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This paper provides a step forward to developing an algorithmic study of

linear systems of polynomial ordinary integro-differential equations over

a field k of characteristic zero. Such a study can be achieved by first ob-

taining a constructive proof of the coherence property of the ring I1 (k) of
linear ordinary integro-differential operators with coefficients in k[𝑡 ]. To
do that, the finiteness of the intersection of two finitely generated ideals has

to be algorithmically studied. Three cases must be considered: first when

evaluation operators generate the two ideals; second, when only one ideal

is generated by evaluation operators; and third, when none is generated

by evaluation operators. In this paper, we first explicitly characterize the

intersection of two finitely generated ideals defined by evaluation operators.

As for the second case, a key result is that the ideals generated by evaluations

are semisimple I1-modules. We develop an algorithmic proof of this result.

In particular, we show how a finite set of generators, defined by “simple”

evaluations, can be obtained, that characterizes the class of finitely generated

evaluation ideals of I1 as finitely generated k[𝑡 ]-modules. Due to lack of

space, the second and third cases will be developed in other publications.

CCS Concepts: •Computingmethodologies→ Symbolic and algebraic
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rithms.
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1 INTRODUCTION
Calculus is fundamental in mathematics, mathematical physics, and

engineering sciences. The idea of mechanizing the computation

of integro-differential expressions is rather old in computer alge-

bra. The problem of simplifying integro-differential expressions

using a consistent system of rewriting rules − which corresponds

to the standard calculus relations between the differential, integral,

function multiplication, and evaluation operators − has recently

regained interest in computer algebra, control theory, physics, etc.
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The fine algebraic study of the ring I1 (k) of polynomial ordinary

integro-differential operators, where k is a field of characteristic 0,

was initiated in [1]. See also [11]. It can easily be shown that I1 (k) is
not a left nor a right noetherian ring. An important result of Bavula

(see [1, Theorem 4.4]) proves that I1 (k) is a coherent ring, namely,

the left/right I1 (k)-module of relations between the generators of

any finitely generated left/right ideal of I1 (k) is finitely generated.

A linear system of polynomial ordinary integro-differential equa-

tions naturally defines a finitely presented left I1 (k)-module: its

representation as a linear system 𝑅𝑦 = 0 yields a matrix of integro-

differential operators 𝑅 ∈ I1 (k)𝑞×𝑝 , and thus, the finitely presented

left I1-moduleM = cokerI1 (k) (.𝑅) = I1 (k)1×𝑝/(I1 (k)1×𝑞 𝑅).Within

the algebraic analysis approach [2, 8, 9], the solution space of the

corresponding integro-differential linear system can then be inter-

preted as the k-vector space homI1 (k) (M, F ) of all the left I1 (k)-
homomorphisms fromM to a left I1-module F where the solutions

are sought. Hence, the study of linear systems of polynomial or-

dinary integro-differential naturally lies in the category of finitely
presented left I1 (k)-modules. In homological algebra, it is well-known

that finitely presented left modules over a coherent ring are stable

by all the standard algebraic operations, exactly as the category of

finitely generated left modules over a left noetherian ring. Bavula’s

result on the coherence of I1 (k) thus opens the possibility to develop
an algorithmic study of polynomial ordinary integro-differential

systems within the algebraic analysis approach. Such an approach

would be the extension of the effective algebraic analysis approach

to linear systems of polynomial ordinary differential equations de-

fined over theWeyl algebra A1 (k) (see, e.g., [3, 9]).
To develop such a research program, we first have to obtain an

algorithmic version of Bavula’s proof, i.e., an algorithmic elimination
theory for polynomial ordinary integro-differential linear systems.

The goal of this paper is to further develop the algorithmic proof

of the coherence of I1 (k) initiated in [5].

The coherence property relies on a characterization that includes

two conditions. The first one states that the left/right annihilator

of an element of I1 (k) is finitely generated. An algorithmic proof

of this condition was developed in [10] for the elements of I1 (k)
that do not belong to the only two-sided ideal ⟨𝑒⟩ of I1 (k) defined
by evaluation operators, namely, the elements of ⟨𝑒⟩ = k[𝑡] 𝑒 k[𝜕],
where 𝜕 = 𝑑/𝑑𝑡 denotes the differential operator with respect to 𝑡 ,

𝐼 =
∫ 𝑡

0
·𝑑𝜏 the indefinite integral operator, and 𝑒 = 1 − 𝐼 𝜕 the

evaluation at 𝑡 = 0. The case of the annihilator of the elements

of ⟨𝑒⟩ was algorithmically developed in [5].

In this paper, we study the second condition of the coherence

property that states that the intersection of two finitely generated

left/right ideals of I1 (k) is finitely generated. We first show how the

method proposed in [5] can be extended to effectively characterize

1

https://doi.org/10.1145/3666000.3669682
https://doi.org/10.1145/3666000.3669682


ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Cluzeau, Pinto, Quadrat

the intersection of two left ideals I and J finitely generated by

evaluation operators, i.e., I, J ⊆ ⟨𝑒⟩. To study the case where

only one ideal is included in ⟨𝑒⟩, a key ingredient of the proof of [1,

Theorem 4.4] relies on the fact that ideals defined by evaluations are

semisimple I1 (k)-modules. We then develop an algorithmic proof of

this result by showing how a finite set of generators {𝑔𝑖 }𝑖=1,...,𝑠 of I,
formed by “simple” evaluations, namely, elements of 𝑒 k[𝜕], can be

computed. This result exhibits the semisimple property of I since

we then have I =
∑𝑠
𝑖=1 I1 (k) 𝑔𝑖 =

∑𝑠
𝑖=1 k[𝑡] 𝑔𝑖 � k[𝑡]𝑠 , where k[𝑡]

is a simple left I1 (k)-module (see [1]). The fact that I ∩J is finitely

generated in the case of two finitely generated ideals I ⊆ ⟨𝑒⟩ and
J ⊄ ⟨𝑒⟩ or I ⊄ ⟨𝑒⟩ and J ⊄ ⟨𝑒⟩ will be constructively studied in

other publications.

2 GENERALITIES ON THE RING OF
INTEGRO-DIFFERENTIAL OPERATORS

In the rest of the paper, k will denote a field of characteristic zero

(Q while studying the computational aspects) and k[𝑡] the ring of
polynomials with coefficients in k.

2.1 The ring of integro-differential operators
Let endk (k[𝑡]) be the endomorphism ring of k[𝑡], namely, the ring

of all the k-linear maps from k[𝑡] to itself. This paper studies some

properties of the ring I1 of ordinary integro-differential operators
with polynomial coefficients which is defined as follows.

Definition 2.1. The ring I1 (k) of ordinary integro-differential oper-
ators with polynomial coefficients is the k-subalgebra of endk (k[𝑡])
generated by the following three linear operators:

𝑡 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→ 𝑡 𝑝,

𝜕 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→ 𝑑𝑝 (𝑡)
𝑑𝑡

,

𝐼 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→
∫ 𝑡

0

𝑝 (𝜏) 𝑑𝜏 .

In what follows, I1 (k) will simply be denoted by I1.
Notice that I1 contains the Weyl algebra A1 of ordinary linear

differential operators with polynomial coefficients defined as the k-
subalgebra of endk (k[𝑡]) generated by the operators 𝑡 and 𝜕 above.

Among the elements of the ring I1, let 1 denote the identity of

endk (k[𝑡]) and let us consider 𝑒 := 1 − 𝐼 𝜕. It satisfies:

∀𝑝 ∈ k[𝑡], 𝑒 (𝑝) = (1 − 𝐼 𝜕) (𝑝) = 𝑝 (0) .
Hence, 𝑒 corresponds to the evaluation operator at 0. Note that 𝑒 is
multiplicative, namely, 𝑒 (𝑝1 𝑝2) = 𝑒 (𝑝1) 𝑒 (𝑝2) for all 𝑝1, 𝑝2 ∈ k[𝑡].
In the ring I1, certain identities between the operators 𝑡, 𝜕, 𝐼 ,

and 𝑒 hold [1, 5, 10, 11]. For instance, we have 𝜕 𝐼 = 1 and 𝐼 𝜕 = 1−𝑒 ,
which correspond respectively to the first and second fundamental

theorems of calculus. It can be proved that every element 𝑓 ∈ I1 can
be written uniquely as

𝑓 =

𝑛∑
𝑖=0

𝑎𝑖 𝜕
𝑖 +

𝑚∑
𝑗=0

𝑏 𝑗 𝐼 𝑐 𝑗 +
𝑟∑

𝑘=0

𝑑𝑘 𝑒 𝜕
𝑘 ,

where 𝑎𝑖 , 𝑏 𝑗 , 𝑐 𝑗 , 𝑑𝑘 ∈ k[𝑡] and 𝑛,𝑚, 𝑟 ∈ N. For more details, see

[1, 5, 10, 11]. The above writing is called the normal form of 𝑓 . In

what follows, an element of I1 with a normal form of the form∑𝑟
𝑘=0

𝑑𝑘 𝑒 𝜕
𝑘
, where 𝑑𝑘 ∈ k[𝑡], will be called an evaluation operator.

We shall see that ideals of I1 generated by such evaluation operators

have interesting properties. We recall that the set ⟨𝑒⟩ := I1 𝑒 I1 is
the only two-sided ideal of I1 (see [1]). We further have:

⟨𝑒⟩ = k[𝑡] 𝑒 k[𝜕] =
𝑑 ∈ I1 | 𝑑 =

𝑞∑
𝑗=0

𝑑𝑘 𝑒 𝜕
𝑘 , 𝑑𝑘 ∈ k[𝑡], 𝑞 ∈ N

 .

