2307.16601v2 [cs.CV] 21 Jul 2024

arxXiv

Sampling to Distill: Knowledge Transfer from
Open-World Data

Yuzheng Wang', Zhaoyu Chen!, Jie Zhang?, Dingkang Yang!, Zuhao Ge', Yang Liu', Siao Liu',
Yunquan Sun', Wengiang Zhang'-*", Lizhe Qi'*

'Academy for Engineering & Technology, Fudan University, Shanghai, China

2ETH Zurich

3Engineering Research Center of Al & Robotics, Ministry of Education, Academy for Engineering & Technology,
Fudan University, Shanghai, China

Abstract—Data-Free Knowledge Distillation (DFKD) is a novel
task that aims to train high-performance student models using
only the pre-trained teacher network without original training
data. Most of the existing DFKD methods rely heavily on
additional generation modules to synthesize the substitution data
resulting in high computational costs and ignoring the massive
amounts of easily accessible, low-cost, unlabeled open-world
data. Meanwhile, existing methods ignore the domain shift issue
between the substitution data and the original data, resulting in
knowledge from teachers not always trustworthy and structured
knowledge from data becoming a crucial supplement. To tackle
the issue, we propose a novel Open-world Data Sampling Distil-
lation (ODSD) method for the DFKD task without the redundant
generation process. First, we try to sample open-world data
close to the original data’s distribution by an adaptive sampling
module and introduce a low-noise representation to alleviate the
domain shift issue. Then, we build structured relationships of
multiple data examples to exploit data knowledge through the
student model itself and the teacher’s structured representation.
Extensive experiments on CIFAR-10, CIFAR-100, NYUv2, and
ImageNet show that our ODSD method achieves state-of-the-art
performance with lower FLOPs and parameters. Especially, we
improve 1.50%-9.59% accuracy on the ImageNet dataset and
avoid training the separate generator for each class.

Index Terms—Data-Free Knowledge Distillation, Open-World
Unlabeled Data, Contrastive Learning, Relational Distillation

I. INTRODUCTION

Deep learning has made refreshing progress in computer
vision and multimedia fields [1[], [20], [31, [4], [5], [6], [7],
(801, (90, [10], [L1], [12], [13]], [14]. Despite the great success,
large-scale models [[13]], [16], [17], [18], [19], [20], [211], [22],
[23], [24]], [25], [26] and unavailable privacy data [27]], [28]],
[29], [30], [31] often impede the application of advanced
technology on mobile devices. Therefore, model compression
and data-free technology have become the key to breaking the
bottleneck. To this end, Lopes et al. [32] propose Data-Free
Knowledge Distillation (DFKD). In this process, knowledge
is transferred from the cumbersome model to a small model
that is more suitable for deployment without using the original
training dataset. As a result, this widely applicable technology
has gained much attention.

To replace unavailable private data and effectively train
small models, most existing data-free knowledge distillation
methods rely on alternately training of the generator and the
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Fig. 1: Comparison of (a) generation-based and (b) sampling-
based methods. The sampling-based process utilizes the open-
world unlabeled data to distill the student network, so it
does not need additional generation costs. At the same time,
the extra knowledge in these unlabeled data enriches the
knowledge representation from the teacher.

student, called the generation-based method. Despite not using
the original training data, these generation-based methods have
many issues. First, their trained generators are abandoned
after the students’ training [33l], [34], [35], [36], [37], [38].
The training of generators brings additional computational
costs, especially for large datasets. For instance, a thousand
generators are trained for the ImageNet dataset [39]], which in-
troduces more computational waste [40], [41]. Then, a serious
domain shift issue exists between the generated substitution
data and the original training data. Because the substitute
data are composed of random noise transformation without
supervision information and are highly susceptible to teacher
preferences [31]]. As a result, the efficiency and effectiveness
of the generation-based methods are constrained, affecting
student performance [37], [42]], [43].

Rather than relying on additional generation modules, Chen
et al. [44] propose a sampling-based method to train the stu-
dent network via unlabeled data without the generation calcu-
lations. Compared with generation-based methods, sampling-
based methods can avoid the training cost of generators,
thus improving algorithm efficiency. The comparison of the
two methods is shown in Figure I} Meanwhile, they try to
reduce label noise by updating the learnable noise matrix,
but the noise matrix’s computational costs are expensive.
More restrictedly, their sampling method relies on the strict



confidence ranking and does not consider the data domain
similarity issue (We discuss the distribution similarity between
sampled data and original data in detail in Section 4.4). In
addition, the existing generation-based and sampling-based
methods can be summarized as simple imitation learning, i.e.,
the student mimics the output of a particular data example
represented by the teacher [45], [S], [29]. Therefore, these
methods do not adequately utilize the implicit relationship
among multiple data examples, which leads to the lack of
effective knowledge expression in the distillation process.

