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Fig. 1. Split-and-fit offers a completely new perspective for acquiring B-Reps for 3D CAD shapes, e.g., from a point cloud. We first obtain a spatial partitioning
of the volumetric space (i.e., the “split”) and then fit a single primitive per partition. This is realized with the classical Voronoi diagrams.

We introduce a novel method for acquiring boundary representations (B-
Reps) of 3D CAD models which involves a two-step process: it first applies a
spatial partitioning, referred to as the “split”, followed by a “fit” operation to
derive a single primitive within each partition. Specifically, our partitioning
aims to produce the classical Voronoi diagram of the set of ground-truth
(GT) B-Rep primitives. In contrast to prior B-Rep constructions which were
bottom-up, either via direct primitive fitting or point clustering, our Split-
and-Fit approach is top-down and structure-aware, since a Voronoi partition
explicitly reveals both the number of and the connections between the
primitives. We design a neural network to predict the Voronoi diagram from
an input point cloud or distance field via a binary classification.We show that
our network, coined NVD-Net for neural Voronoi diagrams, can effectively
learn Voronoi partitions for CAD models from training data and exhibits
superior generalization capabilities. Extensive experiments and evaluation
demonstrate that the resulting B-Reps, consisting of parametric surfaces,
curves, and vertices, are more plausible than those obtained by existing
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alternatives, with significant improvements in reconstruction quality. Code
will be released on https://github.com/yilinliu77/NVDNet.
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1 INTRODUCTION
Computer-aided design (CAD) models play critical roles in design,
engineering, manufacturing, and robotics applications. The de facto
and preferred shape representation for general 3D CAD models is
the boundary representation or B-Rep [Fayolle and Friedrich 2023;
Jayaraman et al. 2023; Lambourne et al. 2021]. A B-Rep describes a
3D solid by explicitly defining the limits of its volume in a structured
and compact way through parametric surfaces, curves, vertices, and
their topological relations. The wide use of B-Reps for CAD model-
ing and editing has generated much interest in B-Rep reconstruction
from unstructured inputs such as point clouds or distance fields.
Classical approaches to B-Rep modeling over point clouds typ-

ically resort to clustering or primitive fitting via RANSAC [Fis-
chler and Bolles 1981; Li et al. 2011; Schnabel et al. 2007], region
growing [Lafarge and Mallet 2012], or variational shape approxi-
mation [Cohen-Steiner et al. 2004; Skrodzki et al. 2020; Yan et al.
2012]. Recent deep learning-based methods employ deep features
for instance segmentation [Huang et al. 2021; Li et al. 2023b; Sharma
et al. 2020; Yan et al. 2021] or direct primitive detection [Guo et al.
2022]. All of these approaches are bottom-up and based on local
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Fig. 2. Overview of our method. Given an input model (i.e., a point cloud, mesh, or distance field), we first compute the Voronoi boundaries of the underlying
shape and subsequently construct the Voronoi cells. Then we fit an elementary primitive for each Voronoi cell individually, with the cell boundary serving to
naturally trim the primitive, and extract their corresponding connectivity from the Voronoi diagram. Finally, we reconstruct the CAD model (5 vertices, 4 lines
and 2 circles in the figure) in B-Rep by combining the primitives and their topological relations.

geometric or topological features without explicit optimization or
supervision with respect to global structural properties such as
primitive counts. Unsupervised learning of constructive solid ge-
ometry (CSG) trees [Daxuan Ren et al. 2021; Kania et al. 2020; Yu
et al. 2023, 2022] has found some recent success for CAD modeling.
However, all of these methods are trained to minimize the recon-
struction error, which is not strongly tied to CSG tree optimization.
Technically, there are infinitely many CSG trees which would yield
zero reconstruction error. This causes an inherent ambiguity in the
optimization setup. As a result, the obtained CSG constructions
often contain unnatural and an excess of redundant primitives.
In this paper, we introduce a new perspective on acquiring B-

reps for 3D CAD models which represents a significant departure
from conventional approaches. Instead of directly operating on
an input cloud, either via clustering, segmentation, or primitive
fitting/detection, we first perform a spatial partitioning of the volu-
metric space in a “split” operation. This is followed by a “fit” step
to derive a single primitive within each partition to reproduce a
primitive in the ground-truth (GT) B-Rep representation of the in-
put point cloud. Specifically, we enforce our spatial partitioning
to attain a unique and well-defined target, which is the classical
Voronoi diagram of the set of GT B-Rep primitives. In contrast to
prior bottom-up B-Rep constructions, our Split-and-Fit approach is
top-down and structure-aware, since a Voronoi partition explicitly
reveals both the number of and the connections between primitives.
We design a neural network to infer the Voronoi diagram from

an input point cloud or distance field by training a binary classifier,
which predicts whether each voxel in 3D space lies on the boundary
of a Voronoi cell or not based on local features.We show that our net-
work, coined NVD-Net for neural Voronoi diagrams, can effectively
learn Voronoi partitions for CAD models from training data. By con-
fining the per-cell single primitive fitting to Voronoi cell boundaries,
the primitives are automatically trimmed without needing a sepa-
rate, intricate process as in other works such as ComplexGen [Guo
et al. 2022]. Also importantly, our learning problem does not suffer
from the ambiguity issues for neural CSG constructions, since our
training target, the GT Voronoi diagram, is unique.

Our contributions can be summarized as follows:
• Introducing Split-and-Fit, a novel paradigm for B-Rep recon-
struction through spatial partitioning of volumetric space,
which is top-down and structure-aware.
• NVD-Net, a deep neural network for neural Voronoi diagram
prediction from point clouds or distance fields.
• An efficient scheme to extract B-Rep surfaces, curves, vertices,
and their connectivities from a Voronoi diagram.

We train our NVD-Net and test our B-Rep reconstruction method
on the ABC dataset [Koch et al. 2019], which offers GT B-Reps.
Extensive experiments and evaluation demonstrate that compared
to state-of-the-art alternatives, our method produces more plausible
B-Rep constructions with lower geometric errors, higher topological
consistency, and improved instance identification, while exhibiting
superior generalization capabilities over unseen 3D shapes.

2 RELATED WORK
The reconstruction of CAD models has been widely studied in the
past decades. Early attempts either use analytical or learning-based
methods to fit individual primitives from the input point cloud.
Recently, some methods have been trained to predict intermediate
representation to facilitate CAD reconstruction. We summarized
the three categories of methods in the following.

Shape fitting. Traditional methods usually reconstruct CAD mod-
els by detecting the primitives (e.g. planes, cylinders, spheres, cones,
torus, etc.) from input point clouds. They either use RANSAC [Fis-
chler and Bolles 1981; Schnabel et al. 2007] or Region Growing [La-
farge and Mallet 2012; Oesau et al. 2016] to detect these primitives,
which are then merged into a single CAD model by inferencing
the topologies between them [Bauchet and Lafarge 2020; Nan and
Wonka 2017]. Li et al. [2011] proposed a method to further constrain
the detected primitives with the global relation between primitives.
Also, variational shape approximation [Cohen-Steiner et al. 2004;
Skrodzki et al. 2020; Yan et al. 2012] has been adopted to recon-
struct primitives from point clouds. The explicit optimization of
the shape partitions enables better modelling of the shape relations.
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Additionally, Attene et al. [Attene and Patanè 2010] adopt a "fit-and-
segment" pipeline, iteratively clustering triangle faces based on local
primitive fitting. This process enables the extraction of primitives
from the underlying CAD models based on the generated clusters.
Further details can be found in the survey on basic shape primitive
fitting [Kaiser et al. 2019]. However, these methods individually ad-
dress geometric and topology properties, making the reconstruction
process easily stuck in a local minimum.