Thus, ⟨𝑒⟩ is the ideal formed by all the evaluation operators of I1. A
left/right ideal 𝐼 ⊆ ⟨𝑒⟩ will be called an evaluation ideal.
An interesting family of evaluation operators is formed by the

Taylor operators 𝑇𝑛 defined by:

∀𝑛 ∈ N, 𝑇𝑛 =

𝑛∑
𝑘=0

𝑡𝑘

𝑘!
𝑒 𝜕𝑘 . (1)

One can first prove the following identity

∀𝑛 ∈ N, 𝑇𝑛 + 𝐼𝑛+1 𝜕𝑛+1 = 1, (2)

which is the operator-theoretic interpretation of Taylor’s theorem

with integral remainder. See [5, Lemma 2.4]. In particular, (2) shows

that the sequence (𝑇𝑛)𝑛∈N plays the role of an approximate identity
in ⟨𝑒⟩. It explains why (2) plays a central role in [5] and in this paper.

The operators 𝑇𝑛 ’s satisfy 𝑇𝑚 𝑇𝑛 = 𝑇𝑚 for 0 ≤ 𝑚 ≤ 𝑛. They pro-

vide the strictly ascending chain (I1𝑇𝑛)𝑛∈N of left ideals of I1 ([10]),
which proves that I1 is not left noetherian. Using the involution 𝜃 of

I1 defined by 𝜃 (𝜕) = 𝐼 ,𝜃 (𝐼 ) = 𝜕, and𝜃 (𝑡) = 𝜕 𝑡 𝑝 = (𝑡 𝜕+1) 𝑝 (see [1]),
we can deduce that I1 is also not a right noetherian ring.

Therefore, contrary to its noetherian subring A1 (see, e.g., [2]),
I1 is not noetherian. This negative result seems to be an important

obstruction for the development of an algorithmic study of the linear

systems of integro-differential operators. In the next section, we

shall explain why this is fortunately not the end of the story.

2.2 The ring of integro-differential operators is coherent
As explained in [5], the fact that one can develop an algorithmic

study of linear systems over I1 relies on the so-called coherence
property of I1. Let us recall it hereafter.
Let R be a noncommutative ring. A left R-moduleM is said to

be finitely generated if it admits a finite set of generators, i.e., there

is a family {𝑔𝑖 }𝑖=1,...,𝑝 , where 𝑔𝑖 ∈ M and 𝑝 ∈ N, such that every

element𝑚 ∈ M can be written as𝑚 =
∑𝑝

𝑖=1
𝑟𝑖 𝑔𝑖 for some 𝑟𝑖 ∈ R.

A left R-moduleM, finitely generated by {𝑔𝑖 }𝑖=1,...,𝑝 , is said to

be finitely presented if the left R-module of relations between the

generators {𝑔𝑖 }𝑖=1,...,𝑝 , i.e.,

Syz(M) =
{
(𝜆1, . . . , 𝜆𝑝 ) ∈ R1×𝑝 |

𝑝∑
𝑖=1

𝜆𝑖 𝑔𝑖 = 0

}
is finitely generated.

Let {𝑒𝑖 }𝑖=1,...,𝑝 be the standard basis of R1×𝑝
(i.e., the 𝑖th entry

of 𝑒𝑖 is 1 and the other entries are 0) and 𝜋 : R1×𝑝 −→ M the left

R-epimorphism defined by sending 𝑒𝑖 onto 𝑔𝑖 for 𝑖 = 1, . . . , 𝑝 , i.e.,

𝜋 (𝜆) = ∑𝑝

𝑖=1
𝜆𝑖 𝑔𝑖 for all 𝜆 ∈ R1×𝑝

. Then, we have ker𝜋 = Syz(M).
Let us suppose that Syz(M) is a finitely generated left R-module

and {𝑅𝑖•}𝑖=1,...,𝑞 is a set of generators of Syz(M), where 𝑅𝑖• ∈ R1×𝑝

2
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and 𝑅 = (𝑅𝑇
1• . . . 𝑅𝑇𝑞•)𝑇 ∈ R𝑞×𝑝

. If .𝑅 : R1×𝑞 −→ R1×𝑝
is the left

R-homomorphism defined by (.𝑅) (𝜇) := 𝜇 𝑅 for all 𝜇 ∈ R1×𝑞
, then

S = imR (.𝑅) := R1×𝑞 𝑅 and we have the following exact sequence

R1×𝑞 .𝑅 // R1×𝑝 𝜋 //M //
0,

namely, ker𝜋 = imR (.𝑅) and 𝜋 is surjective, which then yields

M � coker(.𝑅) = R1×𝑝 /
(R1×𝑞 𝑅) . The left R-module M is said

to be finitely presented by 𝑅 ∈ R𝑞×𝑝
. For more details, see [2, 12].

We can now give the definition of a coherent ring.

Definition 2.2. Let R be a noncommutative ring. A left R-module

M is said to be left coherent if M is a finitely generated left R-
module and if every finitely generated left R-submodule of M is

finitely presented. The ring R is said to be left coherent if R is a left

coherent R-module, i.e., if every finitely generated left ideal of R
is finitely presented. Symetric definitions hold for right R-modules

and a ring is said to be coherent if it is both left and right coherent.

In [1], Bavula proved the following important result for I1.

Theorem 2.3 ([1], Theorem 4.4). I1 is a coherent ring.

To prove the latter theorem, Bavula used the following standard

characterization of coherent rings.

Proposition 2.4 ([13], Proposition 13.3). A ringR is left coherent
if and only if the following two conditions hold:

(1) For every 𝑎 ∈ R, annR (.𝑎) := {𝑟 ∈ R | 𝑟 𝑎 = 0} is a finitely
generated left ideal.

(2) For all finitely generated left ideals I and J , the left ideal
I ∩ J is finitely generated.

A similar result holds for a right coherent ring (annR (.𝑎) is then
replaced by annR (𝑎.) and left ideals by right ideals).

The proof of the coherence of I1 given in [1] is not algorithmic. In

order to develop an effective algebraic analysis approach to linear

systems over I1, we aim at providing such a constructive proof. To

do that, we rely on the characterization of Proposition 2.4. In [10],

an algorithmic characterization of annR (.𝑎) for 𝑎 ∈ I1 \ ⟨𝑒⟩ was ob-
tained. In [5], we provided an explicit characterization of annR (.𝑎)
for 𝑎 ∈ ⟨𝑒⟩ and gave an algorithm for computing a finite set of gen-

erators for annR (.𝑎). Therefore, Condition (1) on the annihilators

of elements of I1 was made algorithmic. It thus remains to obtain a

constructive version of Condition (2). It is the goal of the present pa-

per. More precisely, to do that, we distinguish three cases depending

on the fact that both, one, or none of the ideals is an evaluation ideal,

i.e., is included in ⟨𝑒⟩. In this paper, we shall handle the first case.

Due to lack of space, the second one will be developed in another

publication (based on the results of Section 4 in the present paper).

The last one will be investigated in the future (see Section 5).

3 THE INTERSECTION OF EVALUATION IDEALS
In this section, we shall provide an algorithmic version of Con-

dition (2) of Proposition 2.4 in the case where both I and J are

finitely generated left evaluation ideals.

For instance, if we consider the principal ideals generated by the

Taylor operators defined by (2), namely, I = I1𝑇𝑟 and J = I1𝑇𝑠 for

two integers 𝑟, 𝑠 ∈ N such that 𝑟 ≤ 𝑠 , then, the relation 𝑇𝑟 𝑇𝑠 = 𝑇𝑟
implies that I1𝑇𝑟 ⊂ I1𝑇𝑠 so that we have I ∩ J = I1𝑇𝑟 = I.

To develop a method for all evaluations ideals, we shall first gen-

eralize the algorithm developed in [5], which computes generators

of the annihilator of a scalar evaluation operator, to the matrix case.

3.1 Annihilator of a matrix evaluation operator
Let 𝑅 =

∑𝑛
𝑘=0

𝑅𝑘 (𝑡) 𝑒 𝜕𝑘 ∈ ⟨𝑒⟩𝑞×𝑝 , where 𝑅𝑘 ∈ k[𝑡]𝑞×𝑝 , be a matrix

whose entries are all evaluation operators. Let us show how to deter-

mine a finite set of generators for kerI1 (.𝑅) =
{
𝑢 ∈ I1×𝑞

1
| 𝑢 𝑅 = 0

}
.

To do that, we shall need the following definition.

Definition 3.1. If𝐴 is a matrix with entries in k[𝑡], then the degree
of 𝐴, denoted by deg(𝐴), is the maximal degree of all its entries.

Note that the proofs of Lemma 4.5, Proposition 4.7, and Theo-

rem 4.9 of [5] can easily be generalized to thematrix case by adapting

the dimensions of the matrices. Hence, we have the following result.

Theorem 3.2. Let 𝑅 ∈ ⟨𝑒⟩𝑞×𝑝 and write 𝑅 =
∑𝑛
𝑘=0

𝑅𝑘 (𝑡) 𝑒 𝜕𝑘 ,
where 𝑅𝑘 ∈ k[𝑡]𝑞×𝑝 . Let𝑚 = max𝑘∈J0,𝑛K deg(𝑅𝑘 ), and

𝐶 =

©­­­«
𝑅0 . . . 𝑅𝑛
.
.
.

.

.

.

𝑅
(𝑚+1)
0

. . . 𝑅
(𝑚+1)
𝑛

ª®®®¬ ∈ k𝑞 (𝑚+2)×𝑝 (𝑛+1) , 𝐽𝑚+1 =

©­­­­«
𝐼𝑞
𝐼𝑞 𝜕

.

.

.

𝐼𝑞 𝜕
𝑚+1

ª®®®®¬
.

Finally, let 𝐷 ∈ k[𝑡]𝑟×𝑞 (𝑚+2) and 𝐸 ∈ k𝑠×𝑞 (𝑚+2) be two full row
rank matrices satisfying

kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷), kerk (.𝑒 (𝐶)) = imk (.𝐸),

and let us define the following matrices

©­­«
𝑢1
.
.
.

𝑢𝑟

ª®®¬ = 𝐷 𝐽𝑚+1,
©­­«
𝑣1
.
.
.