Based on the above observations, we construct a sampling-
based method to sample helpful data from easily accessible,
low-cost, unlabeled open-world data, avoiding the unnecessary
computational costs of generation modules. In addition, we
propose two aspects of customized optimization. (i) To cope
with the domain shift issue between the open-world and orig-
inal data, we preferentially try to sample data with a similar
distribution to the original data domain to reduce the shifts and
design a low-noise knowledge representation learning module
to suppress the interference of label noise from the teacher
model. (ii) To explore the data knowledge adequately, we set
up a structured representation of unlabeled data to enable the
student to learn the implicit knowledge among multiple data
examples. As a result, the student can learn from carefully
sampled unlabeled data instead of relying on the teacher. At
the same time, to explore an effective distillation process,
we introduce a contrastive structured relationship between the
teacher and student. The student can make better progress
through the structured prediction of the teacher network.

In this paper, we consider a solution to the DFKD task that
does not require additional generation costs. On the one hand,
we look forward to the solution to data domain shifts from both
data source and distillation methods. On the other hand, we try
to explore an effectively structured knowledge representation
method to deal with the missing supervision information and
the training difficulties in the DFKD scenes. Therefore, we
propose an Open-world Data Sampling Distillation (ODSD)
method, which includes Adaptive Prototype Sampling (APS)
and Denoising Contrastive Relational Distillation (DCRD)
modules. Specifically, the primary contributions and experi-
ments are summarized as follows:

o We propose a sampling-based method with the unlabeled
open-world data. The method does not require additional
training of one or more generator models, thus avoiding
unnecessary computational costs and model parameters.

o During the sampling process, considering the domain
shifts between the unlabeled data and the original data,
we propose an Adaptive Prototype Sampling (APS) mod-
ule to obtain data closer to the original data distribution.

o During the distillation process, we propose a Denoising
Contrastive Relational Distillation (DCRD) module to
suppress label noise and exploit knowledge from data and
the teacher more adequately by building the structured
relationships among multiple samples.

e The proposed method achieves state-of-the-art perfor-
mance with lower FLOPs, improves the effectiveness of
the sampling process, and alleviates the distribution shift
between the unlabeled data and the original data.

II. RELATED WORK
A. Data-Free Knowledge Distillation

Data-free knowledge distillation aims to train lightweight
models when the original data are unavailable. Therefore, the
substitute data are indispensable to help transfer knowledge
from the cumbersome teacher to the flexible student. Accord-
ing to the source of these data, existing methods are divided
into generation-based and sampling-based methods.
Generation-based Methods. The generation-based methods
depend on the generation module to synthesize the substitute
data. Lopes et al. [32] propose the first generation-based
DFKD method, which uses the data means to fit the train-
ing data. Due to the weak generation ability, it can only
be used on a simple dataset such as the MNIST dataset.
The following methods combine the Generative Adversarial
Networks (GANs) to generate more authentic and reliable
data. Chen et al. [33] firstly put the idea into practice and
define an information entropy loss to increase the diversity
of data. However, this method relies on a long training time
and a large batch size. Fang et al. [34] suggest forcing the
generator to synthesize images that do not match between
the two networks to enhance the training effect. Hao et al.
[36] suggest using multiple pre-trained teachers to help the
student, which leads to additional computational costs. Do et
al. [37] propose a momentum adversarial distillation method
to help the student recall past knowledge and prevent the
student from adapting too quickly to new generator updates.
The same domain typically shares some reusable patterns, so
Fang et al. [41] introduce the sharing of local features of
the generated graph, which speeds up the generation process.
Since the generation quality is still not guaranteed, some
methods spend extra computational costs on gradient inversion
to synthesize more realistic data [46], [47]. In addition, Choi et
al. [48]] combine DFKD with other compression technologies
and achieve encouraging performance. However, generation-
based DFKD methods generate a large number of additional
calculation costs in generation modules, while these modules
will be discarded after students’ training [44].
Sampling-based Methods. To train the student more exclu-
sively, Chen et al. [44] propose to sample unlabeled data to
replace the unavailable data without the generation module.
Firstly, they use a strict confidence ranking to sample unla-
beled data. Then, they propose a simple distillation method
with a learnable adaptive matrix. Despite no additional gen-
erating costs and promoting encouraging results, their method
ignores the intra-class relationships of multiple unlabeled data.
Simultaneously, the simple strict confidence causes more data
to be sampled for simple classes, leading to imbalanced
data classes. In addition, their proposed distillation method is
relatively simple and lacks structured relationship expression,
which limits the student’s performance.

