
Universidade Federal de Pernambuco

Centro de Informática

Pós-graduação em Ciência da Computação

An Aspect-Oriented Implementation Method

por

Sérgio Castelo Branco Soares

Tese de doutorado

Recife, 2004

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

Sérgio Castelo Branco Soares

An Aspect-Oriented Implementation Method

Este trabalho foi apresentado à Pós-graduação em

Ciência da Computação do Centro de Informática da

Universidade Federal de Pernambuco como requisito para

a aprovação da tese de doutorado.

ORIENTADOR:

Prof. Paulo Henrique Monteiro Borba

ii

Soares, Sérgio Castelo Branco

 An Aspect-oriented Implementation Method /
Sérgio Castelo Branco Soares. – Recife : O Autor,
2004.

 xii, 166 f. : il., fig., tab.

Tese (doutorado) – Universidade Federal de
Pernambuco. CIn. Ciência da Computação, 2004.

Inclui bibliografia e apêndice.

1. Engenharia de software. 2. Linguagens de
programação (Orientada a aspectos) – Aplicação. 3.
Desenvolvimento de software – Processos e
métodos. 4. Experimentos (Engenharia de software) –
Avaliação. 5. Ferramentas de suporte (Engenharia de
software) - Implementação. I. Título.

 004.415.3 CDU(2.ed.) UFPE

 005.117 CDD (21.ed.) BC2004-419

Acknowledgment

First, I thanks to God for giving me strength to keep going since undergraduate. To
my mother and father that despite being 1000 km far from me had always supported
me and my family in all the ways they could and I needed. To my daughter, Heloisa,
my wife, Fernanda, my brothers André and Ricardo, and my sister-in-law, Vanessa.

To my advisor, for being so competent and supporting me since undergraduate. I
know it was hard.

To my friends, alphabetically cited to avoid jealousy, Cuca, Denise, Eduardo, Ever-
aldo, Isabella, Marcelo, Paula, Paulinho, and Rosaly, which also played an important
role.

To my PhD colleagues Tiago and Vander for reading and commenting previous ver-
sions of some chapters. To the undergrads, Ives, Madson, and Renan, that helped
implementing the engine of the tool support and to the SPG research group for the
discussions over those years, specially Leonardo, Rohit, Tiago, and Vander.

To the PUC-Rio’s Separation of Concerns and Multi-Agent Systems group of the Tec-
Comm Group/Software Engineering Laboratory (LES), specially to Alessandro Garcia
and Uirá Kulesza, for comparing the aspect-oriented and the object-oriented version of
the Health Watcher software deriving interesting results.

To professor Guilherme Travassos, that helped me a lot when designing the experi-
mental study to characterize the progressive approach, and the students that performed
the study.

To the professors of the committee, Augusto Sampaio, Silvio Meira, Jaelson Casto,
Guilherme Travassos and Paulo Masiero, for making important suggestions on how to
improve this thesis.

To the Informatics Center, its professors and the technical staff, for supporting my
research, and to CAPES for funding it.

iii

Abstract

This thesis defines an Aspect-Oriented Implementation Method that defines data man-
agement, communication, and concurrency control concerns (requirements) as aspects.
An aspect is a new abstraction mechanism, added by this new paradigm extending the
object-oriented paradigm, aiming to increase software modularity, and therefore, soft-
ware maintainability. The modularity reached by using aspects allows programmers to
add or change software functionality with non-invasive changes, which keeps the base
code clean and easy to understand and evolve. Furthermore, this avoids code of a specific
concern to be tangled with other concerns and spread through several modules. We also
define how the implementation method can be composed with the RUP development
process, in order to tailor management, requirements, analysis, and design activities
to support the method. Moreover, the method presents an alternative implementation
approach that tries to anticipate requirement changes by yielding a functional prototype
earlier than in a regular approach. This allows customers and developers to test the
software before additional effort to implement non-functional requirements. A study was
performed to characterize how useful this alternative implementation approach is, pro-
viding a support to decision-making when using the alternative or a regular approach.
In addition, the method provides tool support to generate types of the base software
and aspects to implement data management, communication, and concurrency control
concerns. In fact, this tool guides the method application and the use of an aspect-
framework provided by the method, which allows reusing base aspects for implementing
those concerns. The method is tailored to a specific software architecture that despite
being specific can be used to implement several kinds of software.

iv

Resumo

Esta tese define um método de implementação orientado a aspectos que guia a im-
plementação de requisitos (concerns) de comunicação (distribuição), gerenciamento de
dados e de controle de concorrência como aspectos. Um aspecto é um novo mecanismo
de abstração adicionado pelo paradigma orientado a aspectos estendendo o paradigma
orientado a objetos. O objetivo desta nova abstração é aumentar a modularidade do soft-
ware e, portanto, sua manutenibilidade. A modularidade alcançada pelo uso de aspectos
permite que programadores adicionem ou modifiquem a funcionalidade do software com
mudanças não-invasivas, as quais mantém o código base livre de detalhes sobre estas
mudanças e, portanto, mais fácil de entender e modificar. Além disso, este tipo de
mudança evita que códigos de diferentes requisitos (concerns) fiquem misturados com o
código base e entre si e que fiquem espalhados por vários módulos do software. Tambm
definimos como o método de implementação pode ser composto com o processo de de-
senvolvimento RUP, de modo a ajustar atividades de gerenciamento, levantamento de
requisitos, análise e de projeto para que possam suportar a aplicação do método num
contexto do desenvolvimento de software. Além disso, o método apresenta uma abor-
dagem de implementação alternativa que tenta antecipar mudanças de requisitos através
da implementação de protótipos funcionais mais precocemente do que numa abordagem
regular. Desta forma, clientes e desenvolvedores podem testar o software antes de aplicar
esforço adicional para implementar requisitos de distribuição, persistência e de controle
de concorrência. Um estudo foi executado de modo a caracterizar quão útil é esta
abordagem alternativa, provendo um suporte para a tomada de decisões sobre quando
utilizar a abordagem alternativa ou a regular. Em adição, o método provê suporte au-
tomatizado para a geração de tipos do software base e de aspectos para implementar
requisitos de gerenciamento de dados, comunicação e de controle de concorrência. De
fato, esta ferramenta guia a aplicação do método e o uso de um framework de aspectos
gerado pelo método, o qual permite um reuso de parte dos aspectos gerados neste tra-
balho. O método de implementação foi definido com base numa arquitetura de software
espećıfica que apesar de espećıfica pode ser utilizada pra implementar vários tipos de
softwares.

v

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Object-oriented software development 2
1.1.2 Aspect-oriented software development 2

1.2 Methodology . 3
1.3 Summary of contributions . 3
1.4 Thesis organization . 4

2 An Overview of AspectJ 5
2.1 Aspect-oriented programming . 6

2.1.1 An example of a crosscutting concern — distribution 6
2.2 AspectJ . 10

2.2.1 The anatomy of an aspect . 10
2.2.2 The join point model . 11
2.2.3 Pointcut . 12
2.2.4 Advice . 13
2.2.5 Static crosscutting . 14
2.2.6 Reusable aspects . 16
2.2.7 AspectJ expressiveness . 17

2.3 AOP and design patterns . 18
2.4 Conclusion . 19

3 Guidelines for aspect-oriented implementation 21
3.1 Introduction . 22
3.2 The Specific Software Architecture . 23
3.3 Implementation Methods Overview . 26
3.4 Distribution concern . 28

3.4.1 Server-side distribution aspect . 29
3.4.2 Client-side distribution aspect . 31
3.4.3 Distribution aspects class diagram 35
3.4.4 Distribution framework . 35
3.4.5 Distribution dynamics . 35

3.5 Data management concern . 37
3.5.1 Persistence mechanism control . 37
3.5.2 Transaction control . 40
3.5.3 Data collection customization . 45
3.5.4 Data access on demand . 48

vi

3.5.5 Data management framework . 50
3.5.6 Data management dynamics . 51

3.6 Data state synchronization control . 51
3.7 Concurrency control concern . 56

3.7.1 Identifying concurrency control code 57
3.7.2 Removing concurrency control code 58
3.7.3 Implementing concurrency control aspects 58
3.7.4 Concurrency control Framework 67
3.7.5 Concurrency control dynamics . 67

3.8 Exception handling concern . 67
3.8.1 Exception handling framework . 71

3.9 Interferences between aspects . 71
3.10 An alternative implementation approach 75
3.11 Conclusion . 77

4 Integration with RUP 78
4.1 A RUP overview . 79

4.1.1 Lifecycle structure . 80
4.2 Impact on RUP’s dynamic structure . 81
4.3 Impact on RUP’s static structure . 83

4.3.1 Requirements . 83
4.3.2 Analysis and Design . 85
4.3.3 Implementation . 86
4.3.4 Test . 92

4.4 Conclusion . 93

5 Analysis of the progressive approach 94
5.1 Goal definition . 95

5.1.1 Global goal . 95
5.1.2 Measurement goal . 96
5.1.3 Study goal . 96
5.1.4 Questions . 96
5.1.5 Metrics . 96

5.2 Planning . 96
5.2.1 Hypotheses definition . 97
5.2.2 Treatment . 98
5.2.3 Control object . 98
5.2.4 Experimental object . 98
5.2.5 Experimental subjects . 99
5.2.6 Independent variables . 99
5.2.7 Dependent variables . 99
5.2.8 Trials design . 100

5.3 Preparation . 101
5.4 Analysis . 101

5.4.1 Yes-No decision . 102
5.4.2 Confidence interval . 103

5.5 Threats to Validity . 104

vii

5.5.1 Internal Validity . 104
5.5.2 Conclusion Validity . 104
5.5.3 Construct Validity . 105
5.5.4 External Validity . 105

5.6 Execution . 105
5.6.1 Questionnaire data . 107
5.6.2 Study data . 110
5.6.3 Statistical analysis . 113
5.6.4 Qualitative data . 116

5.7 Conclusions . 116

6 Tool support 118
6.1 Java transformations . 119
6.2 AspectJ transformations . 121

6.2.1 Generating aspects with AJaTS 122
6.2.2 Interacting with the programmer 125

6.3 Conclusion . 126

7 Related work 127
7.1 Evaluating distribution and persistence concerns implementation using

AspectJ . 128
7.2 Use-case Driven Development and Aspect-Oriented Software Development 129
7.3 Persistence as an Aspect . 130
7.4 Concurrency and Transactions . 131
7.5 Concurrent Object Programming . 132
7.6 D: A language framework for distributed programming 133
7.7 EJB . 134
7.8 Other related works . 134

8 Conclusions 137
8.1 Future Work . 140

A Experiment Questionare 142

B AJaTS templates 144
B.1 Software architecture . 144

B.1.1 Basic class source template . 144
B.1.2 Business-data interface target template 144
B.1.3 Business collection target template 145
B.1.4 Facade target template . 146

B.2 Data management templates . 147
B.2.1 Array data collection target template 147
B.2.2 List data collection target template 149
B.2.3 Relational database data collection target template 151

B.3 Distribution templates . 156
B.3.1 Facade source template . 156
B.3.2 Singleton target template . 156

viii

B.3.3 Server-side target template . 157
B.3.4 Client-side target template . 157

ix

List of Figures

2.1 Aspect-oriented developement. 7
2.2 Health Watcher’s class diagram. 7
2.3 Source code of the distributed software without AOP. 8
2.4 Classes source code of the distributed system with AOP. 9
2.5 Distribution aspect woven into the software. 10
2.6 Health Watcher’s class diagram with the distribution aspect. 11
2.7 Join points of an execution flow [31]. 12
2.8 Exception handling aspects class diagram. 17
2.9 Adapters implementing separation of concerns. 18

3.1 Aspect-oriented restructuring. 23
3.2 Four-layered architecture. 24
3.3 System configuration. 25
3.4 Five-layered architecture. 25
3.5 Aspect-Oriented Layered Architecture. 26
3.6 Software architecture class diagram. 27
3.7 Development activities changed by the implementation method. 28
3.8 Distribution code weaving. 28
3.9 Distribution aspects class diagram. 36
3.10 Distribution framework. 36
3.11 Distribution aspects dynamics. 36
3.12 Data management code weaving. 38
3.13 Persistence control aspects class diagram. 40
3.14 Transactional methods hierarchy. 43
3.15 Example of multiple transactional components. 44
3.16 Transaction control aspects class diagram. 45
3.17 Data collection customization aspects class diagram. 47
3.18 Data access on demand aspects class diagram. 50
3.19 Data management framework. 50
3.20 Data management dynamics. 51
3.21 Update state control aspects class diagram. 56
3.22 Synchronization aspects class diagram. 66
3.23 Timestamp aspects class diagram. 67
3.24 Concurrency control Framework. 68
3.25 Synchronization dynamics. 68
3.26 Timestamp dynamics. 69
3.27 Exception handling aspects class diagram. 71

x

3.28 Exception-handling framework. 71
3.29 Interference problem and solution. 73
3.30 Interferences between aspects. 75
3.31 Progressive versus Non-progressive approach. 76

4.1 RUP disciplines taking place over phases [39]. 81
4.2 Requirement activities [39]. 84
4.3 Analysis and design activities [39]. 85
4.4 Implementation activities [39]. 87
4.5 New implementation activities for progressive implementation. 88
4.6 Test activities [39]. 92
4.7 An aspect-oriented development process framework. 93

5.1 Iterations using progressive and non-progressive approaches. 101
5.2 Subjects’s academic expertise. 108
5.3 Subjects’s industry expertise. 109

6.1 JaTS versus AJaTS. 121
6.2 Snapshot of the plug-in execution. 125

xi

List of Tables

2.1 Pointcut designators. 13
2.2 AspectJ advice. 14
2.3 AspectJ inter-type declarations. 15
2.4 Other constructs. 15

5.1 Study schedule. 106
5.2 Expertise scores. 107
5.3 Tables legend. 110
5.4 Iteration 1 data. 110
5.5 Iteration 2 data. 111
5.6 Iteration 3 data. 111
5.7 Total iterations data. 111
5.8 Times to yield pre-validation prototype without progressive approach. . . 112
5.9 Times to yield pre-validation prototype with progressive approach. 112
5.10 Times to yield post-validation prototype. 112
5.11 Null Hypotheses test. 113
5.12 |t0| values for the Null Hypotheses test. 113
5.13 Confidence interval for Hypotheses H01 and H02. 114
5.14 Alternative Hypotheses test. 115

xii

Chapter 1

Introduction

This chapter introduces and motivates the need for implementation methods and im-
provements in object-oriented techniques. It also outlines the contributions of this thesis
and how it is organized.

1

The following sections introduce this thesis work by discussing the research motiva-
tion, the chosen technologies, and the benefits of its contributions.

1.1 Motivation

Usually, researchers and software engineers do not give much attention to implementa-
tion methods [4, 39] because implementation mistakes have less impact in project sched-
ule and development costs than mistakes during requirements and design. However, the
effort given to requirements and design can be wasted if there is not a commitment with
implementation activities.

This commitment is necessary in order to increase productivity, reliability, reuse, and
extensibility levels. For example, the maintenance activities usually have the highest
costs [16, 28, 77], which are inversely proportional to reuse and extensibility. This
motivates the continuous search to increase productivity and quality factors, which can
be achieved by using an appropriate implementation method, besides, of course, using
appropriate analysis and design methods.

1.1.1 Object-oriented software development

Object-oriented programming languages provide effective means that help to increase
productivity and quality. However, the object-oriented paradigm has several limitations,
sometimes leading to code responsible for different requirements (concerns) mixed with
each other, called tangled code, and code responsible for a single requirement (concern)
spread over several places/modules, called spread code.

These limitations decrease modularity, and therefore, system maintainability. Ex-
amples are business code tangled with presentation code or data access code, and dis-
tribution, concurrency control, and exception handling code spread over several classes.
Those problems can be reduced by adopting complementary techniques such as design
patterns [26, 12].

In order to achieve better results [67, 66], in some cases one has to use new program-
ming techniques [21, 7, 67, 94] that adapt or extend the object-oriented paradigm. These
techniques aim to increase software modularity in practical situations where object-
oriented programming and design patterns do not offer an adequate support.

1.1.2 Aspect-oriented software development

This thesis uses one of the new development techniques previously mentioned, aspect-
oriented programming (AOP) [21, 42], to separate data management, communication,
and concurrency control concerns for implementing systems with better modularity. In
fact, aspect-oriented programming (AOP) has evolved into Aspect-Oriented Software
Development (AOSD), and AOSD is nowadays considered a synonym for other tech-
niques that deal with crosscutting concerns in general.

Actually, this thesis proposes an aspect-oriented implementation method using As-
pectJ [41], an aspect-oriented programming language extended from Java. The next
chapter elaborates more on AspectJ and AOP.

2

The aspect-oriented implementation method definition proposes two different ways to
implement crosscutting concerns. One alternative is to implement the different concerns
at the same time the functional requirements are being implemented. Another idea
is to follow a progressive approach, where persistence, distribution, and concurrency
control are not initially considered in the implementation activities, but are gradually
introduced, preserving the system’s functional requirements. It was grateful to notice
the natural match between the progressive implementation approach and the aspect-
oriented paradigm.

This progressive approach helps to decrease the impact caused by requirement changes
during development, since a great part of the changes might occur before the final (per-
sistent, distributed, and concurrency safe) version of the system.

1.2 Methodology

The main goal of this thesis is to define an implementation method using aspect-oriented
programming, helping to achieve better software with higher productivity levels. The
implementation method defines patterns to structure the system architecture in order
to comply with the method, and frameworks to support implementing the concerns in
a separate way using aspect-oriented programming.

The method also defines activities to implement functional requirements, data man-
agement, communication, and concurrency control concerns of a system. It suggests
how these activities are related and how they interact with Use Case Driven Devel-
opment [35], a well known and used development technique, and which is adopted by
the Rational Unified Process (RUP) [39]. The implementation method definition affects
management, requirements, analysis, design, and test activities and, therefore, modi-
fications to these activities are defined to comply with the method, showing that we
recognize the importance of these activities in the software life cycle.

Besides the definition of the implementation method, this thesis has other contri-
butions. We performed a study to characterize the benefits and drawbacks of using
the progressive approach, which supports the decision of when using or not the pro-
gressive approach. When performing this study and other experiences on implementing
aspects [91], we realized that the concerns implementations might affect each other and,
therefore, the implementation activities should consider this side effect.

Tool support is also provided to generate some of the method’s aspects and types,
which guarantees productivity increasing.

1.3 Summary of contributions

In summary, this thesis’ contributions are:

• The implementation method, including:

– guidelines to implement distribution, data management, concurrency control,
and exception handling concerns (Sections 3.4, 3.5, 3.7, and 3.8);

– how those activities can be combined with Use Case Driven Development
(Section 4.2;

3

– how those activities affect RUP’s workflows and activities (Section 4.3);

– an alternative implementation approach, progressive implementation, and its
impact on RUP (Section 3.10);

• An implementation with AspectJ that identified:

– patterns tailored to aspect-oriented programming that define the software
architecture used to implement the concerns (Section 3.2);

– an aspect framework to implement data management, communication, and
concurrency control concerns in AspectJ (Sections 3.4.4, 3.5.5, and 3.8.1);

– dependencies and impacts among the concerns implementations (Section 3.9);

– problems with the AspectJ language and proposed modifications to it (Sec-
tions 3.11 and 3.4.2);

• A study to characterize the benefits and drawbacks of the progressive approach
(Chapter 5);

• A tool that increases productivity during the implementation activities, also guid-
ing the aspects implementation (Chapter 6).

1.4 Thesis organization

This thesis contains seven chapters, including this.
Chapter 2 presents a new paradigm, aspect-oriented programming, and a language

that implements it as an extension to Java, AspectJ.
The main contribution is described in Chapter 3, where the guidelines to implement

data management, communication, and concurrency control concerns are presented,
and in Chapter 4, where the guidelines of the aspect-oriented implementation method
defined in the previous chapter are related to a software development process.

Chapter 5 relates the study made with the implementation method described in
Chapter 3 in order to characterize benefits and drawbacks of the progressive approach.

A tool implemented to support the method by generating part of the aspects and
other types is presented in Chapter 6.

Finally, Chapter 7 presents related work and Chapter 8 the conclusions and future
work.

4

Chapter 2

An Overview of AspectJ

This chapter presents a new paradigm and language proposed to address problems that
object-oriented programming does not solve properly. The language is used to define the
aspect-oriented implementation method. Examples show how powerful this language is
and prepares readers to understand the concepts. We also discuss benefits and drawbacks
of using design patterns to implement some features of the AspectJ language.

5

2.1 Aspect-oriented programming

The need for quality software motivated the use of object-oriented programming [55, 9]
towards higher reuse and maintainability levels, increasing development productivity
and support for requirement changes. However, the object-oriented paradigm presents
a number of limitations [66, 67], such as tangled and spread code across different con-
cerns. A concern in software engineering terms means a particular goal, functionality,
or requirement. Examples of tangled and spread code across different concerns are dis-
tribution code tangled with business and user interface code, and concurrency control
code spread through several software units. In this example, distribution, business, user
interface, and concurrency control are concerns of a software. Some of these drawbacks
can be minimized by design patterns [12, 26].

On the other hand, extensions of the object-oriented paradigm (OO), such as aspect-
oriented programming [21, 42], subject-oriented programming [67], and adaptive pro-
gramming [34], try to address these OO limitations. These techniques allow software to
reach a higher modularity in practical situations where OO and design patterns do not
offer an adequate support.

Several researchers, including us, believe that aspect-oriented programming (AOP),
and more generally aspect-oriented software development (AOSD), is very promising [63,
21, 45]. AOP tries to solve inefficiencies in capturing some of the important design
decisions that a system must implement. This difficulty leads the implementation of
these design decisions to be spread through the functional code, resulting in tangled
code with different concerns. This tangled and spread code hinders system development
and maintenance. AOP increases modularity by fully separating code that has specific
goals (concerns) and affects different parts of the system. These are called crosscutting
concerns. Typical examples are persistence, distribution, concurrency control, exception
handling, and debugging.

By separating crosscutting concerns, AOP supports implementation that isolate
functional from non-functional requirements. Figure 2.1 depicts the aspect-oriented
software development steps. In (a) the developer must identify the concerns to be im-
plemented from the software requirements. In the next step, a set of components written
in an object-oriented programming language, such as Java [27], might implement func-
tional requirements. On the other hand, a set of aspects (crosscutting concerns) related
to the properties that affect system behavior might implement non-functional require-
ments using an aspect-oriented language. Step (c) is responsible for composing the
concerns in a process called weaving, which may be automatically executed by a weaver
of the aspect-oriented language. Using this approach, non-functional requirements can
be easily manipulated without affecting business code (functional requirements), since
they are not tangled and spread over the system. Therefore, AOP allows the develop-
ment of programs using such aspects, including isolation, composition and reuse of the
aspects code.

2.1.1 An example of a crosscutting concern — distribution

Consider a Health Watcher system as an example. This system allows a citizen to register
complaints to the health public system. One of the Health Watcher’s requirements is
to allow several customers to access the system at the same time. Therefore, a client-

6

System

requirements

Concern

identifier

AOP

OOP

Concerns

(a) (b) (c)

Aspects

Classes

Interfaces

Executable

system

W

E

A

V

E

R

System

requirements

Concern

identifier

AOP

OOP

Concerns

(a) (b) (c)

Aspects

Classes

Interfaces

Executable

system

W

E

A

V

E

R

Figure 2.1: Aspect-oriented developement.

HttpServlet
(from javax.servlet.http)

<<UserInterface>>

ServletUpdateComplaint

<<UserInterface>>

HWFacade

<<Facade>>

Person

<<BusinessBasic>>

Complaint

<<BusinessBasic>>

+complainer

<<uses>> <<uses>>

Communication

to be distributed

Figure 2.2: Health Watcher’s class diagram.

server approach is used to distribute part of the execution. Our aim is to distribute
the user interface, allowing simultaneous access. We used RMI [58] to implement this
distribution.

Figure 2.2 shows a UML [10] class diagram presenting a few classes of the Health
Watcher software. The diagram presents the facade [26] class, the unique access point to
the system, and a Java Servlet [32], which is responsible for implementing the user inter-
face. In this particular case, the servlet is responsible for updating complaint information
into the system. Besides that, there are business basic classes that model complaints
(Complaint) and complainers (Person). The communication to be distributed is the
one between the user interface (servlets) and the system facade. This diagram is actu-
ally a simplification of the software architecture used by the Health Watcher software.
The whole software architecture is presented in Section 3.2.

Distribution without AOP

To implement distribution without AOP, we must change several classes by adding
specific code for using a selected distribution protocol. Figure 2.3 shows pieces of code1

that have to be invasively changed in order to add distribution specific constructs. The

1Those pieces of code are not supposed to be readable. The idea is to visually show how tangled is
distribution with business and user interface source code, without scanning the pieces of code.

7

distribution code is highlighted to demonstrate how tangled distribution is to business
and user interface classes. In this case, the distribution protocol is RMI.

public class Complaint implements java.io.Serializable {

private String description;

private Person complainer; ...

public Complaint(String description, Person complainer, ...) {

...

}

public String getDescription() {

return this.description;

}

public Person getComplainer() {

return this.complainer;

}

public void setDescription(String desc) {

this.description = desc;

}

public void setComplainer(Person complainer) {

this.complainer = complainer;

} ...

}

public interface IFacade extends java.rmi.Remote {

public void updateComplaint complaint)

throws TransactionException, RepositoryException,

ObjectNotFoundException, ObjectNotValidException,

RemoteException;

. . .

}

public class HealthWatcherFacade implements IFacade {

public void update(Complaint complaint)

throws TransactionException, RepositoryException,

ObjectNotFoundException, ObjectNotValidException {

...

}

public static void main(String[] args) {

try {

HealthWatcherFacade facade = HealthWatcherFacade.get Instance();

System.out.println("Creating RMI server...");

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/HealthWatcher");

System.out.println("Server created and ready.");

}

catch (RemoteException rmiEx) {... }

catch (MalformedURLException rmiEx) { ...}

catch(Exception ex) {... }

}

}

public class Person implements java.io.Serializable {

private String nome; ...

public Person(String nome, …) {

this.nome = nome; …

}

public String getNome() {

return nome;

} …

}

public class ServletUpdateComplaintData extends HttpServlet {

private IFacade facade;

public void init(ServletConfig config) throws ServletExcepti on {

try {

facade = (IFacade) java.rmi.Naming.lookup("//HealthW atcher");

}

catch (java.rmi.RemoteException rmiEx) {...}

catch (java.rmi.NotBoundException rmiEx) {...}

catch (java.net.MalformedURLException rmiEx) {...}

}

public void doPost(HttpServletRequest request, HttpServletRe sponse response)

throws ServletException, IOException {

...

facade.update(complaint);

...

} ...

}

public class Complaint implements java.io.Serializable {

private String description;

private Person complainer; ...

public Complaint(String description, Person complainer, ...) {

...

}

public String getDescription() {

return this.description;

}

public Person getComplainer() {

return this.complainer;

}

public void setDescription(String desc) {

this.description = desc;

}

public void setComplainer(Person complainer) {

this.complainer = complainer;

} ...

}

public interface IFacade extends java.rmi.Remote {

public void updateComplaint complaint)

throws TransactionException, RepositoryException,

ObjectNotFoundException, ObjectNotValidException,

RemoteException;

. . .

}

public class HealthWatcherFacade implements IFacade {

public void update(Complaint complaint)

throws TransactionException, RepositoryException,

ObjectNotFoundException, ObjectNotValidException {

...

}

public static void main(String[] args) {

try {

HealthWatcherFacade facade = HealthWatcherFacade.get Instance();

System.out.println("Creating RMI server...");

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/HealthWatcher");

System.out.println("Server created and ready.");

}

catch (RemoteException rmiEx) {... }

catch (MalformedURLException rmiEx) { ...}

catch(Exception ex) {... }

}

}

public class Person implements java.io.Serializable {

private String nome; ...

public Person(String nome, …) {

this.nome = nome; …

}

public String getNome() {

return nome;

} …

}

public class ServletUpdateComplaintData extends HttpServlet {

private IFacade facade;

public void init(ServletConfig config) throws ServletExcepti on {

try {

facade = (IFacade) java.rmi.Naming.lookup("//HealthW atcher");

}

catch (java.rmi.RemoteException rmiEx) {...}

catch (java.rmi.NotBoundException rmiEx) {...}

catch (java.net.MalformedURLException rmiEx) {...}

}

public void doPost(HttpServletRequest request, HttpServletRe sponse response)

throws ServletException, IOException {

...

facade.update(complaint);

...

} ...

}

Figure 2.3: Source code of the distributed software without AOP.

Besides being tangled with business and user interface code, the distribution code
is spread over those different modules, which decreases software modularity, and there-
fore, maintainability and extensibility. If we want to change the distribution protocol,
for example, from RMI to CORBA [65], we have to invasively change several classes.
Changes might be required at the highlighted points to replace RMI specific code by
CORBA. In fact, it could be necessary even adding more code in different places if using
CORBA or another protocol.

Distribution with AOP

On the other hand, implementing distribution to the same software with AOP would
require a distribution aspect that affects the monolithic software, adding distribution.
As described in the following sections, AOP can change the static and the dynamic
structure of a software. Figure 2.4 shows the classes source code of the distributed
Health Watcher system using AOP.

8

public interface IFacade extends java.rmi.Remote {

public void updateComplaint complaint)

throws TransactionException, RepositoryException,

…, RemoteException;

. . .

}

public class HealthWatcherFacade {

public void update(Complaint complaint) throws TransactionException,

RepositoryException, ObjectNotFoundException, ObjectNotValidException

{

...

}

}

public class Person {

private String nome; ...

public Person(String nome, ...) { this.matricula = matricula; ... }

public String getNome() { return nome; } ...

}

public class ServletUpdateComplaintData extends HttpServlet {

private HealthWatcherFacade facade;

public void init(ServletConfig config) throws ServletExcepti on {

try {

facade = HealthWatcherFacade.getInstance();

}

catch (Exception ex) {...}

}

public void doPost(HttpServletRequest request, ...) throws ... {

...

} ...

}

aspect DistributionAspect {

declare parents: HealthWatcherFacade implements IFacade;

declare parents: Complaint || Person implements java.io.Serializ able;

public static void HealthWatcherFacade.main(String[] args) {

try {

HealthWatcherFacade facade =...;

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/HealthWatcher");

} catch (RemoteException rmiEx) {...}

catch(Exception ex) {...}

}

private IFacade remoteFacade;

pointcut facadeMethodsExecution():

within(HttpServlet+) && execution(* HealthWatcherFacade. *(..)) &&

this(HealthWatcherFacade);

before(): facadeMethodsExecution() { prepareFacade();}

private synchronized void prepareFacade() {

if (healthWatcher == null) {

try { remoteFacade = (IFacade java.rmi.Naming.looku p(...);

} catch (Exception rmiEx) {...}

}

void around(Complaint complaint) throws ..., RepositoryException

ObjectNotFoundException,ObjectNotValidException:

facadeRemoteExecutions() && args(complaint) &&

call(void update(Complaint)) {

try { remoteFacade.update(complaint);

} catch (RemoteException rmiEx) {...}

} ...

