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Abstract
In the domain of multimedia and multimodal processing, the effi-
cient handling of diverse data streams such as images, video, and
sensor data is paramount. Model compression and multitask learn-
ing (MTL) are crucial in this field, offering the potential to address
the resource-intensive demands of processing and interpreting mul-
tiple forms of media simultaneously. However, effectively com-
pressing a multitask model presents significant challenges due
to the complexities of balancing sparsity allocation and accuracy
performance across multiple tasks. To tackle the challenges, we
propose AdapMTL, an adaptive pruning framework for MTL mod-
els. AdapMTL leverages multiple learnable soft thresholds inde-
pendently assigned to the shared backbone and the task-specific
heads to capture the nuances in different components’ sensitivity
to pruning. During training, it co-optimizes the soft thresholds
and MTL model weights to automatically determine the suitable
sparsity level at each component to achieve both high task accu-
racy and high overall sparsity. It further incorporates an adaptive
weighting mechanism that dynamically adjusts the importance of
task-specific losses based on each task’s robustness to pruning. We
demonstrate the effectiveness of AdapMTL through comprehensive
experiments on popular multitask datasets, namely NYU-v2 and
Tiny-Taskonomy, with different architectures, showcasing superior
performance compared to state-of-the-art pruning methods.
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1 Introduction
In the landscape of multimedia and multimodal processing [2, 40],
Deep Neural Networks (DNNs) [46] have emerged as a pivotal tech-
nology, powering advancements across a spectrum of applications
from image and video analysis to natural language understanding
and beyond. Their profound ability to learn and abstract complex
features from a range of media forms underpins their utility in di-
verse domains, including content categorization, recommendation
systems, and interactive interfaces. However, as the complexity
of tasks grows, so does the demand for larger and more powerful
models, which in turn require substantial computational resources,
memory usage, and longer training times. This trade-off between
performance and model complexity has led to a continuous pursuit
of more efficient and compact CNN [24] architectures, as well as
innovations in pruning techniques that can maintain high perfor-
mance without compromising the benefits of the model’s scale.

Pruning techniques [13, 19, 23, 25–27, 36, 48] have emerged as a
promising approach to compress large models without significant
loss of performance. These techniques aim to reduce the size of
a model by eliminating redundant or less important parameters,
such as neurons, connections, or even entire layers, depending on
the method employed [9, 28, 62]. Parameter-efficient pruned mod-
els can provide significant inference time speedups by exploiting
the sparsity pattern [14, 31, 57, 61]. These models are designed
to have fewer parameters, which translates into reduced memory
footprint and lower computational complexity (FLOPs) [31]. By
leveraging specialized hardware and software solutions that can
efficiently handle sparse matrix operations, such as sparse matrix-
vector multiplication (SpMV), these models can achieve faster infer-
ence times [14, 39, 56]. Additionally, sparse models can benefit from
better cache utilization, as they require less memory bandwidth,
thereby reducing the overall latency of the computation [41, 61].

Although many techniques have been proposed in the past for
pruning a single-task model, there is much less work in pruning a
multitask model. Multitask models, which are designed to simul-
taneously handle multiple tasks, have become increasingly pop-
ular due to their ability to share representations and learn more
effectively from diverse data sources [16, 65, 68]. These models
have found wide-ranging applications where tasks are often related
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Figure 1: Overview of pruning a dense multitask model. The
red parts represent the shared backbone, and the leaf boxes
represent the task-specific heads. In the sparse model, the
blank spaces indicate the pruned parameters.

and can benefit from shared knowledge [66]. A compact multitask
model, which is shown in Figure 1, has the potential to deliver
high performance across various tasks while minimizing resource
requirements, making it well-suited for deployment on resource-
constrained devices or in real-time scenarios.

Traditional pruning techniques, which are primarily focused
on single-task models, may not be directly applicable or sufficient
for multitasking settings. Recent work has started to explore the
intersection of multitask learning and pruning. Disparse [52] con-
sidered each task independently by disentangling the importance
measurement and taking the unanimous decisions among all tasks
when performing parameter pruning and selection. A parameter
is removed if and only if it’s shown to be not critical for any task.
However, as the number of tasks increases, it becomes challenging
to achieve unanimous selection agreement among all tasks, which
could negatively affect the average performance across tasks. Thus,
there is a need for novel compression approaches that cater to the
complexities of multitask models, taking into account the inter-
dependencies between tasks, the sharing of representations, and
the different sensitivity of task heads.

To tackle the challenges, we conduct extensive experiments that
reveal two valuable insights on designing an effective multitask
model pruning strategy. First, the shared backbone and the task-
specific heads have different sensitivity to pruning and thus should be
treated differently. However, current state-of-the-art approaches do
not adequately recognize this aspect, leading to equal treatment of
each component during pruning, rather than accounting for their
varying sensitivities. Second, the change in training loss could serve
as a useful guide for allocating sparsity among different components.
If the training loss of a specific task tends to be stable, we can prune
more aggressively on that component, as the task head is robust
to pruning. On the contrary, if the loss of a specific task fluctuates
significantly, we should consider pruning less on that component
since the training is less likely to converge at higher sparsity levels.

Motivated by these observations, we propose AdapMTL, an adap-
tive pruning framework for MTLmodels. AdapMTL dynamically ad-
justs sparsity across different components, such as the shared back-
bone and task-specific heads based on their sensitivity to pruning,

while preserving accuracy for each task. This is achieved through
a set of learnable soft thresholds [10, 23] that are independently
assigned to different components and co-optimized with model
weights to automatically determine the suitable sparsity level for
each component during training. Specifically, we maintain a set of
soft thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } in each component, where
𝛼𝐵 represents the threshold for the shared backbone and 𝛼𝑡 repre-
sents the threshold for the 𝑡-th task-specific head. In the forward
pass, only the weights larger than the threshold 𝛼 will be counted
in the model, while others are set to zero. In the backward pass, we
automatically update all the component-wise thresholds 𝛼 , which
will smoothly introduce sparsity. Additionally, AdapMTL employs
an adaptive weighting mechanism that dynamically adjusts the im-
portance of task-specific losses based on each task’s robustness to
pruning. AdapMTL does not require any pre-training or pre-pruned
models and can be trained from scratch.

We conduct extensive experiments on two popular multitask
datasets: NYU-v2 [47] and Tiny-Taskonomy [63], using different
architectures such as Deeplab-ResNet34 and MobileNetV2. When
compared with state-of-the-art pruning and MTL pruning methods,
AdapMTL demonstrates superior performance in both the training
and testing phases. It achieves lower training loss and better nor-
malized evaluation metrics on the test set across different sparsity
levels. The contributions of this paper are summarized as follows:

(1) We conduct extensive experiments that reveal valuable in-
sights in designing effective MTL model pruning strategies.
These findings motivate the development of novel pruning
strategies specifically tailored for multitasking scenarios.