𝑣𝑠

ª®®¬ = 𝐸 𝑒 𝐽𝑚+1,

where 𝑢1, . . . , 𝑢𝑟 and 𝑣1, . . . , 𝑣𝑠 belong to I
1×𝑞
1

. Then, we have:

kerI1 (.𝑅) =
𝑟∑
𝑖=1

I1 𝑢𝑖 +
𝑠∑
𝑗=1

I1 𝑣 𝑗 = imI1

(
.(𝑢𝑇

1
. . . 𝑢𝑇𝑟 𝑣𝑇

1
. . . 𝑣𝑇𝑠 )𝑇

)
.

Thus, kerI1 (.𝑅) is a finitely generated left I1-module and a set of gener-
ators {𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠 } of kerI1 (.𝑅) can effectively be computed.

In [5, Corollary 4.7], for 𝑎 ∈ I1, it is proved that kerI1 (.𝑎) can be

generated by the sole 𝑢𝑖 ’s. This result was obtained by proving that

the k[𝑡]-module finitely presented by 𝐶 , i.e., N := cokerk[𝑡 ] (.𝐶), is
reduced to 0, a fact that implies that we can take 𝐸 = 𝑒 (𝐷), so that

𝑠 = 𝑟 and 𝑣𝑖 = 𝑒 𝑢𝑖 for 𝑖 = 1, . . . , 𝑟 . For more details, we refer to [5].

In the matrix case, we can extend [5, Corollary 4.7] by showing

that the k[𝑡]-module N is free, i.e., N is isomorphic to k[𝑡]𝑑 for a

certain 𝑑 ∈ N, which is denoted by N � k[𝑡]𝑑 . Note that 𝑑 is called

the rank of N and the k[𝑡]-module 0 is free of rank 0. For more

details, see [12, Ch. 2, p. 56–60]. As a consequence, kerI1 (.𝑅) can
be generated by the 𝑢𝑖 ’s. To prove this result, we shall need the

following lemma.

3
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Lemma 3.3. Let 𝐴 ∈ k[𝑡]𝑞×𝑝 ,𝑚 = deg(𝐴), and

𝐷𝑚 (𝐴) = 𝐽𝑚 (𝐴) =
©­­­«

𝐴

.

.

.

𝐴(𝑚)

ª®®®¬ ∈ k[𝑡]𝑞 (𝑚+1)×𝑝 ,

𝑈 =

©­­­­­­«

𝐼𝑞 𝑡 𝐼𝑞 . . . 𝑡𝑚

𝑚!
𝐼𝑞

0 𝐼𝑞 . . . 𝑡𝑚−1

(𝑚−1)! 𝐼𝑞
.
.
.

. . .
.
.
.

0 . . . 𝐼𝑞

ª®®®®®®¬
∈ k[𝑡]𝑞 (𝑚+1)×𝑞 (𝑚+1) .

Then, we have𝑈 −1 ∈ k[𝑡]𝑞 (𝑚+1)×𝑞 (𝑚+1) and

𝑈 −1 𝐷𝑚 (𝐴) = 𝐷𝑚 (𝐴) (0) =
©­­­«

𝐴(0)
.
.
.

𝐴(𝑚) (0)

ª®®®¬ . (3)

Proof. Clearly the matrix𝑈 is invertible and

𝑈 −1 =

©­­­­­­«

𝐼𝑞 −𝑡 𝐼𝑞 . . .
(−𝑡 )𝑚
𝑚!

𝐼𝑞

0 𝐼𝑞 . . .
(−𝑡 )𝑚−1

(𝑚−1)! 𝐼𝑞
.
.
. 𝐼𝑞

.

.

.

0 . . . 𝐼𝑞

ª®®®®®®®¬
.

Then, we have

𝑈 −1 𝐷𝑚 (𝐴) =

©­­­­­­­­­­«

𝐴 − 𝑡 𝐴(1) + 𝑡2

2!

𝐴(2) + · · · + (−𝑡 )𝑚
𝑚!

𝐴(𝑚)

.

.

.

𝐴(𝑖) − 𝑡 𝐴(𝑖+1) + · · · + (−𝑡 )𝑚−𝑖

(𝑚−𝑖)! 𝐴
(𝑚)

.

.

.

𝐴(𝑚)

ª®®®®®®®®®®¬
.

Let 𝑇𝑖 = 𝐴(𝑖) − 𝑡 𝐴(𝑖+1) + · · · + (−𝑡 )𝑚−𝑖

(𝑚−𝑖)! 𝐴
(𝑚)

for 𝑖 = 0, . . . ,𝑚. Differ-

entiating 𝑇𝑖 with respect to 𝑡 produces the telescoping sum

𝑑𝑇𝑖

𝑑𝑡
= 𝐴(𝑖+1) −𝐴(𝑖+1) − 𝑡 𝐴(𝑖+2) + · · ·

· · · + (−𝑡)𝑚−𝑖−1

(𝑚 − 𝑖 − 1)! 𝐴
(𝑚) + (−𝑡)𝑚−𝑖−1

(𝑚 − 𝑖 − 1)! 𝐴
(𝑚+1) = 0,

which finally shows that 𝑇𝑖 = 𝑇𝑖 (0) = 𝐴(𝑖) (0) for 𝑖 = 0, . . . ,𝑚. □

With the notations of Theorem 3.2, if we consider the matrix

𝐴 = (𝑅0 . . . 𝑅𝑛) ∈ k[𝑡]𝑞×𝑝 (𝑛+1) , then using Lemma 3.3, we obtain

𝐶 (0) =

(
𝐷𝑚 (𝐴) (0)

0

)
=

(
𝑈 −1 𝐷𝑚 (𝐴)

0

)
=

(
𝑈 −1

0

0 𝐼𝑞

) (
𝐷𝑚 (𝐴)

0

)
=

(
𝑈 −1

0

0 𝐼𝑞

)
𝐶. (4)

Proposition 3.4. With the notations of Theorem 3.2, the k[𝑡]-
module N = cokerk[𝑡 ] (.𝐶) is such that N = cokerk[𝑡 ] (.𝐶 (0)), and
thus, is a free k[𝑡]-module, namely, N � k[𝑡]𝑑 , where

𝑑 = 𝑝 (𝑛 + 1) − rankk (𝐶 (0)) .

Proof. Let us consider 𝐴 = (𝑅0 . . . 𝑅𝑛) ∈ k[𝑡]𝑞×𝑝 (𝑛+1) . Us-
ing (4) and the fact that𝑈 is unimodular, i.e.,𝑈 −1 ∈ k[𝑡]𝑞 (𝑚+1)×𝑞 (𝑚+1)

,

R1×𝑞 (𝑚+2) 𝐶 = R1×𝑞 (𝑚+2) 𝐶 (0), which yields

N = cokerk[𝑡 ] (.𝐶) = cokerk[𝑡 ] (.𝐶 (0)) = cokerk[𝑡 ] (.𝐷𝑚 (𝐴) (0)),
where

𝐷𝑚 (𝐴) (0) =
©­­­«

𝑅0 . . . 𝑅𝑛
.
.
. . . .

.

.

.

𝑅
(𝑚)
0

(0) . . . 𝑅
(𝑚)
𝑛 (0)

ª®®®¬ ∈ k𝑞 (𝑚+1)×𝑝 (𝑛+1) .

Finally, using the fact that 𝐷𝑚 (𝐴) (0) is a matrix with entries in k,
N � k[𝑡] ⊗k cokerk (.𝐷𝑚 (𝐴) (0)), where cokerk (.𝐷𝑚 (𝐴) (0)) is a
k-vector space of dimension

𝑑 = 𝑝 (𝑛 + 1) − rankk (𝐷𝑚 (𝐴) (0)) = 𝑝 (𝑛 + 1) − rankk (𝐶 (0)),

and thus, N � k[𝑡]𝑑 , i.e., N is a free k[𝑡]-module of rank 𝑑 . □

Example 3.5. Let us consider 𝑅 = 𝑡 𝑒 + 𝑡 𝑒 𝜕 ∈ ⟨𝑒⟩. Thus, we have
𝑝 = 𝑞 = 1, 𝑅 = 𝑅0 𝑒 + 𝑅1 𝑒 𝑝 , where 𝑅0 = 𝑅1 = 𝑡 ,𝑚 = 𝑛 = 1, and

𝐶 =
©­«
𝑡 𝑡

1 1

0 0

ª®¬ , 𝐶 (0) = ©­«
0 0

1 1

0 0

ª®¬ , 𝐷 =

(
1 −𝑡 0

0 0 1

)
, 𝐸 =

(
1 0 0

0 0 1

)
,

𝑢 =

(
𝑢1
𝑢2

)
=

(
1 − 𝑡 𝜕

𝜕2

)
, 𝑣 =

(
𝑣1
𝑣2

)
=

(
𝑒

𝑒 𝜕2

)
.

By Theorem 3.2, we then have

kerI1 (.𝑅) = annI1 (.𝑅) = I1 (1 − 𝑡 𝜕) + I1 𝜕2 + I1 𝑒 + I1 𝑒 𝜕2 .
Moreover, we can check that (4) holds

𝑈 =

(
1 𝑡

0 1

)
, 𝑈 −1 =

(
1 −𝑡
0 1

)
,

(
𝑈 −1

0

0 1

)
𝐶 = 𝐶 (0) .

We have rankk (𝐶 (0)) = 1, which, by Proposition 3.4, shows that

N = k[𝑡]1×2/(k[𝑡]1×3𝐶) = k[𝑡]1×2/(k[𝑡]1×3𝐶 (0)) is a free k[𝑡]-
module of rank 1. This last result can easily be checked again [3, 7].

Note that Proposition 3.4 generalizes and simplifies the proof of

Proposition 4.16 of [5] as follows.

Corollary 3.6. With the above notations, N = 0 if and only if
𝐶 (0) is a full column rank matrix.

If 𝑝 = 𝑞 = 1 and if the polynomials 𝑅𝑘 ’s are supposed to be k-
linearly independent, then N = 0.

Proof. The first result is a direct consequence of Proposition 3.4.

