
FPIA: Field-Programmable Ising Arrays with In-Memory
Computing

G. Higgins Hutchinson, E. Sifferman, T. Bhattacharya, & D. B. Strukov
UC Santa Barbara, Department of Electrical and Computer Engineering

Santa Barbara, California, USA
{hutch,ethanjsifferman,tinish,dimastrukov}@ucsb.edu

ABSTRACT
Ising Machine is a promising computing approach for solving com-
binatorial optimization problems. It is naturally suited for energy-
saving and compact in-memory computing implementations with
emerging memories. A naïve in-memory computing implemen-
tation of quadratic Ising Machine requires an array of coupling
weights that grows quadratically with problem size. However, the
resources in such an approach are used inefficiently due to spar-
sity in practical optimization problems. We first show that this
issue can be addressed by partitioning a coupling array into smaller
sub-arrays. This technique, however, requires interconnecting sub-
arrays; hence, we developed in-memory computing architecture
for quadratic Ising Machines inspired by island-type field pro-
grammable gate arrays, which is the main contribution of our paper.
We adapt open-source tools to optimize problem embedding and
model routing overhead. Modeling results of benchmark problems
for the developed architecture show up to 60x area improvement
and faster operation than the baseline approach. Finally, we discuss
algorithm/circuit co-design techniques for further improvements.

1 INTRODUCTION
Many practical combinatorial optimization (CO) problems may
be represented as Quadratic Unconstrained Binary Optimization
(QUBO) [12, 24]. Various physics-based and -inspired platforms
have attracted recent interest in building QUBO-solving acceler-
ators — the majority of such systems are collectively known as
quadratic Ising Machines (IM) due to the QUBO merit function’s
similarity to Lenz’ and Ising’s Hamiltonian for spin glass systems
[24]. In the most general, fully connected IMs, the focus of this pa-
per, 𝑁 spins corresponding to variables in the QUBO function are
coupled via 𝑂 (𝑁 2) matrix of tunable couplers that moderate local
interaction among pairs of variables (Fig. 1). Solving a CO problem
involves initializing IM states and then updating spin values over
time, e.g., at discrete time steps in discrete-time IMs. A new spin
state is computed by applying nonlinear (e.g., step) function over a
dot product between the current IM state and the spin’s coupling
weights. With the help of annealing techniques, often implemented
in the spin circuitry, IM states can evolve to a ground state, repre-
senting a solution to the underlying QUBO problem. IM extensions
include high-order IMs with coupling among more than two spins
[9], high-dimensional IMs with spin taking onmore than two values
[36], and IMs with probabilistic spin updates [11]. The functionality
of such more general IMs is similar to other computing approaches
for solving CO problems, such as Hopfield Neural Network [16],
Boltzmann machines [33], and p-bit computing circuits [10].

Optical, electronic, quantum, and hybrid device technologies
have been explored for implementing hardware accelerators of IMs

BIAS

𝑤
(2)
1,1 𝑤

(2)
1,2 𝑤

(2)
1,𝑁

𝑤
(2)
2,1 𝑤

(2)
2,2 𝑤

(2)
2,𝑁

𝑤
(2)
𝑁,1 𝑤

(2)
𝑁,2 𝑤

(2)
𝑁,𝑁

. . .

. . .

.

.

.

𝑤
(1)
1

𝑤
(1)
2

𝑤
(1)
𝑁

𝑥1

𝑥2

𝑥𝑁

.

.

.

Coupler

Spin

Figure 1: Quadratic Ising Machine for solving
1
2
∑𝑁
𝑖,𝑗𝑊

(2)
𝑖 𝑗

𝑥𝑖𝑥 𝑗 +
∑𝑁
𝑖 𝑊

(1)
𝑖

𝑥𝑖 +𝑊 (0) QUBO problem. IMs are
similar to Hopfield Neural Networks in which “coupler” and
“spin” are called “synapse” and “neuron”, respectively.

and related concepts [27]. Because the most common IM operation
is a vector-by-matrix multiplication (VMM), In-Memory Computing
(IMC) circuit implementations are especially promising. In this
work, we will assume that spins are realized with CMOS circuits,
while coupling weights are implemented with crossbar-integrated
emerging or conventional memory arrays, similar to the previous
work on neuromorphic inference accelerators [5].

Larger CO problems with 𝑁 > 1000 are typically of practical
interest. However, the memory array dimensions in IMC circuits
are limited, primarily due to IR drop issues [2]. A solution to this
problem in neuromorphic accelerators was to break up a larger
single “logical” crossbar into multiple smaller size physical crossbar
circuits [6, 34]. For example, in ISAAC architecture, a tile hosting a
smaller physical memory array generates analog partial dot prod-
ucts. Partial products are sent via shared interconnect for the final
accumulation performed in the digital domain[34].