(2) We propose AdapMTL, an adaptive pruning framework for
MTL models that dynamically adjusts sparsity levels across
different components to achieve high sparsity and task ac-
curacy. AdapMTL features component-wise learnable soft
thresholds that automatically determine the suitable sparsity
for each component during training and an adaptive weight-
ing mechanism that dynamically adjusts task importance
based on their sensitivity to pruning.

(3) We demonstrate the effectiveness of AdapMTL through ex-
tensive experiments on multitask datasets with different
architectures, showcasing superior performance compared
to SOTA pruning and MTL pruning methods. Our method
does not require any pre-training or pre-pruned models.

2 Related Work
Multitask Learning.Multitask learning (MTL)[1, 4, 12, 65] aims
to learn a single model to solve multiple tasks simultaneously by
sharing information and computation among them, which is es-
sential for practical deployment. Over the years, various MTL ap-
proaches have been proposed, including hard parameter sharing[3],
soft parameter sharing [59], and task clustering [22]. In hard pa-
rameter sharing, a set of parameters in the backbone model are
shared among tasks while in soft parameter sharing, each task
has its own set of parameters, but the difference between the pa-
rameters of different tasks is regularized to encourage them to
be similar. MTL has been successfully applied to a wide range of
applications, such as natural language processing [8, 18, 29], com-
puter vision [17, 30, 44, 58], and reinforcement learning [42, 54].
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Subsequently, the integration of neural architecture search (NAS)
with MTL has emerged as a promising direction. NAS for MTL,
exemplified by works like MTL-NAS [15], Learning Sparse Sharing
Architectures for Multiple Tasks [51], and Controllable Dynamic
Multi-Task Architectures [43], focuses on discovering optimal archi-
tectures that can efficiently learn shared and task-specific features.
These approaches, including Adashare [53] and AutoMTL [64],
demonstrate the potential of dynamically adjusting architectures
to the requirements of multiple tasks, optimizing both performance
and computational efficiency.

Pruning. Pruning techniques have been widely studied to re-
duce the computational complexity of deep neural networks while
maintaining their performance. Early works on pruning focused on
unstructured weight pruning [20, 25], where unimportant weights
were removed based on a given criterion, and the remaining weights
were fine-tuned. There are different kinds of criterion metrics,
such as magnitude-based [20, 27], gradient-based [36, 37], Hessian-
based [21], connection sensitivity-based [26, 33, 48], and so on.
Other works explored structured pruning [57, 67], which removes
entire filters or channels, leading to more efficient implementations
on hardware platforms. Recently, the lottery ticket hypothesis [13]
has attracted considerable attention, suggesting that dense, ran-
domly initialized neural networks contain subnetworks (winning
tickets) that can be trained to achieve comparable accuracy with
fewer parameters. This has led to follow-up works [13, 32, 38] that
provide a better understanding of the properties and initialization
of winning tickets. Single-Shot Network Pruning (SNIP) [26] is
a data-driven method for pruning neural networks in a one-shot
manner. By identifying an initial mask to guide parameter selection,
it maintains a static network architecture during training. Some
other work, like the layer-wise pruning method [23], inspiringly
attempts to learn a layer-wise sparsity for individual layers rather
than considering the network as a whole. This approach allows for
fine-grained sparsity allocation across layers. To reduce the total
time involved in pruning and training, pruning during training
techniques [11, 35, 39] have been proposed to directly learn sparse
networks without the need for an iterative pruning and finetuning
process. These methods involve training networks with sparse con-
nectivity from scratch, updating both the weights and the sparsity
structure during the training process.

Pruning forMultitask Learning.Recently, attention has shifted
to the intersection of MTL and pruning techniques. A compact mul-
titask model has the potential to deliver high performance across
various tasks while minimizing resource requirements, making
it well-suited for deployment on resource-constrained devices or
in real-time scenarios. For example, MTP [6] focuses on efficient
semantic segmentation networks, demonstrating the potential of
multitask pruning to enhance performance in specialized domains.
Similarly, the work by Cheng et al.[7] introduces a novel approach
to multi-task pruning through filter index sharing, optimizing
model efficiency through a many-objective optimization frame-
work. Additionally, Ye et al.[60] propose a global channel pruning
method tailored for multitask CNNs, highlighting the importance
of performance-aware approaches in maintaining accuracy while
reducingmodel size. Disparse [52] proposes joint learning and prun-
ing methods to achieve efficient multitask models. However, these

methods often neglect the importance of the shared backbone, lead-
ing to equal treatment of each component during pruning, rather
than accounting for their varying importance. Our work aims to
address this limitation by adaptively allocating sparsity across the
shared backbone and task-specific heads based on their importance
and sensitivity.

3 Methodology
3.1 Preliminary
We formulate multitask model pruning as an optimization prob-
lem. Given a dataset D = {(𝑥𝑖 ; 𝑦𝑖1, 𝑦

𝑖
2, ..., 𝑦

𝑖
𝑡 ), 𝑖 ∈ [1, 𝑁 ]}, a set of T

tasks T = {𝑡1 𝑡2 ..., 𝑡𝑇 }, and a desired sparsity level 𝑠 (i.e. the per-
centage of zero weights), the multitask model pruning aims to find
a sparse weight𝑊 that minimizes the sum of task-specific losses.
Mathematically, it is formulated as:

min
𝑊

L(𝑊 ;D) = min
𝑊

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

L𝑡 (𝑓 (𝑊,𝑥𝑖 );𝑦𝑖𝑡 )

s. t. 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,

(1)

where the L(·) is the total loss function, L𝑡 (·) is the task-specific
loss for each individual task 𝑡 , 𝑊 are the parameters of neural
network to be learned, 𝑃 is the total number of parameters and
∥ · ∥0 denotes the ℓ0-norm, i.e. the number of non-zero weights.
The key challenge here is how to enforce sparsity on weight𝑊
while minimizing the loss. This involves finding an optimal balance
between maintaining the performance of each task and pruning the
model to achieve the desired sparsity level. We next describe our
proposed adaptive pruning algorithm that can effectively handle the
unique characteristics of multitask models and efficiently allocate
sparsity across different components to preserve the overall model
performance.

3.2 Adaptive Multitask Model Pruning
Multitask models typically have a backbone shared across tasks
and task-specific heads. We observe that these different model com-
ponents have different sensitivities to pruning and thus should
be treated differently. The challenge lies in how to automatically
capture the sensitivity of each model component to pruning and
leverage the signal to automatically allocate sparsity across com-
ponents. To address the challenge, we propose a component-wise
pruning framework that assigns different learnable soft thresh-
olds to each component to capture its sensitivity to pruning. The
framework then co-optimizes the thresholds with model weights
to automatically determine the suitable sparsity level for each com-
ponent during training.

Specifically, we introduce a set of learnable soft thresholds 𝛼 =

{𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } for each component, where 𝛼𝐵 represents the
threshold for the shared backbone and 𝛼𝑡 represents the threshold
for the 𝑡-th task-specific head. The thresholds 𝛼 are determined
based on the significance and sensitivity of the respective compo-
nents and are adaptively updated using gradient descent during the
backpropagation process. The soft threshold 𝛼𝑡 and sparse weight
𝑊𝑡 for each component can be computed as follows:
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Figure 2: Difference between hard and soft thresholding.
Hard thresholding causes abrupt weight discontinuities dur-
ing training, while soft thresholding ensures a smooth rela-
tionship for consistent learning.

