch: Adaptive and Fast Network-
Wide Measurements. In Proc. of ACM SIGCOMM.

[72] Zhou Yang, Zhipeng Zhao, Chenyu Wang, Jieke Shi, Dongsun Kim, Donggyun
Han, and David Lo. 2024. Unveiling Memorization in Code Models. In Proc. of
IEEE/ACM ICSE.

[73] Yucheng Yin, Zinan Lin, Minhao Jin, Giulia Fanti, and Vyas Sekar. 2022. Practical
GAN-Based Synthetic IP Header Trace Generation Using Netshare. In Proc. of
ACM SIGCOMM.

[74] Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. 2019. Time-series
Generative Adversarial Networks. Advances in NeurIPS 32 (2019).

[75] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In Proc. of USENIX NSDI.

APPENDIX

A ETHICS
Although generative ML modes can potentially memorize individ-
ual records in training [25], CPT-GPT is trained on LTE data with
UE-specific information obfuscated, and therefore both the trace
used for training and the trace it synthesizes do not reveal UE-
specific information. Hence this work raises no ethical concerns.

B ADDITIONAL DATASET STATISTICS

500 1000
t

0

50

100

CD
F

0 5
log(t + 1)

0

50

100

Figure 7: Interarrival time (𝑡 , unit in seconds) distribution
for UEs of device type phone.

Figure 7 (left figure) shows the interarrival time distribution for UEs
of the phone device type. The distribution exhibits a long-tailed pat-
tern, characterized by a higher frequency of short interarrival times
and a lower frequency of long ones. Therefore, CPT-GPT applies
log transformation to the interarrival times, effectively reducing
the impact of the long-tailed distribution, as shown in the right
figure.

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 Cellular Network Control-Plane Traffic
	2.2 Motivation for Generating Control Traffic

	3 Overview
	3.1 Problem Formulation
	3.2 Challenges
	3.3 Prior-art Control-plane Traffic Generation

	4 Synthesizing Control-plane Traffic without Domain Knowledge
	4.1 Dataset Overview
	4.2 Prior-art ML-based Approach and Limitations
	4.3 Why Transformers?
	4.4 CPT-GPT Design
	4.5 Architecture Overview

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Overall Results
	5.3 Sensitivity Analysis and Ablation Study
	5.4 Scalability Study
	5.5 Adapting to Data Drifts
	5.6 Data Memorization

	6 Related Works
	7 Conclusions and Future Work
	Acknowledgments
	References
	A Ethics
	B Additional Dataset Statistics