Let us now write 𝑅𝑘 =
∑𝑚
𝑙=0

𝑅𝑘𝑙 𝑡
𝑙
, where 𝑅𝑘𝑙 ∈ k. Using Propo-

sition 3.4, N = cokerk[𝑡 ] (.𝐶) is then a free k[𝑡]-module of rank

𝑑 = 𝑛 + 1 − rankk (𝐶 (0)), where

𝐶 (0) =
©­­­­«

𝑅00 . . . 𝑅𝑛0
.
.
. . . .

.

.

.

𝑚!𝑅0𝑚 . . . 𝑚!𝑅𝑛𝑚
0 . . . 0

ª®®®®¬
=

©­­­­«
1 . . . 0 0

.

.

.
. . .

.

.

.
.
.
.

0 . . . 𝑚! 0

0 . . . 0 1

ª®®®®¬
©­­­­«
𝑅00 . . . 𝑅𝑛0
.
.
.

.

.

.
.
.
.

𝑅0𝑚 . . . 𝑅𝑛𝑚
0 . . . 0

ª®®®®¬
.
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Over the infinite field k, the fact that the 𝑅𝑘 ’s are k-linearly inde-

pendent as formal polynomials implies that the right matrix factor

of𝐶 (0) has column rank 𝑛 + 1. Thus rankk (𝐶 (0)) = 𝑛 + 1, i.e., 𝑑 = 0,

and thus, N = 0. □

Theorem 3.7. Let 𝑅 =
∑𝑛
𝑘=0

𝑅𝑘 (𝑡) 𝑒 𝜕𝑘 ∈ ⟨𝑒⟩𝑞×𝑝 with matrices
𝑅𝑘 ∈ k[𝑡]𝑞×𝑝 . With the notations of Theorem 3.2, we have

kerI1 (.𝑅) =
𝑟∑
𝑖=1

I1 𝑢𝑖 = imI1 (.𝑈 ), 𝑈 =

(
𝑢𝑇
1
. . . 𝑢𝑇𝑟

)𝑇
,

where 𝑟 = 𝑞(𝑚 + 2) − rankk (𝐶 (0)) and𝑚 = max𝑘∈J0,𝑛K deg(𝑅𝑘 ).

Proof. With the notations of Theorem 3.2, we have the following

long exact sequence of k[𝑡]-modules

0
// k[𝑡]1×𝑟 .𝐷 // k[𝑡]1×𝑞 (𝑚+2) .𝐶 // k[𝑡]1×𝑝 (𝑛+1) 𝜎 // N //

0,

where𝜎 denotes the canonical projection ontoN . By Proposition 3.4,

N is a free k[𝑡]-module of rank 𝑑 = 𝑝 (𝑛 + 1) − rankk (𝐶 (0)). Since
the alternative sum of ranks in an exact sequence is zero (see [12,

Exercise 3.16(i), p. 129]), we have

𝑟 − 𝑞(𝑚 + 2) + 𝑝 (𝑛 + 1) − 𝑑 = 0 ⇒ 𝑟 = 𝑞(𝑚 + 2) − rankk (𝐶 (0)) .

The freeness of N also implies that the latter exact sequence splits
(in other words, we have a contractible complex [12, Ch. 6, p. 337]),
i.e., that there exist 𝑋 ∈ k[𝑡]𝑞 (𝑚+2)×𝑟

and 𝑌 ∈ k[𝑡]𝑝 (𝑛+1)×𝑞 (𝑚+2)

satisfying the identities 𝐷 𝑋 = 𝐼𝑟 and 𝑋 𝐷 +𝐶 𝑌 = 𝐼𝑞 (𝑚+2) . Using
𝐷𝐶 = 0, we have 𝐷 (0)𝐶 (0) = 0, i.e., imk (.𝐷 (0)) ⊆ kerk (.𝐶 (0)).
Now, if 𝜈 ∈ kerk (.𝐶 (0)), using 𝑋 (0) 𝐷 (0) +𝐶 (0) 𝑌 (0) = 𝐼𝑞 (𝑚+2) , we
obtain 𝜈 = (𝜈 𝑋 (0)) 𝐷 (0), which yields 𝜈 ∈ imk (.𝐷 (0)), and thus,

kerk (.𝐶 (0)) = imk (.𝐷 (0)). Thus, we can take 𝐸 = 𝑒 (𝐷) in Theo-

rem 3.2. With the notations of Theorem 3.7, using the identity 𝑒 𝑎 =

𝑒 (𝑎) 𝑒 for all 𝑎 ∈ k[𝑡], 𝑣 = 𝐸 𝑒 𝐽𝑚+1 = 𝑒 (𝐷) 𝑒 𝐽𝑚+1 = 𝑒 𝐷 𝐽𝑚+1 = 𝑒 𝑢,

i.e., the 𝑣 𝑗 ’s are evaluations of the 𝑢𝑖 ’s, which ends the proof. □

Example 3.8. Continuing Example 3.5, 𝑒 𝑢1 = 𝑒 (1 − 𝑡 𝜕) = 𝑒 = 𝑣1
and 𝑒 𝑢2 = 𝑒 𝜕2 = 𝑣2 yield kerI1 (.𝑅) = I1 (1 − 𝑡 𝜕) + I1 𝜕2.

Remark. Let us explain how a full row matrix 𝐷 ∈ k[𝑡]𝑟×𝑞 (𝑚+2)

satisfying kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷) can directly be computed. Let

𝐸 ∈ k𝑠×𝑞 (𝑚+2)
be a full row rank satisfying kerk (.𝐶 (0)) = imk (.𝐸).

Such a matrix can easily be computed using linear algebra methods.

If we denote by 𝑉 ∈ k[𝑡]𝑞 (𝑚+2)×𝑞 (𝑚+2)
the first matrix in the right-

hand side of (4), using (4), we then get kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.(𝐸𝑉 )).

3.2 Generators of the intersection of evaluation ideals
We shall now use the results of Section 3.1 to show how to compute

a finite set of generators of the intersection of two finitely generated

evaluation ideals, i.e., finitely generated ideals of I1 included in ⟨𝑒⟩.

Theorem 3.9. Let I =
∑𝑛1

𝑖=1
I1 𝑝𝑖 and J =

∑𝑛2

𝑗=1
I1 𝑞 𝑗 be two

finitely generated evaluation ideals. Moreover, let

𝑝 =
(
𝑝1 · · · 𝑝𝑛1

)𝑇
, 𝑞 =

(
𝑞1 · · ·𝑞𝑛2

)𝑇
,

and

𝑅 =

(
𝑝𝑇 𝑞𝑇

)𝑇
=

(
𝑝1 · · · 𝑝𝑛1

𝑞1 · · ·𝑞𝑛2

)𝑇 ∈ ⟨𝑒⟩ (𝑛1+𝑛2)×1 .

If 𝑢1, . . . , 𝑢𝑟 are the generators of kerI1 (.𝑅) given by Theorem 3.7,
i.e., kerI1 (.𝑅) =

∑𝑟
𝑖=1 I1 𝑢𝑖 , where 𝑢𝑖 = (𝑢𝑖,1 𝑢𝑖,2) ∈ I1×(𝑛1+𝑛2)

1
,

𝑢𝑖,1 ∈ I1×𝑛1

1
, and 𝑢𝑖,2 ∈ I1×𝑛2

1
, then, we have

I ∩ J =

𝑟∑
𝑖=1

I1 (𝑢𝑖,1 𝑝) =
𝑟∑
𝑖=1

I1 (𝑢𝑖,2 𝑞) .

In particular, I ∩ J is finitely generated and a set of generators
can explicitly be computed.

Proof. With the notations of Theorem 3.7, kerI1 (.𝑅) =
∑𝑟
𝑖=1 I1 𝑢𝑖 ,

where 𝑢𝑖 = (𝑢𝑖,1 𝑢𝑖,2) ∈ I1×(𝑛1+𝑛2)
1

, 𝑢𝑖,1 ∈ I1×𝑛1

1
, and 𝑢𝑖,2 ∈ I1×𝑛2

1
.

Therefore, we have 𝑢𝑖,1 𝑝 = −𝑢𝑖,2 𝑞 for 𝑖 = 1, . . . , 𝑟 , which shows

that

∑𝑟
𝑖=1 I1 (𝑢𝑖,1 𝑝) =

∑𝑟
𝑖=1 I1 (𝑢𝑖,2 𝑞) ⊆ I ∩ J .

Let us now consider 𝑥 ∈ I ∩ J . Thus, 𝑥 ∈ I so that there exist

𝑎1, . . . , 𝑎𝑛1
∈ I1 such that 𝑥 =

∑𝑛1

𝑖=1
𝑎𝑖 𝑝𝑖 = 𝑎 𝑝 with 𝑎 :=

(
𝑎1 · · ·𝑎𝑛1

)
.

Similarly, 𝑥 ∈ J so that there exist 𝑏1, . . . , 𝑏𝑛2
∈ I1 satisfying

𝑥 =
∑𝑛2

𝑖=1
𝑏𝑖 𝑞𝑖 = 𝑏 𝑞 with 𝑏 :=

(
𝑏1 · · ·𝑏𝑛2

)
. Therefore, we have

the relation 𝑥 = 𝑎 𝑝 = 𝑏 𝑞, which implies (𝑎 − 𝑏) 𝑅 = 0 so that

(𝑎 −𝑏) ∈ kerI1 (.𝑅). We thus have (𝑎 −𝑏) = ∑𝑟
𝑖=1 𝑓𝑖 𝑢𝑖 for some

𝑓𝑖 ∈ I1, and thus, 𝑎 =
∑𝑟
𝑖=1 𝑓𝑖 𝑢𝑖,1 and 𝑏 = −∑𝑟

𝑖=1 𝑓𝑖 𝑢𝑖,2. Then, we

have 𝑥 = 𝑎 𝑝 =
∑𝑟
𝑖=1 𝑓𝑖 𝑢𝑖,1 𝑝 = 𝑏 𝑞 = −∑𝑟

𝑖=1 𝑓𝑖 𝑢𝑖,2 𝑞, which proves

the reverse inclusion and the result. □

We obtain Algorithm 1 displayed at the end of the paper.