}

Business and user interface code Distribution aspects and auxiliary types using RMI

public class Complaint {

private String description;

private Person complainer; ...

public Complaint(String description,

Person complainer, ...) { ... }

public String getDescription() { return this.description; }

public Person getComplainer() { return this.complainer; }

public void setDescription(String desc) { this.description = desc; }

public void setComplainer(Person complainer) {

this.complainer = complainer;

} ...

}

public interface IFacade extends java.rmi.Remote {

public void updateComplaint complaint)

throws TransactionException, RepositoryException,

…, RemoteException;

. . .

}

public class HealthWatcherFacade {

public void update(Complaint complaint) throws TransactionException,

RepositoryException, ObjectNotFoundException, ObjectNotValidException

{

...

}

}

public class Person {

private String nome; ...

public Person(String nome, ...) { this.matricula = matricula; ... }

public String getNome() { return nome; } ...

}

public class ServletUpdateComplaintData extends HttpServlet {

private HealthWatcherFacade facade;

public void init(ServletConfig config) throws ServletExcepti on {

try {

facade = HealthWatcherFacade.getInstance();

}

catch (Exception ex) {...}

}

public void doPost(HttpServletRequest request, ...) throws ... {

...

} ...

}

aspect DistributionAspect {

declare parents: HealthWatcherFacade implements IFacade;

declare parents: Complaint || Person implements java.io.Serializ able;

public static void HealthWatcherFacade.main(String[] args) {

try {

HealthWatcherFacade facade =...;

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/HealthWatcher");

} catch (RemoteException rmiEx) {...}

catch(Exception ex) {...}

}

private IFacade remoteFacade;

pointcut facadeMethodsExecution():

within(HttpServlet+) && execution(* HealthWatcherFacade. *(..)) &&

this(HealthWatcherFacade);

before(): facadeMethodsExecution() { prepareFacade();}

private synchronized void prepareFacade() {

if (healthWatcher == null) {

try { remoteFacade = (IFacade java.rmi.Naming.looku p(...);

} catch (Exception rmiEx) {...}

}

void around(Complaint complaint) throws ..., RepositoryException

ObjectNotFoundException,ObjectNotValidException:

facadeRemoteExecutions() && args(complaint) &&

call(void update(Complaint)) {

try { remoteFacade.update(complaint);

} catch (RemoteException rmiEx) {...}

} ...

}

Business and user interface code Distribution aspects and auxiliary types using RMI

public class Complaint {

private String description;

private Person complainer; ...

public Complaint(String description,

Person complainer, ...) { ... }

public String getDescription() { return this.description; }

public Person getComplainer() { return this.complainer; }

public void setDescription(String desc) { this.description = desc; }

public void setComplainer(Person complainer) {

this.complainer = complainer;

} ...

}

Figure 2.4: Classes source code of the distributed system with AOP.

In this case, the business and user interface classes source code are preserved, since
the distribution code is not tangled and spread all over those classes. If we need to
change the distribution protocol, the changes are localized into the distribution aspect
and its auxiliary types. The source code of the business and user interface classes would
not be invasively modified to implement distribution.

In order to generate the distributed software, the distribution aspect must be com-
posed to the business and user interface classes. Most aspect-oriented languages provide
a compiler, so-called weaver, to automatically compose the aspects to the base software.
Figure 2.5 depicts how the aspects affect the software when woven into it.

The weaver is a compiler that, given the core classes of the software and a set
of aspects, generates a version of the software with these aspects. For example, by
weaving our distribution aspect and the core classes, we have the distributed version
of the classes using RMI. Therefore, in order to distribute the system using another
distribution technology, another distribution aspect must be written to use the required
technology. The new aspect is then weaved to the core software.

In this way we have defined a distribution aspect that affects the core classes to
implement distribution with RMI, as presented in the class diagram of Figure 2.6. Note
that the distribution aspect affects the user interface, the facade, and the data trans-
mitted between them, as demanded by the distribution technology.

9

A B
Original software
local calls between A and B

Distributed software
remote calls between A and B

Distribution

aspect

Weaver

Weaving

Aspect

Client Server

Distribution specific

API (RMI)

A B

distribution

code
distribution

code

A BB
Original software
local calls between A and B

Distributed software
remote calls between A and B

Distribution

aspect

WeaverWeaver

Weaving

Aspect

Client Server

Distribution specific

API (RMI)

A B

distribution

code
distribution

code

Figure 2.5: Distribution aspect woven into the software.

In the next chapter, we elaborate on distribution aspects presenting more details and
more sophisticated aspects that define a distribution aspect framework. The distribution
example used in this chapter is an oversimplified example, abstracting several details,
just to present the aspect-oriented paradigm and the used language, which is described
in the next section.

2.2 AspectJ

In this section we present AspectJ [41], a general-purpose aspect-oriented extension to
Java. Programming with AspectJ allows developers to use both classes and aspects to
separate concerns. Concerns that are well modeled as classes are separated that way;
concerns that crosscut the classes are separated using units called aspects, and those are
weaved with the classes to obtain a new AspectJ system. Actually, the resulting code
is standard Java bytecode.

2.2.1 The anatomy of an aspect

The main construct of AspectJ is an aspect. Each aspect defines a specific function that
might affect several classes of a software, for example, the distribution aspect previously
mentioned. An aspect, similar to a class, can define members (fields and methods) and
a hierarchy of aspects, through the definition of specialized aspects.

Aspects may affect the static structure of Java programs, by introducing new meth-
ods and fields to an existing class, converting checked exceptions into unchecked excep-
tions, and changing the class hierarchy by, for example, extending an existing class with

10

HttpServlet
(from javax.servlet.http)

<<UserInterface>>

Complaint

<<BusinessBasic>>

Person

<<BusinessBasic>>

+complainer

ServletUpdateComplaint

<<UserInterface>>

HWFacade

<<Facade>>

DistributionAspect

<<Aspect>>

<<uses>>

<<uses>>

<<crosscuts>>
<<crosscuts>>

<<crosscuts>>
<<crosscuts>>

Figure 2.6: Health Watcher’s class diagram with the distribution aspect.

another one. This is called static crosscutting.
Besides that, aspects can also affect the dynamic behavior of a software by changing

the way a software executes. They can intercept certain points of the execution flow,
called join points, and add before, after, or around (instead of) behavior to the join point.
Examples of join points are method calls, method executions, constructor executions,
field references (get and set), exception handling, static initializations, and combinations
of these using logical operators.

Usually an aspect composes several join points, defining a pointcut. Pointcuts select
join points and values at these join points. Besides identifying the points to be affected,
the aspect defines advices that execute when the join points defined by the related
pointcut are reached, changing the software behavior.

In the following sections, we present the AspectJ constructs and exemplify how they
are used to implement the distribution in the Health Watcher system.

2.2.2 The join point model

A join point is a well-defined point in a program execution flow. Figure 2.7 [31] shows
an example of execution flow between two objects and identifies some join points.

The first join point is the call of a method of object A, which can successfully execute
and return or throw an exception. The next join point is the method execution, which
can also successfully execute and return or throw an exception. During this method
execution, a method of object B is called. This method call and its execution are also
join points. Like object A’s join points, those can successfully execute and return or
throw an exception.

11

object A

object B

dispatch

dispatch
a method is

called

and returns

or throws

a method executes

and returns or throws

a method is called

and returns

or throws

a method executes

and returns or throws

Figure 2.7: Join points of an execution flow [31].

2.2.3 Pointcut

Pointcuts are defined by composing join points through the use of && (and), || (or),
and ! (not) operators. By using pointcuts we can expose and access values of method
arguments, objects in execution, fields, and exceptions of the join points.

Consider the definition of the distribution aspect for the Health Watcher system.
The following code fragment is the definition of a pointcut that identifies calls to all
methods of the facade class, with any name and any return type, through the use of the
“∗” wildcard, and any list of parameters through the use of the “..” wildcard.

pointcut facadeMethodsCall():

within(HttpServlet+) && call(* IFacade.*(..));

Note that this pointcut restricts the join points to the ones whose executing code are
in Java Servlets. The wildcard “+” stands for subtyping. This means that the join points
are restricted to Java Servlets or any subtype, which are the Health Watcher servlets.
Therefore, the facadeMethodsCall pointcut identifies facade method calls made by user
interface classes. Those method calls are the ones to be remotely executed.

There are other AspectJ constructs for defining pointcuts identifying the join points,
called pointcut designators. Table 2.1 presents selected designators, used by the aspects
in the next chapter.

In Table 2.1, Signature is a method or constructor signature, Expression is a boolean
expression, and TypePattern can define a set of types using wildcards, such as ∗ and
+. The former is a well-known wildcard, and can be used alone to represent the set of
all types of the system, or after any character, representing any sequence of characters.
The latter should be used after a type name to represent the set of all its subtypes.

The complete list of wildcards and pointcut designators can be found in the AspectJ
Programming Guide [97].

12

call(Signature) Method or constructor call matched by Signature
execution(Signature) Method or constructor execution mached by Signature
get(Signature) Field access matched by Signature
set(Signature) Field assignment matched by Signature
this(TypePattern) Matches join points where the currently executing

object is an instance of TypePattern
target(TypePattern) Matches join points where the target object is an

instance of TypePattern
args(TypePattern, ...) Matches argument objects that are instances of

TypePattern
within(TypePattern) Matches executing code defined in the types in

TypePattern
withincode(Signature) Matches executing code defined in the method or

constructor with signature Signature
cflow(Pointcut) Matches executing code in the control flow of the

join points specified by Pointcut
if(Expression) Matches executing code when the Expression

evaluates to true

Table 2.1: Pointcut designators.

2.2.4 Advice

An advice defines the additional code that should execute at join points. Considering the
distribution aspect, the next code fragment defines an advice that uses the previously
defined pointcut (facadeMethodsCall). This advice is responsible for assuring that the
remote instance is available before the user interface executes any call to the facade
methods.

private IFacade remoteFacade;

before(): facadeMethodsCall() {

remoteFacade = this.getRemoteInstance();

}

where the getRemoteInstance method retrieves a reference to the facade remote in-
stance, using RMI API, and stores it in an aspect field (remoteFacade).

Next, we must write an advice to redirect the calls to the local facade instance to
calls to the remote instance. The following advice redirects calls to update complaint
objects from the local to the remote facade instance.

void around(Complaint complaint) throws ... :

facadeMethodsCall() &&

call(void update(Complaint)) && args(complaint) {

try {

remoteFacade.update(complaint);

}

catch (RemoteException rmiEx) { ... }

}

13

This advice uses the facadeMethodsCall pointcut and restrict it to calls to the update

method that receives a complaint as parameter. By using the args designator we expose
the argument value, binding it to the advice’s complaint parameter. Note that the
around advice has total control over the join points execution flow. In this case, the
affected join point is not executed; its execution is replaced by the remote call. However,
it is possible to resume the join point execution by calling the proceed method inside
the advice. The kinds of advices supported by AspectJ are presented by Table 2.2.

before Executes immediately before the join point execution
after returning Executes after the success execution of the join point
after throwing Executes after the execution of the join point that

thrown an exception
after Executes after the execution of the join point,

returning normally or throwing an exception
around Executes when the join point is reached,

it has complete control over its execution

Table 2.2: AspectJ advice.

2.2.5 Static crosscutting

As previously mentioned, the AspectJ language allows changing the static structure
of a software by adding class members, changing the classes’ hierarchy, or replacing
checked by unchecked exceptions. In the following sections we present and exemplify
these situations.

Inter-type declarations

The mechanism that adds members to a class is called inter-type declarations. AspectJ
can add concrete or abstract methods, constructors, and fields to a class.

The examples shown define pointcuts and advices that only affect classes from the
user interface. The following code fragment is an example of static crosscutting that
adds a main method in the facade class. This method exports and names a facade
instance using the RMI API, allowing the instance to respond to remote invocations.
Other AspectJ inter-type declaration constructs are presented in Table 2.3.

public static void HealthWatcherFacade.main(String[] args) {

try {

HealthWatcherFacade facade = HealthWatcherFacade.getInstance();

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/HealthWatcher");

}

catch (RemoteException rmiEx) { ... }

catch (MalformedURLException rmiEx) { ... }

catch(Exception ex) { ... }

}

14

Modifiers Type TypePattern.Id(Formals) {Body} Defines a method Id in the
types of TypePattern
Defines an abstract

abstract Modifiers Type TypePattern.Id(Formals); method Id in the
types of TypePattern

Modifiers Type TypePattern.new(Formals) {Body} Defines a constructor in
the types of TypePattern

Modifiers Type TypePattern.Id[= Expression]; Defines a field in
the types of TypePattern

Table 2.3: AspectJ inter-type declarations.

Other constructs

Due to a RMI demand we must define a remote interface (IFacade) to the class whose
objects are remotely accessed, which is the facade class, adding RemoteException in its
methods throws clause. This interface is an auxiliary type of the distribution aspect.
The facade class has to implement the defined RMI remote interface. An example of
AspectJ constructs that change the original software hierarchy is depicted by the next
code fragment.

declare parents: HWFacade implements IFacade;

Table 2.4 presents other AspectJ constructs that change the static structure of a
program. Additional information about static crosscutting can be found in the AspectJ
Programming Guide [97].

Declares that the types
declare parents : TypePattern extends TypeList; in TypePattern

extend the
types in TypeList
Declares that the types

declare parents : TypePattern implements TypeList; in TypePattern
implement the
types of TypeList
Declares that any exception
of TypePattern raised

declare soft : TypePattern: Pointcut; at any join point
identified by Pointcut
should be wrapped into an
unchecked exception

Table 2.4: Other constructs.

15

2.2.6 Reusable aspects

AspectJ allows the definition of abstract aspects that have to be extended to provide
the implementation of the abstract component. Those components can be methods, like
in a Java class, and pointcuts, which have to be defined in a concrete aspect that reuses
the behavior of the abstract aspect.

Consider the exception handling concern. A possible solution to implement such
concern would define an abstract aspect that declares an abstract pointcut responsible
for defining points of the program flow that might raise the exceptions to be handled. In
addition, the aspect defines an advice to catch the exception raised after the execution
of the join points of the abstract pointcut.

public abstract aspect ExceptionHandling {

public abstract pointcut exceptionJoinPoints();

after() throwing (Throwable ex): exceptionJoinPoints() {

this.exceptionHandling(ex);

}

protected abstract void exceptionHandling(Throwable ex);

}

Note that the exception handling is actually performed by an abstract method that
should be defined in a subaspect. This very broad aspect defines the general behavior
to handle exceptions.

The next step is to write subaspects to define exception-handling policies for different
concerns or software that use several user interfaces. For example, the next aspect defines
how to handle exceptions in Java servlets. The aspect only provides the implementation
of the exceptionHandling method, and therefore, it is still abstract.

public abstract aspect ServletsExceptionHandling

extends ExceptionHandling {

protected void exceptionHandling(Throwable ex) {

// code to handle exceptions in Java servlets

}

}

The following aspect reuses the ServletsExceptionHandling aspect behavior to
handle exceptions related to the Health Watcher software.

public aspect HealthWatcherExceptionHandling

extends ServletsExceptionHandling {

public pointcut exceptionJoinPoints():

DistributionAspect.facadeMethodsCall();

}

This concrete aspect defines the join points where the Health Watcher exceptions should
be handled. In this case, the join points can be derived from the facadeMethodsCall

pointcut of the distribution aspect.
By using this approach, we would have the hierarchy showed by the class diagram

of Figure 2.8. The diagram shows an example where there are two aspects to handle

16

exceptions: for Java servlets and applications that use the swing API. Those aspects
can be reused to handle exceptions in different applications (Health Watcher, APP1,
APP2, and APP3).

ExceptionHandling

<<Aspect>>

ServletsExceptionHandling

<<Aspect>>

HealthWatcherExceptionHandling

<<Aspect>>

SwingExceptionHandling

<<Aspect>>

APP2_ExceptionHandling

<<Aspect>>

APP3_ExceptionHandling

<<Aspect>>

APP1_ExceptionHandling

<<Aspect>>

Figure 2.8: Exception handling aspects class diagram.

2.2.7 AspectJ expressiveness

The following aspect, defined in 14 lines of code, debugs a program that uses the
JDBC [103] API to execute SQL [20] commands. This is an example of development
aspect2 that shows to the programmer the string to be submitted to the database before
the submission. Usually this SQL command is created by several string concatenations,
which might be difficult to define it correctly.

aspect DatabaseDebugging {

private interface TypesDebugged { }

declare parents : DataCollection1 ||

DataCollection2 ||

...

DataCollectionN implements TypesDebugged;

pointcut queryExecution(String sql):

call(* Statement.*(String)) && args(sql) &&

this(TypesDebugged);

after(String sql) throwing: queryExecution(sql) {

System.out.println(sql);

}

}

The aspect declares an interface used to flag the classes to be debugged, which
have to implement the defined interface. It also declares a pointcut to identify calls to
any methods of the Statement interface that receive a String as a parameter. Those

2Development aspects are used only during development, in contrast to production aspects, which
should be deployed with the software to the clients environment.

17

methods are responsible for receiving a string with the SQL command and then executing
it on the database. The pointcut also expose the SQL command to be executed. After
that, an advice is defined to print the SQL string in the console output if any exception
is thrown after executing the SQL command. In order to provide such a behavior an
after throwing advice is used. A before or after advice can be used to print every
SQL command before or after executing it into the database. This can also be used in
order to log these executions, instead of just printing them.

2.3 AOP and design patterns

Part of the aspect-oriented programming functionality can be implemented using design
patterns [26], such as the separation of code with different concerns. For example, we can
use the Adapter [26] pattern to add a behavior to a class. The class diagram depicted
by Figure 2.9 presents the class Source that uses the service m of the ITarget interface.

ITarget

m()

Source

Target

m()

ConcernAdapter

m()

<<crosscuts>>

Figure 2.9: Adapters implementing separation of concerns.

The Target class has the business logic, the code that implements the software’s
functional requirements. Now consider the need for implementing an “aspect” to affect
executions of the Target’s m method. An adapter, which has the reference to an object
of Target, can do this by implementing the ITarget interface, adding the new behavior,
and delegating, if necessary, the execution to the Target object, in order to execute the
business logic.

This approach simulates the AspectJ around advice where the adapter’s m method
has total control over the execution of the Target’s method m. The delegation to execute
the method of the target object is similar to calling the proceed method inside the
around advice.

However, this design pattern approach leads to code duplication, since for each
affected class we need an adapter, even for implementing a single concern (aspect), like
debugging, for example. We showed in the previous section that using AspectJ, an
aspect could be written to debug several, potentially all, classes of a software. On the
other hand, the use of patterns makes it explicit the structural change.

18

Another drawback of the design pattern approach is the impossibility to capture calls
made by the Target’s m method to another method of Target. This would require the
Target class to use another adapter. In contrast, using AspectJ these internal method
calls could be captured. In addition, changing the adapter implementation would require
an invasive change, whereas AspectJ allows changes at compile time when the aspects
to compose (weave) into the software are chosen.

2.4 Conclusion

Aspect oriented programming (AOP) provides several benefits due to the ability to
increase software modularity. The aim of AOP is to separate crosscutting concerns
avoiding code tangling and spreading over several units. Therefore, software maintain-
ability and extensibility can be potentially increased, besides increasing software core
reuse, since the aspects code are not mixed with the software’s core code.

The AspectJ language is an aspect-oriented extension of the Java language, allowing
aspect-oriented programming with Java. Some drawbacks are the need for understand-
ing and familiarizing with a new programming paradigm and the low maturity of the
development environment (AspectJ 1.0.6). However, the environment has considerably
improved, and the support team is ready to answer questions and to provide workarounds
to solve problems, through a discussion list. Some points to improve are the compilation
(weaving) time and the generated bytecode size.

Another AspectJ drawback is the exception handling policy. If we add a new behavior
into a software, such behavior might raise new exceptions. However, AspectJ does not
allow adding new exceptions into a method throws clause. The AspectJ solution is to
use soft exceptions, which wrap the new raised exception into an unchecked exception.
This does not obligate the programmer to handle the unchecked exceptions, which might
lead the software to respond unexpectedly to those errors. Next chapter elaborates on
this.

Moreover, AspectJ provides very powerful constructs that should be used with care.
For instance, the use of wildcards might affect several points of a software, including
unexpected ones.

The pointcut definition demands the identification of specific points of a program.
Since these points are identified using type, method, and parameter names, the aspects
are dependent on the software, or on its naming standards. This can minimize the
aspects reuse and changes made into the core software might affect the way the aspects
work. For example, we can identify all calls to methods that insert data into the system
by using the method name insert. However, this would always demand this name to
define methods that insert data into the system, instead of register or add. There
are Integrated Development Environment (IDE) extensions that support development
with AspectJ, for example, with Borland JBuilder and Eclipse. These extensions allow
visualizing which parts of the code are affected by aspects and vice-versa. Therefore,
we consider essential the use of an IDE when programming with AspectJ.

A great advantage of using AspectJ is software customization, where functionalities
are implemented separately in relation to the core software, and automatically added
or removed. To add a functionality (aspect) we need only to compose (weave) the core
software with the aspects needed, and to remove an aspect we weave the software with

19

the aspects without the one to be removed. We can also have different implementations
of a functionality, such as several aspects that implement several distribution protocols,
or aspects to implement persistence in different storage media.

There are some alternatives to the AspectJ language, such as HyperJ [68, 94], a
language that supports multi-dimensional separation of concerns for Java. HyperJ has
constructions different of AspectJ, like hyperslice and hypermodule. A hyperslice is
similar to an aspect, in the sense it defines a unit to encapsulate a concern. Another
HyperJ construction is a hypermodule, a set of hyperslices that should be composed to
a software. Due to its similarity to Java and the wider use of AspectJ, which implies in
a larger community support, that was the chosen language.

20

Chapter 3

Guidelines for aspect-oriented
implementation

This chapter presents guidelines derived from restructuring an object-oriented software
to an aspect-oriented one. From these guidelines we derived the aspect-oriented imple-
mentation method, which uses AspectJ to modularize data management, communication,
and concurrency control concerns.

21

As mentioned in Chapter 1, implementation methods are usually disregarded by soft-
ware developers, as implementation mistakes may have less impact in project schedule
and costs than requirements or design mistakes. If there is not a commitment with the
implementation activities, all the effort given to requirements and design can be wasted
when performing implementation activities.

No matter how good the programming language or paradigm, an implementation
method is important to guide the definition of the implementation activities to be exe-
cuted and their interrelations, including execution order. By focusing on implementation
activities, we do not disdain analysis and design activities.

In fact, another important point covered by the implementation method is how the
implementation activities, the specific software architecture, the aspect-oriented software
development, and others, affect other important activities of the system life cycle, such
as analysis, design, and tests, and how they can be composed to a development process
(see Chapter 4).

Our main goal is to define an implementation method using aspect-oriented program-
ming, aiming at software quality with increasing productivity levels. Our method guides
the implementation of data management, communication, and concurrency control con-
cerns that comply with a specific software architecture, resulting in a more extensible
and modular software.

3.1 Introduction

The first step towards an implementation method was to use AspectJ [41] to implement
distribution and persistence aspects [91] in a simple but real and non trivial web-based
health complaint system, which was originally implemented in Java. After that, con-
currency control aspects were implemented to guarantee safety. These aspects evolved
considerably, resulting in improved and more reusable aspects, defining a suitable frame-
work for reuse [90]. In fact, the persistence aspects are treated as part of a more general
concern, data management, since the method should also support nonpersistent media,
as well as the distribution aspects, which are part of the communication concern.

The distribution aspects implement basic remote access to system services using Java
RMI (Remote Method Invocation) [59]. They are mainly concerned with establishing
communication between the user interface and the remote facade class. A distributed
environment is inherently concurrent. Therefore, it is necessary to define concurrency
control aspects in order to guarantee a safe execution of the software in such an environ-
ment. In addition, data management aspects are responsible for storing the software’s
data. The aspects may provide nonpersistent and persistent storage. The persistence
aspects implement basic persistence functionality using relational databases, and sup-
port the following main concerns: connection and transaction control, partial (shallow)
object loading, for improving performance, and synchronization of object states with
the corresponding database entities, for ensuring consistency. During implementation
of those aspects, it was necessary to define auxiliary exception handling aspects, which
are also present in this chapter. We discuss the lessons learned in implementing those
aspects and justify our design decisions.

Some of the aspects implemented in our restructuring experience are abstract and
constitute a simple aspect framework. They can be extended for implementing data

22

management, distribution, and concurrency control in other applications that comply
with the architecture of the health complaint system, a layered architecture used for
developing web-based information systems. The other aspects are application specific
and therefore may be implemented differently in other applications. Nevertheless, we
suggest that different implementations might follow a common aspect pattern, present-
ing aspects with the same structure. Based on the framework and on the pattern, we
propose architecture specific guidelines that provide practical advice for both restruc-
turing and implementing certain kinds of persistent and distributed applications with
AspectJ.

Figure 3.1 depicts the aspect-oriented restructuring presented in this chapter, where
an aspect-oriented software is derived from an object-oriented one. The guidelines can
also be used for aspect-oriented implementation from the beginning.

Functional requirements Concurrency control

Data management User interface

Distribution

Functional requirements Concurrency control

Data management User interface

Distribution

Figure 3.1: Aspect-oriented restructuring.

3.2 The Specific Software Architecture

The implementation method is tailored to a specific architecture. Despite being specific,
this software architecture can be used to implement a broad range of systems [89].
Examples of real web-based systems that use this architecture are the following:

• A system to manage a telecommunication company’s clients. The system is able to
register mobile telephones and change client and telephone services configurations.
The system can be used over the Internet.

• A system for performing on-line exams. This system is been used to offer different
kinds of exams, as simulations based on previous university entry exams, which
help students to evaluate their knowledge before the real exams.

• A complex supermarket system. The system is responsible for controlling the sales
in a market. This system is been used in several supermarkets and other kinds of
stores and has more than 2 million lines of code.

• A system for registering health system complaints. The system allows citizens
to complaint about disease problems and allows retrieving information about the
public health system, such as the location or the specialties of a health unit. This
system was used as a case study in several works [80, 1, 52, 48], including this

23

thesis, being useful to derive and tailor our method. We also use it to exemplify
the software architecture as shown through this section.

CommunicationCommunication

Business rulesBusiness rules

Data managementData management

User interfaceUser interface

Figure 3.2: Four-layered architecture.

The object-oriented version of the software architecture was primarily conceived to
implement a four-layered architecture depicted by Figure 3.2. The architecture aims
at separating user interface, communication, business rules, and data management con-
cerns. This structure leads to less tangled code — such as when business code is mixed
with distribution code — but does not completely avoid it. For example, the code for
starting and terminating transactions, in general, cannot be easily untangled from the
business code by using this architecture and an object-oriented language. Moreover, in
the cases where it can be untangled, one has to pay a high price for that: adapters [2, 3]
have to be written just to take care of the transaction functionality. Another example
is the code for providing data access on demand, which cannot be untangled either.

Furthermore, the layered architecture of the object-oriented Health Watcher system
does not prevent spread code. This is the case of the code specifying which classes
have to be made serializable for allowing the remote communication of its objects. The
exception handling code for data management, distribution, and concurrency control
is also scattered throughout the system. The code for handling transactions appears
only in the facade [26] class, the unique entry point to the system, but it is essentially
replicated to all transactional methods of this class.

Despite not completely separating concerns, the layered architecture gives some sup-
port to adaptability. Figure 3.3 shows two possible system configurations, where a
relational database is used as the persistence mechanism. In the one used in our restruc-
turing experience, the system is accessed through an HTML [29] and Javascript [23] user
interface, which interacts with Java servlets [32] running in a web server. In the other
configuration, a Java user interface interacts directly with an application server using
Java RMI. Instead of RMI, it would be possible to use EJB [93] (Enterprise JavaBeans)
or another distribution technology. Similarly, we could also have an object-oriented
database as the persistence mechanism.

On the other hand, by using aspect-oriented programming and AspectJ, we could
improve the architecture deriving a fifth layer, depicted by Figure 3.4, responsible for
implementing the concurrency control approach, which was originally tangled with the
other layers.

In fact, in the aspect-oriented environment we also have a sixth layer, which is
orthogonal to the others, being responsible for exception handling. This sixth layer was

24

Application

Server

RMI JDBCHTTP

Client 1

(HTML + Javascript)

Client N

(Java application)

Web server

(Servlets or JSP)

Persistence

mechanism

Persistence

mechanism

Figure 3.3: System configuration.

CommunicationCommunication

Business rulesBusiness rules

Data managementData management

User interfaceUser interface

C
o
n
cu

rren
c
y

C
o
n
tro

l
C

o
n
cu

rren
c
y

C
o
n
tro

l

Figure 3.4: Five-layered architecture.

identified during the concerns definition and aspect-oriented analysis. It was natural to
separate exceptions specific to data management, distribution, and concurrency control
concerns implementation. In the core software there are only exceptions related to
business rules (functional requirements). This aspect-oriented software architecture is
depicted in Figure 3.5.

Instead of presenting general classes without meaning, Figure 3.6 presents a UML [10]
class diagram of a fragment of the Health Watcher system with examples of each kind
of class and interface of the object-oriented software identified by UML stereotypes [10].
For simplification, it only shows the classes involved in the complaint processing services,
other classes essentially follow the same pattern [53]; we also omit the classes from the
communication layer, which allows remote access to system services.

The Health Watcher — the information system used in our restructuring experi-
ence — is a real health complaint system developed to improve the quality of the
services provided by health care institutions. By allowing the public to register sev-
eral kinds of health complaints, such as complaints against restaurants and food shops,
health care institutions can promptly investigate the complaints and take the required
actions. Complaints are registered, updated, and queried through a web client im-
plemented using Java servlets. Accesses to the Health Watcher services are made

25

CommunicationCommunication

Business rulesBusiness rules

Data managementData management

User interfaceUser interface

C
o
n
cu

rren
c
y

C
o
n
tro

l
C

o
n
cu

rren
c
y

C
o
n
tro

lE
x

ce
p
ti

o
n

h
an

d
li

n
g

E
x

ce
p
ti

o
n

h
an

d
li

n
g

Figure 3.5: Aspect-Oriented Layered Architecture.

through its facade (HWFacade), which is composed of business collections. The inter-
face IPersistenceMechanism abstracts which persistence mechanism is in use. Classes
implementing this interface (HWPersistenceMechanism) should handle database connec-
tions and transaction management. Persistent data collections (ComplaintRepository−
RDBMS) are used to map persistent data into business basic objects (Complaint), and vice
versa. Those collections are used by business collections (ComplaintRecord) through
business-data interfaces (IComplaintRepository). These interfaces allow multiple im-
plementations of the data collections, using different data storage and management
mechanisms, including nonpersistent data structures (ComplaintRepositoryArray).