On the other hand, practical QUBO-formulated problems are also
very sparse (Fig. 2a), with the sparsity increasing with the problem
size. (The studied benchmark problems are competition 3SAT [3,
4], random uniform 3SAT [15], and custom-generated semiprime
factoring [30], converted to corresponding QUBO problems using
Rosenberg approach [24].) In addition, the maximum spin “fan-
in” (i.e., the maximum number of non-trivial elements in a single
row of a coupling matrix) is much smaller than 𝑁 (Fig. 2b). Hence,
all nontrivial coupling weights of a spin might be implemented
within a single physical crossbar, avoiding the need for expensive
ADC circuits. In fact, sparseness and limited fan-in are necessary
attributes for hard (most relevant) decision-type SAT problems. For
example, the clause-to-variable ratio for hard 3SAT problems is
close to 4.5, translating to the linear sparseness scaling with the
size of equivalent QUBO problems.

These observations motivate our work — to develop more ad-
vanced Field-Programmable Ising Machine (“FPIA”) architecture
based on efficient IMC circuits and relevant design automation

ar
X

iv
:2

40
1.

16
20

2v
1

 [
cs

.A
R

]
 2

9
Ja

n
20

24

G. Hutchinson et al.

102

103

𝑊
(2
)
Sp

ar
si
ty

(a)

0 1000
0

1000

aes_32_keyfind_1.cnf
from SAT2020 competition

102 103 104
of QUBO variables

101

102

Fa
n-
in

(b)

max
mean

Figure 2: (a) Sparsity of the studied benchmark problems
(see Fig. 3 legend), defined as 𝑁 2 / (# nonzero weights). The
inset shows a down-sampled coupling matrix with color-
coded weight density for one of the problems. (b) Maximum
and average spin fan-in (number of incoming non-trivial
connections to a spin) for the same problems.

algorithms that take advantage of sparsity and limited spin fan-
in of practical QUBO problems. Furthermore, we focus on high-
performance solutions that could exploit massively spin update par-
allelism and rapid convergence of IMs [14]. While there have been
prior reports on IMC-enabled emergingmemory IM architectures[29,
35], and, separately, on reconfigurable spintronics-based IMs[28],
we believe that our work is the first to report programmable IM
architecture that efficiently integrates IMC and rich FPGA-like in-
terconnect to optimally implement locally dense, globally sparse
connectivity of practical QUBO problems.

2 WEIGHT UTILIZATION IMPROVEMENT
Tomake FPIA’smotivationmore concrete, we investigate the prospects
of partitioning problems’ weight arrays into smaller sub-arrays
such that all non-zero weights of each spin are located in the same
sub-array. The key feature to exploit in a packing algorithm is the
flexibility in mapping QUBO variables to IM spins, i.e., a QUBO
variable can be mapped to any hardware spin without affecting
IM’s functionality. We use a quadratic-time greedy algorithm that
is similar to the well-known First-Fit-Decreasing (FFD) algorithm
for integer bin-packing algorithm because performing packing opti-
mally is known to be NP-hard [18]. The algorithm starts by creating
a list of (unpacked) spins sorted by their fan-in and a list of initially
empty sub-arrays representing the clusters. Each spin steps in order
through the list of clusters, and is packed into the first valid cluster.
A candidate spin may be invalid to add to a cluster either because
the cluster already contains𝑂 total spins, or because the cardinality
of the union of spin inputs after adding the candidate would exceed
𝐼 . We test this approximate packing for several QUBOs, holding
𝐼 = 256 and varying 𝑂 .

The results show that partitioning significantly improves weight
utilization, especially for larger QUBO problems because of larger
available sparsity (Fig. 2a). As expected, it is the largest for 𝑂 = 1;

102 103 104
of QUBO variables

101

102

103

U
til
iz
at
io
n
Im

pr
ov
em

en
t

SAT2020
SAT2017 (Random)
SAT2017 (Agile)

SAT2017 (Main)
SATLIB
Factoring

O=1
O=10
O=30

Figure 3: Coupling weight utilization improvement by tiling,
defined as 𝑁 2/(∑𝑗 𝐼 𝑗 · 𝑂 𝑗), where 𝐼 𝑗 ≤ 𝐼 and 𝑂 𝑗 ≤ 𝑂 are the
used input and output sizes of a cluster, and 𝑗 steps through
all clusters created by the FFD algorithm.

however, this is not necessarily representative of higher circuit
density because such an analysis only includes memory array area
but neglects array periphery and routing overheads, which would
be higher for smaller sub-arrays. We next introduce the FPIA ar-
chitecture and perform its detailed modeling to understand these
tradeoffs better.