B. Contrastive Learning

Contrastive learning makes the model’s training efficient by
learning the data differences [49]. The unsupervised training
pipeline usually requires storing negative data by a memory
bank [50], large dictionaries [S1]], or a large batch size [52].
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Fig. 2: The pipeline of our proposed ODSD. First, all open-world unlabeled data passes through adaptive prototype sampling
so that the substitute dataset resembles the distribution of the original data. Then, based on these data, the student can make
progress through low-noise information representation, data knowledge mining, and structured knowledge from the teacher.

Even it requires a lot of computation costs, e.g., additional
normalization [53]], and network update operations [54]. The
high storage and computing costs seriously reduce knowledge
distillation efficiency. But at the same time, this idea of
mining knowledge in unlabeled data may be helpful for the
student’s learning. Due to such technical conflicts, there are
few methods to combine knowledge distillation and contrastive
learning in the past perfectly. As a rare attempt, Tian et
al. [55]] propose a contrastive data-based distillation method
by updating a large memory bank. However, data quality
cannot be guaranteed for data-free knowledge distillation, and
data domain shifts are intractable, making the above process
challenging.

In this work, we attempt to explore additional knowledge
from both the data and the teacher. Therefore, we further
stimulate students’ learning ability by using the internal re-
lationship of unlabeled data and constructing a structured
contrastive relationship. To our best knowledge, this is the first
combination of data-free knowledge distillation and contrastive
learning at a low cost during the distillation process, which
achieves an unexpected effect.

III. METHODOLOGY

A. Overview

Our pipeline includes two stages: (i) unlabeled data sam-
pling and (ii) distillation training, as shown in Figure 2] For
the sampling stage, we sample unlabeled data by an adaptive
sampling mechanism to obtain data closer to the original
distribution. For the distillation stage, the student learns the
knowledge representation after denoising through a spatial
mapping denoise module. Further, we mine more profound
knowledge of the unlabeled data and build the structured rela-
tional distillation to help the student gain better performance.
The complete algorithm is shown in Algorithm [T}

B. Adaptive Prototype Sampling

The unlabeled data and the original data are distributed
differently in many cases. To obtain the substitution data with a
more similar distribution to the original data from the specific
unlabeled dataset, we propose an Adaptive Prototype Sampling
(APS) module, which considers the teacher’s familiarity with
the data, excludes misclassified offset noisy data, and focuses
on the class balance of the sampled data. Based on these, we
design three score indicators to evaluate the effectiveness of
the unlabeled data for student training corresponding to the
above three aspects, including the data confidence score, the
data outlier score, and the class density score.

(a) Data Confidence Score. The teacher provides the pre-
diction logits P = [p1,...,pn] € R™*C on the unlabeled
dataset {xy, ..., T, }, where p; denotes the prediction for the
i-th sample satisfying p; € R'*C. n denotes the number
of data, and C denotes the number of classes. Then the
prediction is converted into the probability of the unified
scale as p; = o(p;), where o denotes the softmax layer and
p; denotes the confidence probability corresponding to the
predicted result class. Therefore, p = [p1,...,Ds] represents
the confidence of each data in the unlabeled dataset. We choose
the largest max{p} for normalization. The confidence score of
i-th sample x; can be calculated as: sc; = ﬁ.

(b) Data Outlier Score. The data distribution of the substi-
tution data and the original data is different. Therefore, the
confusing edge data should be excluded, i.e., the data with
different distributions but also predicted as the same target
class. For example, a tiger is predicted as the class of cat, as
shown in the orange part of Stage 1 in Figure 2] We first
separate the teacher predictions according to the predicted
classes as p; . = p; € c. For each class, p; . is clustered [56]
to explore the intra-class relationships through k layering as
te,i- Then the prediction features for the whole unlabeled
dataset can be expressed as a group of C'K prototypes as



Algorithm 1 The proposed ODSD algorithm.

Input: A frozen teacher network fr, an unlabeled open-world
dataset Xy;, and the target number of sampled data M.