Point segmentation. Recent learning-basedmethods [Fu et al. 2023;
Huang et al. 2021; Li et al. 2019a,b, 2023b; Sharma et al. 2020; Yan
et al. 2021] used a "segment-and-fit" pipeline to reconstruct CAD
models from point clouds. These methods train a point-based neural
network to perform instance segmentation on the input point cloud,
and then fit primitives to the segmented clusters. Specifically, SPFN
and ParSeNet [Li et al. 2019a; Sharma et al. 2020] embed the input
points into a representation space, where the feature code for points
that belong to the same primitive are closer to each other. After a
mean-shift clustering, the clustered points are fed into the fitting
module to produce the final geometry. HPNet [Yan et al. 2021] and
SEDNet [Li et al. 2023b] further enhance the representation learning
by hybrid shape descriptors and multi-stage feature fusion mecha-
nisms. NerVE [Zhu et al. 2023] also proposed directly predicting the
structured edges instead of the pure point segmentation. Meanwhile,
Point2CAD [Liu et al. 2023] further employs an analytic-neural re-
construction method to fit and recover the structured CAD models
based on the segmentation. However, all these methods have been
designed to approximate the underlying shape in a bottom-up man-
ner, which is also prone to local minima. The mixed combinatorial
assignment of point labels and continuous parameter fitting also
makes the learning process unstable.

Direct CAD learning. Instead of fitting primitives, some other
representations have been adopted for CAD reconstruction. Li et
al. [2023a] and Lambourne et al. [2022] attempted to learn 2D
sketches and 3D extrusion parameters from point clouds, which
is conventional in traditional CAD modelling. DEF [Matveev et al.
2022] learns to construct a distance-to-feature field to represent
the input range scan and then reconstruct feature curves in CAD
models. BSPNet [Chen et al. 2020] was trained to predict a set of
planes to build a binary space partitioning tree, where the learning
process is motivated by minimizing a reconstruction error. The re-
sulting planes can be assembled into a watertight mesh to represent
the underlying shape. CAPRINet [Yu et al. 2022] and D2CSG [Yu
et al. 2023] further enhance the partitioning by supporting quadric
primitives and performing single-object optimization to produce
better CSG-Trees. Additionally, Xu et al. [Xu et al. 2021] present a
method to infer and reconstruct the modelling sequence of a CAD
model by utilizing zone graphs to represent the spatial partitioning
induced by the model’s BRep faces. However, while the reconstruc-
tion error is minimized, the structure of the CSG-Tree is often far
from optimal.
Recent advances in autoregressive models and transformer ar-

chitectures have paved the way for the direct generation of CAD
models in Boundary Representations (B-Reps). PolyGen [Nash et al.
2020] employs a transformer-based pointer network to sequentially

generate mesh vertices and faces, with its probabilistic model de-
sign facilitating the creation of novel structures from diverse inputs.
Building upon this, SolidGen [Jayaraman et al. 2023] extends the
capabilities to B-Rep CAD models, incorporating elementary sur-
faces such as cylinders or cones. Utilizing the Indexed Boundary
Representation framework, SolidGen methodically produces ver-
tices, curves, faces, and subsequently converts them into B-Rep
models. Furthermore, MeshGPT [Siddiqui et al. 2023] has intro-
duced an autoregressive generation of compact meshes with sharp
edges. Unlike direct prediction of surfaces and curves, MeshGPT’s
learning process operates in a pre-quantized latent space. However,
while these methods succeed in generating compact meshes, they
usually lack parametric surfaces and curves [Nash et al. 2020; Sid-
diqui et al. 2023], which are essential for subsequent editing and
rendering tasks. Although SolidGen [Jayaraman et al. 2023] outputs
parametric surfaces, aligning the latent code of the condition with
the generative model remains a challenge, often leading to outputs
that are inconsistent with the input conditions and lacking in detail.

In contrast, ComplexGen [Guo et al. 2022] formulates CAD recon-
struction as a detection task, directly determining the parameters
and topologies of each primitive via a conventional object detection
framework. This approach includes an optimization step to refine
the topology and geometry of the inferred primitives. Nonetheless,
their learning process is prone to local minima due to the indetermi-
nate number of primitives, and the mixed topological and geometric
optimization complicates the reconstruction process.
While Point-based Voronoi diagrams are prevalent in computer

graphics and computational geometry, with applications in mesh
reconstruction [Alliez et al. 2007; Maruani et al. 2023], Medial Axis
Transform (MAT) computation [Wang et al. 2022], andmesh simplifi-
cation [Liu et al. 2015], these diagrams have seen limited application
in CAD model reconstruction. SEG-MAT [Lin et al. 2022] utilizes a
form of Voronoi Diagrams, the Medial Axis Transform (MAT), for
shape representation and segmentation. However, this approach is
restricted to part segmentation and does not generate structured
CAD models. Our method leverages the primitive-based Voronoi
diagram as an intermediary representation in reconstructing B-Rep
models. The construction of the Voronoi diagram, achieved through
a simple binary classification of Voronoi boundaries, along with
the straightforward inference of topological relations from the con-
nectivity of Voronoi cells, significantly reduces ambiguity in the
learning process.

3 PRELIMINARIES
Definition of the Voronoi diagram over B-Reps. Unlike most previ-

ous methods [Alliez et al. 2007; Liu et al. 2015; Maruani et al. 2023;
Wang et al. 2022; Williams et al. 2020], which define Voronoi dia-
grams on point sets, our Voronoi diagram is defined on primitives
(vertices, curves and surfaces). Similar to SOTA methods [Chen
et al. 2020; Guo et al. 2022; Yu et al. 2023, 2022], our primitives
are restricted to planes, spheres, cylinders, cones, torus as surfaces
and lines, circles, ellipses as curves. Given a set of primitives, the
Voronoi diagram𝐺𝑣 (𝑁𝑣, 𝐸𝑣) is a partitioning of the volumetric space,
which consists of a set of adjacent Voronoi cells 𝑁𝑣 . Here, 𝐸𝑣 is the
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UNet

Voxelized UDF Voronoi Boundaries

Fig. 3. Overview of our network. We first voxelize the input UDF field. Each voxel contains 4 features (𝑑,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧 ) which indicates the UDF value and the
gradient vector of the UDF field. The voxel grid is split into overlapped local patches and fed into the standard UNet individually. A single channel binary flag
is predicted within each voxel to indicate whether this voxel contains any Voronoi boundary.

adjacent matrix that indicates whether two Voronoi cells are neigh-
bouring. Based on the bisection property of Voronoi diagrams, any
point inside one cell should always have the closest distance to its
corresponding primitive than to other primitives. Since the primi-
tives and their corresponding Voronoi diagram are dual structures,
we do not need to store explicit information about the primitives
(e.g., type, parameters, etc.). Instead, we store the dual Voronoi dia-
gram. Storing the dual structure gives us the freedom to adapt to
various types of primitives during learning. More importantly, it
allows us to convert a surface-based BRep model to a volumetric
representation (described in Section 4). Learning on a surface rep-
resentation is vulnerable due to a lack of a suitable representation
to simultaneously indicate a mixture of geometric, topological, and
combinatorial features. In contrast, learning a volumetric represen-
tation through binary classification is more straightforward and
robust. Additionally, unlike the CSG-Tree used in previous CAD
reconstruction methods [Chen et al. 2020; Yu et al. 2023, 2022], the
Voronoi diagram remains unique, reducing ambiguity in the training
process.