3 FPIA AND BASELINE ARCHITECTURES
The proposed FPIA architecture resembles an island-type FPGA [8],
with the configurable logic blocks (CLBs) replaced by mixed-signal
IMC blocks (Fig. 4). IMC block’s 𝐼 input and 𝑂 output pins are con-
nected to the routing channels via the nearest “connection block”,
but only to a fraction of wires (denoted with 𝐹I and 𝐹O, respectively)
as is common in island-type FPGAs. Routing channels contain wires
stretching 𝑅tile tiles vertically or horizontally. Bends and extensions
of the wire are implemented with the “switch blocks”.

At the core of the IMC block is a (𝐼+𝑂)×𝑂 crossbar array ofmulti-
bit memory cells and associated peripheral circuitry for implement-
ing up to 𝑂 spins, most importantly including two-quadrant (i.e.,
differential pair to encode negative weights) mixed-signal VMM,
nonlinear activation, and annealing, and all spins’ coupling weights.
The digital inputs to the crossbar could be local, i.e., routed inside
the block from local spins, or supplied externally from spins of other
IMC blocks (Fig. 4b). Such an architecture allows up to 𝐼 global and
up to 𝑂 local couplings implemented for each spin (though a lesser
degree of coupling is assumed in modeling experiments, as dis-
cussed in section 4).

To provide a fair point of comparison for FPIA, we consider a
baseline architecture inspired by ISAAC [34] in which a full logical
coupling matrix is again partitioned into smaller (𝑆×𝑆) physical sub-
arrays but without previously considered optimization related to
matrix sparsity (Fig. 5). The upside of such straightforward (“naive”)
implementation is very simple routing. As discussed in the introduc-
tion section, its downside is the need to add partial products from
multiple sub-arrays to compute spin states. Similarly to FPIA, we as-
sume IMC blocks with digital outputs. Block’s partial dot-products

FPIA: Field-Programmable Ising Arrays with In-Memory Computing

Figure 4: (a) FPIA’s top-level and (b) mixed-signal IMC block
architectures. Only four tiles are shown in (a) for simplicity.

S&H

S&H

S&H

S&H

A
D
C

S&H

S&H

S&H

S&H

A
D
C

+

S&H

S&H

S&H

S&H

A
D
C

S&H

S&H

S&H

S&H

A
D
C

+

Sp
in
s&

A
nn

ea
lin

g

Figure 5: Baseline architecture.

are digitized, and top-level aggregation of results is performed in
the digital domain. To further simply the routing and reduce ADC
overhead, similar to ISAAC [34], we assume that IMC computations
are run on a (relatively) slow clock, then sampled-and-held while a
fast, pipelined shared ADC digitizes many intermediate values in a
single IMC clock cycle.

4 MODELING FRAMEWORK
Many tools and algorithms for implementing circuits on FPGA can
be re-purposed to implement FPIA, owing to the similarity in struc-
ture between the two. In this study, similarly to [28], we leverage
the open-source VPR (Versatile Place and Route) tools [7, 25] to
pack, place, and route QUBO problems in an FPIA. Specifically, a
fictional “FPGA architecture” and “circuit netlist” are generated to
encode, respectively, the capabilities of an FPIA and connection
requirements of a QUBO — the process is visualized for a toy prob-
lem in Fig. 6. Each spin is mapped to a flip-flop to ensure a “circuit”
without combinatorial loops. Each crossbar array row is mapped to
an equivalent-width LUT.

An efficient routing architecture and algorithms require logical
equivalence of FPGA CLB’s inputs and outputs, i.e., the flexibility of
permuting CLB’s inputs and outputs. Such a feature is already avail-
able in our IMC block because its spins’ location and external inputs

can be shuffled by appropriately setting up weights in the (𝐼 +𝑂)×𝑂
sub-array. To ensure FPIA IMC block’s logical equivalence in the
VPR tools, the modeled CLB architecture includes a fully-populated
crossbar switch with 𝐼 +𝑂 inputs and 𝑂 outputs connecting CLB’s
𝐼 input pins and its𝑂 flip-flop outputs to𝑂 𝐼 -input LUTs. Note that
we restrict the VPR packing step to only utilizing 𝐼 ×𝑂 sub-arrays,
i.e., CLBs with 𝑂 𝐼 -input LUTs in the modeled FPGA architecture,
instead of using full (𝐼 + 𝑂) × 𝑂 sub-arrays. This is because the
VPR packer cannot be configured to limit the maximum number
of external couplings to 𝐼 (out of available 𝐼 +𝑂 total). With such
limitation, CLB’s fully-populated crossbar switch functionality is
effectively implemented with 𝑂 ×𝑂 portion of sub-array.

Numerous crossbar-compatible memory cells have been explored
for IMC applications [32]. In this study, we focus on three represen-
tative technologies — embedded flash (eFlash) with optimistic and
pessimistic area scaling models, corresponding to the original [1]
and redesigned eFlash [13], respectively, and SRAM [40]. For the
latter, since the memory cell is digital, a differential 2-bit coupling
weight, a sufficient precision for the studied benchmark problems,
is assumed to be implemented with four SRAM memory cells with
1x- and 2x -width read transistors to encode the bit significance,
similarly to [19].