1: Module 1: Adaptive pototype sampling

2: for unlabeled data x; in X;; do

3: Classify teacher predictions p; as p; . = p; € ¢;

4: Calculate confidence probability: p; = o(p;)

5: Cluster the prediction vector as the prototypes fic k.
6: end for

7: for Prototypes . in class ¢ do

8  Obtain prototype similarity: 6; = cos(pj c, fle.k )y
9: Calculate intra-class outliers mean: u, = n% > piecOis
10: Calculate the density score D, ﬁ

11: end for

12: Calculate sampling score: S = |m£{ﬁ}‘ |max o T

ax{D}|
gample top-M data with the highest score as X 4.

14: Module 2: Denoising contrastive relational distillation.
15: for ¢ in number of epochs do

16: for training data x in X4 do

17: Calculate L;,t4; as Eq.8 and update the student fg.
18: end for

19: end for

Output: The trained student fs and a reusable sampling list
L of the teacher fr on dataset Xy.

{e € R“C}S}f;, where ¢ denotes the c-th class, and
K denotes the hyperparameter representing the number of
prototypes for each class. The prototype centers of the c-th
class can be expressed as {Mc,k}szl- The outlier of each
unlabeled data x; can be calculated with the sum of the
prototype centers of its class as 0; = Zszl cos(pi,c, te,k)s
where cos denotes the cosine similarity metric. Similar to the
confidence score, we select the maximum value max{6} for
normalization. As a result, the outlier score can be calculated
as: so; = m
(c) Class Density Score. To help the student learn various
classes effectively, we calculate the class density for the class
balance of the sampled data. As shown in Stage 1 of Figure 2}
we increase the sampling range for classes with sparse data
(the blue part) while we reduce the sampling range for classes
with redundant data (the orange part). Based on this, we first
separate the above intra-class outliers 0; of all data by their
predicted classes. The outliers mean value of each class can be
calculated as u, = n% > piccOi, where n. is the number of the
data predicted as c-th class. Therefore, the Dcluster parameter
D, can be calculated as: D, = %, which reflects
the data density predicted to be c-th class. The introduction
of a constant C' (the number of classes) helps the numerical
stability when the available unlabeled data is small while
having little effect on the results when the amount of data
is sufficient (under normal conditions). After selecting the
maximum value max{D} for normalization, the density score
of each data can be calculated according to the predicted class
as sd; = Imai’w,when argmax(p;) = c.

Finally, we calculate the total score as Stotq; = SC;—S0;+5sd;.

Based on this, the data closer to the distribution of the original
data domain are sampled, which can help the student learn
better. The quantitative analysis is shown in Table

C. Denoising Contrastive Relational Distillation

After obtaining the high score data, the distillation process
can be carried out. We denote fr and fg as the teacher and
student networks and denote x as the data in sampled set X 4.
According to the definition [57], the knowledge distillation
loss is calculated as:

Lxp= Y Drr(fr(@)/ma fs(@)/ma), (1)

x€X

where Dy is the Kullback-Leibler divergence, and 734 is the
distillation temperature. Lxp allows the student to imitate
the teacher’s output. However, the main challenge is the
distribution differences between the substitute and original
data domains, leading to label noise interference. Simulta-
neously, the ground-truth labels are unavailable, so correct
information supervision is missing. Therefore, we propose a
Denoising Contrastive Relational Distillation (DCRD) module,
which includes a spatial mapping denoise component and a
contrastive relationship representation component to help the
student get better performance and mitigate label noise.
Spatial Mapping Denoise. The distribution in the unlabeled
data differs from the unavailable original data, which indicates
the inevitable label noise. Inspired by manifold learning [58]],
low dimensional information representation contains purer
knowledge with less noise interference [59]. Here, we utilize
a low-dimensional spatial mapping denoise component to help
the student learn low-noise knowledge representation. Based
on this, we perform eigendecomposition ¢ on the teacher’s
prediction and its transposed product matrix [60]. According
to the distance invariance, the autocorrelation matrix dfj in a
mini-batch as:

chﬂ = 2N - tr(Z:Z)), (2)

where N denotes the batch size, and ¢r(-) denotes the trace of a
matrix. Z; is the low-dimensional spatial vector representation
from the teacher calculated as ®(fr(x) - fr (z)) = Z; =
VtAi / 2, where V; is the eigenvalue, and A; is the eigen-
vector. Similarly, we can get the student predictions of low-
dimensional representation as Z. Then, we set up a distillation
loss to correct the impact of label noise by the spatial mapping
of the two networks. The spatial mapping denoise distillation
loss is calculated as:

Lo = G((fr(@)-f17 (@), @(fs(@)-fs" (@))) = ta(Ze, Z(s>)7
3
where /5, (-,-) denotes the Huber loss.
Contrastive Relational Distillation. The missing supervision
information limits the student’s performance. It is indispens-
able to adequately mine the knowledge in unlabeled data to
compensate for the lack of information. To avoid a single
imitation of a particular data example, we build two kinds
of structured relationships to mine knowledge from the data
and the teacher.