Problem Statement and notions. The input to our method can
either be a sparse 3D point cloud with or without normals, i.e., 𝑃 =

{𝑝𝑖 }𝑘𝑖=1, where 𝑝𝑖 ∈ R
3 or R6, a mesh, or a continuous distance field

𝑓 : X→ R. Our goal is to reconstruct the unique Voronoi diagram of
the GT primitives, which is then used to extract primitives and their
connectivities for B-Rep model reconstruction (as shown in Fig. 2).
Notationally, we denote a B-Rep model as 𝑀 (𝑉 , 𝐸, 𝐹, 𝜕,P), where
𝑉 = {𝑣𝑖 }𝑘𝑖=1 is a set of vertices, 𝐸 = {𝑒𝑖 }𝑘𝑖=1 is a set of edges, and
𝐹 = {𝑓𝑖 }𝑘𝑖=1 is a set of surface patches. 𝜕𝑛, 𝑛 = 1, 2, represents the
topological relations between vertices, edges, and surface patches
(e.g., 𝜕2 𝑓𝑖 ∈ 𝐸 represents the boundary of surface patch 𝑓𝑖 ). We
additionally recover the connectivity between surface patches to
further facilitate the reconstruction of curves [Li et al. 2023b]. And
P represents the geometric properties of each primitive.

Method Overview. To compute the Voronoi boundaries for a given
point cloud, we first convert the input point cloud into an unsigned
voxelized distance function (UDF) field via Neural Dual Contour-
ing [Chen et al. 2022]. As shown in Fig. 3, we train a UNet-like
neural network to predict the Voronoi diagram from the UDF field.
In order to recover the Voronoi diagram, our network is trained

to identify the Voronoi boundaries from the UDF field (described
Sec. 4.1). Based on the predicted Voronoi boundaries, we employ
a region-growing strategy to extract the Voronoi cells and their
connectivities. Inside each Voronoi cell, we fit a primitive using an
analytical method and then reconstruct the CADmodels in B-Rep by
combining the primitives and their topological relations, described
in Sec. 4.2.

4 METHODOLOGY

4.1 Voronoi Diagram Prediction
Our Voronoi predictor takes a voxelized UDF field 𝑓 as input and
predicts the Voronoi diagram𝐺𝑣 (𝑁𝑣, 𝐸𝑣). We use UDF fields as input
instead of previously used point clouds [Guo et al. 2022; Li et al.
2023b; Sharma et al. 2020], since a UDF is a continuous function
defined over the entire volumetric space, which is better suited for
our space partitioning problem. Also, point clouds can be easily
converted into UDF fields [Chen et al. 2022].
Given a UDF field 𝑓 , we want to predict a binary field 𝑏 : 𝑋 →
{0, 1}, where 𝑏 (𝑥) = 1 indicates that 𝑥 is on the Voronoi boundary,
and 0 otherwise. In order to train such a network, we first discretize
the UDF field 𝑓 into a voxelized grid 𝑉𝑟∗𝑟∗𝑟 with a fixed resolution
𝑟 (𝑟 = 256 in all our experiments). Each voxel contains a 4-channel
feature code (𝑑,𝑔𝑥 , 𝑔𝑦, 𝑔𝑧), where 𝑑 is the UDF value and 𝑔𝑥 , 𝑔𝑦, 𝑔𝑧
are the first-order derivatives of the UDF field, also denoted as
the gradient vector. Followed by a UNet-like network 𝐹 (𝑉 ), the
4-channel feature code is mapped to a binary flag 𝑏 for each voxel,
indicating whether it is on the Voronoi boundary; see Fig. 3. The
detailed structure of the network is shown in the supplementary
material.
Inspired by Neural Dual Contouring [Chen et al. 2022], we only

leverage local features to predict Voronoi boundaries. We split the
whole voxel grid into 𝑁 local patches with a fixed stride 𝑠 and size 𝑘
(𝑠 = 16 and𝑘 = 32 in all our experiments). Note that the local patches
are overlapped, where each voxel can be contained in multiple such
patches. Patch overlapping can ensure that the prediction on the
boundary of the local patches is consistent. The network is trained
to minimize the focal loss [Lin et al. 2020] between the predicted
flag 𝑏 and the ground truth flag 𝑏∗,

L𝑓 𝑜𝑐𝑎𝑙 = −𝛼 (1 − 𝑏∗)𝛾 log(1 − 𝑏) − (1 − 𝛼)𝑏∗ log(𝑏), (1)
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(a) UDF field 𝑓 (b) 𝑓 ’s 1st derivative 𝑓
′ (c) Orthogonal direction

𝑓 + of 𝑓
′

(d) 𝑓 ’s 2nd derivative
𝑓
′′
along 𝑓 +

(e) Norm of 𝑓 ’s 3rd de-
rivative | 𝑓 ′′′ | along 𝑓 +

(f) Voronoi cells 𝑁𝑣

Fig. 4. The relation between the Voronoi boundaries and the derivative of the UDF field.

where 𝛼 and 𝛾 are the hyper-parameters of the focal loss. Please
refer to the supplementary material for more details about the data
preparation and training process.

Generalizability. It is worth noting that ComplexGen [Guo et al.
2022] leverages a triple-branch transformer architecture to predict
the parameters and topologies of each primitive. Different cross-
attention modules ensure full information exchange between the
voxel and primitive features. However, the comprehensive infor-
mation exchange also makes the learning process hard to optimize,
which might lead to poor generalizability; see Sec. 5.3 for further
details and a comparison. In contrast, our prediction of Voronoi dia-
grams only relies on local geometric cues, which can significantly
improve the model’s generalizability.

Discontinuity over UDF. Estimating Voronoi boundaries is similar
to identifying discontinuities over the UDF field, which only relies
on local geometric features; see Fig. 4. Overall, the distance field of
a CAD model is a piece-wise smooth function. The discontinuity
of the distance field is usually related to a change of the nearest
primitive. To find the discontinuity, we first calculate the derivative
of the UDF field. Fig 4(a) and Fig 4(b) show the original UDF field
and the first-order derivative. We can see that for points whose
nearest primitive is a plane, their gradient vectors are parallel. Thus,
the discontinuity is always located at the joint of two planes.

We further calculate the second- and third-order derivatives of the
UDF field to identify the joint between two quadric primitives. Since
the first-order derivative of the UDF field is a vector field, we choose
the orthogonal direction of each gradient vector and calculate the
second- and third-order derivatives along this direction in Fig 4(d).
We visualize the 𝐿2-norm of the 3rd derivative in Fig 4(e), and

we can see the discontinuity with high 𝐿2-norm is located at the
joint of two quadric primitives, which is consistent with the Voronoi
boundaries of the target shape. Thus, identifying the Voronoi bound-
aries is equal to finding the discontinuity of the second derivative
of the UDF field, as shown in Fig 4(f). However, real-world UDF
fields are usually noisy, which makes the discontinuity harder to
identify. Thus, we choose to predict the Voronoi boundaries using a
neural network to approximate this process, leading to improved
robustness against minor local disturbances in the input data.