This architecture was originally defined elsewhere [101], having been added here
just some modifications. Usually, a software contains several business collections, data
collections, and basic classes.

3.3 Implementation Methods Overview

The implementation method we define is composed of two major parts:

• Implementation Guidelines — guidelines to restructure an object-oriented software
to an aspect-oriented one or to implement an aspect-oriented software from the
beginning.

• Implementation Activities — activities that manage the guidelines execution in
the context of a software development process. In fact, we also provide changes
to other activities of the development process to make them complying with the
implementation activities and the aspect-oriented software development paradigm.

Figure 3.7 depicts the implementation method impact in some development activ-
ities. Some of them were changed to comply with the implementation method, and
new activities were added to the implementation activities, as well as the use of specific
guidelines to implement the aspect-oriented software.

The following sections present the four concerns that the implementation method
supports: distribution, data management, concurrency control, and exception handling.
These sections guide the concerns implementation, which are the methods implemen-
tation guidelines. Those aspects are presented by discussing the steps we performed
towards restructuring the pure Java version of the system for obtaining the AspectJ

26

IPersistenceMechanism

connect()

disconnect()
beginTransaction()

commitTransaction()

rollbackTransaction()

getCommunicationChannel()

releaseCommunicationChannel()

HttpServlet

<<UserInterface>>

HWPersistenceMechanism

<<PersistenceMechanism>>

ComplaintRepositoryRDBMS

<<PersistentDataCollection>>

Complaint

getCode()

<<BusinessBasic>>

ComplaintRepositoryArray

<<NonpersistentDataCollection>>

IComplaintRepository

insert(Complaint)

remove(code)

update(Complaint)

search(code) : Complaint

ServletUpdateComplaint

<<UserInterface>>

ComplaintRecord

update(Complaint)

<<BusinessCollection>>

HWFacade

<<Facade>>

<<Business-DataInterface>>

<<PersistenceMechanismInterface>>

Figure 3.6: Software architecture class diagram.

version. Although those steps are not generally applicable for all kinds of applications,
they can be used as specific guidelines for implementing distribution, concurrency con-
trol and data management aspects in systems that comply with the Health Watcher’s
software architecture. They can, therefore, be used as guidelines for restructuring such
systems.

In order to allow reuse, we implemented an aspect hierarchy composed of abstract
aspects, which are system-independent, and concrete aspects, which are specific to the
Health Watcher system. In fact, those abstract aspects comply with the software ar-
chitecture, like all other guidelines and abstract aspects we defined. Those abstract
aspects define an aspect framework that provides aspect reuse, helping programmers to
implement those concerns in other systems.

In addition, Section 3.10 describes an alternative implementation approach to im-
plement aspect-oriented software using the guidelines presented in this chapter. The
second major methods part is presented in next chapter (Chapter 4), which defines
how the guidelines should be executed in the context of a development process, and
how a development process is affected by the guidelines, the alternative implementation
approach, and the aspect-oriented software development.

27

New activities

Activities change
Requirements activities

Analysis and design activities

Implementation activities

Test activities

Management activities

guidelines

Development process activities

Implementation

method core

New activities

Activities change
Requirements activities

Analysis and design activities

Implementation activities

Test activities

Management activities

guidelines

Development process activities

Implementation

method core

Figure 3.7: Development activities changed by the implementation method.

3.4 Distribution concern

In this section, we focus on the distribution aspects. In the next sections, we present
the other aspects.

The first step of the restructuring process for separating the distribution code is to
remove the RMI specific code from the pure Java version of the system. Roughly, in a
system that complies with the Health Watcher’s architecture, the RMI distribution code
is tangled in the facade class (server-side) and in the user interface classes (clients-side).
Furthermore, the business basic classes also have some RMI code if their objects are
arguments and return values of the facade’s methods, which are remotely executed.

A B
Original software
local calls between A and B

Distributed software
remote calls between A and B

Distribution

aspects

WeaverRecomposition

process

Client-side Server-side

Client Server

Distribution

specific API

A B

Client-side

aspect

Server-side

aspect

A BB
Original software
local calls between A and B

Distributed software
remote calls between A and B

Distribution

aspects

WeaverWeaverRecomposition

process

Client-side Server-side

Client Server

Distribution

specific API

A B

Client-side

aspect

Server-side

aspect

Figure 3.8: Distribution code weaving.

28

The RMI code was removed from the mentioned server and client classes, and a
similar functionality was separately implemented in associated server-side and client-side
aspects, as explained by the following sections. Those distribution aspects are composed
to the system using a composition process called weaving, resulting in the distribution
version, as shown in Figure 3.8. This seems to be a common AspectJ pattern [63], where
the aspects glue the functionality of their associated classes to the original system code.
In fact, our distribution code consists of distribution aspects and auxiliary classes or
interfaces. When this code is woven with the system code, it essentially affects the
system facade and the user interface classes; the communication between them becomes
remote by distributing the facade instance.

3.4.1 Server-side distribution aspect

The server-side distribution aspect is responsible for making the facade instance remotely
available. It also ensures that the methods of the facade have serializable parameters
and return types, since this is required by RMI.

Implementing a reusable aspect

RMI remote objects implement a so-called remote interface, which is used to access the
remote services provided by those objects. Therefore, we can define an abstract aspect
that uses this interface to generalize the server side behavior.

Additionally, remote objects are required to extend the RMI UnicastRemoteObject
class, which defines the behavior of remote objects and makes their references remotely
available. This approach, although recommended by RMI specification, would require
the server-side aspect to add RemoteException to the throws clause of the facade’s
constructor. This would be necessary because the subclass (system facade) constructor
calls the super class (UnicastRemoteObject in this case) constructor, which declares
that it might throw RemoteException. Unfortunately, the current version of AspectJ
does not support that kind of static crosscutting. It can introduce, for example, methods,
fields, and implements declarations, but not exceptions to a throws clause.

As facade cannot extend UnicastRemoteObject, we can have a similar effect using an
RMI alternative. The exportObject static method, declared in UnicastRemoteObject,
is used to export the facade instance and make it remotely available. This method is
called by the facade main method, which essentially starts up the remote Health Watcher
server.

The abstract aspect defines an abstract pointcut to identify the execution of the
facade main method. It also defines abstract methods to initialize the remote instance,
to get a name that is used to bind to the instance and to get the server machine’s name
where the remote instance is available.

abstract aspect ServerSide {

abstract pointcut facadeMainExecution();

abstract Remote initFacadeInstance();

abstract String getSystemName();

abstract String getServerName();

29

Those abstract methods and pointcut are implemented by a system specific aspect.
The abstract aspect also defines an around advice that uses the abstract methods to
export the facade instance and make it remotely available.

void around(): facadeMainExecution() {

try {

Remote facade = initFacadeInstance();

String systemName = getSystemName();

UnicastRemoteObject.exportObject(facade);

java.rmi.Naming.rebind("/"+ systemName, facade);

} catch (RemoteException rmiEx) { ... }

} catch (MalformedURLException rmiEx) { ... }

}

}

In fact, this advice replaces the entire original main method, and therefore, the
original behavior is despised. However, usually, the main method of a facade class
might not even exist or it may only make tests over the system. It is very unusual a
main method to be executed while the system is being executed.

Defining a concrete aspect

As previously mentioned, RMI remote objects must implement a remote interface.
Hence, the concrete server-side aspect has to modify the facade class (HWFacade) to
implement a corresponding remote interface (IRemoteFacade), which extends the RMI
remote interface (java.rmi.Remote). This is done by using AspectJ’s declareparents

construct:

aspect HWServerSide extends ServerSide {

declare parents: HWFacade implements IRemoteFacade;

The IRemoteFacade interface is part of the pure Java version of the system, so we did
not have to implement it again. In the AspectJ version of the system, it is specific and
auxiliary to the distribution aspects, so it was grouped with the other auxiliary types.
Besides extending RMI’s Remote interface, this interface contains the signatures of the
facade public methods, however adding the java.rmi.RemoteException in their throws
clauses. This exception is used by RMI in order to indicate several kinds of configuration
problems and remote communication failures.

The concrete aspect must implement the abstract members of the abstract aspect in
order to specialize it to a specific system. The methods are defined as

Remote initFacadeInstance() {

return HWFacade.getInstance();

}

String getSystemName() {

return "HealthWatcherSystem";

}

String getServerName() {

return // the server IP or DNS address

}

30

and the pointcut as

pointcut facadeMainExecution():

execution(static void HWFacade.main(..));

As previously mentioned, facade class might not have a main method, and when
this happens, we should add an empty one (a method with an empty body) in order
to enable the super aspect. This can be done through the use of AspectJ inter-type
declarations, which adds a main method into the HWFacade class.

Serializing types

As demanded by RMI, the concrete server-side aspect should also serialize all parameters
and return types of the facade methods. Exceptions are for parameter and return values
that correspond to remote objects themselves.

In order to be serializable, a class has to implement the Java Serializable interface,
which indicates that default object serialization should be available for its objects. So
the aspect simply uses the declareparents construct for each parameter and return
type that should be serializable:

declare parents: healthGuide.HealthUnit || ... || complaint.Complaint

implements java.io.Serializable;

}

This might indeed be repetitive and tedious, suggesting that either AspectJ should have
more powerful metaprogramming constructs or code analysis and generation tools would
be helpful for better supporting this development step. Those tools would be even more
useful for the pure Java implementation, where we have to write basically the same
code, but in a tangled and spread way.

3.4.2 Client-side distribution aspect

A simple implementation of the client-side aspect would make the client (user interface)
classes refer to the remote facade instance. They all have a HWFacade field that should
yield the remote instance when accessed. At first, it seems that this could be easily
achieved with AspectJ by intercepting the accesses to those fields. However, due to
RMI conventions, the type of the remote reference is actually IRemoteFacade. So the
remote reference is not assignable to the HWFacade fields and, consequently, those cannot
yield that reference when accessed. This problem could be avoided if the client classes
had IRemoteFacade fields, but those classes would then depend on RMI code, decreasing
system modularity.

If the remote reference had the HWFacade type, another possibility would be to
intercept calls to the facade methods, directing them to the remote facade instance.
This could be achieved by first defining the following pointcut to identify calls to the
non-static HWFacade methods, as long as they originate from the user interface classes,
which in our case are Java servlets:

pointcut facadeCalls(HWFacade local):

target(local) && call(* *(..)) &&

!call(static * *(..)) && this(HttpServlet);

31

In this code, the pointcut parameter local indicates that we want to expose some value
in the execution context of the associated join points. We use the target designator
to bind the local pointcut parameter to the target of the method calls, and the this

designator to indicate that the currently executing object has type HttpServlet.
Besides identifying the join points of the facade method calls, we would define an

around advice (below) to affect those join points by substituting the reference to the
local facade instance (the target of the call) with the reference to the remote facade
instance:

Object around(HWFacade local) throws /*...*/: facadeCalls(local) {

return proceed(remoteHW);

}

This advice affects the facade calls, exposing the reference to the target of each call.
It uses a reference to the remote instance (remoteHW, declared and initialized by the
aspect) to proceed with the execution flow, but changing the execution context. This is
done by changing the exposed reference to the target of the call: instead of the reference
stored in local it becomes the one stored in remoteHW. This advice, however, would
only be valid if the type of remoteHW were HWFacade, the type of the advice parameter,
instead of IRemoteFacade.

Redirecting method calls

As the discussed solutions do not work with the current version of AspectJ, we have to
write an advice for each facade method, essentially doing the same thing as the previous
around advice, but in a specific way for each single facade method. For example, the
advice for the method that updates complaints is the following:

int around(Complaint c) throws /*...*/:

facadeCalls() && call(void update(Complaint)) && args(c) {

return remoteHW.update(c);

}

It redirects the update calls to the facade remote instance. However, this is not done by
changing the value of the target of the call, as in the general around advice shown before.
Here the around advice does not proceed with the execution of the original call, but
executes a new call to the same method, with the same argument, but with a different
target. Since we do not change the value of any variable, we avoid the typing problems,
with HWFacade and IRemoteFacade, discussed before. The facadeCalls pointcut used
in this advice would be essentially the same as the one we have shown before, but does
not need to expose a reference to the target of the call.

The advices for the other facade methods are quite similar to this one. In fact, this
solution works well but we loose generality and have to write much more code, which
is tedious. It is also not so good with respect to software maintenance: for every new
facade method, we should write an associated advice, besides including a new method
signature in the remote interface.

32

Defining an abstract aspect

To allow generality and reuse, we define an abstract aspect that uses Java reflection
and AspectJ features to redirect facade method calls. The aspect defines an abstract
pointcut to identify facade calls, and abstract methods to retrieve the name bound to
the remote instance and the name of the server where the remote instance is available.

abstract aspect ClientSide {

private Remote facade;

abstract String getSystemName();

abstract String getServerName();

abstract pointcut facadeLocalCalls();

These abstract methods are not specific to the Health Watcher system, and therefore,
can be reused in other software. The aspect also defines the lookup service to retrieve
the remote instance, assigning it to the facade field.

private synchronized Remote getRemoteFacade() {

if (facade == null) {

String systemName = getSystemName();

String serverName = getServerName();

try {

facade = java.rmi.Naming.lookup("//" + serverName +

"/" + systemName);

} catch (Exception ex) {

throw new SoftException(ex);

}

}

return facade;

}

Note that the method wraps any exception raised by the lookup method execution into a
SoftException. This is our approach to any exception raised by a concern implemented
in the aspects, since the exception handling aspects is responsible for handling them.
The aspect also defines an around advice that uses the AspectJ API to access the
arguments and name of the method being called, and then to call the corresponding
method of the remote instance.

Object around(): facadeLocalCalls() {

Object[] args = thisJoinPoint.getArgs();

Signature signature = thisJoinPoint.getSignature();

String methodName = signature.getName();

return MethodExecution.invoke(getRemoteFacade(), methodName, args);

}

}

The auxiliary class MethodExecution defines the static method invoke to call method
of objects using the Java reflection API. This approach simplifies and generalizes facade
method redirection. Despite simplifying the number of lines of code and generalizing

33

the method redirection, the use of reflection decreases code readability and avoids static
type checking, which may favor adding errors into the program. On the other hand, this
abstract aspect is supposed to be reused, and therefore, should not be implemented by
the programmer. The programmer has only to implement the concrete aspect, which is
system-specific, inheriting the redirection behavior.

Defining a concrete aspect

The next step is to define a concrete aspect that should implement the ClientSide

abstract methods and define the abstract pointcut to identify facade methods call, as
in the following pointcut.

pointcut facadeLocalCalls():

this(HttpServlet) && call(* IRemoteFacade+.*(..)) &&

!call(static * IRemoteFacade+.*(..));

}

This solution is quite superior to the corresponding pure object-oriented implemen-
tation. In fact, without using AspectJ and this approach, we would have productivity
and maintenance problems. For instance, a common pattern for separating the distribu-
tion code in a pure Java implementation is to use factories and a pair of adapters [26, 2]
between the facade and the user interface classes. However, in this way, we need to write
much more code and a change in the facade class would require changing two classes
besides the facade and the remote interface. Besides that, this alternative pure Java
implementation cannot separate the distribution code at all, not satisfying the Health
Watcher’s adaptability and extensibility requirements.

Feature request

Some problems we had during system restructuring could have been avoided if we added
an exception in a method throws clause. Therefore, we submitted a feature request to
the AspectJ team, which they expect to consider for a following version of AspectJ. We
suggested the support of a new constructor that adds an exception to a method throws

clause. For example, it could be used as in the following declaration, where the wildcard
∗ is used to match any return type and any method name, and the wildcard .. matches
any parameter list:

declare throws: (* IRemoteFacade.*(..)) throws RemoteException;

This declaration would add the RMI specific exception, RemoteException, to the throws
clause of all methods of the IRemoteFacade interface, assuming that this interface simply
contains the signature of the public methods of the facade; it would not extend Remote

and its methods would not throw RemoteException; this should be implemented by the
aspect. In this way the client classes could have IRemoteFacade fields, since the RMI
details would be introduced to the interface by the distribution aspects. The general so-
lution shown at the beginning of this section could then be used; we should only replace
HWFacade for IRemoteFacade in the facadeCalls pointcut definition.

The proposed feature would be useful to solve similar problems mentioned else-
where [43], reinforcing the need for its support. It would allow static exception checking,

34

as opposed to the use of AspectJ’s so-called softened exceptions, which are unchecked
and therefore can be thrown anywhere, without further declarations. However, this fea-
ture must be used with care. It has to be used together with aspects that handle the
newly added exceptions, otherwise a well-typed Java program, when woven with the
aspect code, might yield a non well-typed program that does not handle some thrown
exceptions. In fact, this feature does not provide good compositionality properties.

Synchronizing states

When implementing the client-side aspect we have also to deal with the synchronization
of object states. This is necessary because RMI supports only a copy parameter passing
mechanism for non-remote arguments. Therefore, when a facade method returns an
object to the client, it actually returns a copy of the server-side object. Therefore,
modifications to the client copy are not reflected in the server-side object.

The client-side aspect should take care of this distribution concern, by reflecting
modifications to the client copies on the server. This could be done by intercepting the
user interface (client) methods and synchronizing the states of the server-side copies
changed by those methods. The synchronization could be performed through calls to
update methods declared by the system facade.

Later we concluded that this concern and its associated behavior are necessary for
implementing persistence as well. Therefore, we actually implemented it only once, and
the details are presented in Section 3.5. This shows that the distribution and data
management concerns are not completely independent. It also shows that careful design
activities are also important for aspect-oriented programming. Only in this way, we
can detect in advance intersections, dependences, and conflicts among different aspects.
Consequently, we can avoid serious development problems and better plan the reuse and
parallel development of different aspects.

3.4.3 Distribution aspects class diagram

Figure 3.9 presents a class diagram of the distribution aspects and the Health Watcher
classes the aspects affect or use, as described in this section. The << Aspect >>
stereotype and a different fill color identify the aspects.

3.4.4 Distribution framework

Figure 3.10 presents the abstract aspects that constitute a distribution framework that
can be primarily reused to distribute user interface from facade. In fact, this framework
is general enough to distribute execution from any two objects of different classes. To
extend the framework, one has to identify the source and target classes, which in the
specific software architecture are respectively the user interface and facade classes.

3.4.5 Distribution dynamics

Figure 3.11 depicts the distribution aspects dynamics in a UML sequence diagram. The
diagram only presents the dynamics of the abstract aspects.

35

HttpServlet
(from javax.servlet.http)

<<UserInterface>>

IRemoteFacade

update(Complaint)

Remote

(from java.rmi)

RemoteException
(from java.rmi)

HWClientSide

<<Aspect>>

HWServerSide

<<Aspect>>

Complaint

<<BusinessBasic>>

ClientSide

<<Aspect>>

ServerSide

<<Aspect>>

HWFacade

<<Facade>>

Naming
(from java.rmi)

UnicastRemoteObject
(from java.rmi.server)

Figure 3.9: Distribution aspects class diagram.

ClientSide

<<Aspect>>

ServerSide

<<Aspect>>

Remote

(from java.rmi)

Figure 3.10: Distribution framework.

: ClientSide : ServerSide : UnicastRemoteObject: NamingremoteFacade :

Remote

user interface :

Object

Intercepted method call

to local facade instance

Remote

call

initFacadeInstance
<<create>>

m

m

getRemoteFacade

Abstract

method

export(remoteFacade)

rebind(remoteFacade)

lookup remote instance

Figure 3.11: Distribution aspects dynamics.

36

First of all, the server-side aspect retrieves a facade instance through an abstract
method, exports it through UnicastRemoteObject class, making it available to be re-
motely accessed, and binds the instance to a name using the Naming class. The lookup
service uses this name in order to access the remote instance.

After that, the remote instance is ready to be accessed. The client-side aspect can
retrieve the remote instance using the lookup service and redirect to it any method
call made by user interface objects, which originally would be made to a local facade
instance.

3.5 Data management concern

This section presents the steps that we followed in order to restructure the persistence
code of the Health Watcher system and obtain the corresponding data management as-
pects. The first step in this direction is to remove the data management code from the
pure Java version of the system. In a system that complies with the Health Watcher’s
architecture, data management code is mostly concentrated in the data collection and
persistence mechanism classes, but also appears in the facade and in the business col-
lection classes.

The data management code should be removed from the pure Java system and a
similar functionality should be implemented as aspects. Figure 3.12 illustrates that and
also shows that we have aspects for configuring the system to run with persistent and
nonpersistent data management. As discussed in Chapter 4, this is useful for making
testing easier and allowing early functional requirements validation, usually before the
persistence code is written. When the persistence aspects are woven with the system
code, we generate a persistent version of the system. The persistence source code in-
cludes the IPersistenceMechanism interface and implementations for this interface.
The IBusinessData interfaces (see Section 3.2) is responsible for abstracting what data
management medium is being used by the business collection classes, and was not fac-
tored out from the core source code. The data management aspects affect the facade
and business collection classes.

The persistence code includes aspects and auxiliary classes and interfaces to address
the following major concerns: connection and transaction control, partial (shallow)
object loading, for improving performance, and synchronization of object states with
the corresponding database entities, for ensuring consistency.

3.5.1 Persistence mechanism control

This section describes the persistence mechanism control aspects, which are responsi-
ble for implementing basic persistence functionality for all operations accessing the data
storage mechanism. They create an instance of a persistence mechanism class (an imple-
mentation of IPersistenceMechanism provided by the persistence code) and deal with
database initialization, connection handling, and resources releasing, services provided
through the created instance.

For reuse purposes, this concern is implemented using an aspect hierarchy composed
of an abstract aspect and a concrete aspect. The second is specific to the Health Watcher

37

System
Executable

WeaverWeaver

---------- -----

----- ----------

---------- -----

----- ----------

Persistent

Version

Nonpersistent

Version

WeaverWeaver

Memory

Database

Aspects Classes
use

Aspects Classes
use

Aspects Classes
use

System Source Code

crosscut

crosscut

Persistent Data Source Code

Nonpersistent Data Source Code

Figure 3.12: Data management code weaving.

system, whereas the first can be used for implementing other systems that comply with
the same architecture of the Health Watcher.

Implementing a reusable aspect

The abstract persistence mechanism control aspect is reusable. It defines two advices
that depend on abstract pointcuts, which are made concrete by different concrete as-
pects, depending on the systems in which it is reused. This aspect (AbstractPersisten−
ceControl) defines an abstract pointcut (initSystem) to identify the execution of the
system initialization process; this is where an instance of a persistence mechanism class
should be created and initialized.

abstract aspect PersistenceControl {

abstract pointcut initSystem();

abstract IPersistenceMechanism pmInit();

The aspect also declares an abstract method that should be used to initialize the per-
sistence mechanism instance. Both the method and the pointcut are defined abstractly
because their concrete definitions depend on specific classes of the system being imple-
mented.

Two advices are declared to initialize and release resources; their implementations
use the abstract pointcut previously defined:

before(): initSystem() {

getPm().connect();

}

after() throwing: initSystem() {

getPm().disconnect();

}

38

The before advice states that, before system initialization, a persistence mechanism
instance is created and connected to the database system. If any problem happens
during initialization, the after throwing advice is executed; the resources allocated by
the persistence mechanism are then released.

The getPm method creates, if necessary, and returns a valid IPersistenceMechanism

instance.

synchronized IPersistenceMechanism getPm() {

if (pm == null) {

pm = pmInit();

}

return pm;

}

Those advices call methods that might raise exceptions, but it would not be in-
teresting to handle them in the advice code, which is executed usually before or after
some facade code, during system initialization time. Therefore those exceptions are de-
clared as soft, not checked, by the declaresoft static crosscutting AspectJ construct.
Section 3.8 presents how soft exceptions are handled.

Note that this aspect uses a single instance of the persistence mechanism for the
whole application, but it is simple to adapt this aspect to work with a pool of persistence
mechanisms, instead of just one, when required. For example, this would be necessary
in a distributed database environment.

Implementing a concrete aspect

The abstract pointcut and method declared in the previous aspect are concretely defined
for the Health Watcher system in the following aspect.

aspect HWPersistenceControl extends PersistenceControl {

pointcut initSystem(): call(HWFacade.new(..));

IPersistenceMechanism pmInit() {

return HWPersistenceMechanism.getInstance();

}

The pointcut definition states that the initialization point of the Health Watcher sys-
tem is the creation of the facade (HWFacade) instance. This aspect also implements
the persistence mechanism initialization method, pmInit. This method obtains an
instance of the concrete implementation of the persistence mechanism for relational
databases, HWPersistenceMechanism, and then connects it to the database system,
using the connect method.

As in the previous abstract aspect, we have to indicate that the persistence mecha-
nism exception is soft when raised during the execution of the getInstance method:

pointcut obtainPmInstance():

call(* HWPersistenceMechanism.getInstance(..));

declare soft: PersistenceMechanismException: obtainPmInstance();

39

The obtainPmInstance is just an auxiliary pointcut to be used in the declare soft

constructor.
The abstract aspect depends only on the persistence mechanism interface IPersis−

tenceMechanism, benefiting software evolution, whereas the concrete aspect depends
on a concrete persistence mechanism. Only the concrete aspect needs to be modified to
support a different data storage mechanism such as object-oriented databases or another
implementation for relational databases. The system can then be easily customized by
simply replacing the concrete aspects and going through the weaving process.

By using factories, a similar kind of customization could also be achieved in the pure
Java implementation of the system. This would require more code to be written. On
the other hand, it would allow customization without recompiling the system code, at
least for a pre-existing set of customization alternatives. This is not currently supported
by AspectJ, but is expected to be. Moreover, with the pure Java version it would be
expensive to separate the code for ordering the creation and use of the persistence
mechanism. This would have to be tangled to the facade code. Since the tangled
code would depend only on the IPersistenceMechanism interface, the main direct
disadvantage in this case would be with respect to the legibility of the facade, instead
of its reusability or extensibility. Those would be indirectly affected only.

Persistence control aspects class diagram

Figure 3.13 presents a class diagram of the persistence control aspects and the Health
Watcher classes and interfaces the aspects affect or use, as described.

HWPersistenceMechanism

<<PersistenceMechanism>>

HWPersistenceControl

<<Aspect>>

PersistenceControl

getPm() : IPersistenceMechanism

<<Aspect>>

IPersistenceMechanism

HWFacade

<<Facade>>

Figure 3.13: Persistence control aspects class diagram.

3.5.2 Transaction control

When dealing with data stored in a persistence mechanism it is essential to work with
transactions in order to guarantee the ACID properties [20]: atomicity of operations,
data consistency, isolation when performing operations, and data durability even if the
system fails. In the Health Watcher system, the transaction control code was mostly

40

invoked from the facade class. Therefore, we removed this code and implemented the
transaction control concern using two aspects to improve reusability, similarly to what
is done when implementing the previous concern.

Implementing a reusable aspect

The simplest version of the abstract transaction control aspect defines an abstract point-
cut that should identify the transactional methods of the system; that is, the methods
whose execution should be bound by a transaction:

abstract aspect TransactionControl {

abstract pointcut transactionalMethods();

abstract IPersistenceMechanism getPm();

It also declares an abstract method that is used to obtain a valid persistence mechanism
instance; it is necessary for invoking the transaction services supported by the persistence
mechanism.

The abstract transaction control aspect also implements three advices to begin, com-
mit, and rollback transactions. The first one is a before advice that starts a transaction
just before the execution of any transactional method:

before(): transactionalMethods() {

getPm().beginTransaction();

}

As in the previous aspect definition, we should declare that the exceptions raised by the
methods called inside the advice are soft; we omit the code here.

We also have an afterreturning advice that commits the transaction when the
method executions returns successfully:

after() returning: transactionalMethods() {

getPm().commitTransaction();

}

At last, an afterthrowing advice rolls the transaction back to the original state, main-
taining the database in a consistent state, if any problem happens during the execution
of any transactional method:

after() throwing: transactionalMethods() {

getPm().rollbackTransaction();

}

Notice that any exception that is thrown and not handled by a transactional method
aborts the transaction. We have the same behavior in the pure Java version of the Health
Watcher system. This decision is perfectly adequate for both versions of the system and,
in fact, it would be adequate for other systems too. Nevertheless, this shows that the
programmer that writes the persistence aspects should be aware of the behavior of the
affected code. Likewise, the programmer who wishes to reuse our transaction aspects
should be aware of the effect of throwing, and not handling, an exception. In fact,
there might be a strong dependency between the aspect code and the Java code [43].

41

In this specific case of transactions, this does not bring major problems in practice. In
general, more powerful AspectJ tools would be necessary to provide multiple views, and
associated operations, for the strongly related AspectJ and Java units of code. Current
tools only show the dependency between the Java code and the aspects that affect it.

Implementing a concrete aspect

The concrete transaction control aspect (HWTransactionControl) inherits from the pre-
vious abstract aspect and provides concrete definitions for the abstract pointcut and
method.

When defining the concrete pointcut, we did not want to directly list the signatures
of all transactional methods. This would affect aspect legibility making the aspect code
too much dependent on modifications in the method signatures. Therefore, we defined
an interface containing the signatures of the transactional methods. This interface,
ITransactionalMethods, is used by the pointcut to identify the transactional meth-
ods of the system. The pointcut matches the execution of all methods defined by the
interface:

aspect HWTransactionControl extends TransactionControl {

declare parents: HWFacade implements ITransactionalMethods;

pointcut transactionalMethods():

execution(* ITransactionalMethods.*(..));

The aspect also uses the declareparents construct to make the facade class, which
contains all transactional methods of the Health Watcher system, implementing the
ITransactionalMethods interface. This is necessary for associating the methods that
are executed with the signature in the interface.

The definition of the concrete method refers to the concrete persistence control as-
pect, which provides access to an instance of the persistence mechanism:

IPersistenceMechanism getPm() {

HWPersistenceControl pc = HWPersistenceControl.aspectOf();

return pc.getPm();

}

This method yields a valid instance of the persistence mechanism. This is done by ob-
taining the instance that is available in the HWPersistenceControl aspect, through its
getPm method. We use the aspectOf method to obtain an instance of the aspect. With
this solution, the concrete transaction aspect is dependent on the concrete persistence
control aspect, however the abstract aspects are independent of each other and can be
reused and support different system customization alternatives.

With this approach, the aspect is not directly dependent on the transactional meth-
ods signatures, but the auxiliary ITransactionalMethods interface is completely de-
pendent on them. In fact, the interface should contain a subset of the signatures of the
methods defined by the facade class. This suggests that the interface could be easily
generated by semi-automatically extracting information from the facade. This could be
done every time the facade code changes, minimizing maintenance problems.

The Health Watcher system with the transaction aspects is significantly more mod-
ular than the pure Java system. In the original system code, the transactional methods

42

explicitly call methods for transaction control. They also have code for handling the
associated exceptions. For each method, there are at least 6 lines of tangled code to
call the transaction lifecycle methods and handle the exceptions. Factoring all these
repeated lines of code in a single unit avoids tedious work and increases productivity. It
also makes the code much easier to evolve, especially if modifications in the transaction
control policies are required. In this way, the developers can be more focused on the
more interesting aspects of transaction implementation and on the main functionality
implementation.