Parameters used for the area and performance modeling are
summarized in Table 1, while die areas of 𝑀 × 𝑀-tile FPIA and
baseline architectures implementing 𝑁 -spin IM are estimated as

𝐴𝐹𝑃𝐼𝐴 ≈𝑀2 (𝐼 ·𝑂 · 𝐴𝑐𝑒𝑙𝑙 + 𝐼𝐴𝑤𝑙 +𝑂 (𝐴𝑏𝑙 +𝐴𝑠𝑒𝑛𝑠𝑒))

+𝐴𝑟𝑜𝑢𝑡𝑖𝑛𝑔 +
𝑀 · 𝐼 · 𝐴𝑝𝑒𝑤𝑙

𝑆𝑝𝑒
+
𝑀 ·𝑂 · 𝐴𝑝𝑒𝑏𝑙

𝑆𝑝𝑒

(1)

𝐴𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≈
⌈
𝑁

𝑆

⌉2 (
𝑆2𝐴𝑐𝑒𝑙𝑙 + 𝑆𝐴𝑤𝑙 + 𝑆𝐴𝑏𝑙 +𝐴𝐴𝐷𝐶

)
+
𝑁 · 𝐴𝑝𝑒𝑤𝑙

𝑆𝑝𝑒
+
𝑁 · 𝐴𝑝𝑒𝑏𝑙

𝑆𝑝𝑒

(2)

Here, eFlash and SRAM area assumptions are based on the work
in [1, 13] and [26], respectively. The selected 𝑆 value for base-
line architecture modeling is optimistic, though achievable with
proper bootstrapping to address IR issues [5]. Also very optimistic
is 𝐴𝐴𝐷𝐶 = 106𝜆2, based on area-optimized SAR ADCs [20] that
would bottleneck speed if used, though ADC area overhead is also
used as a variable parameter in a broader study. Sensing and driving
overhead assumptions are similar to [5, 6]. Programming circuitry
follows the design described in [6] and is assumed to be shared
between IMC blocks, with 𝐴𝑝𝑒𝑤𝑙 / 𝐴𝑝𝑒𝑏𝑙 area overhead required
to support a word line or bit line, respectively. We assume, how-
ever, that some time-multiplexing of programming circuitry can
be exploited without bottle-necking overall operation (𝑆𝑝𝑒). Note
that we neglect overheads of digital processing and annealing cir-
cuitry (that can be packed in the unused corners of a tile), as well
as sample-and-hold circuitry (which is much smaller compared to
ADC overhead according to [34]) and digital final summation in
baseline architecture.

To explore the trade-off space of FPIA architectures, we search
for optimal FPIA tile parameters. To optimize such a process and
increase the scale at which we could study these problems, we
used SMAC3 [23], an implementation of a Sequential Model-Based

G. Hutchinson et al.

𝑥1

𝑥2

𝑥3

𝑥4

LUT
𝑥2 𝑥3

𝑥1

LUT
𝑥1 𝑥3

𝑥2

LUT
𝑥1 𝑥2 𝑥4

𝑥3

LUT
𝑥3

𝑥4

LUT 𝑥1

LUT

𝑥3 𝑥2 𝑥1

𝑥2

LUT 𝑥3

LUT

𝑥1 𝑥2 𝑥4

EMPTY

LUT 𝑥4

LUT

𝑥3

EMPTY

QUBO Connectivity Data Circuit Connectivity Model Implementation on Fixed Logic

Figure 6: Mapping of an original, 4 × 4 in this example, quadratic IM (left) to an equivalent FPGA circuit model preserving
QUBO problem connectivity (center), which is then mapped to target FPIA represented by FPGA architecture with 3 × 2 CLBs
(right). Equivalent nodes must subsequently be shorted by local and global routes, as appropriate. Note that the toy problem
presented here is relatively densely connected (50%), and the tiling technique does not achieve any advantage.

eFlash optimistic eFlash pessimistic SRAM

𝐴𝑓 𝑒𝑡𝑚𝑖𝑛 50 50 50
𝐴𝑐𝑒𝑙𝑙 60 180 600
𝐴𝑠𝑒𝑛𝑠𝑒 500 2500 2500
𝐴𝑤𝑙 1500 1500 1500
𝐴𝑏𝑙 1550 1550 1550
𝐴𝑝𝑒𝑤𝑙 11300 11300 1550
𝐴𝑝𝑒𝑏𝑙 7700 7700 1550
𝑆𝑝𝑒 1000 1000 1000
𝑆 256 256 256

Table 1: Representative parameters (areas in units of 𝜆2, the
square minimum feature area of the technology) of impor-
tant reference components of FPIA.