4.2 Extraction of primitives and topologies
Based on the predicted Voronoi boundaries, we first conduct region
growing in the volumetric space to reconstruct the Voronoi cells

𝑁𝑣 . We select a seed voxel 𝑣𝑠 and grow the region by adding the
neighbour voxels 𝑣𝑛 with flag𝑏 (𝑣𝑛) = 0. The region growing process
is repeated until all the neighbour voxels are added. The voxel grids
will be clustered into regions, denoted as the Voronoi cells 𝑁𝑣 . The
connectivity of the Voronoi cells 𝐸𝑣 can be easily inferred from
neighbourhood relations of 𝑁𝑣 .

By definition of the Voronoi diagrams, each Voronoi cell contains
exactly one primitive. Based on the UDF field, we use the least-
square method [Eberly 2000] to fit a primitive inside each Voronoi
cell. For each Voronoi cell, we iterate over all the possible primi-
tive types and choose the one with the lowest fitting error. Note
that the fitting process is only conducted in each Voronoi cell indi-
vidually. Unlike ComplexGen [Guo et al. 2022] and search-based
methods [Bauchet and Lafarge 2020; Li et al. 2011], we do not need
to consider assigning each point to a specific primitive. Thus, the
fitting process is considerably less ambiguous and more robust.

Since the connectivity of the Voronoi cells𝐸𝑣 is already known,we
can easily infer the topological relations 𝜕 between primitives. For
each primitive 𝑖 , we find its adjacent Voronoi cells 𝑁𝑖 and examine
whether the distance between the point inliers of the two primitives
is less than a prescribed threshold.

After extracting the primitives and their topologies, we can recon-
struct the CAD models in B-Rep by combining the primitives and
their topological relations. Similar to SEDNet [Li et al. 2023b], we
additionally calculate the intersection curve between two adjacent
surfaces to add missing curves during the fitting process. The re-
sulting B-Rep model can be edited, meshed, and visualized by most
CAD software. Please refer to the supplementary material for more
details about the detailed explanation and the pseudocode of fitting.

5 EXPERIMENTAL RESULTS

5.1 Dataset and metrics
We benchmark our method against leading CAD model reconstruc-
tion techniques on the ABC dataset [Koch et al. 2019]. Our compar-
ative analysis includes state-of-the-art methods such as Complex-
Gen [Guo et al. 2022], HPNet [Yan et al. 2021], SED-Net [Li et al.
2023b], and Point2CAD [Liu et al. 2023], as well as the traditional
fitting method RANSAC [Fischler and Bolles 1981; Schnabel et al.
2007]. Our model was trained on a dataset identical to that used
by ComplexGen, HPNet, and SED-Net, comprising approximately
20,000 models featuring elementary and B-Spline primitives.
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For a fair and comprehensive assessment, all methods were tested
on the same test set of around 1,000 models. This test set included
models with surface types such as Plane, Cylinder, Sphere, Cone,
and Torus and curve types like Line, Circle, and Ellipse. Notably,
B-Spline primitives were excluded from the test set due to observed
instabilities in their analytical fitting from point data.

Nevertheless, it is essential to underscore that our primary contri-
bution, the learning-based Voronoi Partition process, is agnostic to
the actual primitive type. This is further elaborated in Section 5.5.

Evaluation Metrics: To assess each method’s performance, we
employ three metric categories:
• Geometric Error: The Chamfer Distance (CD) and Light
Field Distance (LFD) [Chen et al. 2003] are utilized for quanti-
fying geometric inaccuracies and visual fidelity discrepancies
between the reconstructed and ground truth CADmodels. No-
tably, models with high accuracy but fragmented primitives
can still display minimal geometric error. Hence, following
ComplexGen [Guo et al. 2022], detection metrics are also
employed for a more nuanced performance evaluation.
• Number of Effective Primitives: As an additional met-
ric, we report the count of effective primitives in the recon-
structed CAD models, providing insight into the model’s
structural complexity.
• Detection Score: The averaged Precision, Recall, and F1-
Score are used to assess the accuracy of primitive instances
within the methods. This metric offers a complementary per-
spective to geometric error, facilitating a direct comparison
between predicted and ground truth primitives. We apply
multiple thresholds (0.1, 0.05, 0.02, 0.01, 0.005) for a thorough
evaluation.
• Topological Error: To gauge the accuracy of predicted re-
lationships among surfaces, curves, and vertices, we employ
the F1-Score as a measure of topological error.

5.2 Comparison
We sample 10k points on the GTmesh as the input to all the methods.
All methods are tested with normal input except for our method.
In order to benchmark our approach against three baselines, we
first extract the trimmed mesh for each reconstructed primitive.
Then we sample points on the surfaces and curves and compute
the previously mentioned metrics. For RANSAC, we use the imple-
mentation from the CGAL library1. We report the results of both
default parameters (RANSAC Default) and the best parameters we
tuned (RANSAC Tuned), where 𝜖 = {1% ∗ 𝑏𝑏𝑜𝑥_𝑑𝑖𝑎𝑔, 0.001}, 𝑝𝑟𝑜𝑏 =

{0.01, 0.001},𝑚𝑖𝑛_𝑝𝑜𝑖𝑛𝑡𝑠 = {1%, 0.5%}, 𝜖𝑛𝑜𝑟𝑚𝑎𝑙 = {0.9, 0.9}, respec-
tively. For HPNet [Yan et al. 2021] and SEDNet [Li et al. 2023b],
we employ Point2CAD [Liu et al. 2023] to extract the mesh from
the point segmentation. As for ComplexGen [Guo et al. 2022], we
utilize its official implementation for extracting the trimmed models.
The points essential for metric computation are derived from the
trimmed meshes using Poisson disk sampling. The quantity of these
sample points is determined based on the area of the surfaces or
the length of the curves. Quantitative comparisons between each

1https://doc.cgal.org/latest/Shape_detection/index.html

Table 1. The geometric error of our method compared with RANSAC,
ComplexGen, HPNet+Point2CAD and SEDNet+Point2CAD.

Method CD ↓ LFD ↓Vertex Curve Surface

RANSAC Default - - 0.0205 3123
RANSAC Tuned - - 0.0162 2502
ComplexGen 0.0901 0.0601 0.0402 4280
HPNet+Point2CAD 0.0782 0.0222 0.0157 2104
SEDNet+Point2CAD 0.0832 0.0268 0.0192 2262
Ours 0.0327 0.0144 0.0093 908

Table 2. The topological error between the reconstructed and ground truth
B-Rep models. FE and EV denote the F1-Score of surface-curve connectivity
and curve-vertex connectivity, respectively. Results from RANSAC are not
available as they do not output topological structures.