ITransactional

Methods

ReadOnly

TransactionalMethods

UpdateTransactional

Methods

UserDefinedRead

OnlyMethods

UserDefined

UpdateMethods

Figure 3.14: Transactional methods hierarchy.

Implementing alternative policies

The aspects illustrated in this section offer a uniform transaction control policy, which is
useful for most situations in the Health Watcher system but might not be adequate for
more complex or performance demanding systems. The same performance limitations
are reported by a similar, although independently developed, AspectJ implementation
of transactions in the context of the OPTIMA framework for controlling concurrency
and failures with transactions [43]. However, slight variations of our implementation
can offer several alternative policies and solve those limitations. For example, we could
have different transaction implementations for read only and update operations (read
transaction and write transaction, respectively). We could also have more than one class
with transactional methods.

In order to support different transaction implementations, it is useful to define an
appropriate interface hierarchy to indicate the different kinds of transactional meth-
ods. The hierarchy shown in Figure 3.14 establishes that all transaction control in-
terfaces should extend ITransactionalMethods. Interfaces specifying read only meth-
ods should extend ReadOnlyTransactionalMethods, and interfaces specifying update
methods should extend UpdateTransactionalMethods. The class that implements the
transactional methods should then implement the specific interfaces, instead of simply
implementing ITransactionalMethods, as done before.

43

In addition to a different interface hierarchy, we should have variations of the abstract
and concrete aspects. Instead of having a single pointcut, transactionalMethods, we
should have two pointcuts, one for read operations (readOnlyTransMethods) and the
other for write operations (updateTransMethods). Those pointcuts must match the
execution of the methods of the associated interfaces. The abstract aspect should now
have two sets of transactions advice, one set for each pointcut. Each set has a before, an
afterreturning, and an afterthrowing advice, similar to the ones illustrated before.
In this way, we can specify different behavior for the different kinds of transactional
methods.

Roughly generalizing, the transaction control aspects should contain a pointcut and
a set of three transaction advices for each kind of transactional method existing in the
system. In an extreme situation, we could maybe imagine each transactional method
having a different type of transaction implementation. In this case, the AspectJ version
would only have a small advantage over the pure Java version: by removing the tangled
code, the facade becomes simpler. On the other hand, considering that we do not
have advanced AspectJ tools as discussed in the beginning of the section, there is a
disadvantage too: as we separated related code, changes to a code unit might usually
impact the others. However, these extreme situations are not usual. In fact, our AspectJ
implementation of transactions can usually have significant advantages over pure Java
implementations. That is certainly the case of systems such as the Health Watcher.

ITransactionalMethods

ITransactionalCitizen ITransactionalAdmin

CitizenFacade AdminFacade

HWFacade

<<Facade>>

Figure 3.15: Example of multiple transactional components.

Another straightforward variation of the transaction control aspects supports mul-
tiple classes with transactional methods. In this case, one interface should be defined
for each one of the classes. Those interfaces should extend the transactional meth-
ods interface ITransactionalMethods. For instance, suppose that the Health Watcher
system contains transactional methods in two classes: CitizenFacade, defining the
main system services, and AdminFacade, containing system administration and con-
figuration services. So we would define two interfaces: ITransactionalCitizen and
ITransactionalAdmin. Figure 3.15 shows the UML class diagram for this hierarchy.

Besides having the extra interfaces, we should extend the concrete HWTransaction−
Control aspect to reflect this new structure:

44

declare parents: AdminFacade implements ITransactionalAdmin;

declare parents: CitizenFacade implements ITransactionalCitizen;

The concrete transactionalMethods pointcut should also be modified to consider the
executions of the methods declared in the new transactional interfaces.

Transaction control aspects class diagram

Figure 3.16 presents a class diagram of the transaction control aspects and the Health
Watcher classes and interfaces the aspects affect or use.

TransactionControl

getPm() : IPersistenceMechanism

<<Aspect>>

IPersistenceMechanism

ITransactionalMethods

HWTransactionControl

<<Aspect>>

HWPersistenceMechanism

<<PersistenceMechanism>>

Figure 3.16: Transaction control aspects class diagram.

3.5.3 Data collection customization

As explained before, the Health Watcher system should also work using nonpersistent
data. In order to support this, two aspects should be coded in such a way that we can
build both application versions: nonpersistent and persistent. Each version is the result
of weaving pure Java code with additional AspectJ code, as shown in Figure 3.12.

Implement a system-independent reusable aspect

Again, we define an abstract aspect to increase aspect reuse. The aspect DataCollec−
tionCustomization defines a pointcut to identify business collections creation

abstract aspect DataCollectionCustomization {

pointcut recordsCreation():

call(SystemRecord+.new(..)) &&

!within(DataCollectionCustomization+);

by using an auxiliary class SystemRecord that should be made super class of the business
collection classes by the system-specific aspect. The aspect defines an around advice to
return a business collection using the configured data collection, which is chosen by a
concrete aspect.

45

SystemRecord around(): recordsCreation() {

Signature signature = thisJoinPoint.getSignature()

return getSystemRecord(signature.getDeclaringType());

}

protected abstract SystemRecord getSystemRecord(Class type);

}

The abstract method getSystemRecord should return the required business collection
object based on the information of what class (business collection) is being created in the
affected join point. Note that this aspect uses information from the execution context
through the variable thisJoinPoint [97].

This aspect simplifies the programmer work in the sense that the system-specific
aspect that implements the getSystemRecord method has only to define methods to
retrieve the system-specific data collections for the required medium.

Implement an abstract system-dependent aspect

Unlike the other abstract aspects, this one is system-specific in the sense that it must be
defined for each system and therefore cannot be reused. The aspect HWDataCollection−
Customization identifies the system business collection classes by subclassing System−
Record:

abstract aspect HWDataCollectionCustomization extends

DataCollectionCustomization {

declare parents: ComplaintRecord || ... extends SystemRecord;

The aspect implements the getSystemRecord method by creating the business collection
based on its Class information.

protected SystemRecord getSystemRecord(Class type) {

SystemRecord response = null;

if (type.equals(ComplaintRecord.class)) {

response = new ComplaintRecord(getComplaintRepository());

} else if (type.equals(...

}

return response;

}

protected abstract IComplaintRepository getComplaintRepository();

...

}

Note that the getSystemRecord method uses an abstract method getComplaintRepo−
sitory that is responsible for creating the data collection to be used by the business
collection. We omit the code for the other business collections, but it is similar to the
ComplaintRecord code. This abstract, but system-specific, aspect is necessary in order
to allow other aspects to inherit from it in order to define the medium the software
should use. The following discussion on concrete aspects exemplifies this.

The use of reflection, when the Class type is used by the getSystemRecord method,
has some negative issues. For example, unlike the previous abstract aspect, this aspect

46

is not part of the aspect framework. Therefore, the aspect has to be implemented by a
programmer since it is system-specific. By using reflection, its code is more difficult to
understand. On the other hand, this aspect implements only part of the reflection code,
actually a simple part. The other part of the reflection is implemented in the previous
abstract aspect, which is part of the framework.

Implement concrete aspects

For the persistent version, we have an aspect responsible for creating persistent data col-
lections to the system implementing the abstract methods responsible for retrieving the
data collections. In fact, we should implement two aspects: PersistentDataCollection
and NonpersistentDataCollection, respectively for retrieving persistent and nonper-
sistent data collections.

This is possible because both persistent and nonpersistent data collections implement
the same interface. Similar aspects can also be defined to associate different kinds of
nonpersistent data collections. The aspect that associates the data collections using
nonpersitent implementation is quite similar to the persistent aspect.

Therefore, in order to switch between persistent and nonpersistent versions of the sys-
tem we should only switch between the PersistentDataCollection and NonPersis−
tentDataCollection aspects when weaving.

As discussed in the Persistence mechanism control section, this kind of customization
can also be supported by the pure Java implementation, with several advantages and
some disadvantages.

Data collection customization aspects class diagram

Figure 3.17 presents a class diagram of the data collection customization aspects and
the Health Watcher classes and interfaces the aspects affect or use.

ComplaintRecord

<<BusinessCollection>>

IComplaintRepository

insert(Complaint)

remove(code)

update(Complaint)

search(code) : Complaint

PersistentDataCollections

<<Aspect>>

NonPersistentDataCollections

<<Aspect>>

DataCollectionCustomization

<<Aspect>>

HWDataCollectionCustomization

<<Aspect>>

ComplaintRepositoryArray

<<NonpersistentDataCollection>>

ComplaintRepositoryRDBMS

<<PersistentDataCollection>>

SystemRecord

SystemRecord()

<<Business-Data Interface>>

Figure 3.17: Data collection customization aspects class diagram.

47

3.5.4 Data access on demand

Objects might have a complex structure, being composed of several other dependent
objects. In those cases, object storage and retrieval in data storage mechanisms need
special care to avoid performance degradation. An adequate approach to access this
kind of object is to parameterize the data loading level. For each kind of object usage,
an adequate loading level should be defined. For example, a service that lists complaints
may only need to access the complaints description and identification code, whereas a
service that generates a complex report may need the complaints description, code, asso-
ciated disease type and related health unit data. This kind of data access on demand is
an interesting feature when accessing large persistent object graphs, so it is implemented
in the Health Watcher system.

A common solution to associate the object access strategies with the different kinds
of object usages is to provide the access methods with an extra parameter, say an
integer, to indicate the desired loading level. So, for example, the search(int) method
for accessing disease types by their integer code should have an extra parameter to
indicate how much disease type information should be accessed. There are two problems
with this approach. The first is that the extra parameter has nothing to do with the
conceptual service being implemented, so we loose in legibility. The second problem
is that this approach requires whoever accesses the objects to indicate this parameter
value, generating an indirect dependence with specific persistent data collections, where
the extra access methods are implemented.

In order to avoid those problems detected in the pure Java version of the Health
Watcher, we defined an aspect to deal with data access on demand. This aspect calls
access methods with the extra parameter, but those are not visible to the system ser-
vices. Those services, for example, call the search(int) method for accessing disease
types. The aspect intercepts those calls and then calls the access methods with an extra
argument indicating the required data loading level. In this way we preserve the imple-
mentation of data access calls without needing an extra parameter, or any other kind
of workaround in the user interface and business layers.

Identifying kinds of object usages

The data access on demand aspect first declares the pointcuts that identify where a
specific kind of object usage appears. In order to illustrate that, we can use an inter-
face (PartiallyLoad) to identify the servlets that generate web pages listing partial
information about several objects of a class. For example, a servlet could generate a
page with partial information about the various health units registered in the system
by just showing the code and the name of the health unit, omitting, for example, the
specialties of each health unit. In this case, the search method of the HealthUnit data
collection should adopt a particular kind of object usage, namely partial object loading.
Therefore, we must define a pointcut matching the execution of those methods:

aspect ParametrizedDataLoading {

private interface PartiallyLoad { }

declare parents: ServletSearchHealthUnit implements PartiallyLoad;

pointcut partialLoadingServlets():

this(PartiallyLoad+) && execution(* do*(..));

48

We should add more servlets in this pointcut to identify all servlets that should generate
a page with partial information.

Applying the adequate loading level

After specifying that the subtypes of PartiallyLoad adopt a specific kind of object us-
age, we must, for instance, specify that this kind of usage should be applied when search-
ing HealthUnit objects in the associated data collection (HealthUnitData− RDBMS):

pointcut healthUnitSearchCall(HealthUnitDataRDBMS huData, int code) :

cflow(partialLoadingServlets()) && target(huData) &&

call(HealthUnit search(int)) && args(code);

The target and the argument of the search method are exposed by the pointcut be-
cause those values are necessary for redirecting the matched method calls. The cflow

construct is used to match only method calls that are in the execution flow of the join
points matched by the partialLoadingServlets pointcut. Therefore, we intercept only
search method calls that originate from the execution of the methods of PartiallyLoad
and its subtypes. Similar pointcuts should be declared for other access methods called
in the same context.

In fact, the previous pointcut does not match any execution of those facade methods
if the servlets and the facade are executing in different machines, i.e., the software is
distributed. A solution for that is discussed in Section 3.9.

Besides the pointcuts, we must have advice that intercept calls to the access methods
and apply the appropriate data loading level. For accesses to health units, we have the
following:

HealthUnit around(HealthUnitDataRDBMS huData, int code) throws ...:

searchCall(huData, code) {

return huData.searchByLevel(code, HealthUnit.SHALLOW_ACCESS);

}

We basically replace the search method call for a searchByLevel call, using the same
target and argument. The specified shallow loading level corresponds to the level
adopted by partialLoadingServlets. Using this solution, the persistent data collec-
tions should provide methods such as searchByLevel, with extra parameters to indicate
the loading level. Alternatively, they could provide methods with different names.

This solution modularizes a persistence concern and solves some problems of the pure
Java implementation. However, it presents some problems with respect to extensibility
and legibility, problems of the original version as well. For example, when modifying
the ServletSearchHealthUnit code, the programmer must be aware of the advice
that intercept that code, otherwise it might try to have access to non-loaded health
unit information. It might even be necessary to change the aspect because of changes
in the servlet. This shows a strong dependence between the aspects and the Java
code, requiring more powerful AspectJ tools as discussed in Section 3.5.2, or more
sophisticated pointcut definitions. For the transaction aspects, those tools could be
helpful. For the aspect presented in this section, they would be very important.

Our solution to data access on demand also requires more code to be written than
in the pure Java version. Fortunately, the extra code follows the same pattern of the

49

pointcuts and advice shown in this section. Code generation tools could easily generate
the corresponding code templates. An alternative might be the use of generic aspects,
similarly to generic classes in Java.

Data access on demand aspects class diagram

Figure 3.18 presents a class diagram of the data access on demand aspect and the Health
Watcher classes and interfaces the aspects affect or use.

ServletSearchHealthUnit

<<UserInterface>>

HttpServlet

(from javax.servlet.http)

<<UserInterface>>

ParametrizedDataLoading

<<Aspect>>

IHealthUnitRepository

insert(HealthUnit)

remove(code)

update(HealthUnit)

search(code) : HealthUnit

HealthUnitRepositoryRDBMS

searchByLevel(code, level) : HealthUnit

<<PersistentDataCollection>>

HealthUnit

<<BusinessBasic>>

<<Business-Data Interface>>

Figure 3.18: Data access on demand aspects class diagram.

3.5.5 Data management framework

Figure 3.19 presents the data management framework. Those abstract aspects can be
reused to implement data management in several applications that comply with the
Health Watcher’s software architecture.

PersistenceControl

<<Aspect>>

TransactionControl

<<Aspect>>

DataCollectionCustomization

<<Aspect>>

IPersistenceMechanism

Figure 3.19: Data management framework.

50

3.5.6 Data management dynamics

Figure 3.20 presents the dynamics of the data management reusable aspects.

: Persistence

Control

: IPersistence

Mechanism

: Transaction

Control

: DataCollection

Customization

: System

Record

: ITransactional

Methods

initSystem()
<<create>> Abstract

methods

connect()

disconnect()

Before

system

shutdown

getPm()

beginTransaction()

commitTransaction()

rollbackTransaction()

If no exception

is thrown

If any exception

is thown

new()

getSystemRecord(Class)

inteceps

constructor call

any method

call
after

method call

before

method call

Figure 3.20: Data management dynamics.

The aspect responsible for data collection customization intercepts records creation
in order to create them with the data collection specified by the concrete subclasses
through the implementation of the getsystemRecord abstract method. If persistence
aspects are selected, the one responsible for persistence control has to create and con-
nect to the persistence mechanism when the software starts, which is defined through
the implementation of abstracts pointcut and method, and disconnect to the per-
sistence mechanism before software shutdown. The transaction control aspect calls
IPersistenceMechanism methods in order to start, finish, and roll a transaction back,
when a selected facade method, from ITransactionalMethods interface, is called.

3.6 Data state synchronization control

The business and presentation layers deal with persistent objects, which contain data
that reflect the data stored in the database. Those layers invoke several methods on
those objects, changing attribute values in the objects only. Therefore, in order to
guarantee object persistence, extra method calls are necessary to synchronize the object
data with the database data, reflecting the attribute changes into the database. Similar
synchronization calls are also necessary for distribution purposes, as discussed at the

51

end of Section 3.4. Therefore, this concern is seen as a separate aspect, since it should
be used in conjunction in both persistent and distributed versions.

For separating concerns, those layers should not know whether an object is persis-
tent (its state reflects stored data) or not (its state corresponds to nonpersistent data).
Therefore, we removed the synchronization calls from the business and user interface
classes and implemented a similar functionality in the data state synchronization control
aspect. When this aspect is woven with the pure Java code, it introduces the synchro-
nization method calls in the business and user interface code, satisfying both persistence
and distribution requirements. This aspect is separately defined from data management
and distribution to be used when only one of these (distribution or persistence) is woven
into software. For example, Chapter 4 proposes gradual tests, where distribution might
be tested without persistence and vice-versa, which demands using the update state
aspect in both situations.

Identifying classes whose objects must be updated

The UpdateStateControl aspect defines a private interface (SychonizableObject)
used to identify classes whose objects must be updated after being changed.

aspect UpdateStateControl

percflow(UpdateStateControl.servletService()) {

private interface SychonizableObject {

void synchronizeObject(int updateSource);

}

The aspect uses a percflow designator to create an instance of the aspect for each
execution flow specified by the pointcut servletService.

pointcut servletService() :

this(HttpServlet) &&

(execution(void doPost(..)) || execution(void doGet(..)));

This avoids undesirable interferences between concurrent executions of Java servlets
requests creating an aspect instance per servlet request, instead of sharing a single
aspect instance among all requests.

We used the declareparents construct to make the class Complaint subtype of
SychonizableObject.

declare parents: Complaint implements SychonizableObject;

Identifying object updates

The next step is to identify when objects of the previously identified classes are updated
in the presentation layer (user interface). Those updates should be identified so that
the updated objects are temporarily stored, in a nonpersistent data structure, and later
synchronized with the business layer. We used property-based crosscutting to simplify
the specification of the updates in the presentation layer:

pointcut remoteUpdate(SychonizableObject o):

this(HttpServlet) && target(o) && call(* set*(..));

52

This pointcut matches calls to the set methods of persistent objects, the target of
the calls, but it considers only the calls executed by a servlet, the source (this) of
the calls. This works well for the Health Watcher system because its user interface is
implemented with Java servlets and its classes follow a name convention, actually the
Java name convention: methods that change attribute values have names starting with
set.

The aspect also identifies updates in the business layer. In the Health Watcher
architecture, those updates appear in the business collection classes. As we also follow
a convention for those classes’ names (they all end with Record), we can have a general
property-based pointcut definition for detecting persistent object updates in the business
layer:

pointcut localUpdate(SychonizableObject o):

this(*Record) && target(o) && call(* set*(..));

The name conventions simplify the pointcut definitions, but they are not essential. In
fact, more complex pointcuts can be defined when naming conventions are not followed.
In general, though, it could be tedious and error prone to list the signatures of the
methods that correspond to persistent object updates. Therefore, if no conventions
were followed, it would be quite useful to have a code analysis and generation tool that
helps the user to identify those methods and generate part of the aspect code.

Capturing updated objects

The aspect identifies the updates and temporarily stores the modified persistent objects
in a nonpersistent data structure. This is specified by the following code, which declares
an advice and an aspect variable to hold a reference to the data structure:

private Set remoteDirtyObjects = new HashSet();

after(SychonizableObject o) returning: remoteUpdate(o) {

remoteDirtyObjects.add(o);

}

The code for intercepting the updates in the business collection classes is quite similar
to this one, so we omit it here.

Synchronizing states

During the execution of a system service, the previous advice captures and stores the
updated objects. When the service execution finishes, the aspect can finally introduce
the synchronization calls to reflect the updates in the database. This is specified by the
following pointcut

pointcut remoteExecution():

if(UpdateStateControl.aspectOf().hasDirtyObjects()) &&

servletService();

and advice, which runs after the execution of the servlet services (doPost and doGet

methods), when there are updated objects that have to be synchronized:

53

after() returning: remoteExecution() {

Iterator it = remoteDirtyObjects.iterator();

while (it.hasNext()) {

SychonizableObject o = (SychonizableObject) it.next();

try {

o.synchronizeObject(UpdateStateControl.REMOTE_UPDATE);

} finally { it.remove(); }

}

}

The advice basically iterates over the data structure holding the updated objects, syn-
chronizing those objects. We should also define a similar pointcut and advice for syn-
chronizing the objects changed by executing the methods of the business collection
classes.

Updating objects

Finally, we should implement the synchronizeObject method that is responsible to
update objects. This method is introduced into the class using the inter-type declaration
mechanism:

public void Complaint.synchronizeObject(int updateSource) {

try {

if (updateSource == REMOTE_UPDATE) {

HWFacade facade = HWFacade.getInstance();

facade.update(this);

} else {

ComplaintRecord record = new ComplaintRecord(null);

record.update(this);

}

} catch (Exception ex) { throw new SoftException(ex); }

}

Note once more our exception wrapping approach. The exception handling aspects are
responsible to handle them. The record instantiation is actually intercepted by the
DataCollectionCustomization aspect that initializes the record with the respective
data collection to the used storage medium (see Section 3.5.3).

For simplicity, we omitted the declarations for other classes whose objects should be
updated if changed. They are, in fact, quite similar to the just illustrated.

Comparing with the pure Java version, this solution is easier to modify since the
synchronization concern is completely separated. It is also more concise than the cor-
responding Java implementation, where synchronization calls are replicated in several
parts of the system. Nevertheless, it also requires some tedious code to be written, so
it would be helpful to have a code analysis and generation tool that would help the
programmer in implementing this aspect for different systems complying with the same
architecture of the Health Watcher system.

Our solution for state synchronization is also less error prone than the Java imple-
mentation, where the programmers might usually forget to write some synchronization

54

calls. On the other hand, in the pure Java version the programmer might write the syn-
chronization calls he wants, wherever he wants, benefiting from special optimizations.
Some of those optimizations could also be achieved with AspectJ, by implementing differ-
ent strategies for storing the updated objects and later synchronizing them. In general,
though, we expect the AspectJ version to be less efficient than the Java version. In the
Health Watcher system, this efficiency loss is insignificant. In more complex systems,
dealing with several complex objects, we suspect it might not be worth to separate the
state synchronization concern using the implementation we proposed. Fortunately, the
consequences of not separating this concern are not so drastic. In particular, that would
not prevent alternative customizations for the system since the synchronization calls are
not middleware dependent.

Generalizing the distribution aspects

As previously shown, the various implementations of the synchronizeObject method
call facade methods, which indicates that the synchronization originates from updates
in the user interface classes. In a distributed version of the system, those calls to the
facade methods should be remote. In fact, the distribution aspects should intercept
those calls. Unfortunately, as presented in client-side distribution aspect section, the
client-side distribution aspect is based on the facadeCalls pointcut, which intercepts
only facade method calls originating from Java servlets (see the this(HttpServlet)
constraint in the pointcut). The synchronizeObject calls originate from persistent
objects.

In order to solve this problem, we have to generalize the definition of the facadeCalls
pointcut in such a way that it includes new join points corresponding to the execution
of the facade methods called by the synchronizeObject method.

pointcut facadeLocalCalls():

(this(HttpServlet) || within(UpdateStateControlPerCflow)) &&

call(* IRemoteFacade+.*(..)) &&

!call(static * IRemoteFacade+.*(..));

This shows the importance of defining general pointcuts that consider the intercep-
tion of both the pure Java code and the other aspects code. Moreover, this reinforces
the fact that the distribution and persistence concerns are not completely independent.
Therefore, careful design activities should be performed before implementation, avoid-
ing rework, although that is minimal in the reported case. A difficult in that direction
is the lack of a proper notion of aspect interface, which would be useful for supporting
parallel development.

In our previous implementation [91], the persistence aspects depended on the dis-
tribution aspects that implement the data synchronization between the server and the
clients. However, this concern was factored out, since it crosscuts both distribution
and persistence. This allows us to use the distribution aspects together with the state
synchronization aspect but without the persistence aspects when they are not necessary,
and vice-versa.

55

Data state synchronization aspects class diagram

Figure 3.21 presents a class diagram of the data state synchronization control aspect
including the Health Watcher classes and interfaces the aspect affects or uses.

HttpServlet

(from javax.servlet.http)

<<UserInterface>>

Complaint

getCode()

<<BusinessBasic>>

ComplaintRepositoryRDBMS

<<PersistentDataCollection>>

UpdateStateControl

<<Aspect>>

ComplaintRecord

update(Complaint)

<<BusinessCollection>>

IComplaintRepository

insert(Complaint)

remove(code)

update(Complaint)

search(code) : Complaint

<<Business-Data Interface>>

Figure 3.21: Update state control aspects class diagram.

3.7 Concurrency control concern

Concurrent environments have a great complexity inserted by their non-determinism,
which can lead the system to an inconsistent state, under abnormal interference. By
using aspect-oriented programming, we can separate concurrency control from other
concerns, such as business rules, data management and user interface. This separation
makes it easier to change concurrency control policies, since concurrency control code is
not tangled with other concerns code. Therefore, besides increasing software modularity,
this separation also decreases complexity, since there is not concurrency control to reason
about when implementing business, data management and user interface.

In this section, we present guidelines for restructuring object-oriented software, by
removing concurrency control code that is tangled and spread over software units and
implementing aspects to modularize such a control. In fact, by ignoring the steps to
remove the concurrency control from object-oriented software, the restructuring guide-
lines can be used for aspect-oriented software development, like the other concern’s
guidelines.

These aspect-oriented restructuring/development guidelines are complementary to a
concurrency control implementation method [84, 81, 80]. This method is also tailored to
the same specific software architecture and provides guidelines for implementing concur-
rency control in object-oriented software. In fact, the restructuring guidelines provide

56

an aspect-oriented implementation to the concurrency control defined by the imple-
mentation method and use the method’s analyses to identify what concurrency control
mechanism and where to use it in each case.

3.7.1 Identifying concurrency control code

Examples of concurrency control code are:

• synchronized Java modify [49, 27] — synchronized methods of an object cannot
be concurrently executed;

• synchronized Java block [49, 27] — synchronized blocks use an object lock to
define a mutual-exclusion region where a thread must acquire the lock before
executing the block;

• calls to wait, notify, and notifyAll methods [49, 27] — used to implement
semaphore-like behavior;

• use of Concurrency Manager design pattern [82] — optimistic alternative that syn-
chronizes only potential conflicting executions based on the methods semantics, in
contrast to a pessimistic approach of synchronized Java modify that synchronizes
every method execution;

• use of a timestamp technique — avoids undesirable update of objects copies that
might lead the system to an inconsistent state.

However, as previously mentioned, a previous work [84, 81, 80] defined a concurrency
control implementation method. This method precisely defines which concurrency con-
trol is needed and what modules of the software need to be controlled. Therefore, we
can also use the method’s definition to identify where the concurrency control code is.

After implementing and analyzing several systems with the software architecture we
use, we could identify which concurrency controls are most frequently applied in the
classes of the software architecture.

Usually there is no concurrency control in user interface and communication layers.
In business layer there might be concurrency control in the facade class to guarantee
the implementation of transactions if using persistent data management. Therefore, it
is natural to leave such implementation to data management aspects, which, in fact, is
already accomplished by aspects defined in Section 3.5.2.

However, there might be concurrency control in business collections, where some
methods use the Concurrency Manager design pattern [82] to avoid undesirable inter-
ferences. Some business collections methods that do not use the concurrency manager
might also have some synchronized methods. This happens when the system has few
simultaneous users accessing the system and these methods are lightweight [84, 81].

Another place that generally should have concurrency control code is the update

method of the data collections classes, which are synchronized, if implementing the
timestamp technique [84, 81]. This technique solves problems in concurrent updates of
object copies. Usually, the approach for implementing database access is to return a
new copy of an object every time an object is requested through the data collection.
If two different requests (threads) retrieve two copies of the same object and change

57

these copies, the system state might become inconsistent if both threads try to update
their copies. The solution also adds a timestamp field to all objects, usually of basic
class type, that cannot be concurrently updated; an object can be updated only if there
is not a newer copy of it already stored in the database. The data collections classes
implementing timestamp also have to manage the new field added in the basic objects;
therefore insert, search, and update methods should have additional code, for example
SQL code, to handle the field. More details can be found elsewhere [84, 81, 80].

In the basic classes, the concurrency control applied is to implement the timestamp
technique, as mentioned above, since the basic objects are not concurrently accessed, due
to the persistent data collection implementations in many systems that use relational
databases. This is our alternative to intuitive controls that tend to synchronize and to
implement transactions in all the facade methods.

3.7.2 Removing concurrency control code

After identifying where concurrency control code is, we must remove it. We should also
document where and which kind of concurrency control the software has in order to
implement it later with aspects. A summary of where concurrency control might be is
as follows:

• User interface classes — no concurrency control;

• Communication classes — no concurrency control;

• Facade class — transactions if in persistent environment. However, transactions
are already implemented by persistence aspects;

• Business collections classes — Concurrency Manager [82] or synchronized mod-
ifier;

• Data collections classes — synchronized modifier and additional SQL commands
in the methods of the persistent collections to implement timestamp;

• Basic classes — timestamp field and related methods.

The next step defines aspects to implement, in a modular way, concurrency control
we removed from these classes.

3.7.3 Implementing concurrency control aspects

As previously mentioned, there are five types of concurrency control: synchronized

modify, synchronized block, use of Concurrency Manager design pattern, use of times-
tamp technique, and calls to wait, notify, and notifyAll methods.

However wait, notify, and notifyAll methods are not used by the implementation
method. Therefore, we implemented aspects for the other four types of concurrency
control.

58

Implementing reusable aspects

In order to allow aspects reuse we defined abstracts aspects that constitute a simple
aspect framework. They can be extended for implementing concurrency control in other
applications that comply with the layered architecture presented in Section 3.2.

The first abstract aspect is responsible for identifying join points that cannot execute
concurrently, and therefore, should be synchronized.

abstract aspect Synchronization {

protected abstract pointcut synchronizationPoints(Object syncObj);

}

Besides identifying synchronization join points, the synchronizationPoints pointcut
also receives the object to be used by the chosen synchronization technique. The follow-
ing abstract aspect extends the Synchronization aspect and defines a synchronization
approach similar to the synchronized modifier or block.

abstract aspect PessimisticSynchronization extends Synchronization {

Object around(Object syncObj): synchronizationPoints(syncObj) {

synchronized(syncObj) {

return proceed(syncObj);

}

}

}

The around advice uses the inherited pointcut to synchronize any join point, which
should be methods execution, using the synchronized block with the specified object.
To implement the synchronized block behavior, each join point to be synchronized
must specify the object whose lock should be used by the synchronization policy. On
the other hand, to implement the synchronized modifier behavior each join point to
be synchronized should also expose the currently executing object (using this desig-
nator), whose lock is used by the synchronization policy, which is the semantics of the
synchronized method modifier [49, 27].