Let us illustrate our algorithm for computing generators of the

intersection of two finitely generated evaluation ideals.

Example 3.10. Let I = I1 (𝑡2 + 1) 𝑒 and J = I1 (𝑡 𝑒 + 𝑡2 𝑒 𝜕). To
compute a finite set of generators of I ∩ J , we first define

𝑅 =

(
(𝑡2 + 1) 𝑒
𝑡 𝑒 + 𝑡2 𝑒 𝜕

)
=

(
𝑡2 + 1

𝑡

)
︸   ︷︷   ︸

𝑅0

𝑒 +
(
0

𝑡2

)
︸︷︷︸
𝑅1

𝑒 𝜕,

and then we can consider the following matrix

𝐶 =

©­­­«
𝑅0 𝑅1
.
.
.

.

.

.

𝑅
(3)
0

𝑅
(3)
1

ª®®®¬ =

©­­­­­­­­­­­«

𝑡2 + 1 0

𝑡 𝑡2

2 𝑡 0

1 2 𝑡

2 0

0 2

0 0

0 0

ª®®®®®®®®®®®¬
∈ k[𝑡]8×2 .

Using, e.g., the OreModules package ([4]), we can compute a full

row rank matrix 𝐷 satisfying kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷). We get

𝐷 =

©­­­­­­­«

−2 0 𝑡 0 1 0 0 0

0 −4 1 2 𝑡 0 0 0 0

0 0 −1 0 𝑡 0 0 0

0 0 0 −2 1 2 𝑡 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

ª®®®®®®®¬
,
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so that kerI1 (.𝑅) = imI1 (.𝑈 ), where

𝑈 = 𝐷

©­­­«
𝐼2
𝐼2 𝜕

𝐼2 𝜕
2

𝐼2 𝜕
3

ª®®®¬ =

©­­­­­­­«

𝜕2 + 𝑡 𝜕 − 2 0

𝜕 2 𝑡 𝜕 − 4

𝑡 𝜕2 − 𝜕 0

𝜕2 2 𝑡 𝜕2 − 2 𝜕

𝜕3 0

0 𝜕3

ª®®®®®®®¬
.

Using Theorem 3.7, we have 𝑝 = 1, 𝑞 = 2,𝑚 = 2, rankk (𝐶 (0)) = 2,

and thus, 𝑟 = 8 − 2 = 6. Partitioning 𝑈 = (𝑢1 𝑢2), where 𝑢1 (resp.,
𝑢2) is the first (resp., second) column of 𝑢, we finally have

𝑢1 (𝑡2 + 1) 𝑒 = 𝑢2 (𝑡 𝑒 + 𝑡2 𝑒 𝜕) =
(
0 2 𝑡 𝑒 0 2 𝑒 0 0

)𝑇
,

so that I ∩ J = I1𝑡 𝑒 + I1 𝑒 = I1 𝑒 because 𝑒 𝜕 𝑡 𝑒 = 𝑒 (𝑡 𝜕 + 1) 𝑒 = 𝑒 .

Finally, the above computations show that the syzygy module

Syz(K) = {(𝛼 𝛽) ∈ I1×2
1

| 𝛼 (𝑡2 + 1) 𝑒 + 𝛽 (𝑡 𝑒 + 𝑡2 𝑒 𝜕) = 0} of the
idealK = I1 (𝑡2 + 1) 𝑒 + I1 (𝑡 𝑒 + 𝑡2 𝑒 𝜕) is generated by the rows of𝑈 .

In Example 3.10, we have considered two principal ideals. First

note that the algorithm applies similarly for ideals which are not

principal. Moreover, in Proposition 4.7, we shall constructively prove

that any finitely generated ideal of ⟨𝑒⟩ is principal.

4 STRUCTURE OF FINITELY GENERATED EVALUATION
IDEALS AS SEMISIMPLE MODULES

In this section, we study the left ideal structure of finitely generated

evaluation ideals. Using the involution 𝜃 of I1 given in Section 2.1,

which satisfies 𝜃 (⟨𝑒⟩) ⊆ ⟨𝑒⟩, we can similarly handle finitely gener-

ated right evaluation ideals of I1. In [1], these ideals are proved to

be finitely generated semisimple left I1-modules (see the definition

below). More precisely, they are finitely generated k[𝑡]-modules.

Below, we show how to constructively prove these results. In partic-

ular, we explain how to effectively compute a finite set of generators

of these ideals as k[𝑡]-modules. In the next section, this last result

will be used to algorithmically characterize the intersection of two

finitely generated ideals in the case when at least one is in ⟨𝑒⟩.
Using the fact that k[𝑡] is a subring of I1, a left idealI of I1 inherits

a k[𝑡]-module structure. Hence, the generators of an evaluation ideal

I of I1 as a k[𝑡]-module also generate I as a I1-module.

Definition 4.1 ([12], Ch. 4, p. 154). LetM be a left module over a

ring R.
• M is said to be simple if it is non-zero and has no non-zero

proper left R-submodules.

• M is said to be semisimple if it is a direct sum of simple left

R-modules.

We give examples that will play important roles in what follows.

Example 4.2. In [1], it is shown that k[𝑡] is a simple left I1-module.

It is finitely presented as left I1-module because (2) and 𝑒2 = 𝑒 yield

I1/(I1 𝜕) = I1/(I1 (1 − 𝑒)) � I1 𝑒 = k[𝑡] 𝑒 � k[𝑡] .
As a consequence, k[𝑡]𝑛 is a finitely generated semisimple left I1-
module for all 𝑛 ∈ N.

Before stating the main result of this section, we need to introduce

another concept.

Definition 4.3. An element 𝑎 of ⟨𝑒⟩ is called a simple evaluation if

it is of the form 𝑎 = 𝑒 𝑞(𝜕), where 𝑞 ∈ k[𝜕], i.e., 𝑎 ∈ 𝑒 k[𝜕].

Using [5, Lemma 2.4], if 𝑃 ∈ I1 and 𝑎 =
∑𝑟
𝑘=0

𝑑𝑘 𝑒 𝜕
𝑘 ∈ ⟨𝑒⟩, where

𝑑𝑘 ∈ k[𝑡] for 𝑘 = 0, . . . , 𝑟 , then we have

𝑃 𝑎 =

𝑟∑
𝑘=0

𝑃 (𝑑𝑘 ) 𝑒 𝜕𝑘 , (5)

where 𝑃 (𝑑𝑘 ) is an element of k[𝑡] obtained by applying the operator
𝑃 ∈ I1 to the polynomial 𝑑𝑘 .

If 𝑎 = 𝑒 𝑞(𝜕) is a simple evaluation, then, using (5), for any 𝑏 ∈ I1,
we have 𝑏 𝑎 = 𝑏 (1) 𝑒 𝑞(𝜕) = 𝑏 (1) 𝑎 ∈ k[𝑡] 𝑒 𝑞(𝜕), which shows that

I1 𝑎 = k[𝑡] 𝑎. For instance, we have I1 𝑒 = k[𝑡] 𝑒 . More generally, we

have 𝑏 𝑡𝑘 𝑎 = 𝑏 𝑡𝑘 𝑒 𝑞(𝜕) = 𝑏 (𝑡𝑘 ) 𝑒 𝑞(𝜕) = 𝑏 (𝑡𝑘 ) 𝑎 for 𝑛 ∈ N.
Themain result of this section is Theorem 4.5, stated below, which

shows that, as a k[𝑡]-module, every finitely generated evaluation

ideal of I1 can be generated by simple evaluations.

Let us consider an evaluation ideal I ⊆ ⟨𝑒⟩ finitely generated

by evaluation operators 𝑎1, . . . , 𝑎𝑞 . We can then form the column

vector 𝐴 = (𝑎1 . . . 𝑎𝑞)𝑇 of ⟨𝑒⟩𝑞×1 and write its normal form 𝐴 =∑𝑛
𝑘=0

𝐴𝑘 (𝑡) 𝑒 𝜕𝑘 , where 𝐴𝑘 ∈ k[𝑡]𝑞×1 for 𝑘 = 0, . . . , 𝑛. Using the

notations of Theorems 3.2 and 3.7, let𝑚 = max𝑘∈J0,𝑟K deg(𝐴𝑘 ),

𝐶 =

©­­­«
𝐴0 . . . 𝐴𝑛

.

.

.
.
.
.

𝐴
(𝑚+1)
0

. . . 𝐴
(𝑚+1)
𝑛

ª®®®¬ , 𝐽𝑚+1 =

©­­­­«
𝐼𝑞
𝐼𝑞 𝜕

.

.

.

𝐼𝑞 𝜕
𝑚+1

ª®®®®¬
,

𝐷 ∈ k[𝑡]𝑟×𝑞 (𝑚+2)
be a full row rank matrix generating kerk[𝑡 ] (.𝐶),

i.e., satisfying kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷) � k[𝑡]𝑟 (see Remark 3.1). If

we note𝐷 = (𝐷0 . . . 𝐷𝑚+1), where𝐷𝑖 ∈ k[𝑡]𝑟×𝑞 for 𝑖 = 0, . . . ,𝑚+1,
and 𝐵 = 𝐷 𝐽𝑚+1 = 𝐷0 + 𝐷1 𝜕 + · · · + 𝐷𝑚+1 𝜕𝑚+1

, then we have

kerI1 (.𝐴) = imI1 (.𝐵).
Notice that, by definition of𝑚, we have 𝐶 = (𝐶 ′𝑇

0
𝑇 )𝑇 , where

𝐶 ′ =
©­­­«
𝐴0 . . . 𝐴𝑛

.

.

.
.
.
.