Firstly, the student can adequately explore the structured re-
lation among multiple unlabeled data by learning the instance
invariant. x;,x; are the different data in a mini-batch. We
calculate the prediction difference between data as follows:

[Ti®; — COS(fS(wi)7fs($j))/7' (4)
s T 2N )
D1 ki 08(fs (i), fs(mr)) /T
where 7 denotes contrastive temperature. Next, we can cal-
culate the consistency instance discrimination loss as:

N
1 _
‘Ccl = _N E 10g Z::jwj, (5)
=1

where Z; denotes the strong data augmentation of x;. This
unsupervised method is especially effective when the teacher
makes wrong results.

Secondly, we construct a structured contrastive relationship
between the teacher and student, which promotes consistent
learning between the teacher and student. The structured
knowledge transfer process is calculated as:

cos(fr(x;), fs(x}))/T
AN ’
D km ki COS(fr (), fs (@) /T
where ' = x UZ denotes the set of the sampled data
before and after strong data augmentation. And x’ contains

2N samples for each batch. We calculate the teacher-student
consistency loss as:

’
b
étsL =

(6)

1 2N ,
Lo = TON le()g I (7)
j:

The student can obtain better learning performance through the
mixed structured and consistent relationship learning between
the two networks. Then, the contrastive relational distillation
loss is L.=L. + Lo. Finally, we can get the total denoising
contrastive relational distillation loss as:

‘Ctotal = ['KD + /\1 Ln + /\2'LCa (8)

where A1, Ao are the trade-off parameters for training losses.

1V. EXPERIMENTS
A. Experimental Settings

Datasets. We evaluate the proposed ODSD method for the
classification and semantic segmentation tasks. For classifica-
tion, we evaluate it on widely used datasets: 32x 32 CIFAR-10,
CIFAR-100 [61], and 224 x 224 ImageNet [39]]. For semantic
segmentation, we evaluate the proposed method on 128 x 128
NYUv2 dataset [62]. Besides, the corresponding open-world
datasets are shown in Table [I, which is the same as DFND
[44] for a fair comparison.

Implementation Details. The proposed model is implemented
in PyTorch [63] and trained with RTX 3090 GPUs. For the
CIFAR-10 and CIFAR-100 datasets, we conduct five sets of
backbone combinations, set two groups of different numbers
of sampled samples (150k or 600k), and train the students
for 200 epochs. For the ImageNet dataset, we conduct three
sets of backbone combinations and train the students for 200
epochs. The number of sampled samples is 600k. For the

TABLE I: Illustration of original private data and their corre-
sponding substitute open-world datasets.

CIFAR
ImageNet

NYUvV2
ImageNet

Original data
Unlabeled data

ImageNet
FlickrIM

NYUv2 dataset, the DeeplabV3 [64] is used as the model
architecture followed previous work. The teacher uses ResNet-
50 [65] as the backbone, and the student uses mobilenetv2
[66]. We sample 200k unlabeled samples and train the student
for 20 epochs. For the above datasets, we set 7;4 as 4 to be
the same as other distillation methods and set 7 as 0.5 to be
the same as [52]. Besides, we set Ay as 10 and Ay as 0.5,
use the SGD optimizer with momentum as 0.9, weight decay
as 5 x 107%, the batch size N as 64, and cosine annealing
learning rate with an initial value of 0.025.

Baselines. We compare two kinds of DFKD methods. One is
to spend extra computing costs to obtain generation data by
generation module, including Deeplnv [46], CMI [47], DAFL
(331, ZSKT [35], DFED [36], DFQ [48]], Fast [41], MAD [37],
DFD [40]], KAKR [43]], SpaceshipNet [67], and DFAD [34].
Another is to use unlabeled data from easily accessible open
source datasets based on sampling, i.e., DFEND [44].