As an alternative to this pessimistic approach, a third abstract aspect implements
the use of the Concurrency Manager design pattern [82].

abstract aspect OptimisticSynchronization extends Synchronization

perthis(synchronizationPoints(Object)) {

private ConcurrencyManager manager = new ConcurrencyManager();

Besides extending the Synchronization aspect, the OptimisticSynchronization as-
pect has to declare a perthis clause that creates an aspect instance associated with each
object that is the currently executing object at any join point in the synchronization−
Points pointcut. This is necessary because there must be a concurrency manager in-
stance for each currently executing object at any join point. The aspect also defines
advices to provide the concurrency manager behavior. Since the design pattern should
use the semantics of the operation in order to synchronize only conflicting executions,
the advices use a getKey abstract method in order to retrieve the String to be used as
the blocking key.

59

before(Object syncObj): synchronizationPoints(syncObj) {

Object key = this.getKey(syncObj);

manager.beginExecution(key);

}

after(Object syncObj): synchronizationPoints(syncObj) {

Object key = this.getKey(syncObj);

manager.endExecution(key);

}

protected abstract Object getKey(Object syncObj);

}

The before advice calls the beginExecution method of the ConcurrencyManager class
with an object key. This object key is the argument used by the concurrency manager to
identify if this execution might conflict with any other execution, and therefore block it
until the potentially conflicting execution finishes, which is notified by the after advice.
Execution conflicts are the ones that use the same String as key. The getKey method
should be defined in a concrete aspect together with the synchronizationPoints point-
cut defining the semantics of the synchronization.

The next reusable concurrency control aspect is responsible for implementing the
timestamp technique. The abstract aspect defines two auxiliary interfaces to identify
basic classes and data collections that are affected by the aspects.

abstract aspect Timestamp {

interface TimestampedRepository {

void updateTimestamp(TimestampedType object);

long searchTimestamp(TimestampedType object);

}

interface TimestampedType {

long getTimestamp();

}

private static final String MESSAGE = ...;

The aspect also declares a constant to be used in concurrency exceptions. The following
piece of code adds, in the subtypes of TimestampedType interface, a timestamp field,
and methods responsible for managing the field, using inter-type declaration mechanism.

private long TimestampedType.timestamp;

public long TimestampedType.getTimestamp() {

return timestamp;

}

private void TimestampedType.setTimestamp(long timestamp) {

this.timestamp = timestamp;

}

A pointcut is defined to identify affected data collections search methods, in order to
load the object timestamp after successfully (without raising an exception) retrieving the
object from the repository, which is implemented by the after returning advice. The
pointcut uses the designator this to expose the data collection, which is the currently
executing object.

60

private pointcut managedSearchMethods(TimestampedRepository rep):

execution(TimestampedType search(..)) && this(rep);

after(TimestampedRepository rep) returning(TimestampedType object):

managedSearchMethods(rep) {

long timestamp = rep.searchTimestamp(object);

object.setTimestamp(timestamp);

}

This advice exposes the returned object and uses the searchTimestamp method to
retrieve the object’s timestamp. The next piece of code is responsible for guaranteeing
the timestamp storage into the repository after successfully inserting the object.

pointcut managedInsertMethods(TimestampedRepository rep,

TimestampedType object):

execution(void insert(TimestampedType)) &&

this(rep) && args(object);

after(TimestampedRepository rep, TimestampedType object) returning:

managedInsertMethods(rep, object) {

rep.updateTimestamp(object);

}

The managedInsertMethods pointcut and its related advice are very similar to the
previous pointcut and advice. After that, the abstract aspect defines a pointcut to
identify affected data collections update methods

pointcut managedUpdateMethods(TimestampedRepository rep,

TimestampedType object):

execution(void update(TimestampedType)) &&

this(rep) && args(object);

and an advice to update the timestamp information if the object is successfully up-
dated. Note the use of the synchronized block in the advice; this is necessary in
order to guarantee serialization, for each data collection (repository), during timestamp
checking [84, 81, 80].

void around (TimestampedRepository rep, TimestampedType object):

managedUpdateMethods(rep, object) {

synchronized(rep) {

long timestamp = rep.searchTimestamp(object);

if (object.getTimestamp() == timestamp) {

object.setTimestamp(timestamp + 1);

proceed(rep, object);

rep.updateTimestamp(object);

if the timestamp object is different from the timestamp stored in the data collection, a
concurrency control exception is raised

61

} else {

Exception ex;

ex = new ConcurrencyControlException(MESSAGE);

throw new SoftException(ex);

}

}

}

}

Note that the exception is wrapped into an unchecked exception (SoftException). This
unchecked exception should be handled in the user interface in order to show a message
to the user, which is carried out by other aspects defined in Section 3.8.

Specializing abstract aspects

In order to implement concurrency control in a specific software, we should define con-
crete aspects to identify where and which concurrency control must be used. If this step
is being performed as part of a restructuring process, we should use the information
documented in the “Removing the concurrency control code” step in order to apply the
same concurrency control applied before. Otherwise, we should apply the concurrency
control implementation method [84, 81, 80] analysis to identify where and which controls
to be used. In fact, it might be necessary to apply the concurrency control method even
if performing a restructuring process in a software originally controlled; if that control
was performed without using the method, and therefore, might not be safe.

Section 3.10 and Chapter 4 presents a progressive approach that supports both im-
plementation and testing where persistence, distribution, and concurrency control are
progressively implemented and maybe tested independently and with several combina-
tions. In this way, we might provide concurrency control for nonpersistent data collection
in order to support testing the system with distribution (multi-user environment) but
without persistence.

As defined in the concurrency control implementation method [84, 81, 80] all methods
of a nonpersistent data collection should be synchronized if concurrently used. There-
fore, we defined the following aspect extending the PessimisticSynchronization as-
pect identifying which methods of which classes should be synchronized by implementing
the synchronizationPoints pointcut.

aspect HWPessimisticSynchronization

extends PessimisticSynchronization {

private interface SynchronizedClasses {};

declare parents: EmployeeRepositoryArray ||

ComplaintRepositoryArray

implements SynchronizedClasses;

pointcut synchronizationPoints(Object syncObj):

execution(* SynchronizedClasses+.*(..)) && this(syncObj);

}

The aspect defines an auxiliary interface that subtypes EmployeeRepositoryArray and
ComplaintRepositoryArray classes through the use of the declare parents clause. To

62

synchronize any other classes we just have to add them in the declare parents clause.
Note that this aspect is responsible for synchronizing all methods of the Synchronized−
Classes subtypes. When using those classes in a persistent environment, they are no
longer be concurrently accessed, and therefore, we can easily unplug this aspect.

Another instance of concurrency control we implemented in the Health Watcher
software uses the Concurrency Manager design pattern to avoid undesirable interfer-
ences when registering employees. The race condition occurs only when registering
two employees with the same login. The HWOptimizedSynchronization aspect de-
fines where the Concurrency Manager design should be applied by implementing the
synchronizationPoints pointcut. The pointcut should also expose an object that has
the semantics to be used in order to synchronize only potential conflicting execution.

aspect HWOptimisticSynchronization

extends OptimisticSynchronization {

protected pointcut synchronizationPoints(Object syncObj):

execution(void EmployeeRecord.insert(Employee)) && args(syncObj);

The semantics to synchronize only potential conflicting executions is defined in the
getKey method definition. In this case the concurrency manager uses the employee’s
login to avoid concurrent executions of the insert method only if they try to insert
objects with the same login.

protected Object getKey(Object syncObj) {

Object response = null;

if (syncObj instanceof Employee) {

response = ((Employee)syncObj).getLogin();

}

return response;

}

}

The body of this method should be modified every time a new object type is exposed
in the synchronizationPoints pointcut in order to identify its synchronization key.

The last concurrency control applied in the Health Watcher software is to implement
the timestamp technique. The HWTimestamp aspect defines the basic classes and their
data collection, usually persistent, which have to implement the technique.

aspect HWTimestamp extends Timestamp {

declare parents : Complaint implements TimestampedType;

declare parents : ComplaintRepositoryRDBMS

implements TimestampedRepository;

public void ComplaintRepositoryRDBMS.

updateTimestamp(TimestampedType obj) {

// update the object’s timestamp in the complaint table

}

public long ComplaintRepositoryRDBMS.searchTimestamp(

TimestampedType obj) {

// retrieve the object’s timestamp from the complaint table

}

}

63

The aspect uses inter-type member declaration to implement updateTimestamp and
searchTimestamp methods into the selected data collections. The methods implemen-
tation must access the persistent media to update and retrieve the object’s timestamp
information.

An alternative timestamp implementation

These timestamp aspects have additional database calls for each insert, search, and
update method of the managed data collections. Since this extra overhead might be
prohibitive, an alternative to the aspect previously defined is provided.

The following OptimizedTimestamp aspect is an alternative to Timestamp aspect. In
common, they have two interfaces and the inter-type member declarations to add times-
tamp and related methods into timestamped objects. However, the TimestampedRepo−
sitory interface has no methods in this alternative version. The interface is used only
to identify what data collections the aspect affects.

abstract aspect OptimizedTimestamp {

interface TimestampedRepository { }

// inter-type member declarations to add timestamp

// and related methods

This aspect has the same goal as the Timestamp aspect. It affects execution of search,
insert, and update methods in order to retrieve, add and update, if consistent, the
timestamp data. However, in order to avoid the additional calls made in the Timestamp
aspect implementation, this aspect affects the executions of the JDBC types responsible
for accessing the database and exposing their SQL commands.

private pointcut executeQueryCall(String sql):

call(ResultSet Statement.executeQuery(String)) &&

args(sql);

private pointcut executeUpdateCall(String sql):

call(int Statement.executeUpdate(String,..)) &&

args(sql);

private pointcut managedSearchMethods(String sql):

withincode(TimestampedType TimestampedRepository+.search(..)) &&

executeQueryCall(sql);

These pointcuts affect calls to Statement’s executeQuery and executeUpdate methods
of TimestampedRepository subtypes exposing their SQL commands. Those methods
are used to select and either insert or update data in the database, respectively.

The following advice changes the exposed SQL command before retrieving data
from the database in order to add the timestamp information and to retrieve it after
the command execution. For simplicity, we omit the code responsible for manipulating
the SQL string.

64

ResultSet around(String sql) throws SQLException:

managedSearchMethods(sql) {

ResultSet result = null;

long timestamp;

// code to change the sql String adding the timestamp information

result = proceed(sql);

result.next();

timestamp = result.getLong("TIMESTAMP");

result.beforeFirst();

this.putTimestamp(timestamp);

return result;

}

The putTimestamp method call stores the timestamp value in a hashtable using the
executing thread as the hashtable key.

private Hashtable timestamps;

private void putTimestamp(long timestamp) {

timestamps.put(Thread.currentThread(), new Long(timestamp));

}

private long getTimestamp() {

Long l = (Long) timestamps.get(Thread.currentThread());

return l.longValue();

}

There is also a getTimestamp method that retrieves the timestamp that the current
executing thread stored, which is used by the following advice to update the searched
object with the timestamp data.

after() returning(TimestampedType object):

execution(TimestampedType TimestampedRepository+.search(..)) {

object.setTimestamp(this.getTimestamp());

}

Similary, there is an advice to insert the timestamp information

int around(String sql) throws SQLException:

managedInsertMethods(sql) {

// code to change the sql String in order to add

// the timestamp information to be inserted in

// the database for the first time

return proceed(sql);

}

and an advice to update the timestamp, which is responsible for applying the times-
tamp logic, by only updating objects consistently. If an inconsistency is identified, an
exception is raised, as in the Timestamp aspect.

65

int around (TimestampedType object, String sql) throws SQLException:

managedUpdateMethods(object, sql) {

long timestamp = object.getTimestamp();

object.setTimestamp(timestamp + 1);

// code to change the sql String in order to add the timestamp

// information and the update condition of the timestamp technique

int result = proceed(object, sql);

if (result == 0) {

Exception ex = new ConcurrencyControlException(MESSAGE);

throw new SoftException(ex);

}

return result;

}

}

This alternative to the first timestamp aspect is less general, since the aspects are
specific to data collections that use JDBC to access relational databases. In fact, the cur-
rent implementation affects directly the SQL command to be submitted to the database
and does not support the use of PreparedStatement [103, 57]. On the other hand, our
first solution is technology-independent, despite generating database access overhead.

Concurrency control aspects class diagram

Figures 3.22 and 3.23 depict, respectively, how the synchronization and timestamp as-
pects affect the classes of the Health Watcher’s software architecture.

PessimisticSynchronization

<<Aspect>>

Synchronization

<<Aspect>>

OptimisticSynchronization

<<Aspect>>

ConcurrencyManager

HWPessismisticSynchronization

<<Aspect>>

HWOptimisticSyncronization

<<Aspect>>

EmployeeRepositoryArray

<<NonpersistentDataCollection>>

EmployeeRecord

<<BusinessCollection>>

<<Business-DataInterface>>

IEmployeeRepository

ComplaintRepositoryArray

<<NonpersistentDataCollection>>

Figure 3.22: Synchronization aspects class diagram.

66

The same structure

repeats for the

OptimizedTimestamp

HWTimestamp

<<Aspect>>

Complaint

<<BusinessBasic>>

ComplaintRepositoryRDBMS

<<PersistentDataCollection>>

TimestampedType

Timestamp

<<Aspect>>

TimestampedRepository

Figure 3.23: Timestamp aspects class diagram.

3.7.4 Concurrency control Framework

Figure 3.24 depicts the Concurrency Control Framework.
Despite being tailored to a specific software architecture, the synchronization aspects

can be easily applied for other architectures, being necessary to identify which methods
should be synchronized and which approach to use. The timestamp aspects could also
be used in other architectures with some modifications, but they are harder to reuse
since they depend on the architecture’s data management organization.

3.7.5 Concurrency control dynamics

Figure 3.25 depicts the dynamics of synchronization aspects. The pessimistic synchro-
nization approach is to synchronize any concurrent execution, whereas the optimistic
approach synchronizes only the potentially conflicting concurrent executions.

The timestamp aspect depicted in Figure 3.26 adds members to store and manip-
ulate the timestamp information into classes to be controlled. The aspect affects data
collections of the controlled classes in order to guarantee that the timestamp informa-
tion is inserted and retrieved with the objects. In addition, the aspect has to control
data collections update methods, forbidding updates of potentially inconsistent objects.
The dynamics of the optimized version is absolutely the same as this one. They have
the same objective, differing only in the optimization.

3.8 Exception handling concern

As some of the advices presented so far might raise exceptions that are not handled by
the advices themselves, we have to implement auxiliary exception handling aspects. In
the Health Watcher system, they basically handle AspectJ’s unchecked soft exception,
since this is the type of the exceptions raised by the distribution and persistence advice.
However, those aspects constitute an exception-handling framework that could be used

67

Synchronization

<<Aspect>>

PessimisticSynchronization

<<Aspect>>

OptimisticSynchronization

<<Aspect>>

ConcurrencyManager

TimestampedType

Timestamp

<<Aspect>>
OptimizedTimestamp

<<Aspect>>

TimestapedRepository

Figure 3.24: Concurrency control Framework.

: Concurrency

Manager

: Pessimistic

Synchronization

: Optimistic

Synchronization

obj : Object

method execution
synchronize

beginExecution(obj.getKey())

endExecution(obj.getKey())

affect selected

methods

synchronize(obj) {

method execution

}

Figure 3.25: Synchronization dynamics.

68

: Timestamptp : Timestamped

Type

: TimestapedRepository

add field, getter

and setter

search(): tp

load tp's timestamp

insert(tp)

insert tp's timestamp

update(tp)

answer = is tp out of date?

if (answer) throws concurrency exception

if (! answer) update tp's timestamp

Figure 3.26: Timestamp dynamics.

to handle other types of exceptions as well. Although exception handling is a natural
crosscutting concern, usually implemented with spread code, in our restructuring expe-
rience we concentrated on separating distribution and persistence concerns, and simply
used the exception handling aspects to handle advice exceptions.

Handling exceptions

We first implemented a general aspect that defines an abstract pointcut for identifying
the join points where the (softened) exceptions must be handled:

abstract aspect ExceptionHandling {

abstract pointcut exceptionJoinPoints();

Object around(): exceptionJoinPoints() {

Object o = null;

try {

o = proceed();

} catch (SoftException ex) { this.exceptionHandling(ex); }

return o;

}

protected abstract void exceptionHandling(SoftException ex);

}

69

The aspect also defines an around advice that catches SoftException objects in the
specified join points. This advice specifies that the exception should be handled by the
exceptionHandling method, which is also declared as abstract by the aspect.

Handling exceptions with servlets

As the user interface classes of the Health Watcher system are Java servlets, we extended
the general exception handling aspect with behavior useful for handling exceptions with
servlets. The servlets are basically used to properly notify the user that something
went wrong, and maybe suggest some specific actions she should take. In order to do
that, the aspect code must have access to PrintWriter objects, which are used by
servlets to write responses back to the service requester. The following aspect does that
by defining a pointcut that identifies the join points where a PrintWriter object is
obtained through the response object:

abstract aspect ServletsExceptionHandling extends ExceptionHandling

percflow(ServletsExceptionHandling.clientService()) {

pointcut printWriterCreation():

target(HttpServletResponse) && call(PrintWriter getWriter());

It also declares an afterreturning advice, which actually get and store the PrintWriter
object returned by the getWriter method call:

private PrintWriter printWriter;

after() returning (PrintWriter out): printWriterCreation() {

printWriter = out;

}

This aspect uses a percflow aspect association to create an instance of the aspect for
each entrance to the control flow of the join points defined the clientService pointcut
(execution of the do∗ servlets methods). This is necessary because one PrintWriter

object is created for each request received by a servlet. Therefore, when handling ex-
ceptions, we should make sure to use the right PrintWriter to notify the user.

This aspect also provides the concrete definition of the exceptionHandling method.
It accesses the exceptions wrapped as soft exceptions and properly notifies the user
through the PrintWriter object.

In order to be reusable, the previous aspect is abstract and does not provide a
concrete pointcut to identify the join points where the exceptions must be caught.
Specific aspects should do this. In the Health Watcher system, we defined such a specific
aspect (HWExceptionHandling) for identifying default exception handling join points:
the service methods of the servlets, meaning that the default handling behavior is to
notify the user. If other aspects need to define specific exception handling behavior, they
must define a specialization of the aspect ExceptionHandling, providing the handling
behavior and the join points to catch the exceptions.

Exception handling aspects class diagram

Figure 3.27 presents a class diagram of the exception handling aspects and the Health
Watcher classes and interfaces the aspects affect or use.

70

ExceptionHandling

<<Aspect>>

ServletsExceptionHandling

<<Aspect>>

HWExceptionHandling

<<Aspect>>

SoftException
(from org.aspectj.lang)

HttpServlet
(from javax.servlet.http)

<<UserInterface>>

ServletSearchHealthUnit

<<UserInterface>>

ServletUpdateComplaint

<<UserInterface>>

Figure 3.27: Exception handling aspects class diagram.

3.8.1 Exception handling framework

Figure 3.28 presents the abstract aspects to be reused in other aspect-oriented devel-
opment. Similar to the distribution framework, the exception-handling framework is
general enough to be reused in any kind of software and to handle any kind of excep-
tion, not necessarily the exceptions of the Health Watcher software.

ExceptionHandling

<<Aspect>>

ServletsExceptionHandling

<<Aspect>>
HttpServlet

(from javax.servlet.http)

<<UserInterface>>

Figure 3.28: Exception-handling framework.

3.9 Interferences between aspects

When performing the restructuring experience we identified interferences between the
aspects. Since the distribution aspects change the computing model by distributing
the processing in different machines, they interfered with other aspects. The identified
interferences are:

71

• Persistence aspects might call facade methods that should be redirected to the
remote facade instance, when generating the distributed version.

• Information about the execution context in the client-side is not available in the
server side. For example, the cflow designator cannot identify join points in the
server-side that was originated from the GUI control flow, because this flow of
information is not transmitted from the client-side to the server-side.

The interferences of the distribution aspects are natural, since they modify the pro-
gramming model when distributing part of the processing. Therefore, the distribution
aspect must be aware of these interferences providing solution to them.

The PersistentDistributedUpdateStateControl aspect declares a compile-time
warning that identifies calls to the facade class. The programmer should investigate
these calls and, if necessary, write the proper pointcut and advice to redirect them to the
facade’s remote instance, similarly to what the ClientSideDistribution does. At the
moment, this aspect affects the UpdateStateControl aspect, which calls facade meth-
ods. In Section 3.6 the distribution aspect is generalized to affect the UpdateStateCon−
trol aspect.

Distribution aspects for partial loading

The ParametrizedDataLoading aspect uses information about the servlets execution
flow in order to determine if a search method call should retrieve an object with com-
plete or partial information. However, the current implementation of the AspectJ cflow

designator cannot track the execution flow if the flow executes in distinct machines.
Therefore, by distributing the servlets execution to another machine, or another JVM
(Java virtual machine), the cflow designators in the aspects do not track the exe-
cution flow from the distributed servlets, not reaching the join points defined by the
ParametrizedDataLoading aspect.

Figure 3.29 depicts the problem mentioned above. Consider the PartialLoading

aspect that uses information about the servlet execution flow in order to affect a facade’s
method. When a specific servlet X calls a facade method (a) the aspect should affect
its execution (b) changing its behavior. However, if the servlet and facade objects are
distributed in different machines, the cflow designator used by the aspect does not
match the servlet execution, since it does not occur in the same machine the aspect is
running.

Our solution adds a new method in the facade class in order to identify calls from
servlet X to method m and redirects the original servlet call to the new method (c).
Now, the aspect should use the cflow information from the added method (d) in order
to affect m’s execution (e).

This shows that the current implementation of the AspectJ cflow designator should
be modified in order to support remote execution at least using RMI, since AspectJ is
an extension of Java and RMI is the Java solution for distribution. There are proposals
for implementing such kind of construction elsewhere [61]. As AspectJ does not provide
such support, we develop a solution. We define new aspects that must be woven to the
system if every time the ParametrizedDataLoading aspect and the distribution aspects
are woven.

72

Machine A

Machine B

class Facade {

m() {...}

}

aspect PartialLoading {

...

}

(b)

(a)

Machine A

Machine B

class Facade {

mFlag() {m()}

m() {...}

}

aspect PartialLoading {

...

}

(e)

(c)

Without the aspect With the aspect

(d)

Servlet XServlet X

Figure 3.29: Interference problem and solution.

Our solution has actually two additional aspects that affect the server and the client
side. The aspects are responsible to add some explicit information in the server-side,
in order to identify that an execution was made from a specific servlet and should be
handled differently, as depicted by Figure 3.29.

The FacadeDistributedParametrizedDataLoading aspect adds new methods to
the facade class and to the remote interface to replace the servlets cflow information.

aspect FacadeDistributedParametrizedDataLoading {

abstract IteratorHW IRemoteFacade.flagGetHealthUnitList()

throws ObjectNotFoundException, RemoteException;

IteratorHW HWFacade.flagGetHealthUnitList()

throws ObjectNotFoundException, RemoteException {

return this.getHealthUnitList();

...

}

Note that the added method has the same name as the one of the facade methods
but with a prefix (flag). Whenever this method is called, the data collection search

method must execute a partial loading. In fact, this aspect should have more methods
for dealing with additional use of the cflow designator. The next declaration defines
a pointcut to identify calls to the added method. The cflow designator is used by
another pointcut to identify calls to the data collection search method exposing the
data collection and the argument of the method call.

73

pointcut healthUnitFetchDataFacadeIntroducedMethod():

this(HWFacade) && execution(IteratorHW flagGetHealthUnitList());

pointcut flatLevelOfAccess(HealthUnitDataRDBMS huData, int code):

cflow(healthUnitFetchDataFacadeIntroducedMethod()) &&

target(huData) && call(HealthUnit search(int)) && args(code);

At last the aspect defines an around advice that redirects calls from the data collection
search method to its searchByLevel method, just like the partialLoadingServlets

pointcut does. The method redirection is performed based on the cflow of the flagged
method since there is no explicit information available about the servlets execution flow.

HealthUnit around(HealthUnitDataRDBMS huData, int code)

throws ObjectNotFoundException :

flatLevelOfAccess(huData, code) {

return huData.searchByLevel(code, HealthUnit.SHALLOW_ACCESS);

}

}

Similar code should be added into this aspect in order to identify new execution flows
originated from servlets.

Now in order to flag partial loading we have to redirect the calls from the servlets
affected by the partialLoadingServlets pointcut to the added flag methods. This
is our solution to identify what methods in the server-side are called by servlets that
request partial loaded objects.

The ClientDistributedParametrizedDataLoading aspect identifies calls to the
servlets methods that can manipulate partial loaded objects.

aspect ClientDistributedParametrizedDataLoading {

pointcut getHealthUnitListCall():

this(ServletSearchHealthUnit) && target(IRemoteFacade+) &&

call(IteratorHW getHealthUnitList());

Note that the method identified by this pointcut is the one that has a corresponding
flagged one in the facade. The next around advice redirects the servlet call from the
original method definition to the flag method added by the previous aspect in order
to allow the server side partial loading aspect to identify this call as a partial loading
candidate.

IteratorHW around() throws ObjectNotFoundException:

getHealthUnitListCall() {

try {

IRemoteFacade healthWatcher = (IRemoteFacade)

HWServerSide.aspectOf().getRemoteFacade();

return healthWatcher.flagGetHealthUnitList();

} catch(RemoteException ex) {

throw new SoftException(ex);

}

}

}

74

The advice retrieves the remote instance from the HWServerSide aspect through the
getRemoteFacade method. Once more we wrap the concern-specific exception into a
SoftException to be handled by specific exception handling aspects.

Theses interferences show that an aspect that implements a crosscutting concern
cannot be unaware of the other crosscutting concerns if they can interfere with each
other.

Figure 3.30 shows a class diagram that presents three distribution aspects that should
be woven to the system when generating a persistence and distribution version of it. The
diagram also presents the Health Watcher classes and the affected aspects.

IRemote

Facade

FacadeDistributedParametrizedDataLoading

<<Aspect>>

ClientDistributedParametrizedDataLoading

<<Aspect>>

HealthUnitRepositoryRDBMS

searchByLevel(code, level) : HealthUnit

<<PersistentDataCollection>>

HWFacade

<<Facade>>

ServletSearchHealthUnit

<<UserInterface>>

Figure 3.30: Interferences between aspects.

3.10 An alternative implementation approach

The previous sections describe guidelines to implement aspect-oriented software, con-
sidering data management, distribution, and concurrency control. These crosscutting
concerns can be implemented in different ways and in a different order. They might be
implemented at the same time as the functional requirements are being implemented.
Another idea is to follow a progressive approach, where persistence, distribution, and
concurrency control are not initially considered in the implementation activities, but are
gradually introduced, preserving the system’s functional requirements.

The progressive approach helps in decreasing the impact in requirement changes dur-
ing the system development, since a great part of the changes might occur before the final
version of the system is finished. This is possible because a completely functional proto-
type is implemented without persistence, distribution, and concurrency control, allowing
requirements validation without interference of these non-functional requirements and
without the effort to implement those. At this time, the system uses non-persistent data
structures, such as arrays, vectors, and lists, and is executed in a single-used environ-
ment. Moreover, the progressive approach helps to deal with the inherent complexity
of modern systems, through the support to gradual implementation and tests of the
intermediate system versions.

Figure 3.31 depicts the dynamics difference between the progressive approach and
the regular approach, so-called non-progressive approach. First of all, it is important to
mention that despite the implementation approach used, the development is considered

75

to be incremental. Therefore, a set of iterations should be planed to address a set of use
cases of use-case scenarios.

Progressive approach

Functional requirements Concurrency control

Non-persistent data management User interface

Persistent data management Distribution

Milestone (end of iteration) Functional iteration

a and b are use-cases, sets of use-cases, or use-cases scenarios

Implemented

concerns

time

a a a a

Implemented

concerns

time

Non-progressive approach

y

y’

x

x’

a a a a b b b ba a a a

b b b ba a a a

Progressive approach

Functional requirements Concurrency control

Non-persistent data management User interface

Persistent data management Distribution

Milestone (end of iteration) Functional iteration

a and b are use-cases, sets of use-cases, or use-cases scenarios

Implemented

concerns

time

a a a a

Implemented

concerns

time

Non-progressive approach

y

y’

x

x’

a a a a b b b ba a a a

b b b ba a a a

Figure 3.31: Progressive versus Non-progressive approach.

In the progressive approach, each iteration is subdivided into one functional and
several non-functional iterations. First, the functional iteration is executed, where the
functional requirements of the selected use cases are implemented as well as the user
interface and nonpersistent data collections to support the implemented use cases. The
result of this functional iteration is a functional prototype that can be validated with
the customer. After validating the functional prototype, a non-functional iteration is
placed to implement a single non-functional requirement and test this requirement in the
end of the iteration. In our case, we are considering three non-functional requirements:
persistence, distribution, and concurrency control, and therefore, we need to plan three
non-functional iterations.

On the other hand, if not using the progressive approach, which means using a non-
progressive approach, the functional and non-functional requirements are implemented
in a same iteration. Therefore, the prototype is validated with the customer after im-
plementing persistence, distribution, and concurrency control. If the customer requests
any change at this moment, it might be necessary to change part of these non-functional
requirements code. If using the progressive approach, the changes requested by the cus-
tomer would not affect these non-functional requirements code, since their code was not
yet implemented at the time the prototype is validated.

Chapter 4 presents how this approach affects a software development process.

76

3.11 Conclusion

In this chapter, we described the guidelines derived from a restructuring experience to
implement distribution, data management, concurrency control, and exception handling
aspects. This guidelines support the implementation method by guiding programmers
on how implementing such concerns using aspect-oriented programming. This guide
guarantees that all the effort made in requirements, analysis and design activities is not
wasted during implementation activities.

Moreover, an aspect framework was defined to support the concerns implementation.
The framework allows reusing part of the aspects behavior, also guiding the definition
of the concrete aspects.

In general, the modularization achieved by the aspect-oriented version of the Health
Watcher software is much better than the object-oriented one. In fact, Chapter 7 de-
scribe a related work that analyzed the difference between these two versions (Sec-
tion 7.1) using some metrics they defined. In fact, their metrics show that the aspect-
oriented version has several advantages over the object-oriented one.

On the other hand, the restructuring experience identified some AspectJ limitations
that avoid reaching better results. A summary of such limitations are:

• The lack of support to add exceptions in methods throws clause;

• The use of soft exceptions to wrap checked exceptions into unchecked ones;

• The lack of support to remote join points;

• The property based pointcut definition, which makes aspects highly coupled with
the coding standards and types names;

• The lack of support to identify the resulting join points defined by a pointcut;

• The lack of support to identify aspects interferences;

Some of these limitations demand the use of development tools to support program-
mers, allowing, for example, to identify if a method is affected by an aspect or what are
the join points affected by an advice.