𝐴
(𝑚)
0

. . . 𝐴
(𝑚)
𝑛

ª®®®¬ ∈ k[𝑡]𝑞 (𝑚+1)×(𝑛+1) , (6)

so that we can choose 𝐷 with a block-partition 𝐷 =

(
𝐷 ′

0

0 𝐼𝑞

)
,

where 𝐷 ′ ∈ k[𝑡] (𝑟−𝑞)×𝑞 (𝑚+1)
is a full row rank matrix satisfy-

ing kerk[𝑡 ] (.𝐶 ′) = imk[𝑡 ] (.𝐷 ′). As a consequence, the matrix 𝐵 =

𝐷 𝐽𝑚+1 can be written as 𝐵 = (𝐵′𝑇 𝜕𝑚+1 𝐼𝑞)𝑇 , where

𝐵′ =
𝑚∑
𝑖=0

𝐷 ′
𝑖 𝜕

𝑖 ∈ I(𝑟−𝑞)×𝑞
1

, (7)

and𝐷 ′ = (𝐷 ′
0

. . . 𝐷 ′
𝑚), where𝐷 ′

𝑖
∈ k[𝑡] (𝑟−𝑞)×𝑞 for 𝑖 = 0, . . . ,𝑚.

By the proof of Theorem 3.7,𝐷 has a right inverse𝑋 ∈ k[𝑡]𝑞 (𝑚+2)×𝑟
,

i.e., 𝐷 𝑋 = 𝐼𝑟 . Using the above structure of 𝐷 , we then get(
𝐷 ′

0

0 𝐼𝑞

) (
𝑋11 𝑋12

𝑋21 𝑋22

)
=

(
𝐼𝑟−𝑞 0

0 𝐼𝑞

)
,

which yields 𝐷 ′𝑋11 = 𝐼𝑟−𝑞 , i.e., 𝐷 ′
has a right inverse.

We first have the following lemma.
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Lemma 4.4. With the above notations, if M = cokerI1 (.𝐵) is the
left I1-module finitely presented by the matrix 𝐵 and 𝜋 is the canonical
projection ontoM, then the following map

𝜓 : M −→ I = imI1 (.𝐴) =
∑𝑞

𝑘=0
I1 𝑎𝑘 ,

𝜋 (𝜆) ↦−→ 𝜆𝐴, ∀ 𝜆 ∈ I1×𝑞
1

,
(8)

is well-defined and is an isomorphism of left I1-modules, i.e., M � I.

Proof. Let us check that𝜓 is an isomorphism whose inverse is

𝜑 : I −→ M
𝜆𝐴 ↦−→ 𝜋 (𝜆), ∀ 𝜆 ∈ I1×𝑞

1
.

Let us first show that the two maps𝜓 and 𝜑 are well-defined. First,

if 𝜋 (𝜆) = 𝜋 (𝜇), where 𝜆, 𝜇 ∈ I1×𝑞
1

, then we have 𝜋 (𝜆− 𝜇) = 0 which

implies 𝜆 − 𝜇 = 𝜈 𝐵 for some 𝜈 ∈ I1×𝑟
1

. Thus, 𝜆𝐴 − 𝜇 𝐴 = 𝜈 𝐵 𝐴 = 0

so that 𝜆𝐴 = 𝜇 𝐴. Regarding 𝜑 , if 𝑥 ∈ I and 𝑥 = 𝜆𝐴 = 𝜇 𝐴 for

𝜆, 𝜇 ∈ I1×𝑞
1

, then (𝜆 − 𝜇)𝐴 = 0, so that 𝜆 − 𝜇 ∈ kerI1 (.𝐴) = imI1 (.𝐵).
Thus, there exists 𝜈 ∈ I1×𝑟

1
such that 𝜆 − 𝜇 = 𝜈 𝐵. Then, we have

𝜋 (𝜆 − 𝜇) = 𝜋 (𝜈 𝐵) = 0, so that 𝜋 (𝜆) = 𝜋 (𝜇). Finally, we have

(𝜑 ◦𝜓 ) (𝜋 (𝜆)) = 𝜋 (𝜆) and (𝜓 ◦𝜑) (𝜆𝐴) = 𝜆𝐴 for all 𝜆 ∈ I1×𝑞
1

, which

proves that𝜓 and 𝜑 are isomorphisms,M � I, and 𝜑 = 𝜓−1
. □

Theorem 4.5. Let I ⊆ ⟨𝑒⟩ be an evaluation ideal finitely gener-
ated by elements 𝑎1, . . . 𝑎𝑞 and let 𝐴 = (𝑎1 . . . 𝑎𝑞)𝑇 . Then, I is a
semisimple k[𝑡]-module that can be generated by a finite set of simple
evaluations.
More precisely, if we consider

• 𝐶 ′ the matrix defined by (6),
• 𝑠 = rankk (𝐶 (0)), 𝑟 = 𝑞(𝑚 + 2) − 𝑠 ,
• 𝑈 the unimodular matrix defined in Lemma 3.3,
• {𝑒𝑘 }𝑘=1,...,𝑞 the standard basis of I1×𝑞

1
,

• 𝑦 = (𝜋 (𝑒1) . . . 𝜋 (𝑒𝑞))𝑇 , where𝜋 : I
1×𝑞
1

−→ M = cokerI1 (.𝐵)
is the canonical projection onto M and the matrix 𝐵 ∈ I𝑟×𝑞

1

satisfies kerI1 (.𝐴) = imI1 (.𝐵) as explained in Theorem 3.7,
• 𝑧 = (𝑒 𝑦𝑇 𝑒 𝜕𝑦𝑇 . . . 𝑒 𝜕𝑚 𝑦𝑇 )𝑇 ,
• 𝑄 ′ ∈ k𝑞 (𝑚+1)×𝑠 a full column rank matrix whose columns
define a basis of imk (𝐶 ′(0) .),

• 𝑇 ∈ k𝑠×𝑞 (𝑚+1) a left inverse of 𝑄 ′,
• 𝑤 = 𝑇 𝑧 ∈ M𝑠 ,

then the entries𝑤𝑖 of the vector𝑤 are simple evaluations and the finite
family {𝑔𝑖 = 𝜓 (𝑤𝑖 ) = 𝜋−1 (𝑤𝑖 )𝐴}𝑖=1,...,𝑠 generates the left ideal I as
a k[𝑡]-module, i.e., I =

∑𝑠
𝑖=1 k[𝑡] 𝑔𝑖 .

Proof. Let us consider the following exact sequence

I1×𝑟
1

.𝐵 // I1×𝑞
1

𝜋 //M = cokerI1 (.𝐵) //
0,

where 𝜋 is the canonical projection ontoM. If 𝑒1, . . . , 𝑒𝑞 denotes the

canonical basis of I
1×𝑞
1

, then {𝑦𝑖 = 𝜋 (𝑒𝑖 )}𝑖=1,...,𝑞 is a set of generators
of M and these generators of M satisfy the left I1-linear relations

𝐵𝑦 = 0, where 𝑦 = (𝑦1 . . . 𝑦𝑞)𝑇 . For more details, see, e.g., [3, 9].

Now, using 𝐵 = (𝐵′𝑇 𝜕𝑚+1 𝐼𝑞)𝑇 , where 𝐵′ ∈ I(𝑟−𝑞)×𝑞
1

, in the

left I1-relation 𝐵𝑦 = 0, we then have 𝜕𝑚+1 𝑦 = 0.

Let 𝑇𝑚 =
∑𝑚
𝑘=0

𝑡𝑘

𝑘!
𝑒 𝜕𝑘 be the 𝑚th

Taylor operator. Using (2),

𝜕𝑚+1 𝑦 = 0 yields 𝐼𝑚+1 𝜕𝑚+1 𝑦 = 0, and thus, (1 − 𝑇𝑚) 𝑦 = 0, i.e.,

𝑦 = 𝑇𝑚 𝑦. Conversely, using (5), 𝑦 = 𝑇𝑚 𝑦 yields

𝜕𝑚+1 𝑦 = 𝜕𝑚+1𝑇𝑚 𝑦 =

𝑚∑
𝑘=0

𝜕𝑚+1 𝑡
𝑘

𝑘!
𝑒 𝜕𝑘 =

𝑚∑
𝑘=0

𝜕𝑚+1
(
𝑡𝑘

𝑘!

)
𝑒 𝜕𝑘 = 0.

Therefore, 𝜕𝑚+1 𝑦 = 0 is equivalent to 𝑦 = 𝑇𝑚 𝑦. Hence, if we set

𝑧𝑘 = 𝑒 𝜕𝑘𝑦 ∈ M𝑞
for 𝑘 = 0, . . . ,𝑚 and denote by 𝑧𝑘,𝑗 the 𝑗 th entry

of 𝑧𝑘 for 𝑗 = 1, . . . , 𝑞, we then obtain

𝑦 = 𝑇𝑚 𝑦 =

𝑚∑
𝑘=0

𝑡𝑘

𝑘!
𝑒 𝜕𝑘 𝑦 =

𝑚∑
𝑘=0

𝑡𝑘

𝑘!
𝑧𝑘 , (9)

which shows that {𝑧𝑘,𝑗 }𝑘=0,...,𝑚,𝑗=1,...,𝑞 is another set of generators

ofM defined by means of simple evaluations, which yields

M =

𝑚∑
𝑘=0

𝑞∑
𝑗=1

I1 𝑧𝑘,𝑗 =
𝑚∑
𝑘=0

𝑞∑
𝑗=1

k[𝑡] 𝑧𝑘,𝑗 .

Thus, {𝑧𝑘,𝑗 }𝑘=0,...,𝑚,𝑗=1,...,𝑞 also generatesM as a k[𝑡]-module.

Using (5), for any 𝑃 ∈ I1, we have 𝑃 𝑦 =
∑𝑚
𝑘=0

𝑃

(
𝑡𝑘

𝑘!

)
𝑧𝑘 , where

𝑃

(
𝑡𝑘

𝑘!

)
∈ k[𝑡] for 𝑘 = 0, . . . ,𝑚. If 𝑃 ∈ k[𝑡], then we state again that

𝑃 acts in I1 as the multiplication by 𝑃 , and thus, 𝑃 𝑦 = 𝑃
∑𝑚
𝑘=0

𝑡𝑘

𝑘!
𝑧𝑘 .