Method FE ↑ EV ↑

ComplexGen 0.599 0.572
HPNet+Point2CAD 0.739 0.674
SEDNet+Point2CAD 0.696 0.647
Ours 0.778 0.753

method are detailed in Table 1, 2, 3, 4. For qualitative analysis, we
have chosen 30 representative CAD shapes from our test set, show-
casing a variety of geometric features such as standard furniture,
high-genus structures, and complex compositions of planes, cylin-
ders, cones, and open surfaces. A subset comprising five examples
is presented in Fig. 5, with additional details available in the sup-
plementary material. To ensure an unbiased presentation, we have
also randomly selected 30 cases from the test set for visualiza-
tion, avoiding any manual cherry-picking. Five of these selections
are illustrated in Fig. 6, and further examples are included in the
supplementary material.
As evidenced in Table 1, our method surpasses all baselines in

performance. The CAD models generated by our approach demon-
strate superior accuracy and visually appeal. Additionally, Table 3
indicates that our method outperforms others in detection metrics,
excelling in both Precision and Recall. Further, Table 2 underscores
our method’s enhanced capability in capturing topological relations.
These advantages are also visually apparent in Fig. 5, Fig. 6 and
Fig. 7. We observe that detection-focused methods like Complex-
Gen struggle to accurately reconstruct CAD models, particularly for
complex structures that diverge from their training datasets (details
can be found in Sec. 5.3). Although HPNet and SEDNet demonstrate
a higher degree of generalization, they are prone to inaccurately as-
signing points to primitives, often resulting in impractical primitive
shapes. Furthermore, these methods often incorrectly predict the
topological relationships between primitives. Such inaccuracies in
primitive identification and topology typically lead to Point2CAD
generating CAD models with fragmented and disconnected com-
ponents. Traditional methods such as RANSAC can accurately fit
primitives but require finely tuned parameters. Moreover, they strug-
gle to recover low-dimensional primitives like curves and vertices
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Fig. 5. Qualitative comparisons of 5 representative shapes in ABC dataset.
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Fig. 6. Qualitative comparisons of 5 randomly sampled shapes in ABC dataset.
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Table 3. The detection score of vertices(V), curves(C) and surfaces(S) on the ABC dataset [Koch et al. 2019] using different methods. The evaluation process
involved a matching process based on the Chamfer Distance, which was calculated between sample points on both the reconstructed and ground truth
primitives. To ensure a thorough assessment, we employed a range of thresholds (0.1, 0.05, 0.02, 0.01, and 0.005). These multiple thresholds allowed for a more
comprehensive evaluation in calculating Precision, Recall, and the F1-Score. With a chamfer distance threshold of 0.01, we additionally report the number of
good/total primitives in the table.

Method Number # F1 Score ↑ Precision ↑ Recall ↑
V C S V C S V C S V C S

RANSAC Default - - 4.6/10 - - 0.485 - - 0.612 - - 0.462
RANSAC Tuned - - 10.4/12.6 - - 0.722 - - 0.836 - - 0.681
ComplexGen 7.9/22.8 16.6/44.9 10.5/25.9 0.5 0.513 0.502 0.521 0.510 0.479 0.505 0.538 0.552
HPNet+Point2CAD 17.7/26.3 23.0/33.8 8.9/12.8 0.671 0.696 0.697 0.749 0.755 0.776 0.649 0.668 0.661
SEDNet+Point2CAD 14.1/21.9 17.1/26.6 6.7/10.5 0.652 0.656 0.646 0.734 0.735 0.742 0.626 0.620 0.605
Ours 29.6/38.5 33.8/41.6 14.2/15.8 0.785 0.790 0.821 0.810 0.850 0.902 0.802 0.766 0.781

Table 4. The detection error that directly computed on the input point
cloud. Similar to Table 3, we compute the F1-Score, Precision and Recall
using multiple thresholds (0.1, 0.05, 0.02, 0.01, 0.005).

Method F1 Score ↑ Precision ↑ Recall ↑

HPNet 0.614 0.670 0.589
SEDNet 0.588 0.674 0.554
Ours w/o fitting 0.633 0.711 0.602
Ours w/ fitting 0.685 0.757 0.650

and fail to identify the topological relationships among the primi-
tives. In contrast, our method employs the Voronoi diagram as an
intermediary representation. The point assignment and the primi-
tive fitting are separated into two individual processes, significantly
enhancing both primitive reconstruction and topological accuracy.
In our comprehensive analysis, we extend our evaluation to in-

clude a direct assessment of point clouds. This facilitates a more
direct comparison of our method with two segmentation-based ap-
proaches, HPNet and SEDNet. In Table 4 we show two variants
of our method, one with point labels directly segmented from our
Voronoi Diagram (w/o fitting) and the other with the point labels
fitted to the extracted primitives (w/ fitting). Our method surpasses
HPNet and SEDNet in key metrics such as F1-Score, Precision, and
Recall. This further underscores the robustness and adaptability of
our approach in diverse evaluation scenarios.
We also conducted a user study to assess the visual fidelity of

CAD models reconstructed by different methods. For this study, we
selected 20 shapes from our test set, which included 10 shapes from
the representative shape set and another 10 from a set of randomly
sampled shapes. Participants in the study were presented with the
reconstructed CAD models from four different methods, along with
their corresponding curves and vertices, and the ground truth for
comparison.
The study involved 186 participants who were asked to evalu-

ate and rank the models reconstructed by different methods based
on their similarity to the ground truth. This approach allowed us
to gauge user perceptions of the quality and accuracy of the re-
constructed models. The results of this user study, which provide

Fig. 7. Qualitative comparisons with RANSAC [Schnabel et al. 2007].

Rank 1

Rank 2

Rank 3

Rank 4

Ours HPNet SEDNet ComplexGen

Fig. 8. This is the box plot of our user study. On the Y-axis, we show the
average ranking of each method.

insights into the perceived quality of the models generated by each
method, are depicted in Fig. 8.

The findings from the study clearly indicate that our method was
ranked highest in terms of visual fidelity. This outcome underscores
the effectiveness of our approach in producing CAD models that
are not only accurate in terms of geometry and topology but also
visually appealing to users.
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Fig. 9. We plot the generalization ability of all methods on the test set. The
similarity between the test model and the training set is sorted, and the
corresponding reconstruction error is plotted. The similarity is reported in
the range of 0% to 100%, where lower similarity indicates higher chamfer
distance and less similarity to the training set. Our method has the best
generalization ability of all the methods.

5.3 Generalization Ability
Asmentioned above, ComplexGen [Guo et al. 2022] cannot faithfully
reconstruct CADmodels when the model is complex and less similar
to the training set. We conducted a thorough analysis to investigate
this issue further and explore the generalization capabilities of dif-
ferent methods. We first identify the model in the training set that
is most similar to each model in the test set. We utilized the Cham-
fer Distance between the corresponding models to quantify this
similarity. A lower Chamfer Distance signifies a closer resemblance
to the models in the training set, and a higher distance indicates
lesser similarity. We organized these similarity metrics in ascending
order and plotted them alongside the corresponding geometric er-
rors of each method. Fig. 9 provides a clear illustration of how each
method performs in terms of generalization across varying degrees
of similarity to the training set.

As demonstrated in Fig. 9, ComplexGen’s performance degrades
notably with diminishing shape similarity to the training set, evi-
denced by an increased reconstruction error. The full information
change between the voxel and primitive features in ComplexGen
makes the learning process ambiguous, impairing its generaliza-
tion capacity. In stark contrast, our method maintains consistent
performance, irrespective of the model’s similarity to the training
dataset. This stability is due, in large part, to our method’s approach
to the Voronoi diagram prediction, which simplifies the task to a bi-
nary classification problem. This simplification renders our method
significantly more robust compared to ComplexGen’s mixed com-
binatorial and continuous learning process. Furthermore, our ap-
proach to predicting the Voronoi diagram relies primarily on local
geometric cues, as detailed in Sec. 4.1 This focus on local geometry
fosters a more generalizable learning process, enabling our method

to maintain high accuracy and reliability across a wider range of
shapes and complexities. This attribute starkly distinguishes our
method from others, particularly in scenarios involving diverse and
complex CAD models.
Interestingly, we even have a slightly higher error on the most

similar shapes (70%-80%). We attribute this to the metric we used
to measure the similarity. Chamfer distance from the test shape
to training items is not the most ideal choice. For instance, some
shapes might have a small Chamfer distance not because they are
similar but rather because they share a similar size (e.g., two cubes
of differing sizes might have a large chamfer distance even though
they have similar appearance).