Next chapter describes the other part of the implementation method, which describes
how implementation activities use the defined guidelines. In addition, the next chapter
inserts these implementation activities in the context of a software development process,
also describing changes on other process activities and dynamics.

77

Chapter 4

Integration with RUP

This chapter presents how the guidelines of the aspect-oriented implementation method
defined in the previous chapter are related to a software development process, more
specifically the Rational Unified Process (RUP).

78

As mentioned in Chapter 1, implementation methods are usually neglected by soft-
ware engineers and researchers. If no commitment is made with implementation activ-
ities, the effort given to requirements and design may be wasted. Chapter 3 discusses
some implementation guidelines and this chapter insert them in the context of a soft-
ware development process, where we also have to consider management, requirements,
analysis and design, and testing activities. The next sections present an overview of
the Rational Unified Process — RUP [39], followed by changes made into the dynamics
structure (phases) and into the static structure (disciplines/activities) of RUP. Those
changes are necessary to adapt RUP in order to apply the implementation method also
allowing the use of the progressive implementation approach.

A previous work [52] made similar changes to RUP to make it complying with an
Object-Oriented Implementation method that considers the same concerns considered
here. This chapter is based on that work, however, tailoring the process to an Aspect-
Oriented development and to the use of aspect-oriented implementation guidelines de-
fined in the previous chapter.

4.1 A RUP overview

The Rational Unified Process (RUP) is a well-known development process defined by
“The Three Amigos” (Jacobson, Booch and Rumbaugh). RUP is the end product of
three decades of development and practical use [39], and has achieved wide acceptance,
including several software companies located in our area. In addition to our experience
with this development process, those are sufficient reasons to choose RUP as target of
our integration.

As a process, RUP describes activities and how to apply them in order to develop a
software. In fact, RUP is a process framework, meaning that companies should instan-
tiate RUP according to their needs, application area, and company organization. This
chapter aims actually not in changing a specific process instantiated from RUP, but
changing the process framework, allowing others to instantiate their process from this
definition. RUP uses the Unified Modeling Language (UML) [10], a standard modeling
language, to describe several models during the process flow.

The process is based on three pillars:

• Use-case driven — A use case is an artifact that specifies how an actor (users, other
systems, or devices) interacts with the system to be developed. All the use cases
of a system define the use-case model, which describes the system’s requirements.
This model should answer the question: “What is the system supposed to do for
each actor?”. The use-case model drives design, implementation and tests. Based
on the use cases, developers create a series of design and implementation models
that realize the use cases and review each model for conformance to the use-case
model;

• Architecture-centric — The architecture structures the system, giving it a form.
The execution platform, used frameworks, and non-functional requirements in-
fluence the architecture of a system. Although the architecture influences the
selection of the use cases, the use-case model also drives the architecture. Every
system has functions (use cases) and form (architecture), and these two forces

79

should be balanced in order to achieve a successful development project. Use-case
realization must fit in the architecture and the architecture must allow the use-case
realizations. Use cases and architecture must evolve in parallel;

• Iterative and incremental — Linear development processes using a waterfall-like [74]
approach are unrealistic. On the other hand, it is a good principle to divide to con-
quer, i.e., breaking the development project into sub-projects. Each sub-project
is an iteration and each iteration increments the system. Requirements, analysis,
design, implementation and test disciplines are executed in each iteration to ac-
complish the objectives planed for that iteration, which runs as a mini-project to
realize selected use cases. In fact, there is a broader concept of phases to deter-
mine specific goals that have to be reached. The iterations of a phase should be
planned in order to reach the phase’s goal.

4.1.1 Lifecycle structure

The software lifecycle is broken into cycles, each working on a new generation of the
product. One RUP development cycle consists of four phases with distinct goals:

• Inception — In this phase the executed activities are tailored to define the software
major goals, propose a candidate architecture, and plan the whole development
project, also estimating time and cost;

• Elaboration — The primary goals of Elaboration are to specify most use cases and
to design and validate the software architecture. In order to allow this architectural
validation, the most critical use cases should be realized. At the end of this phase,
the project manager can estimate more solid amount of time and costs required
to develop the software;

• Construction — During this phase the software is implemented. Minor architec-
tural changes can be suggested as developers discover better ways to structure the
software;

• Transition — At the end of Construction all the use cases are implemented, but
they are not free of defects. During Transition phase, the alpha release moves to
a beta release, the point at which developers and customers use the software in
order to identify defects and deficiencies. These defects are corrected, and some of
the suggested improvements are incorporated into the final release, while others
should wait until the next releases.

Figure 4.1 depicts the emphasis of business modeling, requirements, analysis, design,
implementation, test and deployment disciplines during each phase of RUP. Note that
on the first phases there is a commitment with business modeling, requirement, and
analysis and design activities; on the other hand, the last phases are mostly concerned
with implementation, tests, and deployment activities. Despite having more emphasis
on one or another activity, activities of any discipline can be potentially executed at
any phase. For example, there are test activities that can be executed during Inception,
such as Plan Tests.

80

Inception Elaboration Construction Transition

iter.

#1

iter.

#2
… … … … … iter.

#n-1

iter.

#n

Iterations

Business Modeling….

Requirements……….

Analysis & Design….

Implementation……...

Test………………….

Deployment…………

Core Workflows

Phases

Inception Elaboration Construction Transition

iter.

#1

iter.

#2
… … … … … iter.

#n-1

iter.

#n

Iterations

Business Modeling….

Requirements……….

Analysis & Design….

Implementation……...

Test………………….

Deployment…………

Core Workflows

Phases

Figure 4.1: RUP disciplines taking place over phases [39].

The four phases are major milestones, while each phase is subdivided into iterations,
where activities of each discipline can be executed, with different emphasis depending
on the current phase. Each iteration flows like a waterfall process. Each software cycle
executes these four phases resulting in a software release. During the software lifecycle,
this cycle is repeated, yielding a release in each cycle.

4.2 Impact on RUP’s dynamic structure

This section discusses changes that have to be made into RUP’s phases and iterations,
in order to allow the application of the aspect-oriented implementation method defined
in Chapter 3.

Inception

“The Inception Phase launches the project” [39]. In this phase, the activities are driven
by the definition of the project goals. The business case is defined in order to justify
the project. The project scope is delimited in order to discern what the architecture
has to cover, to define limits within the critical risks should be analyzed, and to provide
boundaries of cost, schedule, and return on-investment, what is crucial to plan the other
phases and their iterations, another goal of inception.

When planning the project iterations, the project manager has to consider the alter-
native implementation approach (progressive approach) allowed by the implementation
method. In this way, the iterations that are progressively implemented have to be split
into functional and non-functional iterations. During these iterations, new implementa-
tion activities should be executed. These activities are presented in Section 4.3, which
gives more details on how to compose the progressive implementation approach with
RUP.

Another change regards the need to propose a candidate architecture by the end of

81

the phase. Since the implementation method is tailored to a specific software architec-
ture, this architecture should be the candidate architecture.

During critical risk analysis, new risks due to the aspect-oriented implementation
method should be considered:

1. The programmers do not have experience with aspect-oriented programming — A
mitigation strategy to teams without enough experience is to schedule training
in the chosen aspect-oriented programming language. Another strategy might be
hiring expert programmers in the paradigm and language. In fact, the use of
aspects can be delayed in the development cycle, also delaying this risk analysis.

2. The specific software architecture might not match the customers’s requirements —
In this context, a mitigation strategy might be selecting an important use case to
completely realize during inception, however, without compromising the phase’s
goal. On the other hand, as previously mentioned, the software architecture used
by the method can fit to several kinds of systems (see Chapter 3). Furthermore,
as one of next phase’s goals is to validate the software architecture, this control
strategy can be delayed until the next phase.

The other activities should follow the regular RUP baseline, since neither they affect
nor they are affected by the implementation method.

Elaboration

“The Elaboration Phase makes the architectural baseline” [39]. Before starting this
phase, we had already identified a candidate architecture, the most critical risks, and
established a business case stating that it is worth continuing the project. The goals
of this phase are to capture around 80% of the requirements, establish a sound and
robust architecture, monitor the critical risks also identifying some significant risks, and
complete the project plan. As previously mentioned, the risk analysis regarding the
use of aspect-oriented programming might have been delayed to this phase. All the
activities executed in this phase are driven to establish the software architecture.

The major modification in this phase’s dynamics is regarding the use of the progres-
sive approach. In this way, we need to define how the progressive approach should be
composed with Use-Case Driven Development (UCDD) [35], the development technique
used by RUP.

In UCDD, developers create design and implementation models that realize the
use cases. Moreover, other models should comply with the use-case model, and tests
should ensure that the use cases are correctly implemented. Although UCDD does not
incorporate the idea of progressive implementation, our progressive approach can be
combined with UCDD.

In order to combine UCDD with our progressive approach, providing a use-case
driven progressive development, we define how and when non-functional requirements
are to be considered and implemented. When considering a progressive implementa-
tion, we have to change analysis and design models to comply with the implementation
method.

To implement a use case, programmers should implement parts of the system that are
necessary to realize that use case. However, when planning a progressive approach, some

82

non-functional requirements implementation should be schedule after implementing and
validating the functional part of the use cases and the user interface code. Therefore, use
cases to be implemented in an iteration should be partially implemented in a functional
iteration. In functional iterations only functional requirements, user interface, and non-
persistent data management are implemented. At this moment, we have a functional
prototype that should be validated and, if necessary, changes should be made. After
validating the implemented functional code, the prototype evolves to a persistent and
distributed software, with concurrency control, in three non-functional iterations, one for
each non-functional requirement. These non-functional iterations also allow progressive
testing, by separately testing persistence, distribution, and concurrency control.

In fact, the project manager can switch between using or not the progressive ap-
proach in different iterations. The results presented in Chapter 5 should be used in
order to support this decision about when using the progressive approach. In general,
requirement changes during software implementation result in bad productivity impact
if not using the progressive approach.

Construction

“Construction leads to initial operational capability” [39]. Construction is the phase in
which most of the use cases are implemented. In fact, the modification in construction’s
dynamics is related to the use of a progressive implementation approach. In this case,
the modification is the same made to the Elaboration phase, which is planning functional
and nonfunctional iterations if using the progressive approach.

Transition

“Transition completes product release” [39]. In this phase, the alpha release moves to a
beta release. Once more, the modification in this phase’s dynamics is the same made to
Elaboration and Construction, which is planning functional and nonfunctional iterations
if using the progressive approach.

4.3 Impact on RUP’s static structure

This section discusses changes that have to be made into RUP’s activities, in order to
allow applying the aspect-oriented implementation method. We only mention new or
modified activities.

4.3.1 Requirements

Figure 4.2 depicts the activities of the requirements discipline. Some of them have to
be extended in order to support the implementation method.

The activities Develop Vision and Elicit Stakeholder Needs should consider the
support provided by the aspect-oriented implementation method to some features and
needs. For example, the software architecture to be used is concerned with providing
extensibility. In addition, the implementation method aspect framework supports some
crosscutting concerns, such as distribution, data management, concurrency control, and

83

System

Analyst

Architect

Use-case

Specifier

User-Interface

Designer

Develop

Vision

Manage

Dependencies

Elicit Stakeholder

Needs

Capture a

Common

Vocabulary

Find Actors

And Use-Cases

Structure the

Use-Case Model

Prioritize

Use-Cases

Requirements

Reviewer

Detail a

Use-Case

User-Interface

Modeling

User-Interface

Prototyping

Review

Requirements

System

Analyst

Architect

Use-case

Specifier

User-Interface

Designer

Develop

Vision

Manage

Dependencies

Elicit Stakeholder

Needs

Capture a

Common

Vocabulary

Find Actors

And Use-Cases

Structure the

Use-Case Model

Prioritize

Use-Cases

Requirements

Reviewer

Detail a

Use-Case

User-Interface

Modeling

User-Interface

Prototyping

Review

Requirements

Figure 4.2: Requirement activities [39].

exception handling, besides providing tool support (see Chapter 6) to automate some
aspects generation.

When executing the Activity Detail a Use Case it is necessary to consider the
aspect-oriented development. During use-case specification, other crosscutting concerns
might be identified, deriving candidate aspects. Usually, it is easier to identify non-
functional requirements as crosscutting concerns; however, functional requirements that
crosscut other concerns are also identifiable. This can help software analysis and design
by suggesting requirements already defined as aspects. Additional artifacts and tech-
niques can be used in order to early specify how the aspects (crosscutting concerns) affect
or how they should be composed to other requirements [92]. In fact, there are related
works [98, 64] concerned with the identification of aspects in this early stage towards
crosscutting requirements. On the other hand, an alternative is to delay considering
aspects in the first iterations.

Finally, the User-Interface Prototyping activity must consider the use of the
progressive approach. Chapter 5 provides some number showing that by using the pro-
gressive approach a functional prototype can be rapidly delivered, at least 45% faster
than not using the progressive approach, by abstracting some non-functional require-
ments, such as persistence, distribution and concurrency control. By using the progres-
sive approach, the prototype can be quickly implemented without compromising quality
principles, such as modularity and extensibility. This prototype technique contrasts
with similar techniques, where prototypes are implemented faster, not considering mod-
ularity and extensibility. In the latter case, prototypes are eventually dropped after
evaluation, whereas in our approach, prototypes are actually implemented to be the
resulting software. The progressive implementation approach increases productivity by
delaying the implementation of some non-functional requirements.

84

4.3.2 Analysis and Design

RUP does not make a clear distinction between analysis and design. Therefore, it is
common to consider analysis and design as a single discipline, instead of considering
two different disciplines. Figure 4.3 presents the activities of the analysis and design
discipline.

Architect

Database

Designer

Designer

Architectural

Analysis

Review the

Architecture

Database

Design

Architecture

Reviewer
Architectural

Design

Describe

Concurrency

Describe

Distribution

Use-Case

Analysis Design

ReviewerUse-Case

Design

Class

Design

Subsystem Design

Review the

Design

Architect

Database

Designer

Designer

Architectural

Analysis

Architectural

Analysis

Review the

Architecture

Review the

Architecture

Database

Design

Architecture

Reviewer

Architecture

Reviewer
Architectural

Design

Describe

Concurrency

Describe

Distribution

Architectural

Design

Architectural

Design

Describe

Concurrency

Describe

Concurrency

Describe

Distribution

Describe

Distribution

Use-Case

Analysis

Use-Case

Analysis Design

Reviewer

Design

ReviewerUse-Case

Design

Use-Case

Design

Class

Design

Class

Design

Subsystem DesignSubsystem Design

Review the

Design

Review the

Design

Figure 4.3: Analysis and design activities [39].

Architectural Analysis should be modified to consider the specific software archi-
tecture we use, see Chapter 3, in order to define the architectural patterns, mechanisms,
and conventions for the system.

The Use-Case Analysis activity is concerned with identifying classes from the
use-case specification. This activity uses stereotypes to identify three types of classes:
boundary, control, and entity class. The boundary classes are interfaces to external sys-
tems or users (actors), control classes model the control flow of an operation, and entity
classes are used to model information that is manipulated by the system and should
be persistent. According to the specific architecture, the entity classes are analogous to
basic classes (see Chapter 3).

Design mechanisms to support requirements, such as persistence, distribution, and
concurrency control, should be identified during Architectural Design. Since the im-
plementation method already supports those specific requirements, this activity should
consider the support offered by the method. For example, the current version of the
method offers JDBC to implement persistence, RMI to implement distribution, and
uses different approaches to control concurrency (see Chapter 3). This activity should
also move analysis classes into design classes. As previously mentioned, entity classes
should be mapped into basic classes. The control classes should be composed into the
facade class, or into controller classes, which should be composed into the facade class.
Boundary classes are mapped to user interface classes, or interfaces to subsystems. At
this moment, some aspects of our aspect framework should be identified to be used in

85

the implementation activities. Those aspects are the ones related to data management
and distribution. Those abstract aspects should be added to the class diagram in order
to document their identification.

Since the implementation method already supports concurrency control and distribu-
tion, the activities Describe Concurrency, and Describe Distribution should also
consider this support. The knowledge acquired while describing concurrency should be
used when applying the concurrency control. The concurrency control method [84, 81,
80] uses this information to decide which parts of the software should be controlled and
what is the most appropriate mechanism to use. When describing distribution we have
to identify how the system functionality should be distributed. The implementation
method already supports distributing the facade object. If another part of the software
should be distributed, probably the method’s framework and architecture can support
that; however, some minor modifications might be necessary. This would happen if
variations of the specific software architecture would be used, for example separating
the software in two subsystems where each of them has a facade class. Another example
might be any system that uses different software architectures and needs to distribute
several classes, besides the facade class. Similar to the previous activity, this activity
should identify aspects of the aspect framework in the software class diagram, designing
the concurrency control policy and the distribution protocol to use, for example.

The last affected activity of the Analysis and Design Discipline is Use-Case Design.
This activity defines use-case realizations in terms of interactions in order to better
deal with and refine the requirements. Sequence diagrams can be used in order to
describe the participant objects and the interactions among them to execute the designed
use cases. These diagrams should specify the collaboration among the classes of the
specific software architecture used by the implementation method. Using aspect-oriented
programming, it is not necessary to present explicitly how aspects affect the architecture
objects, since there is a framework to do it. Chapter 3 presents the framework, how
to use it in order to add data management, distribution, and concurrency control, also
presenting the impact of those aspects in static and dynamic structures of the software.
The static impact is presented by several class diagrams and the dynamic impact by
several sequence diagrams. In addition, Chapter 6 presents the tool support for the
implementation method, also guiding the application of the framework. On the other
hand, if additional concerns have to be implemented as aspects, it is necessary to depict
how the aspects affect the software’s static and dynamic structure, by defining class and
sequence diagrams, in order to guide their definition.

4.3.3 Implementation

Figure 4.4 presents the implementation discipline. The Structure the implemen-
tation model activity implements the structure in which the implementation should
reside. The basic classes can be automatically generated using a modeling tool, such
as Rational Rose [76]. The method’s tool support (see Chapter 6) can generate busi-
ness collections, business-data interfaces, and the facade class with general methods
already implemented1. If not using the progressive implementation approach, tool sup-

1Modeling tools, like Rose, can also generate those classes, however, without providing basic imple-
mentation for their methods.

86

port should be used in order to generate basic aspects and auxiliary classes to implement
persistence, distribution, or concurrency. On the other hand, if using a progressive ap-
proach, only nonpersistent data collections and data management aspects should be
generated in this activity. These non-persistence aspects and classes should be used by
the functional prototype.

Implementer

Code Reviewer

Architect

System

Integrator

Structure the

Implementation Model

Structure the

Implementation Model

Plan subsystem

Integration

Implement

Component

Fix a Defect

Perform

Unit Test

Review

Code

Integrate

Subsystem

Integrate

System

Implementer

Code Reviewer

Architect

System

Integrator

Structure the

Implementation Model

Structure the

Implementation Model

Structure the

Implementation Model

Structure the

Implementation Model

Plan subsystem

Integration

Plan subsystem

Integration

Implement

Component

Implement

Component

Fix a DefectFix a Defect

Perform

Unit Test

Perform

Unit Test

Review

Code

Review

Code

Integrate

Subsystem

Integrate

Subsystem

Integrate

System

Integrate

System

Figure 4.4: Implementation activities [39].

The Implement component activity can be modified in two forms. First, if the
progressive approach will not be used, the activity has only to be modified in order to
consider the framework that supports the implementation of persistence, distribution,
and concurrency control concerns. Some aspects and auxiliary classes that use the
framework can be generated using the method’s tool support.

On the other hand, by using the progressive approach, besides modifying the Im-
plement Component activity, new activities must be performed. Figure 4.5 presents
the activities to be added to the implementation discipline, including a new version of
the Implement component activity, in case the progressive implementation approach
is used. The activities of this partial discipline replace the Implement Component
activity on the original discipline. The incoming and outgoing flows of Implement
Component are not changed and should be matched by “... in the beginning and in
the end of the partial discipline.

The new version of the Implement Component activity and the new activities
to be used in the progressive implementation approach are described using the RUP
activity description style.

Activity: Implement Component (progressive approach version)

• Purpose: implementing the selected use cases or scenarios’ functionality abstract-
ing persistence, distribution, and concurrency control concerns.

87

ImplementerClient

Implement

Component

Implement

Persistence

Implement

Distribution

Control

Concurrency

... ...

Architect
Project

Manager
Designer

Validate Functional

Prototype

Implementer

ImplementerImplementerClient

Implement

Component

Implement

Component

Implement

Persistence

Implement

Persistence

Implement

Distribution

Implement

Distribution

Control

Concurrency

Control

Concurrency

... ...

Architect
Project

Manager
Designer

Validate Functional

Prototype

Validate Functional

Prototype

ImplementerImplementer

Figure 4.5: New implementation activities for progressive implementation.

• Steps:

1. Turn off persistence, distribution, and concurrency control concerns, if al-
ready implemented.

2. Turn on nonpersistent data management, if already implemented. Otherwise,
generate the nonpersistent aspects and auxiliary classes, preferably using the
method’s tool support.

3. Execute the steps of the original activity definition.

• Input Artifacts: the same of the original activity definition plus the aspects for
nonpersistent data management.

• Resulting Artifacts: the functional prototype.

• Worker: Implementer.

We turn the aspects off by not composing the aspects responsible for persistence,
distribution, and concurrency control concerns when weaving the system. Similarly, to
turn on nonpersistent data management, we just weave them to the functional code.
After implementing the functional prototype, it is necessary to execute the Validate
Functional Prototype activity.

Activity: Validate Functional Prototype

• Purpose: validating the functional prototype in order to identify possible require-
ment changes.

• Steps (per worker):

1. Implementer — Present the prototype.

2. All — Suggest possible requirement changes.

3. Project Manager — Evaluate the requirement changes in order to decide
which should be performed.

4. Project Manager — Review the project schedule, if necessary.

5. Architect and Designer — Re-execute any analysis and design activities nec-
essary to perform the change.

88

6. Implementer — Execute the steps of the original Implement Component
activity in order to perform selected requirement changes.

7. All — Review the prototype after performing the requirement changes in
order to validate the prototype.

• Input Artifacts: The prototype implemented in the Implement Component
activity.

• Resulting Artifacts: A list of requirements to change or a document stating the
validation of the prototype without any change.

• Workers: Implementer, Client, Architect, Designer, and Project Manager.

The architect or designer might also suggest some changes in order to achieve a better
result. For example, an implementer may complain about problems in implementing a
part of the prototype. In addition, some model may not be implemented as demanded,
because of an implementer or designer mistake.

Changes resulting from implementation or design mistakes must be implemented by
re-executing the Implement Component activity, and in case of a modeling mistake,
the models should also be updated. Since those kinds of changes might suggest technical
problems, the project manager should be aware of that in order to perform the necessary
steps, like executing any contingency plan. The manager can also re-plan the schedule to
accommodate this unexpected delay. On the other hand, changes requested by customers
should be analyzed by the project manager in order to evaluate whether they can be
accommodated into the current system scope. In case the changes are out of the defined
scope, new negotiation on cost and schedule is necessary. These changes usually demands
changes in analysis and design models.

Activity: Implement Persistence

• Purpose: implementing persistence in the functional prototype.

• Steps:

1. Make sure distribution and concurrency control concerns are turned off, if
already implemented.

2. Turn off nonpersistent data management.

3. Turn on persistent data management, if already implemented. Otherwise,
generate the persistence aspects and auxiliary classes using the data man-
agement framework and the method’s tool support (see Chapter 3).

4. Complete the implementation of persistent data collections methods used by
the implemented use cases or scenarios (see Chapter 3).

5. Test persistence of the implemented use cases or scenarios.

• Input Artifacts: the validated functional prototype.

• Resulting Artifacts: the functional and persistent prototype.

89

• Worker: Implementer.

Note that the persistence aspects should be generated in the first iteration. When
these persistence aspects are already generated, the main task is to implement data
collections’ methods. Since the functional prototype, used as input to this activity, is
already tested, the tests made in the end of this activity can focus on testing persistence
properties, yielding a functional and persistent prototype. More details on how to
implement persistence are given in Chapter 3.

Activity: Implement Distribution

• Purpose: implementing distribution on the functional and persistent prototype.

• Steps:

1. Make sure concurrency control aspects are turned off, if already implemented,
and persistent data management is turned on.

2. Turn on distribution aspects, if already implemented. Otherwise, generate
the distribution aspects and auxiliary classes using the distribution frame-
work and the method’s tool support (see Chapter 3).

3. Implement distribution in the selected use cases or scenarios (see Chapter 3).

4. Test distribution in the implemented use cases or scenarios.

(a) Turn off persistent data management (optional).

(b) Turn on nonpersistent data management (optional).

(c) Test distribution in the implemented use cases or scenarios (optional).

(d) Turn off nonpersistent data management (optional).

(e) Turn on persistent data management (optional).

(f) Test distribution in the implemented use cases or scenarios.

• Input Artifacts: the functional and persistent prototype.

• Resulting Artifacts: the functional, persistent, and distributed prototype.

• Worker: Implementer.

If distribution was already implemented in previous iterations, there are only simple
tasks to be performed, such as identifying new classes whose objects are remotely sent
and serializing them. Since functional and persistence concerns are already tested,
the tests made in this activity can focus on distribution properties. In fact, before
testing distribution in the persistent software, some optional steps can be executed to
test distribution independently from persistence, which might be useful for identifying
possible interferences between them. However, if one optional step is executed, all of
them must also be executed to ensure testing consistency. Chapter 3 presents details
on how to implement distribution.

90

Activity: Control Concurrency

• Purpose: controlling concurrency in the functional, persistent and distributed
prototype.

• Steps:

1. Make sure persistence and distribution aspects are turned on.

2. Turn on concurrency control aspects, if already implemented. Otherwise,
generate the concurrency control aspects and auxiliary classes using the con-
currency control framework and the method’s tool support (see Chapter 3).

3. Implement the necessary concurrency control in the implemented use cases
or scenarios using the most appropriate mechanism (see Chapter 3).

(a) Turn off persistent data management (optional).

(b) Turn on nonpersistent data management (optional).

(c) Turn off distribution data management (optional).

(d) Test concurrency control in the implemented use cases or scenarios (op-
tional).

(e) Turn on distribution data management (optional).

(f) Test concurrency control in the implemented use cases or scenarios (op-
tional).

(g) Turn off nonpersistent data management (optional).

(h) Turn on persistent data management (optional).

(i) Test concurrency control in the implemented use cases or scenarios.

• Input Artifacts: the functional, persistent and distributed prototype.

• Resulting Artifacts: the functional, persistent and distributed prototype with
concurrency control.

• Worker: Implementer.

This activity should apply the concurrency control method [84, 81, 80] to analyze the
software, identifying parts that should be controlled and the most appropriate control
mechanism to use. Again, tests should be focused on the applied concurrency control.
Similarly to the Implement Distribution activity, we can also test concurrency iso-
lated from persistence and distribution in order to identify possible interferences between
these aspects. Once more, if one optional step is executed all of them must be executed
too to ensure testing consistency. Chapter 3 presents details on how to implement
concurrency control.

The Implement Persistence activity might be scheduled after the Implement
Distribution and Control Concurrency activities, since there is no dependency be-
tween them. However, if this happens, some optional steps should be added to the
Implement Persistence activity in order to test persistence with and without distri-
bution and concurrency control, similarly to the Implement Distribution and Con-
trol Concurrency activities. Since the Control Concurrency activity has to be
performed only if the software is distributed, it should be always executed after the
Implement Distribution activity.

91

4.3.4 Test

The test discipline presented by Figure 4.6 defines activities to be performed in order
to test the software.

Test Designer

Plan Test

Integration Tester

System Tester

Performance Tester

Designer

Implementer

Design Test

Design Test Classes

and Packages

Implement Test

Execute Integration

Test

Execute System

Test

Execute Performance

Test

Evaluate

Test

Implement Test Components

and Subsystems

Test Designer

Plan TestPlan Test

Integration Tester

System Tester

Performance Tester

Designer

Implementer

Design TestDesign Test

Design Test Classes

and Packages

Design Test Classes

and Packages

Implement TestImplement Test

Execute Integration

Test

Execute Integration

Test

Execute System

Test

Execute System

Test

Execute Performance

Test

Execute Performance

Test

Evaluate

Test

Evaluate

Test

Implement Test Components

and Subsystems

Implement Test Components

and Subsystems

Figure 4.6: Test activities [39].

When executing the Plan Test activity it is necessary to describe the testing strat-
egy. In fact, the testing strategy should consider the dynamics of the implementation
activities in order to support progressive testing. In this way, as mentioned in the im-
plementation discipline, when testing the functional prototype, the concerns related to
persistence, distribution, and concurrency control must be turned off. In the same sense,
concerns related to distribution and concurrency control must be turned off when test-
ing persistence, and concerns related to concurrency control are turned off when testing
distribution.

In fact, alternative strategies may be adopted, as in the optional steps of the added
implementation activities, which allow combining different test approaches. For in-
stance, aspects of a concern can be initially tested independently of other concerns.
Next, several combinations can be applied to test this concern with others allowing
identifying if their aspects affect each other. Actually, the aspect-oriented paradigm
plays an important role in this progressive testing, since it makes easy and simple turn-
ing on and off the aspects.

92

4.4 Conclusion

This chapter makes changes into the dynamics structure (phases) and into the static
structure (disciplines/activities) of the RUP software development process. Those changes
actually do not aim in changing a specific process instantiated from RUP, but changing
the process framework, allowing others to instantiate their process from this definition.

The modifications were made to allow using the specific software architecture, the
implementation guidelines, and the aspect framework defined in the previous chapter.
The composition of these with a development process result the implementation method.
In fact, the implementation method’s core is located in the implementation activities.
However, it does not make sense to neglect other activities of the development process
lifecycle. For example, several analysis and design activities are directly influenced by
the aspects framework, where aspects that implement some concerns should be identified
before implementation activities.

Therefore, besides the guidelines and the changed and added implementation activi-
ties, the implementation method is also composed of the changes made in other activities
of the development process, since this is necessary to make them complying with the
implementation method and its implementation guidelines.

Figure 4.7 depicts the implementation method in the context of a development pro-
cess framework. It is important to mention that additional work should be done to
address open issues related to aspects, such as requirements, modeling, and testing.

Aspect-oriented development process framework

Implementation method

Disciplines

• Management

• Requirements

• Analysis and design

• Implementation

• Test

• Aspect Framework

• Implementation Guidelines

• Software Architecture

Dynamic

• Phases

• Iterations

affect

Original RUP

• Activities change

• New activities

• Progressive approach

use

use

Aspect-oriented development process framework

Implementation method

Disciplines

• Management

• Requirements

• Analysis and design

• Implementation

• Test

• Aspect Framework

• Implementation Guidelines

• Software Architecture

Dynamic

• Phases

• Iterations

affect

Original RUP

• Activities change

• New activities

• Progressive approach

use

use

Figure 4.7: An aspect-oriented development process framework.