Optimization [17]. In the algorithm configuration variant, random
forests are used as the surrogate models, which appears to improve
the ability to learn useful trends for loss functions that may return
∞ over BO methods with a Gaussian Process surrogate model. We
use 𝑅tile = 4 similar to area-optimal architectures described in Ref.
[31], and use a Wilton topology with each wire segment connected
to three other wire segments as described in [8], since the results are
not sensitive to these parameters. Once an FPIA is packed, placed,
and routed, the required array and routing size can be extracted,
and we define the figure of merit Tiling Advantage as the ratio of
baseline (Eq. 2) to FPIA (Eq. 1) area.

5 MODELING RESULTS
Figure 7 shows amotivation for using Bayesian Optimization.While
the tiling advantage is not perfectly monotonic when sweeping 𝐼
and 𝑂 parameters, there appears to be a distinct optimal region,
e.g., around 𝐼 ≈ 80 and 𝑂 ≈ 40 for the shown problem. Further
investigation using Bayesian optimization with fixed connection
block frequencies (𝐹I = 0.2 and 𝐹O = 0.2) reveals a shared plateau
(𝑂 ∈ [30, 50], 𝐼 ∈ [80, 140]) of approximate optima for other studied
benchmark problems.

We next studied the impact of 𝐹I and 𝐹O on the routing area
while fixing 𝐼 = 80 and 𝑂 = 40, i.e., using quasi-optimal values
determined from the previous experiments. The grid search con-
firms previously chosen 𝐹I ≈ 0.15 optimal input frequency, close to
typically used in FPGA [7], while does not reveal strong patterns
in output connection occupancy (Fig. 8).

75 100 125 150 175
Tile Input Size

20

30

40

50

60

Ti
le
O
ut
pu

tS
iz
e

5-digit semiprime factoring

2

3

4

5

6

7

8

Ti
lin

g
A
dv

an
ta
ge

(p
es
si
m
is
tic

eF
la
sh

m
od

el
)

Figure 7: The landscape of tiling area advantage for a 5-digit
prime factoring QUBO problem. The input and output con-
nection fractions are fixed for this analysis, 𝐹𝐼 = 𝐹𝑂 = 0.2.

0.0 0.5 1.0
Input Fraction

2

4

6

Ro
ut
in
g
A
re
a
(𝜆

2) ×108

Optimal: ∼ 0.13

0.0 0.5 1.0
Output Fraction

2

4

6
×108

Figure 8: The impact of 𝑓I and 𝑓O on routing area (not includ-
ing IMC tile area) for 5-digit semiprime factoring problem.
Routing area is reciprocal of the tiling advantage since the
IMC block area does depend on connection block occupancy.

FPIA: Field-Programmable Ising Arrays with In-Memory Computing

102 103 104
of QUBO variables

0.5

1.0

A
re
a
ra
tio

SAT2020
SAT2017 (Random)

SAT2017 (Agile)
SAT2017 (Main)

SATLIB
Factoring

Figure 9: The decrease in area for a shared FPIA architecture
(with the same parameters across all mapped problems) as
compared to customized FPIA architectures (with parameters
optimized per problem) for SRAM implementation.

0.4 0.6 0.8 1.0
Target Spin Occupancy

2

3

T.
A
.(
SR

A
M
)

Figure 10: An impact of under-utilizing IMC on tile advan-
tage, studied on the random 3SAT problems for SRAM im-
plementation.

The practical realization of FPIA hardware implies a fixed ar-
chitecture that cannot be customized based on the mapped QUBO
problem. Therefore, we next focus on“shared” FPIA architecture
based on fixed quasi-optimal 𝐼 = 140, 𝑂 = 40, 𝐹I = 0.15, 𝐹O = 0.2
determined from previous modeling experiments. Note that the
selected 𝐼 in such shared FPIA must be not smaller than the largest
maximum fan-in of the targeted benchmark problems. Naturally,
a specifically-optimized architecture is capable of embedding any
given problem at least as well as a shared architecture. The relative
sub-optimality of the shared embedding is shown in Fig. 9. We note
that in the worst case, a shared FPIA fabric would consume only
about 3.4 times more area than an FPIA optimized for that specific
problem.

It has been noted for traditional FPGAs [37] that minimum area
is not always achieved for every mapped circuit at the point of
maximum logic resource utilization. We observe similar behavior
in FPIA by sweeping the target occupancy of each CLB’s output
pin set, i.e., limiting the number of spins in ICM block to less than
𝑂 . 80%–90% occupancy is found to be optimal (Fig. 10). Finally,
assuming shared architecture, we study tile advantage prospects
when exploiting the under-utilization of IMC blocks (Fig. 11).