5.4 Stress Test
We extended our evaluation to more challenging scenarios, includ-
ing noisy point clouds and real-world scans. For the noisy point
cloud tests, we introduced random noise equivalent to 1% of each
shape’s diagonal length [Li et al. 2023b]. We directly use the pre-
trained models of all methods to reconstruct the noisy shapes. The
performance of each method in handling these noisy inputs is pre-
sented in Table 5. Our findings indicate that our method still leads
in terms of geometric error and detection score, while maintaining
comparable topological performance to other methods. This high-
lights our method’s resilience and accuracy even in the presence of
data imperfections.
Regarding real scans, we employed meshes reconstructed from

structured light scanners as described in DEF [Matveev et al. 2022].
This allowed us to test our method’s effectiveness on data derived
from real-world objects, further extending its applicability. The out-
comes of these tests, which showcase the capability of our method
to handle real scan data, are visually depicted in Fig. 10. This vi-
sual representation underscores our method’s practical utility and
robustness in diverse and challenging environments, beyond the
controlled conditions of synthetic datasets.

5.5 Limitation
Although our method achieves state-of-the-art performance in CAD
model reconstruction, some limitations remain.

Voxelized Voronoi Diagram: The voxelized representation of the
Voronoi diagram introduces inherent limitations, such as the resolu-
tion constraints of the voxel grid. This can particularly impact thin
primitives: in cases where Voronoi boundaries entirely occupy a
primitive’s Voronoi cell, both the cell and the corresponding primi-
tive are omitted in subsequent processes. This issue is evident in the
first shape of Fig. 6, where a thin plane fails to be recovered, result-
ing in a zigzag boundary of the yellow nearby plane. Additionally,
small holes in the predicted Voronoi boundaries may inadvertently
connect Voronoi cells, leading to suboptimal primitive fitting (as
shown in Fig. 11).

Noise data: Fig. 10 illustrates that while our method can recon-
struct a reasonably accurate B-Rep model to a certain extent, the
process of CAD model reconstruction in the presence of noise re-
mains challenging. The complexity stems from the non-uniform
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Table 5. The performance of different methods under noisy input. We report the geometric error (CD), detection score (F1 score) and the topological
error (F1 score) of different methods.

Method CD ↓ Detection Score ↑ Topological Error ↑
Vertex Curve Surface Vertex Curve Surface FE EV

ComplexGen 0.1191 0.0660 0.0442 0.460 0.478 0.462 0.546 0.520
HPNet+Point2CAD 0.1078 0.0367 0.0235 0.445 0.492 0.542 0.722 0.657
SEDNet+Point2CAD 0.1044 0.0352 0.0232 0.593 0.614 0.615 0.685 0.629
Ours 0.0539 0.0294 0.0121 0.683 0.683 0.742 0.707 0.673

Fig. 10. Qualitative comparison on two real scans. The input models are derived from structured light scanners [Matveev et al. 2022]. These scans are
characterized by significant noise and data omissions, including issues like noise accumulation during scanning, self-intersecting triangles, and errors in
alignment leading to duplication and overlapping. We standardized the input to 10,000 points for all methods to ensure a fair comparison. The pronounced
noise particularly challenges previous methods’ mixed combinatorial and continuous learning processes, resulting in suboptimal segmentation and inaccurate
geometric parameters. Despite being trained predominantly on synthetic data, our method demonstrates a superior capacity to manage and interpret noisy
data.

nature of noise distribution, which is influenced by a variety of fac-
tors including the characteristics of the acquisition device, environ-
mental conditions, and the specifics of the reconstruction algorithm.
This diversity in noise sources and patterns makes it challenging to
model the noise distribution, thereby complicating the training of a
universally robust model capable of handling all types of noise.

B-Spline Fitting: While advancements have been made in fitting
B-Spline primitives from unstructured point clouds [Liu et al. 2023;
Sharma et al. 2020; Zheng et al. 2012], the process remains unsta-
ble and occasionally yields implausible results. The intersection of
B-Spline primitives adds further complexity to this process. Conse-
quently, our experiments primarily utilized elementary primitives.

However, B-Spline primitives were still employed in training the net-
work for Voronoi boundary prediction, given that Voronoi diagram
construction is independent of primitive type. We also visualize our
segmentation results for B-Spline primitives in Fig. 11.

Meshing: Despite the ability of current methods, including Com-
plexGen [Guo et al. 2022], HPNet [Yan et al. 2021], SEDNet [Li
et al. 2023b], and ours, to accurately determine primitives and their
topologies, the meshing process remains erratic. A key challenge is
that the primitives are topologically but not geometrically intercon-
nected, affecting loop finding and trimming processes. ComplexGen
attempts to address this through an optimization framework that
adjusts geometric and topological relations simultaneously, but it
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Input points Voronoi boundaries Point segmentation

Fig. 11. Although we omitted the BSpline primitive in our mesh extraction
process, NVD can still faithfully predict the Voronoi boundaries for BSpline
primitives and subsequently assign the instance label to each point. We
show the input points (left), the predicted Voronoi boundaries (middle) and
the corresponding point segmentation (right).

still struggles with the instability of meshing. Developing a stable
meshing process remains an unresolved issue in this field.

Shapes violate piece-wise G2 continuity: Our method utilizes train-
ing data generated from CAD models that adhere to piece-wise
G2 continuity, with discontinuities occurring only at the junctions
between primitives. When encountering input shapes that deviate
from this continuity, such as partial inputs or surfaces with G2 con-
tinuous junctions, our method might struggle to predict Voronoi
boundaries accurately. Nevertheless, it can effectively reconstruct
the Voronoi boundaries and primitives in the intact regions of par-
tial inputs, thanks to local feature learning (as shown in Fig. 10). In
cases of surfaces with G2 continuous transitions, the reconstruction
leans towards semantic analysis over geometric detail, necessitating
a broader understanding of the shape’s features. To improve perfor-
mance on such inputs, retraining NVD-Net with a dataset inclusive
of shapes with G2 continuous transitions could be beneficial, as
these also possess well-defined Voronoi Diagrams.

6 CONCLUSION AND FUTURE WORK
In this work, we introduce a novel pipeline for reconstructing Bound-
ary Representation (B-Rep) CAD models, capable of processing di-
verse inputs such as point clouds, distance fields, and meshes. The
enabler of our approach is the prediction of the Voronoi diagram
representing the underlying shape. It serves as a foundation for ex-
tracting the geometric primitives and their topological relationships,
which are then integrated to reconstruct the CAD models in B-Rep.
The Voronoi diagram, being both unique and fixed, significantly re-
duces ambiguity in the reconstruction process. Its inherent structure
conveniently encapsulates boundaries and connectivity of primi-
tives, thereby simplifying the reconstruction workflow. Through
extensive validation, our method has demonstrated superior perfor-
mance over existing techniques in geometric accuracy, detection
precision, topological consistency, and generalizability. The recon-
structed B-Rep models are compatible with existing CAD software,
enabling seamless integration into the design process; see Fig. 12.

The main limitation of our method is the accuracy of the Voronoi
diagram. The voxelization process inherent to our method intro-
duces quantization errors that adversely impact the Voronoi dia-
gram’s precision. This effect is particularly pronounced in the case
of tiny structures, which may be lost during voxelization and sub-
sequently affect the extraction of primitives. Future research will
investigate alternative representations of the Voronoi diagram, such
as implicit functions, to circumvent the quantization errors associ-
ated with voxelization.
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Table 6. Summary of important notations.