93

Chapter 5

Analysis of the progressive approach

This chapter reports an experimental study with the implementation method. This study
analyzes an alternative approach to execute the implementation activities of the method,
by suggesting when and how effective is using it.

94

Experimentation is a very important discipline for several research areas, which in-
cludes software engineering. Empirical studies are necessary to evaluate how effective
or how promising processes, methodologies and techniques are in contrast to other ap-
proaches. Experimentation also allows determining the value of the claims about the
subject of the study, supporting decision makers to choose which method, process or
technique to use in a software development project.

Unfortunately, several software engineers do not give much attention to experimen-
tation [104], which might hinder how reliable or promising is the methodology or the
technique. In order to better understand the progressive approach impact on the im-
plementation activities, we performed an experimental study using the implementation
method and comparing the progressive approach versus the regular approach. In fact,
this study does not cover the whole implementation method, since the concurrency con-
trol concern is not considered. Therefore, the study focuses on data management and
distribution concerns.

There are several principles of experimentation and empirical studies that must be
followed [5, 104, 69, 40], otherwise any conclusions derived of the so-called experiment
might not be useful. Therefore, another contribution of this chapter is to provide a
framework that allows performing other studies under the same conditions to confirm
some results we derived, and others we could not achieve.

This chapter describe the study plan specifying the study goal, the hypotheses inves-
tigated, the treatment applied and analyzed by the study, the control object, which is
the object to be compared with the application of the treatment, deriving the analyzes,
the experimental object, the object to which the treatment is applied, and the subjects,
which are the participants of the study. Moreover, the independent variables, which are
variables that do not change their values during the study, and the dependent variables,
which are variables to be affected by the study, and therefore, variables to be measured
in order to evaluate the study are also defined. Finally, the design, preparation, treats
of validity, execution, and analysis of the study are presented, following a format based
on [100].

The next sections describe the designed study performed from January to March 2004
in order to characterize the impact of using a progressive approach (see Chapter 3) when
executing the implementation activities of the implementation method (see Chapter 4).
It is important to make clear that this experimental study is concerned to characterize
the use of the progressive approach versus not using it, and does not try to make any
discussion between using aspect-oriented programming or object-oriented programming.

5.1 Goal definition

The following sections describe the goal of this experimental study.

5.1.1 Global goal

Characterize the progressive implementation approach in the context of aspect-oriented
software implemented using AspectJ.

95

5.1.2 Measurement goal

Considering the progressive implementation approach, we plan to characterize its differ-
ence from a regular approach, which we call the non-progressive approach, with respect
to:

• Implementation time: time to implement selected use cases;

• Requirement changes time (during development): time to perform changes in se-
lected use cases, after the customer or the software architect request the change;

• Test execution time: time to run test-cases of selected use cases (acceptance tests);

• Pre-validation prototype time: time to yield a first executable prototype of selected
use cases, before validation;

• Post-validation prototype time: time to yield an executable prototype and validate
it with the customer. This implies that requirements are validated and some of
them might have changed. A mentor played the customer role.

5.1.3 Study goal

Analyze the progressive implementation approach for aspect-oriented software and
AspectJ.

With the purpose of characterize the impact of adopting a progressive implemen-
tation approach.

With respect to the time to implement, change, testing, and yield pre and post-
validation prototypes.

From the point of view of the software developer.
In the context of students of a software engineering graduate course, with industry

expertise, implementing selected use cases of a real application.

5.1.4 Questions

Is the time to implement, change, testing, and yield pre and post-validation prototypes
in a progressive way different from not using a progressive approach in the context of
aspect-oriented software implementation?

5.1.5 Metrics

Data on how long it takes to implement, change, testing, and yield pre and post-
validation prototypes of the selected use cases. The data unit is time in minutes.

5.2 Planning

This section describes the study plan showing how the study is designed. This allows
running other studies using the same plan, which can confirm some of our results and
derive new ones we could not derive. Actually, future studies can change some variables
in order to measure their impact.

96

5.2.1 Hypotheses definition

Before presenting the hypotheses, it is necessary to introduce some symbols used through
the rest of this chapter to denote the metrics to be collected and analyzed.

IE — Implementation time;
TE — Testing time;
CE — Change time;
PE — Time to yield a pre-validation functional prototype;
V E — Time to yield a post-validation functional prototype.

Each of these metrics has two variations, progressive and non-progressive. For ex-
ample, there is implementation time using the progressive approach (IEP) and the same
metric using the non-progressive approach (IENP). The following hypotheses definition
use these symbols.

The main hypothesis is the null hypothesis that states there is no difference between
using or not the progressive approach. Therefore, the study tries to reject this hypothe-
sis. There are five null hypotheses, one for each metric the study analyzes. The following
is a composition of these five null hypotheses.

Null hypotheses (H01..5): The time to implement (1), testing (2), change (3),
and yield pre (4) and post-validation (5) prototypes using a progressive approach for
aspect-oriented development is not different from using a non-progressive approach.

H01 : IEP
∼= IENP

H02 : TEP
∼= TENP

H03 : CEP
∼= CENP

H04 : PEP
∼= PENP

H05 : V EP
∼= V ENP

Additionally, alternative hypotheses are defined to be accepted when the correspond-
ing null hypothesis is rejected. In fact, there are two different alternative hypotheses
set.

Alternative hypothesis (H11..5): The time to implement (1), testing (2), change
(3), and yield pre (4) and post-validation (5) prototypes using a progressive approach
for aspect-oriented development is different from using a non-progressive approach.

H11 : IEP �= IENP

H12 : TEP �= TENP

H13 : CEP �= CENP

H14 : PEP �= PENP

H15 : V EP �= V ENP

Alternative hypothesis (H21..5): The time to implement (1), testing (2), change
(3), and yield pre (4) and post-validation (5) prototypes using a progressive approach
for aspect-oriented development is smaller than using a non-progressive approach.

H21 : IEP < IENP

H22 : TEP < TENP

H23 : CEP < CENP

H24 : PEP < PENP

H25 : V EP < V ENP

97

5.2.2 Treatment

The treatment applied in this study is the progressive implementation approach, where
persistence and distribution are not initially considered in the implementation activities,
but are gradually introduced, preserving functional requirements. This is a one factor
experimental study, since we have a single treatment. The absence of the treatment
(the progressive approach) is called non-progressive approach, which is discussed in the
following section.

5.2.3 Control object

In order to identify the impacts of using a progressive approach, the control object is the
implementation of the experimental object without the progressive approach, which we
call non-progressive approach. Therefore, in the non-progressive approach, persistence
and distribution are implemented at the same time, in a single iteration, together with
the functional requirements. In this way, the subjects are divided in two groups: the
subjects of one group implement use cases using the progressive approach, whereas the
subjects of the other do not use the progressive approach.

Since using the non-progressive approach means not using the progressive approach,
we actually compare using to not using the progressive approach, and therefore, this is
a one factor study.

5.2.4 Experimental object

The study used selected use cases of the Health Watcher software, a real software, that
allows citizens to complain about diseases problems and retrieve information about the
public health system, such as the location or the specialties of a health unit. The
selected use cases cover several kinds of services, such as, recording, retrieving, and
updating data. In addition to the use cases, we also consider requests for functional
requirement changes, which are performed during the software implementation, and
test-cases that guide the unit tests. We selected five of the nine use cases of the Health
Watcher specification, and those five are representative since they cover the same kind of
operation performed by the others, which are retrieving information, giving an employee
different access grant, and cleaning the database. Moreover, the selected use cases are
the most important use cases of the software, and therefore, they would be naturally
selected as the first ones to be implemented. The use cases and their scenarios are

RF01 Retrieve Information — describes several reports the software should implement
such as retrieve information about complaints (1), diseases (2), specialties of a
health unit (3), and which health units have a specific specialty (4);

RF02 Record Complaint — describes how to register the different kinds of complaints:
food complaint (5), animal complaint (6), and special complaint (7);

RF10 Login — describes how an employee should login into the system in order to
perform restricted operations (8);

98

RF11 Record Data — describes how to insert and update employees (9), and how to
update health units (10);

RF12 Update Complaint — describes how to update data about how a complaint should
be handled by the public health system (11).

Note that in these five use cases we identified eleven use-case scenarios to be imple-
mented. In this study, those scenarios are distributed in three iterations, as shown in
Section 5.6.

5.2.5 Experimental subjects

The participants of this study are MSc and PhD students taking a graduate course
on advanced topics on programming language. The course were specifically offered to
perform the study, and therefore, the participants were aware that they were participat-
ing of an experimental study and that their data would be used in the study analysis.
We expected that most of them had experience in industrial software development. In
fact, they answered a questionnaire in order to characterize their academic and indus-
try expertise before the study. More information about their expertise is presented in
Section 5.6.

5.2.6 Independent variables

• Implementation of information systems;

• Requirements and design expressed using use cases and UML diagrams;

• Iterative and incremental implementation;

• Aspect-oriented programming with Java and AspectJ, using specific design pat-
terns and frameworks [91, 85, 53];

• Implementation order of persistence and distribution concerns. Although the im-
plementation method does not demand a specific implementation order, we fixed
the order to implement persistence before distribution to avoid undesirable bias,
which means we are comparing times of these non-functional requirements imple-
mented in a same order. Additional studies should be performed to evaluate the
impact of the concerns implementation order.

• Specific technologies to implement web information systems. These technologies
are: Java [27], AspectJ [41], databases, JDBC [103], distribution systems, Java
RMI [59], Java Servlets [32], and object-oriented analysis and design.

5.2.7 Dependent variables

The time to implement, change, testing, and yield pre and post-validation functional
prototypes. We can provide views of these data per use case, per use-case scenario, or
per iteration.

99

5.2.8 Trials design

The software should be implemented using a Use-Case Driven Development (UCDD)
approach, which is adopted by the Rational Unified Process (RUP) [39] and several
other modern processes. According to UCDD, a software is designed, implemented, and
tested based on its use cases. Chapter 4 gives a brief explanation on use cases. To
implement a use case or a use-case scenario, programmers should implement parts of
the system that are necessary to realize that specific use case or scenario.

Without using the progressive approach, the functional and non-functional require-
ments associated to a use case or scenario are usually implemented in the same iteration
(the non-progressive approach).

On the other hand, when planning the progressive approach, the implementation of
some non-functional requirements (persistence and distribution) is schedule after im-
plementing the functional part of the use cases and the user interface. Therefore, use
cases are partially implemented in functional iterations, until a functional prototype is
finished. At this moment, this prototype is validated by the system stakeholders and,
if necessary, changes are made. After validating, the functional prototype evolves to a
persistent and distributed system, in two different non-functional iterations.

To avoid undesirable bias we enforced the implementation of persistence before im-
plementing distribution in both approaches. This assures that we are comparing times
of these non-functional requirements implemented in a same order. Additional studies
should be performed to evaluate the impact of the concerns implementation order.

Figure 5.1 shows the two different development dynamics. In the figure, times x
and y have no relation with times x’ and y’. Note that, as explained before, when
implementing a use case using a progressive approach the functional requirements and
nonpersistent (volatile) data management are implemented in a first iteration, called
functional iteration. After validating this functional prototype, persistent data man-
agement and distribution are implemented in two special iterations (non-functional it-
erations). When implementing the next iteration, the concerns implemented in the
non-functional iterations should be turned-off, in other to implement the new use cases
and test the whole system using only nonpersistent data collections. By using this ap-
proach a functional prototype, without persistence and distribution, is delivered at the
end of each functional iteration to be validated.

On the other hand, if the use case is being implemented without using a progressive
approach, both non-functional requirements (persistence and distribution) are imple-
mented in the same iteration of the functional requirements. When implementing the
next iteration, non-functional requirements already implemented might affect the new
requirements implementation and testing, since they are not turned-off like in the pro-
gressive approach.

It is important to mention that the resulting software in both approaches is the
same, they have the same functionality and the same non-functional requirements im-
plemented. The only difference between the implementation approaches is the order
non-functional requirements are implemented and tested, and the need to implement
nonpersistent data collections if using a progressive approach. Therefore, at the end of
each iteration (x or x’ and y or y’) we should have the same software, independent of
what implementation approach was used.

100

Progressive approach

Functional requirements User interface

Non-persistent data management Distribution

Persistent data management

Milestone (end of iteration) Functional iteration

a and b are use-cases, sets of use-cases, or use-cases scenarios

Implemented

concerns

time

a a a

Implemented

concerns

time

Non-progressive approach

y

y’

x

x’

a a a a b b b ba a a a

b b ba a a

Progressive approach

Functional requirements User interface

Non-persistent data management Distribution

Persistent data management

Milestone (end of iteration) Functional iteration

a and b are use-cases, sets of use-cases, or use-cases scenarios

Implemented

concerns

time

a a a

Implemented

concerns

time

Non-progressive approach

y

y’

x

x’

a a a a b b b ba a a a

b b ba a a

Figure 5.1: Iterations using progressive and non-progressive approaches.

5.3 Preparation

Before starting the study, the subjects answered the questionnaire (Appendix A) about
their profiles and experience with software development. The subjects were aware that
their data would be used by the experimental study. The subject’s data is presented in
Section 5.6.

5.4 Analysis

The study analysis compares the collected data from the experimental object trials and
control object trials in order to see if the null hypotheses can be rejected.

The study analyzes the impact of the progressive approach on

• Implementation time;

• Requirement changes time (during development);

• Tests execution time;

• Pre-validation functional prototype time;

• Post-validation functional prototype time.

As we have a completely randomized one factor study [104, 40], we use a t-test [40,
104] to analyze the results. The t-test is a statistical test that compares the mean
values of two sets of data, and analyzes if their differences are significant. In fact, we
can perform two different analyses using the t-test.

101

5.4.1 Yes-No decision

The idea when analyzing the collected data is to try to reject the null hypotheses by
showing that the expected mean values are not the same for a given significance. In
this way, we perform the t-test with the samples of the progressive and non-progressive
approach to implement the use cases. We consider this a one factor study since using
non-progressive approach actually means implementing the use cases without using the
progressive approach. The so-called non-progressive approach is our control object. In
this way, this test is a yes-no decision, since we can only say if there is a difference
between the sample means.

Consider x1, x2, ..., xn the samples (times) of applying the progressive approach, and
y1, y2, ..., ym the samples of applying the non-progressive approach. We first define the
mean values (x̄ and ȳ) of the samples:

x̄ = 1
n

∑n
i=1 xi

ȳ = 1
m

∑m
i=1 yi

Now, following the t-test, we define the distribution t0 in the following way:

t0 = x̄−ȳ

sp

√
1
n

+ 1
m

, where Sp =
√

(n−1)S2
x+(m−1)S2

y

n+m−2

where S2
x and S2

y are the variances of the samples:

S2
x =

(
∑n

i=1 x2
i)−nx̄2

n−1

S2
y =

(
∑m

i=1 y2
i)−mȳ2

m−1

The null hypotheses expect the same mean for time values. Therefore, in order to
reject the null hypothesis we want to find if the difference of the means is different
from zero, which means they are different, comparable. The test consists in checking if
|t0| > tα,f , where tα,f is the t distribution at a α percentage point, or significance level,
using f degrees of freedom, where f = n + m − 2 [104]. The distribution is tabulated
elsewhere [40, 104]. We perform the test at the 0.05 significance level, since we had few
participants in the experiment. In other words, we use a confidence level of 95%, which
means that we are working with the 95% probability of using values that are close to
the mean values.

However, this test based in a yes-no decision might not be enough. There is a more
effective way to analyze data than just saying if the samples mean are different or not.

102

5.4.2 Confidence interval

We can also analyze the collected data by determining the confidence interval [40] for
the mean difference of progressive and non-progressive times (x̄ − ȳ). If the interval
contains zero, which means that zero is a possible value for the difference, the samples
are not significantly different. This is a more effective way to analyze data than just
saying if the samples mean are different or not. A narrow confidence interval indicates
a high degree of precision. On the other hand, a wide confidence interval indicates that
the precision is not high.

We first used hypothesis testing to identify if the samples are significantly different.
When the null hypothesis is false, the sample means are significantly different and it
is not necessary any additional analysis. On the other hand, when the null hypothesis
is true, instead of just saying that the sample means are not significantly different, we
also determine the confidence interval to analyze the degree of precision of this analysis.
The confidence interval is defined in the following way:

1. Compute the samples means x̄ and ȳ, as defined in Section 5.4;

2. Compute the sample variance S2
x and S2

y , also from Section 5.4;

3. Compute the mean difference: x̄ − ȳ;

4. Compute the standard deviation of the mean difference:

S =

√
S2

x

n
+

S2
y

m

5. Compute the effective number of degrees of freedom:

v =
(S2

x/n + S2
y/m)2

1
n+1

(S2
x/n)2+ 1

m+1
(S2

y/m)2
− 2

6. Compute the confidence interval for the mean difference:

(x̄ − ȳ) ∓ t[1−α
2
;v]S

where t[1−α
2
;v] is the (1 − α

2
)-quantile of a t-variate with v degrees of freedom;

7. If the confidence interval includes zero, the difference is not significant at 100(1−
α)% confidence level. Similar to the null hypothesis test, we used a significance
level at 0.05 that correspond to a 95% confidence level, which means that we are
working with a 95% probability that the population mean are in the interval.

This alternative analysis does not change the result of the previous hypothesis test.
The idea is to provide additional data to decision-makers, in this case the degree of
precision.

103

5.5 Threats to Validity

This section discusses how valid are the results and if we can generalize them to a broad
population. There are four kinds of validity. Internal validity defines if the collected
data in the study resulted from the dependent variables and not from an uncontrolled
factor. Conclusion validity is related to the ability to reach a correct conclusion about
the collected data, to the used statistical test, and how reliable are the measures and the
collected data. Construct validity is concerned to assure that the treatment reflects the
cause and the results reflect the effect, for example, without being affected by human
factors. Finally, external validity is concerned with the ability to generalize the results
to an industrial environment.

5.5.1 Internal Validity

The experimental subjects are MSc and PhD students of a graduate course. The stu-
dents are from the Software Engineering area, so they have some experience in developing
software. In fact, most of them have experience in the software industry, which con-
tributes for being a representative set of software developers. However, despite most of
the subject have experience in the software industry, their experience is no more than
five years for most of them.

Despite being separated in two groups, one that uses progressive approach and the
other that does not use, both subjects group used the same aspect-oriented technology,
AspectJ. Therefore, we did not expect the subjects to be unhappy or discouraged in
performing or not the treatment, since the resultant software is essentially the same for
both situation. In addition, the study execution is necessary for the conclusion of the
course, and therefore, we did not expect anybody to quit the study.

One confounding factor could be the subject’s experience. In fact, the subjects filled
a questionnaire about their experience and expertise in academia and industry. These
data, presented in Section 5.6, are used in order to identify this possible confounding
factor. Since there were few subjects to perform the study (6 in one group and 7 in the
other), we randomly distributed the subjects to treatments (see Section 5.2) instead of
defining blocks, which would decrease the number of samples to be compared.

5.5.2 Conclusion Validity

A mentor was always present during the study execution to guarantee the correct data
collection and implementation of the treatment. The study uses a t-test to compare
the data between applying the treatment (progressive implementation) and the control
object (non-applying the treatment, also called non-progressive implementation). The
t-test is more suitable to this study since it is concerned in comparing the mean values of
the sample data of the two groups, instead of comparing a sample from one group with
a sample from the other, with can provide undesirable bias. For example, data from
two specific subjects cannot be compared to each other since they might have different
expertise. On the other hand, when considering the mean value, we are comparing
data from one group with the data from the other, and not specific subjects, which can
decreases the subject’s expertise impact.

104

5.5.3 Construct Validity

The subjects applied the treatment to selected use cases of a real information system
using an execution plan, which explains how to apply the treatment. In addition, they
performed a dry run to make clear how the treatments should be implemented and how
data should be collected.

In fact, we performed a previous study, however, without the concern to provide
exact guides to the subjects on how to implement the software, and how to collect the
data. This actually resulted in incomparable data, since the subjects collected data in
different way. This shows how useful are these threats of validity in order to guarantee
the validity of the study results.

5.5.4 External Validity

One expected result of this study is to guide programmers on when to use the progressive
approach. As we used randomization to separate the subjects in two groups, we expect
to decrease the confounding factors, since the most important is the subjects’ expertise.
However, the limited number of subjects does not allow generalization outside the scope
of the study. On the other hand, we expect that the results, including the subjects’
feedback, can be used as guidelines to better implement aspect-oriented software.

The terminology, implementation process, and technology used in the study are
currently used in the software industry, and therefore, are adequate to our objective.
We did not have problems with temporary issues, since the study was performed in one
of the university laboratories, specially reserved to the study execution.

Although the results are limited by the narrow scope we have, we believe that a
considerable contribution is the study design. This framework can guide other studies in
order to evaluate the progressive approach with more general and conclusive results and
can also support other kind of studies, for example to identify the impact of other factors
variation, evaluating alternative approaches to implement aspect-oriented software.

5.6 Execution

As previously mentioned, this study was performed during a graduate course. In the first
half of the course we discussed several papers about aspect-oriented programming [42,
45, 46, 47, 43, 22, 54], AspectJ [41, 83, 30, 97], specific design patterns for the kind
of system they implemented in the study [53, 2, 82, 86], and the use of these design
patterns with AspectJ [91, 85, 48]. We provided exercises1 about AspectJ, JDBC, and
RMI, in order to give the subjects a minimum knowledge about these technologies, in
particular to the ones that did not have enough contact with them. We also performed
a dry run to give the subjects a chance to familiarize with data collection and plan
execution.

The study was executed during the second half of the course, according to the sched-
ule in Table 5.1. As previously mentioned in the experimental object definition (Sec-
tion 5.2), there are 11 use-case scenarios to be implement.

1Those exercises can be found at www.cin.ufpe.br/∼scbs/talp1/nivelamento.

105

Use case Scenario to implement Scenario id

Iteration 1 — 23/01/2004
[RF02] Register Complaint Food complaint 01
[RF01] Retrieve Information Specialties of a health unit 02
Iteration 2 — 06/02/2004
[RF02] Register Complaint Animal complaint 03
[RF10] Login 04
[RF11] Register Data Insert employee 05
[RF01] Retrieve Information Complaint 06
Iteration 3 — 20/02/2004
[RF12] Update Complaint 07
[RF01] Retrieve Information Health units with a specialty 08
[RF01] Retrieve Information Disease 09
[RF02] Register Complaint Special 10
[RF11] Register Data Update health unit 11
12/03/2004

Table 5.1: Study schedule.

We provided several documents to the teams, including the selected Health Watcher’s
use-cases specification, class diagram, test-cases, and implementation plan stating the
order in which the use-case scenarios should be implemented in each iteration (Ta-
ble 5.1). We also provided the user interface code, which are HTML documents and
Java Servlets, in order to speed up the study, since it should be performed during the sec-
ond half of the course. Since the progressive approach demands implementing the user
interface code at the same time the functional requirements are implemented, whether
the progressive approach or the non-progressive approach is used, the user interface code
is implemented at the same point. Therefore, this should not affect the study results.
Moreover, since at the time of the study the tool support was not implemented, we also
provided nonpersistent data collections (see Section 3.2) that would be automatically
generated (see Chapter 6).

As previously mentioned, we also simulated requirement changes during develop-
ment. The requirement changes are the following:

• In order to simulate a customer’s request to change the requirement after using
an implemented use-case scenario for the first time, we requested changes to add
attributes to classes

– After implementing the Food complaint scenario (01) of the use case Register
Complaint ([RF02]);

– After implementing the Animal complaint scenario (03) of the use case Reg-
ister Complaint ([RF02]).

• In order to simulate a change in the system design after presenting the implemented
use case for the first time, we requested a change to extract a class from three
existing classes

106

– After implementing the Food complaint scenario (01) of the use case Register
Complaint ([RF02]).

In fact, there are two change requests, since two of them are requested at the same
time during Scenario 01 implementation. Those changes were chosen because they are
pretty common changes, like adding new information or modifying the design model. It
is important to mention that as the resulting software is the same independent of the
used approach, we did not perform any maintenance change. In fact, the progressive
approach tries to increase productivity by allowing the identification of requirement
changes during the software development.

5.6.1 Questionnaire data

The first step before starting the study is to apply the questionnaire to the subjects in
order to collect information about their experience. As previously mentioned, all the
subjects were aware that the collected data would be used in an experimental study. In
the following pages, Figure 5.2 depicts the academic expertise and Figure 5.3 depicts
the industry expertise of the thirteen subjects according to the score in Table 5.2.

Score Expertise

1 Only in this course (OITC)
2 Less than 6 months (< 6m)
3 Between 6 months and 2 years (6m-2y)
4 Between 2 and 4 years (2y-4y)
5 Between 4 and 6 years (4y-6y)
6 More than 6 years (> 6y)

Table 5.2: Expertise scores.

It is interesting to notice that most of the subjects had their first contact with
AspectJ in this course. On the other hand, two of the subjects used AspectJ in academic
environment in the past six months, and other subject between six months and two years.
A fourth subject actually used AspectJ in the past six months at industrial environment.

All the subjects have at least between six months and two years of experience in
industrial software development. However, some of them had no contact with some
technologies used during the study, such as RMI and JDBC. As previously mentioned,
we provided exercises to help subjects that did not have enough experience with JDBC
and RMI, reducing possible confounding factors.

107

A
c
a
d

e
m

ic
E

x
p

e
rtis

e

0 1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
P

a
rtic

ip
a

n
ts

Expertise

J
a

va

D
a

ta
b

a
s
e

s

J
D

B
C

D
is

t.
S

ys

R
M

I

S
e

rvle
ts

O
O

d
e

s
ig

n

A
s
p

e
c
tJ

U
s
e

-C
a

s
e

s

Figure 5.2: Subjects’s academic expertise.

108

In
d

u
s
try

E
x
p

e
rtis

e

0 1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3

P
a

rtic
ip

a
n

ts

Expertise

J
a

va

D
a

ta
b

a
s
e

s

J
D

B
C

D
is

t.
S

ys

R
M

I

S
e

rvle
ts

O
O

d
e

s
ig

n

A
s
p

e
c
tJ

U
s
e

-C
a

s
e

s

S
o

ft.
D

e
v.

Figure 5.3: Subjects’s industry expertise.

109

5.6.2 Study data

Tables 5.4, 5.5, and 5.6 present each subject’s time, in minutes, to implement, test,
and change requirements during the three iterations. The total time to complete each
iteration is presented by Table 5.7. Tables 5.8 and 5.9 present the time, in minutes, to
yield a functional prototype per use-case scenario for each subject. Table 5.10 presents
the time in minutes to yield a functional prototype after requesting a requirement change
in Scenarios 1 and 3. These tables use the legend presented in Table 5.3.

Code Description
S. ID Suject ID
Impl Implementation
Test Test
RC Requirement change
Mean Sample mean
Diff (%) Difference in % from the other approach

Table 5.3: Tables legend.

NON-PROGRESSIVE PROGRESSIVE
S. ID Impl Test RC S. ID Impl Test RC

1 605 170 198 4 451 117 30
2 497 530 279 8 705 191 38
3 987 143 593 12 694 251 38
5 377 155 152 7 745 279 57
9 885 381 333 6 323 101 28

10 234 47 237 13 385 130 18
11 784 337 377

Mean 624 252 310 Mean 551 178 35
Diff (%) +13.4 +41.4 +789.5 Diff (%) -11.8 -29.3 -88.8

Table 5.4: Iteration 1 data.

The difference (Diff (%)) from the other approach can be read as an increasing or
decreasing in time from the other approach. For example, Table 5.4 presents a increase
of 789.5% in the requirement changes time when using the non-progressive approach,
or a decrease of 88.8% in the requirement changes time when using the progressive
approach.

110

NON-PROGRESSIVE PROGRESSIVE
S. ID Impl Test RC S. ID Impl Test RC

1 252 150 18 4 359 110 13
2 372 294 39 8 273 334 14
3 405 228 30 12 294 151 11
5 199 124 22 7 347 94 12
9 316 127 20 6 276 123 16

10 180 93 14 13 263 152 11
11 462 229 59

Mean 312 178 29 Mean 302 161 13
Diff (%) +3.4 +10.7 +124.9 Diff (%) -3.3 -9.7 -55.5

Table 5.5: Iteration 2 data.

NON-PROGRESSIVE PROGRESSIVE
S. ID Impl Test S. ID Impl Test

1 218 69 4 229 123
2 242 218 8 368 167
3 358 110 12 234 118
5 163 63 7 300 124
9 171 274 6 271 50

10 237 61 13 306 56
11 529 91

Mean 274 127 Mean 285 106
Diff (%) -3.7 +19.0 Diff (%) +3.9 -16.0

Table 5.6: Iteration 3 data.

NON-PROGRESSIVE PROGRESSIVE
S. ID IT 1 IT 2 IT 3 S. ID IT 1 IT 2 IT 3

1 973 420 287 4 592 479 352
2 1142 691 460 8 921 614 535
3 1718 661 468 12 975 452 352
5 674 338 226 7 1078 452 424
9 1599 458 445 6 447 409 321

10 501 283 298 13 526 424 362
11 1427 743 620

Mean 1147.7 513.4 400.6 Mean 756.5 471.7 391.0
Diff (%) +51.7 +8.9 +2.4 Diff (%) -34.1 -8.1 -2.4

Table 5.7: Total iterations data.

111

Use-case scenarios
S. ID 1 2 3 4 5 6 7 8 9 10 11

1 603 172 38 45 131 188 53 53 70 61 50
2 628 235 76 76 315 185 100 80 123 82 75
3 937 188 67 100 159 305 62 102 146 87 71
5 358 164 64 48 81 123 46 28 66 51 35
9 920 346 51 75 134 178 71 116 107 119 32

10 281 23 50 40 109 70 31 126 85 35 21
11 839 211 85 49 264 286 97 166 158 130 69

Mean 652.3 191.3 61.6 61.9 170.4 190.7 65.7 95.9 107.9 80.7 50.4
Diff (%) +480 +131 +83 +117 +459 +423 +412 +233 +141 +156 +159

Table 5.8: Times to yield pre-validation prototype without progressive approach.

Use-case scenarios
S. ID 1 2 3 4 5 6 7 8 9 10 11

4 107 89 68 35 34 37 9 28 43 28 51
8 136 136 34 41 31 37 17 38 60 58 13

12 136 11 13 15 51 35 20 22 42 23 15
7 141 179 32 32 18 77 6 30 52 28 8
6 74 18 24 27 28 17 10 24 33 42 7

13 81 63 31 21 21 16 15 31 39 10 23
Mean 112.5 82.7 33.7 28.5 30.5 36.5 12.8 28.8 44.8 31.5 19.5

Diff (%) -83 -57 -45 -54 -82 -81 -81 -70 -58 -61 -61

Table 5.9: Times to yield pre-validation prototype with progressive approach.