𝑆 (𝑊𝑡 , 𝛼𝑡 ) = 𝑠𝑖𝑔𝑛(𝑊𝑡 ) · 𝑅𝑒𝐿𝑈 ( |𝑊𝑡 |−𝛼𝑡 )
𝛼𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init),

(2)

where 𝜃init is a learnable parameter that controls the initial pruning
threshold 𝛼𝑡 . We will discuss the choice of 𝜃init in the supplemen-
tary material. The 𝑅𝑒𝐿𝑈 (·) function here is used to set zero weights.
In other words, if some weights |𝑊𝑡 | are less than the threshold 𝛼𝑡 ,
then the sparse version of this weight 𝑆 (𝑤𝑡 , 𝛼𝑡 ) is set to 0. Other-
wise, we obtain the soft-thresholding version of this weight.

The reason why we choose soft thresholding [55] rather than
hard thresholding is illustrated in Figure 2. Soft parameter sharing is
the best fit for our approach as it allows us to calculate the gradient
and perform the backpropagation process more effectively.

AdapMTL reformulates the pruning problem in Equation 1 to find
a set of optimal thresholds 𝛼 = {𝛼𝐵, 𝛼1, 𝛼2, ..., 𝛼𝑇 } across different
components as follows:

min
𝑊,𝛼

L(𝑊,𝛼 ;D) = min
𝑊𝑡 ,𝛼𝑡

1
𝑁

𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝛽𝑡 · L𝑡 (𝑓 (𝑆 (𝑊𝑡 , 𝛼𝑡 ), 𝑥𝑖 );𝑦𝑖𝑡 )

s. t. 𝛼 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃init), 𝑊 ∈ R𝑑 , ∥𝑊 ∥0 ≤ (1 − 𝑠) · 𝑃,
(3)

where the 𝛽𝑡 represents the adaptive weighting factor for 𝑡-th task,
which will be elaborated in Section 3.3.

We next describe howAdapMTL optimizes the problem in Equan-
tion 3. Considering a multitask model with T tasks, we divide the
weight parameters into𝑊 = {𝑊𝐵,𝑊1,𝑊2, ...,𝑊𝑇 }, where𝑊𝐵 rep-
resents the weight parameters for the shared backbone and𝑊𝑡

represents the weight parameters for the 𝑡-th task-specific head.
We derive the gradient descent update equation at the 𝑛-th epoch
for𝑊𝑡 as follows:

𝑊 𝑛+1
𝑡 =𝑊 𝑛

𝑡 − 𝜂𝑛
𝜕L(𝑊,𝛼 ;D)

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

⊙
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

𝜕𝑊 𝑛
𝑡

=𝑊 𝑛
𝑡 − 𝜂𝑛

𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 )

⊙ B𝑛
𝑡 ,

(4)

where 𝜂𝑛 is the learning rate at the 𝑛-th epoch. We use the partial
derivative to calculate the gradients. As mentioned earlier, different
task heads may have varying sensitivities to pruning and, conse-
quently, may require different levels of sparsity to achieve the best
accuracy. By setting a set of learnable parameters for each com-
ponent and treating them separately during the backpropagation

Figure 3: Breakdown of component-wise sparsity allocation
during training. We use the ResNet34 backbone and achieve
90% overall sparsity in the end.

process, our component-wise pruning framework can effectively
account for these differences in sensitivity and adaptively adjust
the sparsity allocation for each component.

Although 𝜕𝑆 (𝑊 𝑛
𝑡 ,𝛼𝑛

𝑡 )
𝜕𝑊 𝑛

𝑡
is non-differentiable, we can approximate

the gradients using the sub-gradient method. In this case, we in-
troduce B𝑡𝑛 , an indicator function that acts like a binary mask.
The value of B𝑛

𝑡 should be 0 if the sparse version of the weight
𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) is equal to 0. This indicator function facilitates the ap-

proximation of gradients and the update of the sparse weights and
soft thresholds during the backpropagation process. Mathemati-
cally, the indicator function is:

B𝑛
𝑡 =

{
0, if 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) = 0 ,

1, otherwise.
(5)

By updating the sparse weights𝑊𝑡 , and similarly the soft thresh-
olds 𝛼𝑡 , for each component in this manner (the derivation process
is provided in the supplementary material), the framework can ef-
fectively and discriminatively allocate sparsity across the multitask
model. By taking into account the significance and sensitivity of
each component, this approach ultimately leads to more efficient
and accurate multitask learning.

3.3 Adaptive Weighting Mechanism
This subsection introduces the adaptive weighting mechanism that
dynamically adjusts the weight of each task loss based on each
task’s robustness to pruning. The adaptive weighting mechanism
determines the 𝛽𝑡 for the 𝑡-th task in Equation 3 during training.

The rationales behind the proposed adaptive weighting mech-
anism are two folds. First, if the training loss of a specific task 𝑡

tends to be stable, then we can assign a higher weighting factor 𝛽𝑡
and subsequently prune more aggressively on that component, as
the task head is robust to pruning. On the contrary, if the loss of a
specific task fluctuates significantly, we should consider pruning
less on that component by lowering the weighting factor since
the training is less likely to converge at higher sparsity levels. The
weighting factor is learned in an adaptive way, eliminating the need
for manual effort to fine-tune the hyper-parameters elaborately.
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Second, the adaptive weighting mechanism should automatically
consider different multitask model architectures as well. The ratio
of backbone to task head weights, 𝑊𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒

𝑊ℎ𝑒𝑎𝑑
, matters because it may

be beneficial to focus more on pruning the task heads instead if the
backbone is already highly compact. For example, in MobileNet-V2,
the backbone has only 2.2M parameters, which is 25 times fewer
than the task head.

We define a set of adaptive weights 𝛽 = {𝛽𝐵, 𝛽1, 𝛽2, ..., 𝛽𝑇 }, where
𝛽𝐵 represents the weighting factor for the shared backbone, 𝛽𝑡
represents the weighting factor for the 𝑡-th task-specific head. The
weighting factor can be formulated as follows:

𝛽𝑡 =

(
𝜎Lwindow

𝑡

/
L𝑡

1
T
∑T
𝑡=1 (𝜎Lwindow

𝑡

/
L𝑡 )

)−1
· 𝜆 |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒∑T

𝑡=1 |𝑊𝑡 |ℎ𝑒𝑎𝑑
. (6)

Here, 𝜎Lwindow
𝑡 is the average deviation of the loss within the

sliding window for the 𝑡-th task, which is then divided by L𝑡 to
normalize the scale. We divide it by the sum of all tasks to normalize
between different tasks. The (·)−1 is a multiplicative inverse. 𝜆 is a
scaling factor, and we will discuss the choice of 𝜆 for different ar-
chitectures in the supplementary material. |𝑊𝐵 |𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 , |𝑊𝑡 |ℎ𝑒𝑎𝑑
represent the weight parameters of shared backbone and 𝑡-th task-
specific head, separately. The right ratio in the equation reveals
the importance of each component by considering their relative
parameterizing contributions to the overall model structure. The
weighting factor 𝛽𝑡 is used to guide the pruning for the task-specific
head, depending on the stability of its loss and its contribution to
the model.