6 DISCUSSION AND SUMMARY
The modeling results for shared FPIA architecture show that as
the problem size increases, so does the Tiling Advantage, with a
slope strongly controlled by the coupling cell area. By design, FPIA
architecture can be used to tile smaller problems, but its parameters

102 103 104
of QUBO variables

100

101

Ti
lin

g
A
dv

an
ta
ge

SRAM
eFlash pessimistic
eFlash optimistic

Figure 11: Tiling advantage of fixed (“shared”) FPIA architec-
ture for the studied benchmark problems (see Fig. 9 legend).

are not always optimal, and it is often less efficient compared to the
baseline approach as smaller problems can fit onto a single physical
crossbar of the baseline structure.

The detailed critical path routing delays, i.e., the longest delays
of sending a spin value to a distant tile, assuming the optimal circuit
parameters for 𝜆 = 45nm [21, 22], are almost independent of the
problem size and always less than 1 ns. IMC latencies are expected
to be significantly larger for considered block sizes [6], so that
FPIA routing architecture adds negligible performance overhead.
Therefore, FPIA is expected to be much faster than baseline archi-
tecture that relies on time-multiplexed read-out using shared ADC
circuitry.

Because of the large contribution of ADC to the baseline design
area, we studied the sensitivity of Tiling Advantage to the assumed
𝐴ADC. Sweeping 𝐴ADC and memory cell areas (hence indirectly
varying practical values of 𝑆 , another critical parameter in our base-
line architecture) reveals a transition from crossbar-dominated to
ADC-dominated scaling. (Fig. 12). An approximate expression for
the Tiling Advantage is ≈ 𝑁 2 (𝐴𝑐𝑒𝑙𝑙+𝐴̃𝐴𝐷𝐶)

𝑁 2𝐶𝐴𝑐𝑒𝑙𝑙+𝐴𝑟𝑜𝑢𝑡𝑖𝑛𝑔
, where 𝐴̃𝐴𝐷𝐶 is the

amortizedADC area per cell, and𝐶 is theweight utilization improve-
ment factor. Notably, in the ADC-dominated regime, the baseline
design area is effectively constant w.r.t. cell area, but the FPIA area
is increased, hence decreasing Tiling Advantage. Considering more
broader options of ADC designs and memory technologies [38, 39]
that meet the speed and precision requirements to run the baseline
design at least 10MHz, we find that realistic designs would be likely
ADC-dominated.

Future work can improve FPIA directly in the architecture or
through co-designing architecture and problem pre-processing. One
caveat of shared FPIA architecture is that IMC sub-array minimum
horizontal (𝐼) dimensions cannot be smaller than the maximum
fan-in of any spin of the targeted benchmark problems, which is
expected to grow with problem size (Fig.2b). However, the average
fan-in is almost flat (Fig.2b), and, therefore, a promising algorithmic
approach is to break high fan-ins in the original problem by in-
serting new auxiliary variables. This technique changes the energy
landscape of the problem. It hence further requires the characteriza-
tion of possible changes in the solver’s navigational efficiency and
the impact on the time-to-solution. Another approach is to utilize
heterogeneous IMC blocks containing multiple physical crossbars,

G. Hutchinson et al.

100

200

300

400

500

Small uniform 3SAT problem

103 104 105 106 107 108 109

100

200

300

400

500

Large factoring problem

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

lo
g
Ti
lin

g
A
dv

an
ta
ge

ADC Area (𝜆2)

Co
up

le
rA

re
a
(𝜆

2)

Figure 12: Tile advantage as a function of ADC and IMC unit
cell sizes for two representative problems.

which would be chosen during packing to implement either several
lower fan-in spins or fewer higher fan-in ones.

FPIA was studied in this work with respect to internally-analog,
externally-digital, discrete-time optimization algorithms, but it is
generalizable to continuous-time, fully-analog methods. This is be-
cause the routing architecture of FPIA requires no time-multiplexing,
so wires could be directly used for analog signaling. However, this
requires careful simulation of how much delay (and variation in
delay) analog solver algorithms can tolerate.

In summary, we have proposed field-programmable architecture
for efficiently implementing quadratic Ising Machines and related
concepts. Leveraging open-source VPR design automation tools and
Bayesian Optimization, we found a set of optimal parameters for the
proposed hardware architecture for various practical benchmark
combinatorial optimization problems. The modeled improvements
are very encouraging, showing up to 60x area and faster operation
compared to the baseline approach due to efficient exploitation of
the benchmark problem sparsity.