B. Performance Comparison

To evaluate the effectiveness of our ODSD, we comprehen-

sively compare it with current SOTA DFKD methods regarding
the student’s performance, the effectiveness of the sampling
method, and training costs.
Experiments on CIFAR-10 and CIFAR-100. We first verify
the proposed method on the CIFAR-10 and CIFAR-100 [61].
The baseline “Teacher” and “Student” means to use the
corresponding backbones of the teacher or student for direct
training with the original training data, and “KD” represents
distilling the student network with the original training data.
Generation-based methods include training additional genera-
tors and calculating model gradient inversion. Sampling-based
methods use the unlabeled ImageNet dataset. We reproduce
the DFND using the unified teacher models, and the result is
slightly higher than the original paper.

As shown in Table our ODSD has achieved the best
results on each baseline. Under most baseline settings, ODSD
brings gains of 1% or even higher than the SOTA methods,
even though students’ accuracy is very close to their teach-
ers. In particular, the students of our ODSD outperform the
teachers on some baselines. As far as we know, it is the first
DFKD method to achieve such performance. The main reasons
for its breakthrough in analyzing the algorithm’s performance
come from three aspects. First, our data sampling method
comprehensively analyzes the intra-class relationships in the
unlabeled data, excluding the difficult edge data and significant
distribution differences data. At the same time, the number of
data in each class is relatively more balanced, which is con-
ducive to all kinds of balanced learning compared with other
sampling methods. Second, our knowledge distillation method
considers the representation of low-dimensional and low-noise
information and expands the representation of knowledge
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TABLE II: Student accuracy (%) on CIFAR datasets. Bold and underline numbers denote the best and the second best results.

Dataset Method Type ResNet-34 VGG-11 WRN40-2 WRN40-2 WRN40-2
ResNet-18 ResNet-18 WRN16-1 WRN40-1 WRN16-2
Teacher 95.70 92.25 94.87 94.87 94.87
Student . 95.20 95.20 91.12 93.94 93.95
KD 95.58 94.96 92.23 94.45 94.52
Deeplnv [46] 93.26 90.36 83.04 86.85 89.72
CMI [47) 94.84 91.13 90.01 92.78 92.52
DAFL [33] 92.22 81.10 65.71 81.33 81.55
- ZSKT [35] 93.32 89.46 83.74 86.07 89.66
- DFED [36] - - 87.37 92.68 92.41
- DFQ [48] Generation 94.61 90.84 86.14 91.69 92.01
E Fast [41] 94.05 90.53 89.29 92.51 92.45
MAD [37] 94.90 . . : 92.64
KAKR_MB [43] 93.73 . . . .
KAKR_GR [43] 94.02 . . . -
SpaceshipNet [67] 95.39 92.27 90.38 93.56 93.25
DFND_150k [44] 94.18 91.77 87.95 92.56 92.02
DFND_600k [44) Sampling 95.36 91.86 90.26 93.33 93.11
ODSD_150k 95.05 92.02 89.14 92.94 92.34
ODSD_600k 95.70 92.55 91.53 94.31 94.02
Teacher 78.05 71.32 75.83 75.83 75.83
Student . 77.10 77.10 65.31 72.19 73.56
KD 77.87 75.07 64.06 68.58 70.79
Deeplnv [46] 61.32 54.13 53.77 61.33 61.34
CMI [47) 77.04 70.56 57.91 68.88 68.75
DAFL [33] 74.47 54.16 20.88 42.83 43.70
s ZSKT [35] 67.74 5431 36.66 53.60 54.59
= DFED [36] - - 41.06 60.96 60.79
. DFQ [48] Generation 77.01 66.21 51.27 54.43 64.79
= Fast [41] 74.34 67.44 54.02 63.91 65.12
© MAD [37] 77.31 . . . 64.05
KAKR_MB [43] 77.11 . . § .
KAKR_GR [43] 77.21 - - - -
SpaceshipNet [67] 77.41 71.41 58.06 68.78 69.95
DFND_150k [44] 74.20 69.31 58.55 68.54 69.26
DFND_600k [44) Sampling 74.42 68.97 59.02 69.39 69.85
ODSD_150k 77.90 72.24 60.55 71.66 72.42
ODSD_600k 78.45 72.71 60.57 72.71 73.20

through data augmentation. The structured relationship dis-
tillation method helps the student effectively learn knowledge
from both multiple data and its teacher. Finally, the knowledge
of our ODSD does not entirely come from the teacher but
also the consistency and differentiated representation learning
of unlabeled data, which is helpful when the teacher makes
mistakes. The previous methods ignore the in-depth mining of
data knowledge, decreasing students’ performance.