To make the multitask pruning more robust, we incorporate
a sliding window mechanism that tracks the past loss values to
calculate the average 𝜎Lwindow in Equation 6 instead of relying
solely on the variance between two adjacent epochs. This approach
provides a more stable and reliable estimation of the fluctuations in
the task losses, as it accounts for a larger number of samples and
reduces the impact of potential outliers or short-term variations.

4 Experiments
4.1 Experiment Settings
4.1.1 Datasets and tasks. We conduct the experiments on two pop-
ular multi-task datasets: NYU-v2 [47], and Tiny-Taskonomy [63].
The NYU-v2 dataset is composed of RGB-D indoor scene images
and covers three tasks: 13-class semantic segmentation, depth es-
timation, and surface normal prediction. The training set consists
of 795 images, while the testing set includes 654 images. For the
Tiny-Taskonomy dataset, the experiments involve joint training
on five tasks: Semantic Segmentation, Surface Normal Prediction,
Depth Prediction, Keypoint Detection, and Edge Detection. The
training set includes 1.6 million images, while the test set comprises
0.3 million images. The training set includes 1.6 million images from
25 different classes, while the test set comprises 0.3 million images
across 5 classes.

4.1.2 Evaluation Metrics and Loss Functions. We adopt a range of
evaluation metrics for different tasks, evaluating the model perfor-
mance at different sparsity levels to provide a comprehensive view
of the model’s effectiveness and robustness across tasks. On the

NYUv2 dataset, there are totally three tasks. For Semantic Segmen-
tation, we employ the mean Intersection over Union (mIoU) and
Pixel Accuracy (Pixel Acc) as our primary evaluation metrics and
use cross-entropy to calculate the loss. Surface normal prediction
uses the inverse of cosine similarity between the normalized pre-
diction and ground truth, and is performed using mean and median
angle distances between the prediction and the ground truth. We
also report the percentage of pixels whose prediction is within the
angles of 11.25°, 22.5°, and 30° to the ground truth. Depth estimation
utilizes the L1 loss, with the absolute and relative errors between
the prediction and ground truth being calculated. Again, We also
present the relative difference between the prediction and ground
truth by calculating the percentage of 𝛿 =𝑚𝑎𝑥 ( 𝑦𝑝𝑟𝑒𝑑𝑦𝑔𝑡

,
𝑦𝑔𝑡

𝑦𝑝𝑟𝑒𝑑
) within

the thresholds of 1.25, 1.252, and 1.253. On the Taskonomy dataset,
there are two more tasks. In the context of both the Keypoint and
Edge Detection tasks, the mean absolute error compared to the
provided ground-truth map serves as the main evaluation metric.

In multitask learning scenarios, tasks involve multiple evaluation
metrics with values potentially at different scales. To address this,
we compute a single relative performance metric following the
common practice [34] [50].

△𝑇𝑖 =
1
|𝑀 |

|𝑀 |∑︁
𝑗=1

(−1)𝑙 𝑗 · (𝑀𝑇𝑖 , 𝑗 −𝑀𝐷𝑀,𝑗 )/𝑀𝐷𝑀,𝑗 ∗ 100% (7)

where 𝑙 𝑗 = 1 if a lower value shows better performance for the
metric𝑀𝑗 and 0 otherwise.𝑀𝑇𝑖 , 𝑗 , 𝑀𝐷𝑀,𝑗 are the sparse and dense
model value of metric 𝑗 , respectively. The △𝑇𝑖 is defined to compare
results with their equivalent dense task values and the overall
performance is obtained by averaging the relative performance
across all tasks, denoted as △𝑇 = 1

𝑇

∑𝑇
𝑖=1 △𝑇𝑖 , This metric provides

a unified measure of relative performance across tasks. Eventually,
by employing these diverse evaluation metrics, we can effectively
assess the performance of our method as well as the counterparts
across various tasks and datasets.

4.1.3 Baselines for Comparison. We compare ourworkwith LTH [13],
IMP [19], SNIP [26], and DiSparse [52]. For LTH, we first train a
dense model and subsequently prune it until the desired sparsity
level is reached, yielding the winning tickets (sparse network struc-
ture). We then reset the model to its initial weights to start the
sparse training process. For IMP, we iteratively remove the least
important weights, determined by their magnitudes. For SNIP and
IMP, we directly use the official implementation provided by the au-
thors from GitHub. For DiSparse, the latest multitask pruning work
and first-of-its-kind, we utilize the official PyTorch implementation
and configure the method to use the DiSparse dynamic mechanism,
which is claimed as the best-performing approach in the paper. We
also train a fully dense multitask model as our baseline, which will
be used to calculate a single relative performance metric Norm.
Score.

We use the same backbonemodel at the same sparsity level across
all methods for a fair comparison. In our work, we define overall
sparsity as the percentage of weights pruned from the entire MTL
model, which includes both the shared backbone and task-specific
heads.We utilize Deeplab-ResNet34 [5] andMobileNetV2 [45] as the
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Table 1: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the Deeplab-ResNet34 backbone.
Each pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all
three tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity
allocation for each component.

Model
𝑇1 : Semantic Seg. 𝑇2 : Surface Normal Prediction 𝑇3 : Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle 𝜃 ,within ↑ △𝑇2↑
Error ↓ △, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model (baseline) 25.54 57.91 0.00 17.11 14.95 36.35 72.25 85.44 0.00 0.55 0.22 65.21 89.87 97.52 0.00 - 0.00
SNIP [26] 24.09 55.32 -10.15 16.94 14.93 36.17 72.39 86.98 2.63 0.61 0.23 60.61 87.88 96.77 -25.49 85.46 90.24 92.28 91.17 -11.00
LTH [13] 25.42 57.98 -0.35 16.73 15.08 35.20 72.35 87.22 0.41 0.57 0.22 60.93 88.64 96.20 -12.92 78.32 90.54 95.21 95.49 -4.29
IMP [19] 25.68 57.86 0.46 16.86 15.18 35.53 71.96 86.26 -1.77 0.56 0.22 65.23 89.29 97.53 -3.82 74.98 92.34 97.23 95.15 -1.71
DiSparse [52] 25.71 58.08 0.96 17.03 15.23 35.10 71.85 86.22 -4.48 0.57 0.22 64.93 88.64 97.20 -5.76 75.07 90.41 98.51 94.86 -3.10
AdapMTL w/o adaptive thresholds 25.59 57.53 -0.46 17.26 15.75 36.21 71.53 85.91 -7.06 0.58 0.22 62.52 87.12 96.50 -13.68 79.12 89.37 96.85 95.74 -7.07
AdapMTL (ours) 26.28 58.29 3.55 16.92 14.91 36.36 72.97 86.29 3.41 0.55 0.22 65.39 89.93 97.58 0.38 71.74 93.18 99.26 96.22 2.45
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Figure 4: Comparison of state-of-the-art methods, including DiSparse [52], LTH [13], SNIP [26], and IMP [19], on the NYUv2
dataset, evaluated with different MTL backbones and under various sparsity settings.

backbone models, and the Atrous Spatial Pyramid Pooling (ASPP)
architecture [5] as the task-specific head. Both of them are popular
architectures for pixel-wise prediction tasks. We share a common
backbone for all tasks while each task has an independent task-
specific head branching out from the final layer of the backbone,
which is widely used in multitasking scenarios.