ACKNOWLEDGMENTS
This material is based upon work supported by the Defense Ad-
vanced Research Projects Agency (DARPA) under the Air Force
Research Laboratory (AFRL) Agreement No. FA8650-23-3-7313. The
views, opinions, and/or findings expressed are those of the authors

and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

REFERENCES
[1] 2023. Superflash Technology Overview, SST, Inc. www.sst.com/technology/sst-

superflash-technology.
[2] S. Agarwal, S.J. Plimpton, D.R. Hughart, et al. 2016. Resistive memory device

requirements for a neural algorithm accelerator. In IJCNN. 929–938.
[3] T. Balyo, N. Froleyks, M.J.H. Heule, et al. 2020. Proceedings of SAT Competition

2020 : Solver and Benchmark Descriptions. http://hdl.handle.net/10138/318450
[4] T. Balyo, M.J.H. Heule, and M. Järvisalo. 2017. Proceedings of SAT Competition

2017 : Solver and Benchmark Descriptions. http://hdl.handle.net/10138/224324
[5] M. Bavandpour, M.R. Mahmoodi, H. Nili, et al. 2018. Mixed-Signal Neuromorphic

InferenceAccelerators: Recent Results and Future Prospects. In IEEE IEDM. 20.4.1–
20.4.4.

[6] M. Bavandpour, M.R. Mahmoodi, and D.B. Strukov. 2020. aCortex: An Energy-
Efficient Multipurpose Mixed-Signal Inference Accelerator. IEEE JXCDC 6, 1
(2020), 98–106.

[7] V. Betz and J. Rose. 1997. VPR: a new packing, placement and routing tool for
FPGA research. Lecture Notes in Computer Science, Vol. 1304. Springer Berlin
Heidelberg, Berlin, Heidelberg, 213–222.

[8] V. Betz, J. Rose, and A. Marquardt. 1999. Background and Previous Work. Springer
US, Boston, MA, 11–35.

[9] C. Bybee, D. Kleyko, D.and Nikonov, A. Khosrowshahi, et al. 2023. Efficient
Optimization with Higher-Order Ising Machines. Nature Communications 14 (12
2023), 6033.

[10] K.Y. Camsari, R. Faria, B.M. Sutton, and S. Datta. 2017. Stochastic p-bits for
Invertible Logic. Phys. Rev. X 7, 3 (2017), 031014.

[11] S. Dutta, A. Khanna, A. Assoa, et al. 2021. An Ising Hamiltonian solver based
on coupled stochastic phase-transition nano-oscillators. Nature Electronics 4 (07
2021), 502–512.

[12] F. Glover, G. Kochenberger, and Y. Du. 2019. Quantum Bridge Analytics I: a
tutorial on formulating and using QUBO models. 4OR 17, 4 (2019), 335–371.

[13] X. Guo, F. Merrikh-Bayat, M. Prezioso, et al. 2017. Temperature-Insensitive
Analog Vector-by-Matrix Multiplier Based on 55 nm NOR Flash Memory Cells.
In IEEE CICC. 1–4.

[14] M. Hizzani, A. Heittmann, G. Hutchinson, et al. 2023. Memristor-based hardware
and algorithms for higher-order Hopfield optimization solver outperforming
quadratic Ising machines. arXiv:2311.01171

[15] H. Hoos. 2011. SATLIB — Benchmark Problems. https://www.cs.ubc.ca/~hoos/
SATLIB/benchm.html

[16] J.J. Hopfield. 1982. Neural networks and physical systems with emergent collec-
tive computational abilities. PNAS 79, 8 (1982), 2554–2558.

[17] F. Hutter, H.H. Hoos, and K. Leyton-Brown. 2011. Sequential Model-Based Opti-
mization for General Algorithm Configuration. Lecture Notes in Computer Science,
Vol. 6683. Springer Berlin Heidelberg, Berlin, Heidelberg, 507–523.

[18] T. Izumi, T. Yokomaru, A. Takahashi, and Y. Kajitani. 1998. Computational
complexity analysis of set-bin-packing problem. In ISCAS, Vol. 6. IEEE, Monterey,
CA, USA, 244–247. https://doi.org/10.1109/ISCAS.1998.705257

[19] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy. 2019. 8T SRAM Cell as a
Multibit Dot-Product Engine for Beyond Von Neumann Computing. IEEE TVLSI
27, 11 (2019), 2556–2567.

[20] L. Kull, T. Toifl, M. Schmatz, et al. 2013. A 3.1 mW 8b 1.2 GS/s Single-Channel
Asynchronous SAR ADCWith Alternate Comparators for Enhanced Speed in 32
nm Digital SOI CMOS. IEEE JSSC 48, 12 (2013), 3049–3058. https://doi.org/10.
1109/JSSC.2013.2279571

[21] I. Kuon and J. Rose. 2008. Area and Delay Trade-Offs in the Circuit and Ar-
chitecture Design of FPGAs. In ACM/SIGDA FPGA (Monterey, California, USA)
(FPGA ’08). Association for Computing Machinery, New York, NY, USA, 149–158.
https://doi.org/10.1145/1344671.1344695

[22] I. Kuon and J. Rose. 2008. iFAR – intelligent FPGA Architecture Repository.
https://www.eecg.utoronto.ca/vpr/architectures/

[23] M. Lindauer, K. Eggensperger, M. Feurer, et al. 2022. SMAC3: A versatile bayesian
optimization package for hyperparameter optimization. JMLR 23, 54 (2022), 1–9.
https://www.jmlr.org/papers/v23/21-0888.html

[24] A. Lucas. 2014. Ising formulations of many NP problems. Frontiers in Physics 2
(2014).