Experiments on ImageNet. We conduct experiments on a
large-scale ImageNet dataset to further verify the effectiveness.
Due to the larger image size, it is challenging to effectively
synthesize training data for most generation-based methods.
Most of them failed. A small number of methods train
1,000 generators (one generator for one class), resulting in
a large amount of additional computational costs. In this
case, our sampling method reduces the computational costs
more significantly. We set up three baselines to compare the

TABLE III: Student accuracy (%) on ImageNet dataset.

ResNet-50 ResNet-50  ResNet-50
Method Type ResNet-18 ResNet-50 MobileNetv2
Teacher 75.59 75.59 75.59
Student - 68.93 75.59 63.97
KD 68.10 74.76 61.67
DFD [40] 54.66 69.75 43.15
Deeplnvoy, [46] Generation - 68.00 -
Fastsg [41] 53.45 68.61 43.02
DFND [44] S i 42.82 59.03 16.03
ODSD amping 58.24 71.25 52.74

performance of our method with the SOTA methods. Table
reports the experimental results. Our ODSD still achieves
several percentage points increase compared with other SOTA
methods, especially in the cross-backbones situation (9.59%).



TABLE IV: Total FLOPs and params in DFKD methods.

TABLE VI: Segmentation results on NYUv2 dataset.

Method ‘ Deeplnv. CMI DAFL ZSKT DFQ DFND ODSD

FLOPs | 436G 4.56G 0.67G 0.67G 0.79G 0.56G 0.56G
params | 11.7M 12.8M 12.8M 12.8M 17.5M 11.7M 11.7"M

TABLE V: APS compared with the SOTA sampling method.

S li thod Method
ampling methods ' DEND  ODSD
Random 76.85  73.15  76.43
DEND 76.67 73.68  77.40
APS 7727 7389  77.90

Due to the lack of structured knowledge representation, the
DNFD algorithm performs poorly on the large-scale dataset.
Comparing DFND and ODSD, our structured framework im-
proves the overall understanding ability of the student.
Comparison of Training Costs. To verify that the generation-
based methods add extra costs that we mentioned in the
introduction section, we further calculate the total floating
point operations (FLOPs) and parameters (params) required by
various DFKD algorithms, as shown in Table Our method
only needs training costs and params of the student network
without additional generation modules. Our sampling process
introduces 256.78 seconds for sample selection (KX = 5) on the
CIFAR100 with a single RTX 3090 GPU (The teacher uses the
ResNet-34) while the fastest generation-based method ZSKT
also takes 1.54 hours to synthesize data. These generation
modules will be discarded after student training, which causes
a waste of computing power.

Comparison of Data Sampling Efficiency. To verify the sam-
pling mechanism’s effectiveness, we compare our APS method
with the current SOTA unlabeled data sampling method DFND
[44]). Three data sampling methods (random sampling, DFEND
sampling, and our proposed APS) are set on three different
distillation algorithms, including: KD [57]], DEND [44], and
our ODSD method. Table [V] reports the results. For KD, we
use the sampled data instead of the original generated data
with Lxp distillation loss. From the result, this setting is
competitive, even better than the distillation loss of DFND. For
DEND, we reproduce it with open-source codes and keep the
original training strategy unchanged. We find the performance
of the DFND sampling method is unstable, which causes
it to be lower than random sometimes. For ODSD, we use
the distillation loss in Equation (8). Our proposed sampling
method achieves the best performance in all three benchmarks
and significantly improves performance. By comprehensively
considering the data confidence, the data outliers, and the
class density, our ODSD can more fully mine intra-class
relationships of the unlabeled data. As a result, the sampled
data are more helpful for subsequent student learning.
Experiments about Semantic Segmentation. In addition to
image classification tasks, our algorithm can also effectively
solve the problem of DFKD in image semantic segmentation
on the NYUv2 dataset. Mean Intersection over Union (mloU)
is set as the segmentation evaluation metric. No generation

Teacher Student
0.517 0.375

Algorithm
mloU

DAFL DFAD Fast |DFND ODSD
0.105 0.364 0.366| 0.378 0.397

TABLE VII: Diagnostic studies of the proposed method.