4.2 Experiment Results
4.2.1 Results on NYU-V2. We first present the comparison results
with state-of-the-art methods on the NYU-V2 dataset in table 1.
Overall, AdapMTL outperforms all other methods by a significant
margin across most metrics and achieves the highest △𝑇 . Recall
that the major difference between our method and the baselines
lies in our ability to adaptively learn the sparsity allocation across
the components adaptively, maintaining a dense shared backbone
(71.74%) while keeping the task-specific heads relatively sparse.
Within the scope of our research, we characterize overall sparsity
as the percentage of weights pruned from the entire MTL model,
which includes both the shared backbone and task-specific heads.

SNIP [26] exhibits the lowest performance in the multi-task sce-
nario because its pruning mask is determined from a single batch of
data’s gradient, which treats all components, including the shared
backbone, equally. Since all input information passes through the
shared backbone, accuracy loss in the shallow layers is inevitable,
regardless of how well the task heads perform with relatively high
density. LTH’s [13] winning tickets do not sufficiently focus on
the backbone, as they intentionally create a dense surface normal
prediction task head. Although this approach performs well on this
specific task, the bias still causes an imbalance in the metrics across
all tasks, resulting in a lower △𝑇 score. IMP [19] achieves a good
normalized score across all tasks. However, this method is trained in
an iterative manner and prunes the model step-by-step, resulting in
a significantly longer training time. DiSparse [52] learns an effective
dense backbone by adopting a unanimous decision across all tasks.
However, it falls short of differentiating the relative sensitivities
between specific task heads, leading to an imbalanced normalized
score among all tasks. Here, we add an additional row, AdapMTL
without adaptive thresholds, to demonstrate the effectiveness of
our approach. Rather than using multiple adaptive thresholds, this
version utilizes a single shared threshold for all components. As
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Table 2: Comparison with state-of-the-art pruning methods on the NYU-V2 dataset using the MobileNetV2 backbone. Each
pruning method enforces a consistent overall sparsity of 90%, with the △𝑇 indicating the normalized performance of all three
tasks to the baseline dense model’s performance. We also report the evaluation metrics for each task and the sparsity allocation
for each component.

Model
𝑇1: Semantic Seg. 𝑇2: Surface Normal Prediction 𝑇3: Depth Estimation Sparsity %

△𝑇 ↑mIoU ↑ pixel
Acc↑ △𝑇1↑

Error ↓ Angle 𝜃 , within ↑ △𝑇2↑
Error ↓ △, within ↑ △𝑇3↑

Back
bone

S. S.
head

S.N.P.
head

D. E.
headMean Median 11.25° 22.5° 30° Abs. Rel. 1.25 1.25^2 1.25^3

Dense Model [5] (baseline) 19.94 48.71 0.00 17.85 16.21 29.77 72.19 86.19 0.00 0.64 0.24 58.93 86.27 96.16 0.00 - 0.00
SNIP [26] 18.96 46.93 -8.57 18.33 16.97 28.93 71.21 85.78 -12.03 0.64 0.25 56.75 85.71 95.33 -9.38 78.46 88.19 92.08 90.25 -9.99
LTH [13] 19.14 47.25 -7.01 17.67 16.32 29.67 72.15 86.22 -0.03 0.65 0.25 57.68 85.89 96.13 -8.32 71.32 88.34 92.19 90.52 -5.12
IMP [13] 18.76 48.12 -7.13 18.71 16.68 29.63 71.76 85.91 -9.11 0.64 0.23 59.75 86.52 96.31 6.00 68.49 88.07 95.13 87.74 -3.41
DiSparse [52] 19.87 48.83 -0.10 17.92 16.79 29.87 71.76 85.64 -4.87 0.65 0.24 58.42 85.72 96.28 -2.94 65.22 87.21 93.55 90.53 -2.64
AdapMTL w/o adaptive thresholds 18.93 47.51 -7.53 18.16 16.87 28.37 71.53 86.63 -10.91 0.65 0.24 58.26 85.82 95.92 -3.47 73.61 88.64 92.37 89.82 -7.30
AdapMTL (ours) 20.16 49.14 1.99 17.53 15.96 30.16 72.36 86.51 5.25 0.64 0.24 59.03 86.57 96.38 0.75 52.74 86.18 94.72 90.76 2.66

expected, performance significantly deteriorates because a uniform
threshold makes it hard to capture the nuances in different compo-
nents’ sensitivity.

Moreover, we extended our experiments to different model archi-
tectures to assess the model-agnostic nature of our method, using
MobileNetV2 as an alternative architecture. The results, detailed
in Table 2, show how AdapMTL adeptly manages the dense repre-
sentation of MobileNetV2’s compact backbone, ensuring it remains
sufficiently dense (52.74% ) while enforcing higher sparsity in the
task-specific heads. This is very important, especially with such
backbone compact architectures where over-pruning the backbone
can easily lead to significant degradation in accuracy. Our approach
ensures that the backbone remains dense enough, thereby preserv-
ing overall performance.

4.2.2 Results under various sparsity settings. We show a compari-
son of results under different sparsity settings using different back-
bones, namely ResNet34 andMobileNetV2, as illustrated in Figure 4,
where AdapMTL consistently demonstrates superiority over other
methods. The normalized test score, following the common prac-
tice [34] [50], is obtained by averaging the relative performance
across all tasks with respect to the dense model. We observe a
slightly better performance for medium sparsity levels(from 50% to
80% ), which even surpasses dedicated dense multitask learning ap-
proaches despite the high sparsity enforced. This observation aligns
with our assumptions and motivates the research community to
further explore and develop sparse models. The score of SNIP drops
significantly as higher sparsity levels (>90%) are enforced. This is
because it fails to maintain the density of the shared backbone
effectively.

4.2.3 Results on Tiny-Taskonomy. On the Tiny-Taskonomy dataset,
which encompasses five distinct tasks, AdapMTL exhibits a more
consistent performance across all tasks, as detailed in Table 3. Here,
we use the ResNet backbone at sparsity 90%. Our method consis-
tently achieved the highest scores in each task, unlike othermethods
which exhibited noticeable biases. The DiSparse method struggles
to achieve unanimous decisions, particularly as the number of tasks
increases, highlighting a key limitation in its approach.