Notation Description

B Boolean domain {0, 1}
𝑁𝑣/𝑒/𝑓 element numbers for vertices/curves/surfaces

𝑀 = (𝑉 , 𝐸, 𝐹, 𝜕,P) a B-Rep chain complex with vertices𝑉 , curves
𝐸, surfaces 𝐹 , topological embedding 𝜕 =

{𝐹𝐹, 𝐹𝐸, 𝐸𝐸, 𝐸𝑉 , 𝐹𝑉 }, and geometric embed-
ding P

𝐹𝐹 ∈ B𝑁𝑓 ×𝑁𝑓 the adjacency of surfaces and surfaces
𝐹𝐸 ∈ B𝑁𝑓 ×𝑁𝑒 the adjacency of surfaces and curves
𝐸𝐸 ∈ B𝑁𝑒×𝑁𝑒 the adjacency of curves and curves
𝐸𝑉 ∈ B𝑁𝑒×𝑁𝑣 the adjacency of curves and vertices
𝐹𝑉 ∈ B𝑁𝑓 ×𝑁𝑣 the adjacency of surfaces and vertices

𝑃𝑖 the internal points in each Voronoi cell
𝜖1 0.001, threshold of Fitting_Primitives
𝜖2 0.02, threshold of Build_Surfaces_Adjacency
𝜖3 0.05, threshold of Build_Curves_Adjacency

Algorithm 1: Overview of our primitive extraction process
input :Voronoi cells 𝑁𝑣

output :B-Rep model𝑀 (𝑉 , 𝐸, 𝐹, 𝜕,P)
1 𝑉 , 𝐸, 𝐹 ← ∅;
2 SType← {plane, sphere, cylinder, cone, torus};
3 CType← {line, circle, ellipse};
4 𝐹, 𝐸 ← Fitting_Primitives(𝑁𝑣 );
5 FF← Build_Surfaces_Adjacency(𝑁𝑣, 𝐹 );
6 𝐸, FE← Curve_Extraction(𝐹, 𝐸, FF);
7 EE← Build_Curves_Adjacency(𝐹, 𝐸, FE);
8 𝑉 ,EV, FV← Vertex_Extraction(𝐸,EE);

vertices (V), curves (E), and surfaces (F), bound together by their
geometric and topological relationships, see Sec. A.2.

A.1 Hole Filling and Cell Construction
We identify Voronoi cells from the predicted Voronoi boundaries
using region growing. Due to holes commonly appearing in these
boundaries, we perform hole-filling to refine them before recon-
structing the cells. This involves traversing each voxel in the space

ACM Trans. Graph., Vol. 43, No. 4, Article 108. Publication date: July 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


108:2 • Y. Liu, J. Chen, S. Pan, D. Cohen-Or, H. Zhang, and H. Huang

Algorithm 2: Fitting_Primitives()
input :Voronoi cells 𝑁𝑣

output :Surfaces 𝐹 and Curves 𝐸

1 𝐸, 𝐹 ← ∅;
2 Error 𝜖 ← inf;
3 for each 𝑁𝑖 in 𝑁𝑣 do
4 Surface 𝑓 , 𝜖 ← Plane_Fitting(𝑁𝑖 );
5 if 𝜖 < 𝜖1 then

// find the best curve in CType using points in 𝑁𝑖

6 Curve 𝑒 , 𝜖 ← Curve_Fitting(𝑁𝑖 );
7 if 𝜖 < 𝜖1 then
8 𝐸 ← 𝐸 ∪ 𝑒;
9 continue;

10 else
11 𝐹 ← 𝐹 ∪ 𝑓 ;

12 else
// find the best surface in SType using points in 𝑁𝑖

13 Surface 𝑓 , 𝜖 ← Surface_Fitting(𝑁𝑖 );
14 if 𝜖 < 𝜖1 then
15 𝐹 ← 𝐹 ∪ 𝑓 ;
16 else

// Use RANSAC to fit multiple primitives
17 Surface set 𝐹𝑠 ← RANSAC(𝑁𝑣 );
18 𝐹 ← 𝐹 ∪ 𝐹𝑠 ;

Algorithm 3: Build_Surfaces_Adjacency()
input :Voronoi cells 𝑁𝑣 and Surfaces 𝐹
output :Surfaces adjacency FF

1 FF[𝑁𝑓 ] [𝑁𝑓 ] ← 0;
2 for each 𝑁𝑖 in 𝑁𝑣 do
3 for each 𝑁 𝑗 in adjacent cells do
4 if 𝑖𝑠_𝑆𝑇𝑦𝑝𝑒 (𝑁𝑖 ) and 𝑖𝑠_𝑆𝑇𝑦𝑝𝑒 (𝑁 𝑗 ) then
5 𝜖 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖 , 𝑃 𝑗 );
6 if 𝜖 < 𝜖2 then
7 FF[𝑖] [ 𝑗] ← 1;

along the gradient direction to gather a set of voxels and their clas-
sification results. If half or more of these are part of the Voronoi
boundary, we also classify the rest as boundary cells. With these
refined boundaries, we apply standard region growing to group the
voxels into distinct Voronoi cells.

A.2 Primitive Fitting
We provide an overview of our primitive fitting process in Algo-
rithm 1 and the chosen parameters in Table. 6. We first define two
distinct sets of geometric primitives. For curves, our consideration
extends to lines, circles, and ellipses, categorized under CType; for
surfaces, we encompass planes, spheres, cylinders, cones, and tori,

Algorithm 4: Curve_Extraction()
input :Surfaces 𝐹 , Curves 𝐸 and Surfaces adjacency FF
output :Curves 𝐸 and Surface-Curve adjacency FE

1 for each 𝑓𝑖 in 𝐹 do
2 for each 𝑓𝑗 in adjacent surfaces do
3 Common points 𝑃 ← 𝑃𝑖 ∩ 𝑃 𝑗 ;
4 Compute intersection curves 𝐸𝑠 ;

// find the curve with minimal distance to 𝑃
5 Curve 𝑒 ← 𝑀𝑖𝑛_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐸𝑠 , 𝑃);
6 𝐸 ← 𝐸 ∪ 𝑒;
7 update Surface-Curve adjacency FE;

8 remove duplication in 𝐸 and update FE;

Algorithm 5: Build_Curves_Adjacency()
input :Surfaces 𝐹 , Curves 𝐸 and Surfaces adjacency FE
output :Curves adjacency EE

1 EE[𝑁𝑒 ] [𝑁𝑒 ] ← 0;
2 for each 𝑒𝑖 in 𝐸 do
3 for each 𝑒 𝑗 in 𝐸 do
4 for each 𝑓𝑘 in 𝐹 do
5 if FE[𝑘] [𝑖] = 1 and FE[𝑘] [ 𝑗] = 1 then
6 𝜖 ← 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖 , 𝑃 𝑗 );
7 if 𝜖 < 𝜖3 then
8 EE[𝑖] [ 𝑗] ← 1;

Algorithm 6: Vertex_Extraction()
input :Curves 𝐸 and Curves adjacency EE
output :Vertices 𝑉 , Curve-Vertex adjacency EV and

Surface-Vertex adjacency FV
1 for each 𝑒𝑖 in 𝐸 do
2 for each 𝑒 𝑗 in adjacent curves do
3 Compute intersection vertices 𝑉𝑠 ;