Let us now find the relations satisfied by the generators 𝑧𝑘,𝑗 ’s.

We first have that 𝑒 𝑧𝑘 = 𝑧𝑘 for all 𝑘 = 0 . . .𝑚. Using (9), we obtain:

0 = 𝐵′𝑦 = 𝐵′
𝑚∑
𝑘=0

𝑡𝑘

𝑘!
𝑧𝑘 =

𝑚∑
𝑘=0

𝐵′
(
𝑡𝑘

𝑘!

)
𝑧𝑘 .

If we note 𝑧 = (𝑧𝑇
0

. . . 𝑧𝑇𝑚)𝑇 and

𝑃 =

(
𝐵′(1) 𝐵′(𝑡) . . . 𝐵′

(
𝑡𝑚

𝑚!

))
∈ k[𝑡] (𝑟−𝑞)×𝑞 (𝑚+1) ,

then the relations satisfied by the generators 𝑧𝑘,𝑗 ’s are 𝑒 𝑧 = 𝑧 and

𝑃 𝑧 = 0, so that we have

M �M ′ = cokerI1

(
.

(
𝑃

(1 − 𝑒) 𝐼𝑞 (𝑚+1)

))
.

Let us now compute kerk[𝑡 ] (𝑃 .) = {𝜂 ∈ k[𝑡]𝑞 (𝑚+1)×1 | 𝑃 𝜂 = 0}.
Using (7), we first have

𝑃 =

(
𝐷 ′
0

𝑡 𝐷 ′
0
+ 𝐷 ′

1
. . . 𝑡𝑚

𝑚!
𝐷 ′
0
+ · · · + 𝐷 ′

𝑚

)
,

=
(
𝐷 ′
0

𝐷 ′
1

. . . 𝐷 ′
𝑚

)
𝑈 = 𝐷 ′𝑈 ,

where𝑈 is the unimodular matrix introduced in Lemma 3.3. Now,

if 𝜂 ∈ kerk[𝑡 ] (𝑃 .), then we have 𝐷 ′𝑈 𝜂 = 0 which is equiva-

lent to 𝐷 ′ 𝜁 = 0 and 𝜁 = 𝑈 𝜂. Now, kerk[𝑡 ] (𝐷 ′.) = imk[𝑡 ] (𝐶 ′.)
implies 𝜁 = 𝐷 ′ 𝜉 for a certain 𝜉 ∈ k[𝑡]𝑞 (𝑚+1)×1

, and thus, 𝜂 =

𝑈 −1𝐶 ′ 𝜉 . This shows kerk[𝑡 ] (𝑃 .) = imk[𝑡 ] ((𝑈 −1𝐶 ′) .). If we note
𝑄 = 𝑈 −1𝐶 ′

, then Lemma 3.3 shows that𝑄 = 𝐶 ′(0) ∈ k(𝑛+1)×𝑞 (𝑚+1)
,

and thus, kerk[𝑡 ] (𝑃 .) = imk[𝑡 ] (𝐶 ′(0) .). Let us consider a basis of
the finite-dimensional k-vector space imk (𝐶 ′(0) .) and stack the cor-
responding column vectors into a matrix 𝑄 ′ ∈ k𝑞 (𝑚+1)×𝑠

, where

𝑠 = rankk (𝐶 ′(0)). Then, we have kerk[𝑡 ] (𝑃 .) = imk[𝑡 ] (𝑄 ′.)
We state again that𝐷 ′

has a right inverse𝑋11 ∈ k[𝑡]𝑞 (𝑚+1)×(𝑟−𝑞)
,

i.e.,𝐷 ′𝑋11 = 𝐼𝑟−𝑞 , which shows that 𝑆 = 𝑈 −1 𝑋11 ∈ k[𝑡]𝑞 (𝑚+1)×(𝑟−𝑞)

7
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is a right inverse of 𝑃 = 𝐷 ′𝑈 because 𝑈 is unimodular. Therefore,

we have the following split exact sequence of k[𝑡]-modules

0
// k[𝑡]𝑠×1

𝑄′. // k[𝑡]𝑞 (𝑚+1)×1 𝑃. // k[𝑡] (𝑟−𝑞)×1 //
0,

which implies 𝑠 = 𝑞(𝑚 + 1) − (𝑟 − 𝑞) = 𝑞(𝑚 + 2) − 𝑟 (see [12,

Exercise 3.16(i), p. 129]). From Theorem 3.7, we then have 𝑟 =

𝑞(𝑚 + 2) − rankk (𝐶 ′(0)), which shows again that 𝑠 = rankk (𝐶 ′(0)).
Using 𝑃 𝑆 = 𝐼𝑟−𝑞 , we have 𝑃 (𝐼𝑞 (𝑚+1) −𝑆 𝑃) = 0, which shows that

imk[𝑡 ] ((𝐼𝑞 (𝑚+1) − 𝑆 𝑃) .) ⊆ kerk[𝑡 ] (𝑃 .) = imk[𝑡 ] (𝑄 ′.) and proves

the existence of a matrix 𝑇 ∈ k[𝑡]𝑠×𝑞 (𝑚+1)
satisfying the identity

𝐼𝑞 (𝑚+1)−𝑆 𝑃 = 𝑄 ′𝑇 , i.e., 𝑆 𝑃+𝑄 ′𝑇 = 𝐼𝑞 (𝑚+1) . Hence, using 𝑃 𝑄
′ = 0,

we have 𝑆 𝑃 𝑄 ′ + 𝑄 ′𝑇 𝑄 ′ = 𝑄 ′
, i.e., 𝑄 ′𝑇 𝑄 ′ = 𝑄 ′

or, equivalently,

𝑄 ′ (𝑇 𝑄 ′ − 𝐼𝑠 ) = 0, and thus, 𝑇 𝑄 ′ = 𝐼𝑠 because kerk[𝑡 ] (𝑄 ′.) = 0.

Now, we have kerI1 (.𝑃) = 0 because 𝜇 𝑃 = 0 and 𝑃 𝑆 = 𝐼𝑟−𝑞 yield

𝜇 = 𝜇 𝑃 𝑆 = 0. Therefore, we have the following split exact sequence

0
// k[𝑡]1×(𝑟−𝑞)

.𝑃 // k[𝑡]1×𝑞 (𝑚+1) 𝛾 //

.𝑆
oo cokerk[𝑡 ] (.𝑃) //

0,

which shows that cokerk[𝑡 ] (.𝑃) is a stably free k[𝑡]-module [12,

Ch. 4, p. 204], and thus, a free k[𝑡]-module of rank 𝑞(𝑚 + 2) − 𝑟 =

rankk (𝐶 ′(0)) because k[𝑡] is a principal ideal domain (see, e.g., [9]).

Using 𝑃 𝑄 ′ = 0, i.e., imk[𝑡 ] (.𝑃) ⊆ kerk[𝑡 ] (.𝑄 ′), we can consider

the following complex

0
// k[𝑡]1×(𝑟−𝑞) .𝑃 // k[𝑡]1×𝑞 (𝑚+1) .𝑄′

// k[𝑡]𝑠×1 //
0.

The identiy 𝑃 𝑆 = 𝐼𝑟−𝑞 (resp., 𝑇 𝑄 ′ = 𝐼𝑠 ) shows that .𝑃 is injective

(resp., .𝑄 ′
is surjective). Now, let 𝜆 ∈ kerk[𝑡 ] (.𝑄 ′). Using the iden-

tities 𝑆 𝑃 +𝑄 ′𝑇 = 𝐼𝑞 (𝑚+1) , we then have 𝜆 = (𝜆 𝑆) 𝑃 ∈ imk[𝑡 ] (.𝑃),
which shows that kerk[𝑡 ] (.𝑄 ′) = imk[𝑡 ] (.𝑃) and proves that the

above complex is a split short exact sequence (see [12, Ch. 2, p. 52]).

We have the following commutative exact diagram of k[𝑡]-modules

0
// k[𝑡]1×(𝑟−𝑞)

.𝑃 // k[𝑡]1×𝑞 (𝑚+1)
.𝑄′
//

.𝑆
oo k[𝑡]𝑠×1

.𝑇
oo

𝜙−1

��

//
0

0
// k[𝑡]1×(𝑟−𝑞)

.𝑃 // k[𝑡]1×𝑞 (𝑚+1)

.𝑆
oo

𝛾 //
cokerk[𝑡 ] (.𝑃) //

𝜙

OO

0,

where 𝛾 is the canonical projection and 𝜙 the isomorphism of k[𝑡]-
modules defined by: for 𝜆 ∈ k[𝑡]1×𝑞 (𝑚+1)

, 𝜙 (𝛾 (𝜆)) = 𝜆𝑄 ′
. This ap-

plication is well-defined: if 𝛾 (𝜆) = 𝛾 (𝜇), where 𝜆, 𝜇 ∈ k[𝑡]1×𝑞 (𝑚+1)
,

then there is 𝜈 ∈ k[𝑡]1×(𝑟−𝑞) such that 𝜆 − 𝜇 = 𝜈 𝑃 . Then, we

have 𝜆𝑄 ′ − 𝜇 𝑄 ′ = 𝜈 𝑃 𝑄 ′ = 0, which yields 𝜆𝑄 ′ = 𝜇 𝑄 ′
, i.e.,

𝜙 (𝛾 (𝜆)) = 𝜙 (𝛾 (𝜇)). Clearly, 𝜙 is injective and surjective. Finally,

𝜙−1 is defined by 𝜙−1 (𝜇 𝑄 ′) = 𝛾 (𝜇) for all 𝜇 ∈ k[𝑡]1×𝑞 (𝑚+1)
.