The consistent superiority of AdapMTL across both NYUv2 and
Tiny-Taskonomy datasets, and with different backbone architec-
tures, highlights the effectiveness of our approach in achieving

Table 3: Results on Tiny-Taskonomy dataset. T1: Semantic
Segmentation, T2: Surface Normal Prediction, T3: Depth Pre-
diction, T4: Keypoint Estimation, T5: Edge Estimation.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇4↑ △𝑇5↑ △𝑇 ↑
SNIP -11.2 -15.7 -9.4 +1.2 -2.8 -7.58
LTH -9.9 -1.3 -10.7 +0.5 +3.1 -3.66
IMP -6.3 -9.7 +3.1 -1.1 +2.4 -2.32
DiSparse -1.6 +1.2 -3.9 -1.5 +4.2 -0.32
AdapMTL w/o adaptive thresholds -8.7 -12.6 -4.7 +0.2 -1.4 -5.44
AdapMTL (ours) +2.8 +4.7 +1.5 +0.5 +4.9 +2.88

high sparsity with minimal performance degradation for multi-
task models. More results on the other datasets, using the different
architectures, can be found in the supplementary material.
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Figure 5: Visualization comparing the sensitivity of the back-
bone and task head in a MobileNetV2 backbone MTL model.
The y-axis represents the total sparsity of all task heads.

4.3 Analysis
4.3.1 Pruning sensitivity. AdapMTL results in different sparsity for
backbone parameters and task-specific parameters, indicating that
it captures their different sensitivity to pruning. To compare the
sensitivity to pruning between the shared backbone and task heads,
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Table 4: Computational cost of AdapMTL

Method Sparsity (%) Params △𝑇 ↑ FLOPs ↓
Deeplab-ResNet34 0 197.6M - 56.32G
AdapMTL 79.83 39.52M 6.7 9.04G
AdapMTL 85.01 29.64M 4.3 7.84G
AdapMTL 90.03 19.77M 2.45 5.32G
MobileNetV2 0 155.2M - 37.32G
AdapMTL 80.12 31.04M 7.8 5.79G
AdapMTL 85.03 23.28M 5.2 4.21G
AdapMTL 89.93 15.51M 2.66 2.98G

we create a 3D plot, as shown in Figure 5. The x-axis represents
the shared backbone sparsity from 50% to 99%, while the y-axis
represents the total head sparsity for all three tasks from 90% to
99%. The z-axis represents the normalized score.

From the xz-plane, we can observe that the normalized score
drops significantly when we prune the backbone at sparsity lev-
els of 90% and higher. In contrast, from the yz-plane, we can see
that the task heads are highly robust to pruning, as they maintain
a good normalized score even when extreme sparsity levels are
reached. This observation highlights the importance of preserving
the shared backbone’s density and suggests that pruning strategies
should prioritize maintaining the backbone’s performance while
aggressively pruning the task-specific heads.

4.3.2 Computational cost. The computational cost of the AdapMTL
under varying sparsity levels is detailed in Table 4, which illustrates
a significant reduction in both parameters and FLOPs as sparsity
increases. These reductions highlight not only the adaptability of
AdapMTL across different architectures but also its capability to
maintain a balance between performance, measured by △𝑇 , and
efficiency, evidenced by the substantial decrease in FLOPs. This bal-
ance is crucial for deploying high-performance models in resource-
constrained environments. By leveraging specialized hardware and
software solutions that can efficiently handle sparse matrix oper-
ations, such as sparse matrix-vector multiplication (SpMV), these
models can achieve faster inference times [14, 39, 56].

4.4 Ablation Studies
We conducted ablation studies to validate the effectiveness of the
proposed adaptive multitask model pruning (Section 3.2), and the
adaptive weighting mechanism (Equation 6). We tested variations
including models without adaptive thresholds, where all compo-
nents share a single threshold, and models with only two adaptive
thresholds, where the backbone has a unique threshold while other
task heads share another. The results, presented in Table 5, highlight
the critical role of adaptive thresholding. Models without adaptive
thresholds showed significantly poorer performance, with a drastic
decrease in △𝑇 , especially affecting tasks with higher sensitivity to
pruning, such as Depth Prediction. Conversely, the full AdapMTL
configuration, employing independent thresholds for each compo-
nent, achieved the best △𝑇 score. These variations help illustrate
the impact and necessity of differentiated thresholding in multitask
environments. The results confirm that our full AdapMTL setup,
with all components active, performs superiorly across different

Table 5: Ablation Study on NYU-V2. T1: Semantic Segmenta-
tion, T2: Surface Normal Prediction, T3: Depth Prediction.

Model △𝑇1↑ △𝑇2↑ △𝑇3↑ △𝑇 ↑
w/o 𝜆 (=5) 1.26 1.74 -1.83 0.39
w/o sliding window 3.07 2.84 -0.49 1.81
w/o adaptive thresholds -0.46 -7.06 -13.68 -7.07
only 2 adaptive thresholds -0.32 -3.28 -9.74 -4.45
AdapMTL 3.55 3.41 0.38 2.45
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Figure 6: Choice of sliding window size

settings, underscoring the indispensable nature of each proposed
component.

We have implemented a sliding window mechanism to enhance
the robustness and accuracy of our pruning strategy. This mecha-
nism is pivotal in tracking the loss values over a sequence of epochs
to compute the average change in loss, 𝜎Lwindow, as formalized in
Equation 6. By integrating this approach, we significantly mitigate
the influence of abrupt variations and potential outliers that may
occur in task-specific loss calculations. The sliding window, set at
a size of 400 as demonstrated in Figure 6, represents an optimal
balance between computational memory demands and the need
for a comprehensive data scope. This size ensures that the model
captures sufficient temporal loss information without excessive
memory consumption, thereby maintaining efficiency.

5 Conclusion
In this paper, we propose a novel adaptive pruning method designed
specifically for multitask learning (MTL) scenarios. Our approach
effectively addresses the challenges of balancing overall sparsity
and accuracy for all tasks in multitask models. AdapMTL introduces
multiple learnable soft thresholds, each independently assigned to
the shared backbone and task-specific heads to capture the nuances
in different components’ sensitivity to pruning. Our method co-
optimizes the soft thresholds and model weights during training,
enabling automatic determination of the ideal sparsity level for
each component to achieve high task accuracy and overall sparsity.
Furthermore, AdapMTL incorporates an adaptive weighting mecha-
nism that dynamically adjusts the importance of task-specific losses
based on each task’s robustness to pruning. The effectiveness of
AdapMTL has been extensively validated through comprehensive
experiments on the NYU-v2 and Tiny-Taskonomy datasets with
different architectures. The results demonstrate that our method
outperforms state-of-the-art pruning methods, thereby establishing
its suitability for efficient and effective multitask learning.
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A Thresholds updating
We detail the process of updating thresholds within the AdapMTL
framework in this section. The thresholds are determined by 𝜃init,
such that 𝛼𝑡 = sigmoid(𝜃init). Consequently, the challenge of up-
dating the thresholds is transformed into the task of updating the 𝜃𝑡
for each specific task. Considering a multitask model with T tasks,
we divide the weight parameters𝑊 into𝑊 = {𝑊𝐵,𝑊1,𝑊2, ...,𝑊𝑇 },
where𝑊𝐵 represents the weight parameters for the shared back-
bone and𝑊𝑡 represents the weight parameters for the 𝑡-th task-
specific head. We derive the gradient descent update equation at
the 𝑛-th epoch for 𝜃𝑡 as follows:

𝜃𝑛+1𝑡 = 𝜃𝑛𝑡 − 𝜂𝑛
𝜕L(𝑊,𝛼 ;D)

𝜕𝜃𝑛𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛
𝜕L(𝜃, 𝛼 ;D)

𝜕𝑊 𝑛
𝑡

⊙
𝜕𝑊 𝑛

𝑡

𝜕𝜃𝑛𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛 · (−𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃𝑛𝑡 ) ) ′ ·
𝜕L(𝜃, 𝛼 ;D)

𝜕𝑊 𝑛
𝑡

= 𝜃𝑛𝑡 − 𝜂𝑛 · (−𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝜃𝑛𝑡 ) ) ′ ·
𝜕L(𝑊,𝛼 ;D)
𝜕𝑆 (𝑊 𝑛

𝑡 , 𝛼𝑛
𝑡 )

⊙
𝜕𝑆 (𝑊 𝑛
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𝑡 )
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𝑡 , 𝛼𝑛
𝑡 )

⊙ B𝑛
𝑡 ,

(8)
where 𝜂𝑛 is the learning rate at the 𝑛-th epoch. We use the par-
tial derivative to calculate the gradients. Although 𝜕𝑆 (𝑊 𝑛

𝑡 ,𝛼𝑛
𝑡 )

𝜕𝑊 𝑛
𝑡

is
non-differentiable, we can approximate the gradients using the
sub-gradient method. In this case, we introduce B𝑡𝑛 , an indicator
function that acts like a binary mask. The value of B𝑡𝑛 should be
0 if the sparse version of the weight 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) is equal to 0. This

indicator function facilitates the approximation of gradients and
the update of the sparse weights and soft thresholds during the
backpropagation process. Mathematically, the indicator function is:

B𝑛
𝑡 =

{
0, if 𝑆 (𝑊 𝑛

𝑡 , 𝛼
𝑛
𝑡 ) = 0 ,

1, otherwise.
(9)

B Training Details
We adopt the same training configurations as those used in DiS-
parse [52], which is the latest multitask pruning work, for fair
comparisons. We conduct all our experiments using PyTorch and
RTX 8000 GPUs, and we employ the Adam optimizer with a batch
size of 16. For the NYUV2 dataset, we run 20K iterations with an
initial learning rate of 1e-3, decaying by 0.5 every 4,000 iterations.
For the Tiny-Taskonomy dataset, we train for 100K iterations with
an initial learning rate of 1e-4, decaying by 0.3 every 12K iterations.
The size of the sliding window in our experiments is set to 400 to
smooth loss deviations. We utilized cross-entropy loss for Semantic
Segmentation, negative cosine similarity between the normalized
prediction and ground truth for Surface Normal Prediction, and L1
loss for the remaining tasks. To avoid bias and diversity in different
pre-trained models, we trained all models from scratch, ensuring
a fair comparison among various methods. It’s noteworthy that,
unlike many previous works, our method does not require any
pre-training or pre-pruned models.

Table 6: Hyper-parameters for training on NYUv2 and Tiny-
taskonomy datasets

Dataset lr lr decay epoch
NYUv2 0.001 0.5/ 4,000 ters 20,000

Tiny-Taskonomy 0.0001 0.3/ 10,000 iters 50,000

We use the 𝜃init parameter, set to -20, to regulate the duration of
dense training phases. A lower 𝜃init value extends the period dedi-
cated to dense representation, allowing for more comprehensive
learning before pruning begins.

C Additional Results
We provide additional results on the Tiny-Taskonomy dataset using
Resnet34 and MobileNetV2 architecture, separately. On the Tiny-
Taskonomy dataset, which comprises a total of 5 tasks, AdapMTL
demonstrates a more balanced performance across tasks. As shown
in Table 7, 8, our method achieved the highest △𝑇 score and the
lowest absolute error for most tasks.

C.1 Pruning Sensitivity Analysis
Different task heads may have similar amounts of model weights,
but their sensitivities to pruning can vary. This observation suggests
that a more discriminative pruning approach should be employed
for each task, taking into account their unique sensitivities. To
verify this observation, we fixed a ResNet34 backbone at a sparsity
level of 95% for better visualization and pruned three task heads
independently to examine their sensitivity to pruning.

As shown in Figure 7, the head of the surface normal prediction
task is the least sensitive, as it maintains good accuracy even when
extreme sparsity is enforced. Therefore, AdapMTL learns to keep
this task head at a high level of sparsity during pruning, which is
aligned with the component-wise sparsity allocation in the table of
the manuscript. In contrast, the head of the semantic segmentation
task is relatively more sensitive to pruning, so we strive to keep it
as dense as possible throughout the training process. This tailored
approach to pruning helps AdapMTL achieve better overall perfor-
mance across different tasks by considering the specific pruning
sensitivity of each task head.

C.2 Adaptive weighting factor
The adaptive weighting mechanism is used to decide the head
sparsity allocation among different tasks based on their varying
sensitivity to pruning. By adaptively learning a weighting factor, we
can assign different importance to each task, subsequently pruning
discriminatively on different task heads.

As shown in Figure 8, we initially set the weighting factor of each
task equal, such as 1, to ensure sufficient training of each task for
5,000 epochs. Over time, the surface normal prediction task tends
to stabilize and converge, leading to small loss fluctuations. This
implies that we can prune more aggressively on that component,
as the task head is robust to pruning. Consequently, the weighting
factor of this task will be larger than the others. This observation is
aligned with the results from Table in the main text, where the sur-
face normal prediction achieves higher sparsity compared to other
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Table 7: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the Deeplab-ResNet34 backbone.

Model 𝑇1 : Semantic Seg. 𝑇2 : Normal Pred. 𝑇3 : Depth Estimation 𝑇4 : Keypoint Det. 𝑇5 : Edge Det. sparsity
% △𝑇 ↑Abs. ↓ △𝑇1↑ Abs. ↑ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑

Dense Model 0.5053 0 0.8436 0.00 0.0222 0.00 0.1961 0.00 0.2131 0.00 95 0.00
SNIP [26] 0.5659 -11.99 0.7301 -13.45 0.0246 -10.81 0.1972 -0.56 0.2221 -4.22 95 -8.21
LTH [13] 0.5345 -5.78 0.8189 -3.38 0.0234 -5.41 0.2004 -2.19 0.2187 -2.63 95 -3.88
IMP [19] 0.5163 -2.18 0.8371 -0.79 0.0221 0.45 0.1962 -0.05 0.2184 -2.49 95 -1.01
DiSparse [52] 0.5287 -4.63 0.8423 -0.16 0.0217 2.25 0.1987 -1.33 0.2089 1.97 95 -0.38
AdapMTL w/o adaptive thresholds 0.5468 -8.21 0.8059 -4.48 0.02296 -3.42 0.1937 1.22 0.2153 -1.03 95 -3.18
AdapMTL 0.5038 0.30 0.8513 0.96 0.0221 0.45 0.1923 1.94 0.2074 2.67 95 1.26

Table 8: Comparison with MTL pruning methods on the Tiny-Taskonomy dataset using the MobileNetV2 backbone.