Training objective £ ‘ Data sampling scores S

. Accuracy (%) . Accuracy (%)
ID ‘ Setting 50K 150k ID ‘ Setting S0k 150k
(1) ours 75.26 77.90 | (5) ours  75.26 77.90
2) wlo L, 74.82 77.71 | (6) | wlo sc; 73.96 77.04
3) wlo L. 7471 77.58 | (7) | wlo so; 68.07 76.67
@) | wlo L, L. 7439 7727 | 8) | wlo sd; 70.24  76.59

module is defined for our method, and other settings are the
same as DFAD [34]. Table shows segmentation results
on the NYUv2 dataset. Our ODSD also achieves the best
performance. Besides, we visualize the segmentation results
of different networks to get more convincing results as shown
in Figure [3| “Input” and “Ground Truth” represent the input
test data and their corresponding real labels. Most data-free
distillation algorithms hide the code of the segmentation part,
S0 it is not easy to make a visual comparison. Here, we choose
DFAD as the baseline algorithm of visualization. Our proposed
ODSD algorithm achieves better segmentation results than
DFAD, especially for object contour segmentation. The slight
noise around the contour is effectively suppressed. Further,
through in-depth mining the knowledge from the data and
teacher, our student have gained better understanding ability.

C. Diagnostic Experiment

We conduct the diagnostic studies on the CIFAR-100
dataset. We use ResNet-34 as the teacher’s backbone and
ResNet-18 as the student’s backbone. 50k and 150k data are
sampled. Other settings are the same as the Table
Distillation Training Objective. We first investigate our
overall training objective (cf. Equation (8)). Two different data
sampling numbers are set in this experiment. As shown in the
experiments (1-4) of Table the model with L p alone
achieves accuracy scores of 74.39% and 77.27% on 50k and
150k data sampling settings. Adding £, or L. individually
brings gains (i.e., 0.32%, 0.31%/ 0.43%, 0.44%), indicating
the effectiveness of our proposed distillation method. Our
method performs better with 75.26% and 77.90%. With the
above results, the proposed training objectives are effective
and can help the student gain better performance.

Data Sampling Scores. To verify the effectiveness of the three
sampling scores in section 3.2, we further conduct ablation
experiments. Using all scores, the model can achieve the best
performance with 75.26% and 77.90% accuracy shown in
experiments (5-8) of Table When the confidence score
sc; is abandoned, the familiarity of the teacher network with
the sampled data decreases, reducing the amount of adequate
information contained in the data. Without the outlier score
so0;, the lack of modeling of the intra-class relationship of
the data to be sampled leads to increased data distribution



Ground Truth

Teacher

ODSD (ours)

Fig. 3: Visualization segmentation results on the NYUv2 dataset.

Random APS (ours)

CIFAR-100

ImageNet

Fig. 4: t-SNE visualization of the data distributions on CIFAR-
100 and ImageNet datasets. Red dots denote original domain
data, while blue dots denote unlabeled sampling data. The
distance between dot groups reflects the similarity between
data domains. The data sampled by our APS method is more
similar to that of the original domain, effectively reducing
domain noise and improving learning performance.

difference between the substitute data domain and the original
data domain. Further, the class density score sd; can measure
the number of data in each class and maintain the balance of
the sampled data. In summary, all three score indicators can
help students perform better.

D. Visualization

To verify the distribution similarity between the sampled
data and the original data of our APS sampling method
and the DFND sampling method, we use t-SNE [68] to
visualize the data feature distribution. Teacher uses ResNet-

34 as the backbone on the CIFAR-100 and ResNet-50 as the
backbone on the ImageNet. For both datasets, we reserve 100
classes from validation data. In addition, we also visualize
the distribution of data obtained by random sampling as a
baseline reference. Figure [d] shows the data distribution results
of different sampling methods. Our clustering results are
closer to the extracted features of the original data. For the
more complex ImageNet, this advantage is further amplified.
Reducing the distribution difference between sampled and
original data helps reduce data label noise, which is the key
for the student to perform well.

V. CONCLUSION

Most existing data-free knowledge distillation methods rely
heavily on additional generation modules, bringing additional
computational costs. Meanwhile, these methods disregard the
domain shifts issue between the substitute and original data
and only consider the teacher’s knowledge, ignoring the data
knowledge. This paper proposes an Open-world Data Sam-
pling Distillation method. We sample unlabeled data with a
similar distribution to the original data and introduce low-
noise knowledge representation learning to cope with domain
shifts. To explore the data knowledge adequately, we design
a structured knowledge representation. Comprehensive exper-
iments illustrate the effectiveness of the proposed method,
which achieves significant improvement and state-of-the-art
performance on various benchmarks.
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