Let us set 𝑤 = 𝑇 𝑧 ∈ M𝑠×1
. Since the 𝑧𝑘 = 𝑒 𝜕𝑘 𝑦’s are formed

by simple evaluations and the entries of 𝑇 belong to k, the𝑤𝑘 ’s are

formed by simple evaluations. Now, 𝑆 𝑃 +𝑄 ′𝑇 = 𝐼𝑞 (𝑚+1) yields 𝑧 =

𝑄 ′𝑤 because 𝑃 𝑧 = 0. The entries𝑤𝑖 of𝑤 are then generators ofM
as a I1-module, and thus, as a k[𝑡]-module. Finally, if𝜓 : M −→ I
is the isomorphism of Lemma 4.4, I is then finitely generated by

{𝑔𝑖 }𝑖=1,...,𝑠 , where 𝑔𝑖 = 𝜓 (𝑤𝑖 ) = 𝜋−1 (𝑤𝑖 )𝐴 for 𝑖 = 1, . . . , 𝑠 . □

We obtain Algorithm 2 displayed at the end of the paper.

Let Γ ∈ k[𝑡]𝑞×𝑞 (𝑚+1)
be the matrix satisfying 𝑦 = Γ 𝑧 (see (9)).

Using 𝑧 = 𝑄 ′𝑤 , we have 𝑦 = (Γ𝑄 ′)𝑤 , which yields 𝐴 = Γ𝑄 ′𝐺 ,
where𝐴 and𝐺 are defined in Algorithm 2, and expresses the original

generators 𝑎𝑖 ’s of I in terms of the second set of generators 𝑔 𝑗 ’s.

Example 4.6. Let I = I1 (𝑡2 + 1) 𝑒 and J = I1 (𝑡 𝑒 + 𝑡2 𝑒𝜕). Let
us explicitly show that I and J are two semisimple k[𝑡]-modules,

that they can be generated by simple evaluations, and finally find

again the result of Example 3.10.

For I, we have 𝐴 = ((𝑡2 + 1) 𝑒), 𝑞 = 1, 𝑛 = 0,𝑚 = 2, 𝑟 = 3, and

𝐶 ′
I =

©­«
𝑡2 + 1

2 𝑡

2

ª®¬ , 𝑈 −1
I =

©­­«
1 −𝑡 𝑡2

2

0 1 −𝑡
0 0 1

ª®®¬ , 𝑄I = 𝑈 −1
I 𝐶 ′

I =
©­«
1

0

2

ª®¬ .
Then, we have 𝑠 = rankk (𝐶 (0)) = 1 and 𝑇I =

(
0 0

1

2

)
is a left

inverse of 𝑄I , and thus,

𝑤I = 𝑇I 𝑧 = 𝑇I
©­«

𝑒

𝑒 𝜕

𝑒 𝜕2

ª®¬ =
1

2

𝑒 𝜕2 ⇒ 𝑤I 𝐴 =
1

2

𝑒 𝜕2 (𝑡2+1) 𝑒 = 1

2

𝑒,

which yields I = k[𝑡] 𝑒 . Note that if we consider, e.g., the left

inverses 𝑇 ′
I = (1 0 0) or 𝑇 ′′

I = (3 0 − 1) of 𝑄I , we obtain

𝑤 ′
I = 𝑇 ′

I 𝑧 = 𝑒 ⇒ 𝑤 ′
I 𝐴 = 𝑒 (𝑡2 + 1) 𝑒 = 𝑒,

𝑤 ′′
I = 𝑇 ′′

I 𝑧 = 3 𝑒 − 2 𝑒 𝜕2 ⇒ 𝑤 ′′
I 𝐴 = (3 𝑒 − 2 𝑒 𝜕2) (𝑡2 + 1) 𝑒 = 𝑒,

which also yields I = k[𝑡] 𝑒 .
For J , we have 𝐴 = (𝑡 𝑒 + 𝑡2 𝑒 𝜕), 𝑞 = 1, 𝑛 = 1,𝑚 = 2, 𝑟 = 2, and

𝐶 ′
J =

©­«
𝑡 𝑡2

1 2 𝑡

0 2

ª®¬ , 𝑈 −1
J =

©­­«
1 −𝑡 𝑡2

2

0 1 −𝑡
0 0 1

ª®®¬ , 𝑄J = 𝑈 −1
J 𝐶 ′

J =
©­«
0 0

1 0

0 2

ª®¬ .
Then, we have 𝑠 = 2,

𝑇J =

(
0 1 0

0 0
1

2

)
, 𝑤J = 𝑇J 𝑧 =

(
0 1 0

0 0
1

2

) ©­«
𝑒

𝑒 𝜕

𝑒 𝜕2

ª®¬ =

(
𝑒 𝜕

1

2
𝑒 𝜕2

)
⇒ 𝑤J 𝐴 =

(
𝑒 𝜕

1

2
𝑒 𝜕2

)
(𝑡 𝑒 + 𝑡2 𝑒 𝜕) =

(
𝑒 𝜕 (𝑡 𝑒 + 𝑡2 𝑒 𝜕)

1

2
𝑒 𝜕2 (𝑡 𝑒 + 𝑡2 𝑒 𝜕)

)
=

(
𝑒

𝑒 𝜕

)
and thus, we have J = k[𝑡] 𝑒 + k[𝑡] 𝑒 𝜕. Finally, we can then check

that I ∩ J = k[𝑡] 𝑒 = I1 𝑒 (see Example 3.10).

The next proposition shows that every finitely generated eval-

uation ideal is principal, i.e., can be generated by a single element.

This result first appears in [1, Theorem 4.5]. We give here an explicit

proof.

Proposition 4.7. Let I ⊆ ⟨𝑒⟩ be a finitely generated evaluation
ideal. Then, I is principal, i.e., can be generated by a single element.

Proof. Let I ⊆ I1 be a finitely generated evaluation ideal. From

Theorem 4.5, there is a finite number of simple evaluation {ℎ𝑖 }𝑖=1,...,𝑛
that generate I as a k[𝑡]-module, i.e., I =

∑𝑛
𝑖=1 k[𝑡] ℎ𝑖 . Now, set

ℎ =
∑𝑛
𝑘=1

𝑡𝑘

𝑘!
ℎ𝑘 ∈ I. Then, using the results in the paragraph af-

ter (5), we have 𝑒 𝜕𝑙 ℎ =
∑𝑛
𝑘=1

𝑒 𝜕𝑙
(
𝑡𝑘

𝑘!

)
ℎ𝑘 = ℎ𝑙 for all 𝑙 = 1, . . . , 𝑛.

Thus, ℎ𝑙 belongs to the ideal generated by ℎ for all 𝑙 = 1, . . . , 𝑛, so

that I = I1 ℎ, which ends the proof. □
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5 PERSPECTIVES
In this paper, we have first generalized a result obtained in [5] −
on the explicit characterization of the annihilator of an evaluation
operator − to the matrix case. Using this result, we have shown

how to compute a finite set of generators for the intersection of

two finitely generated ideals included in ⟨𝑒⟩. Finally, we have effec-
tively characterized the fact that a finitely generated ideal in ⟨𝑒⟩
is semisimple. More precisely, we have explained how a finite set

generators, defined by simple evaluations, can be obtained for such

an ideal. It gives an explicit description of this ideal as a finitely

generated k[𝑡]-module.

This characterization of finitely generated ideals in ⟨𝑒⟩ as semisim-

ple modules can be used to compute a finite set of generators of the

intersection of two finitely generated ideals in the case where one is

in ⟨𝑒⟩. The main idea is to transform this problem into a simple k[𝑡]
problem. For lack of space, this result will be explained elsewhere.

Finally, the last case to be considered for an effective proof of

the coherence of I1 is the case where both finitely generated ideals

I and J are not in ⟨𝑒⟩. The main idea of the proof given in [1] is

first to determine an element 0 ≠ 𝑎 ∈ I ∩ 𝐽 which is not in ⟨𝑒⟩
and then use the fact that the length of the left I1-module I1/(I1 𝑎)
is finite. Such an element 𝑎 can be obtained as follows. We can

consider ℎ ∈ I and 𝑔 ∈ J such that neither ℎ nor 𝑔 belongs to

⟨𝑒⟩. Using [5], there are 𝑁, 𝑀 ∈ N such that 𝜕𝑁 ℎ, 𝜕𝑀 𝑔 ∈ A1 \ {0}.
Finally, using the left Ore property of A1, there are 𝑢, 𝑣 ∈ A1 \ {0}
such that 𝑎 = 𝑢 𝜕𝑁 ℎ = 𝑣 𝜕𝑀 𝑔 ∈ I ∩ J \ ⟨𝑒⟩. But the use of the
finite length condition of I1/(I1 𝑎) still has to be made algorithmic.

Algorithm 1 Compute generators of I ∩ J where I,J ⊆ ⟨𝑒⟩
Require: 𝑝1, . . . , 𝑝𝑛1

generators of I, 𝑞1, . . . , 𝑞𝑛2
generators of J

• Set 𝑅 = (𝑝1 . . . 𝑝𝑛1
𝑞1 . . . 𝑞𝑛2

)𝑇 .
• Compute the matrix 𝐶 corresponding to 𝑅.

• Compute 𝐷 such that kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷).
• Compute 𝑢 = (𝑢1, . . . , 𝑢𝑟 )𝑇 = 𝐷 𝐽𝑚+1, where 𝑢𝑖 = (𝑢𝑖,1 𝑢𝑖,2).
return {𝑢1,1 𝑝, . . . , 𝑢𝑛1,1 𝑝}

Algorithm 2 Compute simple evaluation generators of a finitely

generated evaluation ideal I as a k[𝑡]-module

Require: 𝑎1, . . . , 𝑎𝑞 generators of I
• Set 𝐴 = (𝑎1 . . . 𝑎𝑞)𝑇 and compute the matrix𝐶 ′

defined by (6).

• Compute a full column rank matrix 𝑄 ′
whose columns define a

basis of imk (𝐶 ′(0) .).
• Compute a left inverse 𝑇 of 𝑄 ′

.

• Compute 𝐺 = (𝑔1 . . . 𝑔𝑠 )𝑇 = 𝑇
(
𝑒 𝐼𝑞 𝑒 𝜕 𝐼𝑞 . . . 𝑒 𝜕𝑚 𝐼𝑞

)𝑇
𝐴

return {𝑔1, . . . , 𝑔𝑠 }.
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