// find the vertex with minimal distance to 𝑒𝑖 and 𝑒 𝑗
4 Vertex 𝑣 ← 𝑀𝑖𝑛_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑉𝑠 , 𝑒𝑖 , 𝑒 𝑗 );
5 𝑉 ← 𝑉 ∪ 𝑣 ;
6 update Curve-Vertex adjacency EV;
7 update Surface-Vertex adjacency FV;

8 remove duplication in 𝑉 and update EV,FV;

collectively referred to as SType. We use least-square fitting to ob-
tain all these primitives 1. Details of the primitive fitting process
are described as follows (Algorithm 2):
• Sequential Fitting: We perform a sequential fitting process
for each Voronoi cell. Initially, we attempt to fit the sim-
plest primitive, plane, and evaluate the fitting error using a
predefined threshold 𝜖1. Since a cell of a curve may also be
recognized as a plane, we proceed to curve fitting within the

1https://www.geometrictools.com/Samples/Mathematics.html
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cell if the plane is successfully fitted, trying each curve type
in CType and selecting the one with the minimal fitting error.
If no satisfactory curve fitting is achieved (minimal fitting
error > 𝜖1), we explore surface fitting by iterating through
SType. A similar error-based selection criterion is applied to
determine the best-fitting surface.
• Fallback Mechanism: For cells where a single primitive fit-
ting is unfeasible, we employ a traditional RANSAC algorithm
to detect combinations of primitives, ensuring robustness in
handling complex geometries.

Once we have done the primitive fitting, subsequent steps delve
into defining topological relationships and extracting finer geomet-
ric details. Details of each step are described as follows:
• Surfaces Adjacency (Algorithm 3): We consider surfaces
to be adjacent if they belong to neighbouring Voronoi cells
and the distance between their points is less than a prede-
fined threshold 𝜖2. This adjacency relationship is stored in the
surfaces adjacency matrix (FF). This dual condition ensures a
robust method of determining adjacency, where spatial prox-
imity and Voronoi adjacency work in tandem.
• Curve Extraction (Algorithm 4): The intersection of sur-
faces is computed to refine the curve elements (E)2. Since two
surfaces may intersect along multiple curves, we identify the
correct boundary curve by finding common points shared by
the surfaces. This process ensures that the extracted curves
precisely represent the shape’s edges in the B-Rep model.
• Curves Adjacency (Algorithm 5): We define curves as adja-
cent if they are connected to the same surface and the distance
between their internal points is less than a predefined thresh-
old 𝜖3. This adjacency relationship is stored in the curves
adjacency matrix (EE).
• Vertex Extraction (Algorithm 6): Similar to the curve ex-
traction, we extract vertices (V) through the intersection
of curves, completing the boundary representation (B-Rep)
model construction.

B NETWORK AND TRAINING DETAILS
Network: The backbone of the approach is a simple UNet archi-

tecture, which comprises four down-sampling and four up-sampling
layers. The architecture is detailed as follows:

𝐶𝑜𝑛𝑣 (1, 4, 16) − 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 − 𝑅𝑒𝐿𝑈−
𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘 (16, 32) − 𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘 (32, 64)−
𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘 (64, 128) − 𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘 (128, 256)−
𝑈𝑝𝐵𝑙𝑜𝑐𝑘 (256, 128) − 𝐵𝑙𝑜𝑐𝑘 (256, 128)−
𝑈𝑝𝐵𝑙𝑜𝑐𝑘 (128, 64) − 𝐵𝑙𝑜𝑐𝑘 (128, 64)−
𝑈𝑝𝐵𝑙𝑜𝑐𝑘 (64, 32) − 𝐵𝑙𝑜𝑐𝑘 (64, 32)−
𝑈𝑝𝐵𝑙𝑜𝑐𝑘 (32, 16) − 𝐵𝑙𝑜𝑐𝑘 (32, 16) − 𝐵𝑙𝑜𝑐𝑘 (16, 1) − 𝑆𝑖𝑔𝑚𝑜𝑖𝑑,

where 𝐶𝑜𝑛𝑣 (𝑘𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒, 𝑖𝑛, 𝑜𝑢𝑡) denotes a 3D convolutional layer.
𝐵𝑙𝑜𝑐𝑘 consists of a 𝐶𝑜𝑛𝑣 (3, 𝑖𝑛, 𝑜𝑢𝑡), a 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚, a 𝑅𝑒𝐿𝑈 layer,
a 𝐶𝑜𝑛𝑣 (3, 𝑜𝑢𝑡, 𝑜𝑢𝑡), a 𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 and a 𝑅𝑒𝐿𝑈 layer. 𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘
consists of a 𝐵𝑙𝑜𝑐𝑘 (𝑖𝑛, 𝑜𝑢𝑡) and a𝑀𝑎𝑥𝑃𝑜𝑜𝑙 layer.𝑈𝑝𝐵𝑙𝑜𝑐𝑘 consists
2https://dev.opencascade.org/doc/overview/html/occt_user_guides__modeling_algos.
html

of a𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 , a𝐶𝑜𝑛𝑣 (3, 𝑖𝑛, 𝑜𝑢𝑡) and a 𝑅𝑒𝐿𝑈 layer. All the𝑈𝑝𝐵𝑙𝑜𝑐𝑘

has a skip concatenation from the corresponding 𝐷𝑜𝑤𝑛𝐵𝑙𝑜𝑐𝑘 layer.

Data: For training data, we use the same split as the previous
work [Guo et al. 2022; Li et al. 2023b; Yan et al. 2021]. We use the
shape number from 0-800000 in ABC dataset for training, 800000-
900000 for validation and 900000-1000000 for testing. For each shape,
we use Poisson disk sampling to sample 10000 points and feed it into
NDC [Chen et al. 2022] to generate the UDF field and corresponding
gradient direction as the network input. As for the ground truth label
of the Voronoi diagram, we first voxelize the unit square bounding
box of the shape into a 2563 grid. Based on the annotation provided
by the ABC dataset, we compute and compare the nearest primitive
for each voxel. By definition, if two adjacent voxels have different
nearest primitives, there is a Voronoi boundary between them. We
label both voxels as the voxelized Voronoi boundaries and train the
network to predict this label. To learn local features, we split the
voxel grid into 323 local patches and train the network to predict the
Voronoi boundaries for each local patch. We also filter out patches
far from the actual shape (i.e., the distance to the shape is larger
than 0.3).

Training: We use Adam optimizer with a learning rate 0.0001
and a batch size 16. The weight of focal loss is set to 0.75 since
most of the voxels have negative labels. We also augment the data
by randomly flipping the input UDF field and the corresponding
ground truth label.

C ADDITIONAL RESULTS
We show the rest of representative shapes in Figs. 13, 14, 15, 16, 17, 18
and randomly selected shapes in Figs. 19, 20, 21, 22, 23.
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Fig. 13. Qualitative comparisons of representative cases (1/6).
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Fig. 14. Qualitative comparisons of representative cases (2/6).
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Fig. 15. Qualitative comparisons of representative cases (3/6).
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Fig. 16. Qualitative comparisons of representative cases (4/6).
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Fig. 17. Qualitative comparisons of representative cases (5/6).
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Fig. 18. Qualitative comparisons of representative cases (6/6).
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Fig. 19. Qualitative comparisons of randomly selected cases (1/5).
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Fig. 20. Qualitative comparisons of randomly selected cases (2/5).
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Fig. 21. Qualitative comparisons of randomly selected cases (3/5).
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Fig. 22. Qualitative comparisons of randomly selected cases (4/5).
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Fig. 23. Qualitative comparisons of randomly selected cases (5/5).
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