[25] J. Luu, I. Kuon, P. Jamieson, et al. 2009. VPR 5.0: FPGA CAD and architecture
exploration tools with single-driver routing, heterogeneity and process scaling.
In Proceedings of the ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, Monterey California USA, 133–142.

[26] S. Mittal, J.S. Vetter, and D. Li. 2015. A Survey Of Architectural Approaches for
Managing Embedded DRAM and Non-Volatile On-Chip Caches. IEEE Transac-
tions on Parallel and Distributed Systems 26, 6 (2015), 1524–1537.

[27] N. Mohseni, P. McMahon, and T. Byrnes. 2022. Ising machines as hardware
solvers of combinatorial optimization problems. Nature Reviews Physics 3 (04

www.sst.com/technology/sst-superflash-technology
www.sst.com/technology/sst-superflash-technology
http://hdl.handle.net/10138/318450
http://hdl.handle.net/10138/224324
https://arxiv.org/abs/2311.01171
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
https://doi.org/10.1109/ISCAS.1998.705257
https://doi.org/10.1109/JSSC.2013.2279571
https://doi.org/10.1109/JSSC.2013.2279571
https://doi.org/10.1145/1344671.1344695
https://www.eecg.utoronto.ca/vpr/architectures/
https://www.jmlr.org/papers/v23/21-0888.html

FPIA: Field-Programmable Ising Arrays with In-Memory Computing

2022), 363–379.
[28] A. Mondal, A.and Srivastava. 2021. Ising-FPGA: A Spintronics-based Reconfig-

urable Ising Model Solver. ACM Transactions on Design Automation of Electronic
Systems 26, 1 (2021), 1–27.

[29] M. NazmBojnordi and E. Ipek. 2016. Memristive Boltzmannmachine: A hardware
accelerator for combinatorial optimization and deep learning. In HPCA’16. 1–13.

[30] P. Purdom and A. Sabry. 2018. CNF Generator for Factoring Problems. https:
//cgi.luddy.indiana.edu/~sabry/cnf.html

[31] K. Roy and M. Mehendale. 1992. Optimization of channel segmentation for
channeled architecture FPGAs. In IEEE CICC. 4–4.

[32] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou. 2020. Memory
devices and applications for in-memory computing. Nature Nanotechnology 15
(2020), 529–544.

[33] T. Sejnowski. 1987. Higher-Order Boltzmann Machines. 151 (Mar 1987).
[34] A. Shafiee, A. Nag, N. Muralimanohar, et al. 2016. ISAAC: A Convolutional

Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars. In

ACM/IEEE ISCA. 14–26.
[35] A. Sharma, R. Afoakwa, A. Ignjatovic, and M. C. Huang. 2022. Increasing Ising

Machine Capacity with Multi-Chip Architectures. In ACM ISCA’22. 508–521.
[36] M. Strinati and C. Conti. 2022. Multidimensional hyperspin machine. Nature

Communications 13 (11 2022), 7248.
[37] R. Tessier and H. Giza. 2000. Balancing Logic Utilization and Area Efficiency in

FPGAs. In Field-Programmable Logic and Applications: The Roadmap to Recon-
figurable Computing (Lecture Notes in Computer Science), R.W. Hartenstein and
H. Grünbacher (Eds.). Springer, Berlin, Heidelberg, 535–544.

[38] D. Wang, X. Zhu, X. Guo, et al. 2019. A 2.6 GS/s 8-Bit Time-Interleaved SAR
ADC in 55 nm CMOS Technology. MDPI Electronics 8, 33 (2019), 305.

[39] H. Wei, P. Zhang, B. Datta Sahoo, and B. Razavi. 2013. An 8-Bit 4-GS/s 120-mW
CMOS ADC. In IEEE CICC. 1–4.

[40] C. Yu, T. Yoo, Tony T.-H. Kim, et al. 2020. A 16K Current-Based 8T SRAM
Compute-In-Memory Macro with Decoupled Read/Write and 1-5bit Column
ADC. In IEEE CICC. 1–4.

https://cgi.luddy.indiana.edu/~sabry/cnf.html
https://cgi.luddy.indiana.edu/~sabry/cnf.html

	Abstract
	1 Introduction
	2 Weight Utilization Improvement
	3 FPIA and Baseline Architectures
	4 Modeling Framework
	5 Modeling Results
	6 Discussion and Summary
	Acknowledgments
	References