Model 𝑇1 : Semantic Seg. 𝑇2 : Normal Pred. 𝑇3 : Depth Estimation 𝑇4 : Keypoint Det. 𝑇5 : Edge Det. sparsity
% △𝑇 ↑Abs. ↓ △𝑇1↑ Abs. ↑ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑ Abs. ↓ △𝑇2↑

Dense Model 1.0783 0.00 0.7429 0.00 0.0318 0.00 0.203 0.00 0.2242 0.00 95 0.00
SNIP [26] 1.0901 -1.09 0.7243 -2.50 0.0321 -0.94 0.2157 -6.26 0.2364 -5.44 95 -3.25
LTH [13] 1.0869 -0.80 0.7407 -0.30 0.0325 -2.20 0.2118 -4.33 0.2328 -3.84 95 -2.29
IMP [19] 1.0795 -0.11 0.7415 -0.19 0.0327 -2.83 0.2012 0.89 0.2351 -4.86 95 -1.42
DiSparse [52] 1.0781 0.02 0.7423 -0.08 0.0322 -1.26 0.208 -2.46 0.2287 -2.01 95 -1.16
AdapMTL w/o adaptive thresholds 1.0868 -0.79 0.7329 -1.35 0.0344 -8.18 0.2043 -0.64 0.2233 0.40 95 -2.11
AdapMTL 1.0751 0.30 0.7421 -0.11 0.0305 4.09 0.2021 0.44 0.2225 0.76 95 1.10
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Figure 7: Comparison of task head sensitivities to pruning for
different vision tasks.Weuse a 95% sparse Resnet34 backbone
for better depiction. The dashed line dense model indicates
the task head is dense.

task heads. In contrast, the loss of semantic segmentation fluctuates
significantly, indicating that we should consider pruning less on
that component by lowering the weighting factor, as the training
is less likely to converge at higher sparsity levels. It is worth men-
tioning that the weighting factor is learned adaptively, eliminating
the need for manual effort to fine-tune the hyper-parameters.

To validate the effectiveness of our adaptive weighting mech-
anism, we also carry out an experiment where we assign equal
weights (𝛽𝑡=1) to each task and then visualize the sparsity allocation
across each component under this configuration. For comparison,
we also visualize the sparsity allocation with adaptive weighting,
where the weighting factor for semantic segmentation, surface nor-
mal prediction, and depth estimation is set to 1.35, 1.15, and 0.5
respectively. This configuration is from the one shown in Figure 8.

As illustrated in Figure 9, the adaptive weighting factor results in
a denser shared backbone compared to the equal weighting factor,
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Figure 8: The evolution of adaptive weighting factors during
training. Equal weights are initially assigned to each task for
the first 5000 epochs to ensure sufficient training.

while simultaneously making the task heads sparser. Notably, even
though the task-specific head of semantic segmentation is assigned
a lower value, it achieves higher sparsity than with equal weight.
This phenomenon arises because the shared backbone is already
dense, prompting a sparser task head than before. The right-most
sub-figure presents the overall performance under this sparsity
allocation. It is evident that our method, with the incorporation of
the adaptive weighting mechanism, outperforms the variant of our
method without it.

Through this experiment, we demonstrate that the adaptive
weighting mechanism plays a crucial role in maintaining high den-
sity for the shared backbone and efficiently allocating sparsity
among the task-specific heads. By taking into account the sensi-
tivity and importance of different components in the MTL model,
the adaptive weighting mechanism allows for better overall perfor-
mance even when high sparsity is enforced.
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Figure 9: Comparison of sparsity allocation between equal
weight (1) and adaptive weight configurations, where we
assign weighting factors of 1.35, 1.15, and 0.5 to each task-
specific head respectively. The overall sparsity is 90%

Table 9: Video captioning performance on YouCook II using
VideoBERT. Each pruning method enforces a sparsity of 80%.

Model BLEU-3 ↑ BLEU-4 ↑ METEOR ↑ ROUGE-L ↑ CIDEr ↑ △𝑇 ↑
Dense Model 6.74 4.03 10.69 27.35 0.49 0.00
SNIP 6.38 3.72 10.42 26.85 0.47 -4.35
Disparse 6.70 4.04 10.65 27.17 0.49 -0.37
AdapMTL 6.77 4.12 10.64 27.24 0.49 0.45

C.3 Multimodal and multimedia scenarios
While our work primarily focuses on unimodal tasks in computer
vision for a fair comparison with the SOTA methods, the AdapMTL
framework is versatile and can be applied to multimodal and multi-
media scenarios as well.

To demonstrate this, we have conducted new experiments on
the video captioning task using VideoBERT model [49]. VideoBERT
is a variant of the BERT model (transformer architecture) that tar-
gets text-to-video generation. We treat the multi-head attention
layers and feed-forward layers as independent components and
assign corresponding adaptive soft thresholds 𝛼 to them. The soft
thresholds are learned adaptively and eventually stop at the desired
sparsity level. Table 9 shows the accuracy comparison of the pruned
model on sparsity 80% for all baselines. AdapMTL outperforms its
counterparts while maintaining performance metrics comparable to
the dense VideoBERT model. We expect that the proposed methods
can scale to larger models, including LLMs. Since LLMs are com-
posed of multiple transformer blocks, our component-wise pruning
framework is naturally well-suited for this architecture.

D Discussion
One of the noticeable aspects of AdapMTL is that the final sparsity
of our model may not exactly match the requested sparsity. This dis-
crepancy arises due to the intrinsic behavior of the soft thresholds.
During pruning, these soft thresholds determine whether a specific
parameter should be set to zero, thereby introducing sparsity into
the model. However, the soft thresholds do not strictly enforce the
exact level of sparsity but rather guide the model to approach the
desired sparsity level. This level of flexibility is a design choice made
to prevent any undue negative impact on model performance due
to overly rigid sparsity constraints. It allows the model to strike a

balance between the targeted sparsity and the necessity to preserve
adequate performance levels. Our current strategy to maximally
approximate the desired sparsity level involves fixing the pruning
mask once the desired sparsity has been reached. Another poten-
tial approach could involve a recovery mechanism that regrows
some crucial parameters that were pruned in earlier epochs. Future
research could explore more precise control mechanisms over the
final sparsity while ensuring that the model’s performance remains
robust.
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