NON-PROGRESSIVE PROGRESSIVE
S. ID Scenario 1 Scenario 3 S. ID Scenario 1 Scenario 3

1 801 56 4 137 81
2 907 115 8 174 48
3 90 97 12 174 24
5 510 86 7 198 44
9 1253 71 6 102 40

10 478 64 13 119 42
11 1216 144

Mean 750.7 90.4 Mean 150.7 46.5
Diff (%) +398.3 +94.5 Diff (%) -79.9 -48.6

Table 5.10: Times to yield post-validation prototype.

112

5.6.3 Statistical analysis

As mentioned in Section 5.4 we use a t-test [40, 104] to analyze the data. The test
consists in checking if the samples’ mean difference is significant. This can be made
by a hypothesis testing, and complemented by determining the confidence interval, as
mentioned in Section 5.4.

Iteration H01 H02 H03 H04 H05

1 TRUE TRUE FALSE FALSE FALSE
2 TRUE TRUE FALSE FALSE FALSE
3 TRUE TRUE — FALSE FALSE

Table 5.11: Null Hypotheses test.

We first used hypothesis testing to identify if the samples are significantly different.
Table 5.11 presents the null hypotheses tests per iteration, where FALSE means the
null hypothesis in question is false. When the null hypothesis is false, the sample
means are significantly different. According to the presented results, at all iterations,
implementation and tests time using a progressive approach are not significantly different
from the non-progressive approach. On the other hand, the statistical test rejected the
null hypotheses for the time to change requirements, and yield pre and post-validation
prototypes.

Table 5.12 presents the values of the |t0| distribution of the t-test for each null
hypothesis per iteration. The test consists in checking if |t0| > tα,f , where tα,f is the t
distribution at a α percentage point, or significance level, using f degrees of freedom,
where f = n + m − 2, in our case, f = 6 + 7 − 2 and α = 0.05. Therefore, we should
compare |t0| values with the t0.05,11 distribution, which is 2.201. The H04 and H05

values in the third iteration are the same since there were no requirement changes.

Iteration H01 H02 H03 H04 H05

1 0.555 0.985 4,551 5.960 3.497
2 0.221 0.385 2.470 4.649 4.858
3 0.188 0.522 — 4.601 4.601

Table 5.12: |t0| values for the Null Hypotheses test.

The |t0| values for the requirement changes in the first iteration and for the pre and
post-validation prototypes in all three iterations are significantly different even using a
higher confidence level. The t0.025,11 distribution, which is the distribution for a 99%
confidence level, or at the 0.025 significance level, is 3.106.

In order to allow a more effective analysis, we also determined the confidence in-
terval, at the 0.05 significance level, presented by Table 5.13, for the mean difference
when the null hypotheses could not be rejected by the test. We can notice wide con-
fidence intervals, which indicate that the null hypotheses tests were obtained with a
low precision. In fact, we expected benefits from implementing and testing the software
with the progressive approach. When progressively implementing and testing functional

113

requirements, the programmer does not have to worry with persistence and distribution
issues and vice-versa, decreasing implementation and test complexity. These wide con-
fidence intervals suggest that other studies should be performed to better evaluate the
progressive approach impact in implementation and tests.

Iteration H01 — implementation time H02 — test time
1 (-206.6 ; 353.9) (-86.2 ; 233.6)
2 (-88.6 ; 109.2) (-81.5 ; 115.9)
3 (-131.2 ; 109.9) (-61.2 ; 101.6)

Table 5.13: Confidence interval for Hypotheses H01 and H02.

We can notice some interesting data at the table’s data. Before commenting these
data, it is important to mention that the first iteration is the hardest one, which can be
noticed by the mean values of amount of time of each iteration, presented in Table 5.7.
Notice the time to implement Iteration 1, which is higher than the sum of the others,
in the non-progressive approach, and almost the sum of the other in the progressive
approach.

Despite not being significantly different, there are some interesting data about im-
plementation and testing times that might help understanding the study. For example,
we can clearly notice a discrepancy at Table 5.4 regarding Subject 10’s implementation
and testing time, which were much faster than the others. In fact, implementation time
was more than twice faster than the group mean, and testing time was more than five
times faster. He definitely has superior programming skills, which can be confirmed by
his academic and industrial expertise (Figures 5.2 and 5.3) that show he is one of the
most experienced with AspectJ. On the other hand, his skills did not make difference
when performing requirement changes, which reinforces the huge impact requirement
changes might have on the development process. Such discrepancy did not happened
with the progressive approach group.

Table 5.4 also presents a huge difference (789.5%) between the approaches’ require-
ment changes time. This happened because the requirement changes at this iteration
had a great impact in the persistence code. For example, one of them demanded chang-
ing the database scheme as well as writing migration scripts to move the data already
inserted to the new scheme. On the other hand, the progressive approach does not im-
plement persistent code until validating the functional requirement, when the changes
are usually required. However, despite this huge difference at requirement changes, when
considering the whole iteration time (see Table 5.7), the difference decreases to 51.7%,
which is significantly different when performing a t-test. However, this value could be
worst if we had more requirement changes.

Besides the null hypotheses there are also alternative hypotheses (see Section 5.2).
Table 5.14 shows the alternative hypotheses test based on the values of the |t0| dis-
tribution already presented by Table 5.12. There are two alternative approaches set
(H11..5 and H21..5) stating that the time to implement, test, change, and yield pre
and post-validation prototypes using a progressive approach is different (H11..5), and
smaller (H21..5) than using a non-progressive approach. When there is a significance
difference between the approaches, the progressive approach times are smaller than the

114

Iteration H11 H12 H13 H14 H15

1 FALSE FALSE TRUE TRUE TRUE
2 FALSE FALSE TRUE TRUE TRUE
3 FALSE FALSE — TRUE TRUE

Iteration H21 H22 H23 H24 H25

1 FALSE FALSE TRUE TRUE TRUE
2 FALSE FALSE TRUE TRUE TRUE
3 FALSE FALSE — TRUE TRUE

Table 5.14: Alternative Hypotheses test.

non-progressive approach times (see sample data tables). For example, Table 5.6 shows
that the implementation time of Iteration 3 is 3.9% worst when using the progressive
approach. However, neither the null hypothesis nor the alternatives considered the mean
differences for implementation time of Iteration 3 significantly different. In fact, this is
the only case where the collected data shows a progressive time, in minutes, higher than
the non-progressive time.

The data presented by Tables 5.5 and 5.6 show that these iterations were simpler
than the first one. In fact, Iterations 2 and 3 had less use-case scenarios to implement
and most of the aspects were implemented in the first iteration, which requires only
simple modifications, as the software is incremented.

There was another requirement change in the second iteration, however, this change
did not demand the same kind of tasks performed in the changes of the first iteration,
such as changing the database scheme, and therefore, writing a data migration script.
Despite being simpler than the first iteration, the single requirement change performed
at the second iteration was also significantly different, according to Table 5.14, showing
that the software development can be benefited from the progressive approach when
there requirement changes during implementation activities. Therefore, although there
is not a significant difference between the progressive and non-progressive approaches
during implementation and tests activities, the progressive approach can be used to
avoid unnecessary delay if there are requirement changes. Moreover, the progressive
approach decreases the implementation complexity, since it does not deal with all the
concerns at the same time, as discussed at the end of this chapter.

Another important data was about the times to yield pre and post-validation proto-
types. The t-test showed that the times to yield pre and post-validation prototypes of all
use-case scenarios (see Tables 5.8, 5.9, and 5.10) were significantly different, and there-
fore, the progressive approach has unbeatable results. In fact, this was expected since
early validation of functional requirements is one of the pillars of the progressive ap-
proach, which is reached by first abstracting the implementation of some non-functional
requirements. This early validation anticipates requirement changes, also helping to
understand the problem before implementing some non-functional requirements. More-
over, the effort to create such prototype is lower, decreasing the budget impact, for
example, if the requirements were not well understood by the requirements engineering
or the customers had just change his mind.

115

5.6.4 Qualitative data

After finishing the study, we applied another questionnaire with more general questions
in order to get some feedback from the subjects about the study, the technology used, and
the implementation approaches. From a total of 13 subjects, 12 (92%) said that AOP
and AspectJ helped the development, and 1 (8%) stated that AOP involves several new
constructs, such as join points and pointcuts, that complicate debugging. He concludes
that it is maybe better to use OO and design patterns. According to this subject, he had
this feeling because he has a great experience with OO. The difficulty to learn a new
paradigm (AO) was reported by 11 (85%) subjects. Another interesting information
collected about the AspectJ language is about the debugging support, where 5 (38%)
subjects complained about AspectJ’s debugging. In fact, this is a limitation of the
AspectJ tool used, but new versions of the tool have debugging support.

We also asked the subjects if they felt the progressive approach increases productiv-
ity. An expressive number of subjects, 7 (54%), explicitly said that they believe so, 2
(15%) suggested to believe, 3 (23%) gave neutral opinions, and 1 (8%) suggested that
the progressive approach does not increase productivity.

Additionally, we asked to the 6 subjects that used the progressive implementation
approach if they would use the approach in a real software development process. Again,
the progressive approach had a great feedback from the subjects, where 4 (67%) would
use the progressive approach just like they used in the study, and 2 (33%) would use
variations of it.

5.7 Conclusions

In order to evaluate if the progressive approach is appropriate for a given project, a
manager or development leader should balance the following forces derived from the
study:

• The progressive approach helps to increase implementation productivity by early
validating functional requirements, before implementing non-functional require-
ments. The study showed that there is a great difference between using and not
using the progressive approach when there are requirement changes. In fact, re-
quirement changes are common during implementation activities.

• Requirement changes might emerge from different stakeholders, specially after
functional requirements validation, and the progressive approach avoids wasting
effort writing non-functional code that is wrong or is supposed to be changed.
Examples of causes of requirement changes are the following: requirement faults
that lead to design faults, and therefore, to implementation faults; underestimated
requirements that lead to bad design decisions; the lack of experience of developers;
the customer keeps changing his mind, mainly when seeing a functional prototype.

• In fact, good practices and techniques in requirements, analysis, and design help
to avoid some of these requirement changes. On the other hand, some require-
ment changes cannot be avoided by using good practices. For example, some

116

faults during requirements, analysis, and design activities cannot be identified un-
til implementing the software. Furthermore, customer requests after seeing the
prototype are unpredictable.

• The study showed that the time to yield a functional prototype using a non-
progressive approach is larger to using the progressive approach in every use-case
scenario, effectively providing early validation of functional requirements.

• Although the times to implement and test software using the progressive approach
and the non-progressive approach in this study were not different, this means that
there is not an overhead in the progressive approach implementation and testing
activities. Therefore, the progressive approach can be used to perform requirement
changes earlier, if technical problems are detected or customer requests are made
after seeing the prototype, which avoids wasting effort writing non-functional code
that is wrong or is supposed to be changed.

• Qualitative data from the subjects gave an important feedback about the progres-
sive approach, which might suggest its use.

Besides all those conclusions, another contribution of this study is the documentation
of the performed study, resulting in a study framework that allows replication in order
to give more evidence of our results. In fact, some variables of this study might be
changed to evaluate other factors.

117

Chapter 6

Tool support

This chapter presents the first version of a tool that supports the aspect-oriented imple-
mentation method by automatically generating part of the aspects and classes necessary
to use the aspect framework. The tool aims to increase the method’s productivity.

118

Code generation and refactoring tools have been quite useful for developing object-
oriented systems [24, 17]. They increase development productivity by automating te-
dious, repetitive, and error-prone tasks. By reducing the number of programming errors,
they also help to improve software quality.

Based on our experience [91] developing AspectJ systems, we believe that aspect-
aware code generation and refactoring tools can bring similar benefits for the develop-
ment of aspect-oriented systems as well. Although aspect-oriented languages such as
AspectJ provide some of the power of metaprogramming constructs, code generation
tools are still necessary.

In fact, code generation tools can generate part of the implementation of specific
AspectJ patterns, since they might follow the same structure in several systems, such
as the aspect framework and the aspect patterns identified in Chapter 3.

Our approach followed the same approach used by others [13, 19], where they consider
program transformation as a unifying concept for code generation and refactoring [24].
A refactoring comprises several behavior preserving changes on the program, but does
not add new functionalities. A generator, on the other hand, introduces new function-
alities. With such a unifying view, AspectJ’s transformations may introduce new code
and modify existing one as long as the semantics of the original program is preserved.
Similarly, we define transformations that manipulate both aspects and classes. This is
the main point to consider when adapting a previous work [19, 13] on developing similar
tools for Java.

In fact, the scope of this thesis contains a tool to automatically generate aspects,
instead of and does not address aspects refactoring. Actually, as our approach considers
program transformation as a unifying concept for both code generation and refactoring,
the structure we provide can also be used for defining refactorings. However, in order to
define a refactoring, one has the non-trivial task of analyzing the code to evaluate some
preconditions. This work has been carried out elsewhere [14, 15].

6.1 Java transformations

Our approach to implement such a tool is to extend an existing Java transformation
tool (JaTS) [13, 19] in order to provide the ability to manipulate AspectJ programs. In
fact, JaTS stands for Java Transformation System. This system consists of a transfor-
mation language and a transformation engine to perform the program transformation.
The language is a Java extension with meta-programming constructs, such as meta-
variables, optional, conditional, iterative constructs, and executable declarations that
can have access to lower level code structures. The transformation engine is responsible
for performing the transformation itself.

A transformation defines source and target templates using the transformation lan-
guage, and the transformation engine uses the source template to match the source
code to be transformed. When there is a match, the engine uses the target template in
order to generate a type as specified by the transformation language constructs. The
generated type can be a new type or a new version of the original type.

119

For example, the following piece of code specifies a source template T1 lhs.JaTS1.

#[PackageDeclaration: #PD;]#

ImportDeclarationSet: #IDS;

ModifierList: #M class #NAME #[extends #SC_NAME]#

#[implements NameList: #I_LST]# {

FieldDeclarationSet: #ATTRS;

MethodsDeclarationSet: #MTDS;

}

The construct PackageDeclaration:#PD matches the package clause of a Java type,
which is referenced in the example by the JaTS variable #PD. Similarly, #IDS, #M, #NAME,
#SC NAME, #I LST, #ATTRS, #MTDS are, respectively, variables that reference the set of
imports declarations, list of modifiers, class name, super-class name, implemented in-
terfaces name list, set of field declarations, and set of methods declarations of a Java
class. Actually, these variables can be used in the context of any Java type; however,
the use of the class Java word restricts the matches to Java classes. Any construct
that appears between #[and]# is optional, which means the source template should
match types with this construct or not. In the example above, the classes matched by
the source template might have or not package, extends, or implements clauses. As
the import declaration set might be empty, the matched type does not need to define
any import.

The target template T1 rhs.JaTS2 is implemented by the next piece of code.

#[PackageDeclaration: #PD;]#

public class #< #NAME.addSuffix("RepositoryArray") >#

implements #< #NAME.addPrefix("I").addSuffix("Repository") ># {

private #NAME[] #< #NAME.addSuffix("s").toVariableName() >#;

private int index;

// methods to insert, remove, update and retrieve

// objects of type #NAME using a Java array

}

This target template generates a class that has its name based on the name of the class
matched by the source template. The generated class defines a Java array to store
objects of the matched type. Actually, the matched type would be a basic class and the
generated type a nonpersistent data collection. Note the use of the implements clause
in the target template that forces the generated type to implement a business-data
interface, which is also generated by a similar transformation.

When applying this transformation to the following Account class

package accounts;

import util.Address;

public class Account {

// ...

}

1lhs stands for left hand side in a transformation.
2rhs stands for right hand side.

120

JaTS generates the AccountRepositoryArray class.

package accounts;

public class AccountRepositoryArray implements IAccountRepository {

private Account[] accounts;

private int index;

// insert, remove, update and retrieve accounts in a Java array

}

6.2 AspectJ transformations

The approach for developing refactoring and code generation tools for AspectJ is the
same as the one presented in the previous section. JaTS is extended in order to support
AspectJ’s constructs, yielding AJaTS — AspectJ Transformation System.

JaTS uses JavaCC [56] to define a parser that creates an abstract syntax three (AST)
of Java objects as nodes representing the parsed program, source and target templates.
Visitors [26] visit these nodes in order to find a match according to the source template
and perform the transformation according to the target template.

In order to obtain AJaTS, we have to extend the language and the engine. In
this way, the JaTS parser and its nodes are extended to add AspectJ syntax and the
nodes representing AspectJ’s constructs. The visitors responsible for manipulating the
AST, performing the engine operations, are also extended. We used bootstrapping
to modularize the extensions made to JaTS. A weaver was implemented in order to
integrate AspectJ’s constructs to the JaTS parser yielding the AJaTS parser. Likewise,
AspectJ aspects are defined to modify some JaTS AST nodes and visitors. Besides that,
new nodes to model AspectJ’s constructs are separately defined. There is a software
company currently improving JaTS and we expect to easily extend improved versions
by using aspects, auxiliary classes, and the parser weaver.

JaTS engine AJaTS engineExtend visitors

JaTS parser AJaTS parserAdd AspectJ constructs

AspectJ nodes

Java code AspectJ code

Transf_lhs.jats Transf_rhs.jats

Generated

Java code

AST1
AST2 AST3

Transf_lhs.ajats Transf_rhs.ajats

Generated

AspectJ code

AST1
AST2 AST3

JaTS engine AJaTS engineExtend visitors

JaTS parser AJaTS parserAdd AspectJ constructs

AspectJ nodes

Java code AspectJ code

Transf_lhs.jats Transf_rhs.jats

Generated

Java code

AST1
AST2 AST3

Transf_lhs.ajats Transf_rhs.ajats

Generated

AspectJ code

AST1
AST2 AST3

Figure 6.1: JaTS versus AJaTS.

Figure 6.1 depicts the differences between JaTS and AJaTS through the extension
made and the code generation support they provide.

121

Since AspectJ is a superset of Java, AJaTS is a superset of JaTS. Any transformation
supported by JaTS is also supported by AJaTS.

6.2.1 Generating aspects with AJaTS

As explained in Chapter 3 the distribution concern is divided in two aspects: client-side
and server-side. In order to generate these aspects we defined transformations in AJaTS.
Transformations related to the distribution concern use the facade class to generate the
aspects and the remote interface.

The following source code matches the facade class and is used as the left hand side
of distribution aspects generation.

PackageDeclaration:#PD_FACADE;

ImportDeclarationSet:#IDS_FACADE;

public class #FACADE #[extends #SC_FACADE]#

#[implements NameList:#IFS_FACADE]# {

FieldDeclarationSet:#ATTRS_FACADE;

InitializerSet:#IS_FACADE;

ConstructorDeclarationSet:#CDS_FACADE;

MethodDeclarationSet:#MTDS_FACADE;

}

In fact, this source template cannot distinguish the facade class from other classes. This
template potentially matches any class of the program. Therefore, it is necessary an
interaction with the programmer in order to identify the facade class, or more generally,
the class whose object should be distributed.

Server-side aspect

Before presenting the server-side target template, two other target templates should be
executed in order to generate a remote facade interface and to implement the singleton
design pattern in the facade class. The following target template is responsible for
generating a remote interface.

package ##TARGET_PACKAGE##;

ImportDeclarationSet:#IDS_FACADE;

import java.rmi.RemoteException;

import java.rmi.Remote;

public interface #< #FACADE.addPrefix("IRemote") >#

extends Remote {

forall #md in #MTDS_FACADE {

#< #md.addException("RemoteException") >#;

#< #md.toInterfaceMethodDeclaration() >#;

}

}

This template uses an iterative declaration (forall) to access the facade methods
adding the RemoteException in their throws clause and changing their declaration
according to interface definition, where only the signature is presented.

122

Note that the construction between a pair of ##’s is not an AJaTS construction. This
construct has to be replaced by a value specific to the system being generated. In this
case, the programmer has to provide the target package of the aspects. Another part
of the tool support presented in the following section interacts with the programmer in
order to collect this information and perform the replacement.

The next piece of code defines the target template that implements the singleton
design pattern.

PackageDeclaration:#PD_FACADE;

ImportDeclarationSet:#IDS;

public class #FACADE #[extends #SC_FACADE]#

#[implements NameList:#IFS_FACADE]# {

private static #< #FACADE ># singleton;

FieldDeclarationSet:#ATTRS_FACADE;

InitializerSet:#IS_FACADE;

forall #cd in #CDS_FACADE {

#< #cd.getModifiers().removeAllModifiers() >#;

#< #cd.getModifiers().

addModifier(java.lang.reflect.Modifier.PRIVATE) >#;

}

ConstructorDeclarationSet:#CDS_FACADE;

the template adds the singleton static field, makes facade constructs private using a
iterative declaration (forall), and adds the getInstance method

public #< #FACADE ># getInstance() {

if (singleton == null) {

singleton = new #< #FACADE >#();

}

return singleton;

}

MethodDeclarationSet:#MTDS_FACADE;

}

Note that this template is quite general and can be used to implement the singleton
design pattern for any class.

Chapter 3 presents the distribution framework. The ServerSide aspect (see Sec-
tion 3.4.1) provides common behavior on exporting and binding the object to be remotely
accessed instead of executing its main method. Therefore, the concrete server-side as-
pect should specialize the abstract pointcut of the AbstractServerSideAspect aspect
to identify the facade’s main method execution, should define how to initialize the facade
class, and should provide a name to bind the facade object to.

The following target template generates the server-side aspect that extends the
framework abstract aspect.

123

package ##TARGET_PACKAGE##;

import cin.aspects.framework.distribution.ServerSide;

import java.rmi.Remote;

public aspect #< #FACADE.addSuffix("ServerSideAspect") >#

extends ServerSide {

public static final String SYSTEM_NAME = "##SYSTEM_NAME##";

public static final String RMI_SERVER_NAME = "##RMI_SERVER_NAME##";

Note that this template also has constructs between a pair of ##’s that should be re-
placed by a system-specific value before performing the code generation. Next, the
template generates two declare parents constructs to make the facade class imple-
ment the generated remote interface and to make classes whose objects are sent over
the communication channel implement the Serializable interface.

declare parents: #< #FACADE >#

implements #< #FACADE.addPrefix("IRemote") >#;

declare parents: ##SERIALIZABLE_TYPE_LIST##

implements java.io.Serializable;

Remote initFacadeInstance() {

return #< #FACADE >#.getInstance();

}

The initFacadeInstance method defines how to initialize a facade object and is used
by the super-aspect. In the same way, this template defines how to obtain the name the
facade object should be bound to, and the pointcut that identifies facade’s main method
execution.

String getSystemName() {

return SYSTEM_NAME;

}

pointcut facadeMainExecution(String[] args):

execution(static void #< #FACADE >#.main(String[])) &&

args(args);

public static void #< #FACADE >#.main(String[] args) {

// just to enable the super-aspect

// if there is not a main method yet

}

}

Note that these templates are general enough to be used in other situations, where
other classes should have their objects distributed using RMI.

Similar to the server-side, there is a client-side target template that generates an
aspect using the distribution aspect framework like the aspect presented in Chapter 3.

The set of AJaTS transformations files used to generate distribution, data manage-
ment, and concurrency control aspects, auxiliary aspects and classes, and types of the
specific software architecture are presented in Appendix B.

124

6.2.2 Interacting with the programmer

As previously mentioned, some transformations need to interact with the programmer.
In fact, most of them need some information from the programmer to identify the
target of the transformation. For example, the distribution transformations require
the programmer to identify the facade class. Likewise, the base transformations for
generating nonpersistent data collection, business collections, business-data interface,
and facade class require the programmer to identify the basic classes.

In order to provide such interaction in a user friendly fashion we developed a plug-in
for the Eclipse platform [25, 33] in order to apply the transformations and collect the
necessary information from the programmer. In fact, the plug-in guides the transforma-
tions, being an additional support for programmers.

Figure 6.2 shows a snapshot of the plug-in running on Eclipse and requesting the
identification of the facade class to generate the distribution aspects. Note that the plug-
in contributes with a new item in the menu bar, where there are options to generate the
aspects. The current plug-in version generates distribution aspects.

Figure 6.2: Snapshot of the plug-in execution.

After collecting the requested information, the plug-in uses a set of source and target
transformation files and the AJaTS engine to generate the aspects and auxiliary types
from the type identified by the user. Regarding the distribution aspects, the types
generated by the tool are two aspects that specializes the client and the server-side

125

aspects and the remote interface.
As an Eclipse plug-in, the tool can be easily installed in the Eclipse platform. In fact,

to install the tool is only necessary to extract a zip file into Eclipse’s plug-in directory.
The zip file is available at http://www.cin.ufpe.br/∼jats/AJaTS

6.3 Conclusion

This chapter presented a tool to generate code supporting the aspect-oriented imple-
mentation method. The tool generates either Java and AspectJ types and is composed
of an Eclipse plug-in, which is actually the tool’s front-end, and of a transformation
engine, called AJaTS. The current version of AJaTS can generate Java and AspectJ.

The tool uses transformation files that guide the code generation. In fact, the back-
end of the tool is not tailored to the implementation method, and therefore can be used
for transforming and generating any kind of Java and AspectJ code. We can easily
change the plug-in to consider user-defined transformation files, instead of only the
pre-defined transformations.

This tool is especially useful when adopting the progressive approach. When execut-
ing the functional iteration, persistence, distribution, and concurrency control code are
not considered. At this moment, the tool can generate nonpersistent data collections
for testing the functional prototype before implementing persistent data collections.

In addition, the tool should be extended in order to perform the non-trivial task of
analyzing the code to evaluate some preconditions, allowing refactorings definition. In
fact, this is been carried out elsewhere [14, 15].

126

Chapter 7

Related work

This chapter discusses related work related to aspect-oriented software development and
to implementation methods.

127

This chapter presents works related to aspect-oriented software development. In
particular, some of these works are also related to the implementation of persistence,
distribution, or concurrency control concerns, and to the implementation method.

7.1 Evaluating distribution and persistence concerns

implementation using AspectJ

As mentioned in Chapter 3, we restructured an object-oriented version of the Health
Watcher software to an aspect-oriented one. Kulesza et al. [44] evaluate the differences
between the object-oriented and the aspect-oriented versions of the Health Watcher
software using the following set of metrics:

• Separation of concerns

– Concern diffusion over components (CDC) — number of components (classes
and aspects) to implement a concern;

– Concern diffusion over operations (CDO) — number of methods and advices
of the components that implement a concern;

– Concern diffusion over LOC (CDLOC) — number of transition points to each
concern through the lines of code. This metric captures how tangling and
spreading is a concern in the software.

• Coupling

– Coupling between components (CBC) — how coupled is a component with
respect to other components;

– Depth of inheritance tree (DIT) — classes and aspects hierarchy depth.

• Cohesion

– Lack of cohesion in operations (LCO) — measures the cohesion of the classes
and aspects through how their methods and advices manipulate their fields.

• Size

– Vocabulary Size (VS) — number of classes and aspects;

– Lines of code (LOC) — classes and aspects lines of code;

– Number of attributes (NOA) — classes and aspects fields;

– Weighted operations per component (WOC) — complexity measure for op-
erations, based on the parameters number of methods or advices.

They give evidence of several advantages of the aspect-oriented (AO) solution over
the object-oriented (OO). The AO version decreased the number of lines of code by
9%. When considering all the components, the OO Health Watcher is 12% less cohesive
than the AO, and when considering each component, the mean difference of cohesion
was 51%, in favor of the AO software. This difference is, in part, related to the tangling

128

code between business and distribution and persistence concerns. There is some equality
between the two versions with respect to coupling, which shows that the OO software
was well designed. In fact, the mean coupling per component was 8% smaller in the AO
version, because there are more components (aspects). The hierarchy depth was also
similar between the OO and the AO software.

As expected, the separation of concerns metrics show a great advantage of the AO
version. The number of components (classes and aspects) to implement a concern (CDC)
is around 77% smaller for distribution, 51% for persistence, and 31% for concurrency
control. Regarding the number of methods and advices of the components that imple-
ment a concern (CDO), the AO version had numbers 47% smaller for distribution, 41%
for persistence, and 17% for concurrency control. Finally, the numbers of transition
points to each concern through the lines of code (CDLOC) are more than 77%, 95%,
98% smaller for distribution, persistence and concurrency control. These numbers show
how spread and tangled are those concerns in the OO version, and how effective is the
modularizations achieved by the AO approach.

The size metrics show that the OO version is around 4% less complex (WOC) than
the AO one, however, when considering the components mean, the AO version is 4%
less complex. On the other hand, the AO software has 9% more components (VS) than
the OO software. The number of fields (NOA) of the two versions is equal.

The general results conclude that there is a relative advantage of the AO Health
Watcher with respect to the OO Health Watcher. The AO advantage is mainly related to
the separation of concerns and lines of code metrics. More studies are being performed
in order to identify discrepancies in the individual components results. More details
about this study can be found elsewhere [44].

7.2 Use-case Driven Development and Aspect-Oriented

Software Development

Jacobson [38, 36, 37] considers Aspect-Oriented Programming (AOP) the missing link to
allow effective modeling with use cases. When working with use cases with the current
UML [10], neither analysis and design artifacts, such as collaboration, components and
class diagrams, nor implementation languages, such as Java and C#, support the use
of use-case extensions.

Jacobson considers that UML use-case extensions are equivalent to AOP aspects.
Actually, some extensions do not change the base use-case, while others demand inva-
sive changes in the base use case. Aspects are used in order to implement extensions
that otherwise would be invasive. For example, consider an abstract use case, called
ManageAccounts, that defines the operations to manage account objects in a storage
medium. A concrete use case would extend the abstract to manage account objects
in a relational or object-oriented database, file system, or another medium. This is an
example of a generalization relationship, and can be used to model our data manage-
ment concern. Another kind of extension relationship is extend, where a use case add
behavior (extends) to a base use case. In those extension relationships, it is necessary
to define extension points in the base use case. Those extension points can be mapped
to join points, and the added behavior to advices.

129

Jacobson’s work is primarily concerned in refining the way systems are modeled,
towards an Aspect-Oriented modeling, also establishing a mapping between model and
implementation. On the other hand, our work is primarily concerned with implemen-
tation, also providing an alternative implementation approach (progressive approach)
to early identify requirement changes. Despite being an implementation method, our
work also defines how the method can be used in a development process, by defining
how composing it with use-case driven development and RUP. In fact, Jacobson’s work
is complementary to ours.

7.3 Persistence as an Aspect

Another work [75] that discusses how to implement persistence with aspects defines
reusable aspects developed into a framework. Similarly to our work, this one has similar
conclusions such as persistence can be modularized using aspect-oriented programming,
some aspects can be reused, and systems cannot be developed unaware of the need
for data storage. This means that programmers can only be partially oblivious to
the persistence nature of the data. In fact, our work considers data management as
an aspect, and considers persistence as one kind of data management. We use such
approach to support the progressive approach, and to allow early validation of functional
requirements, which is possible by validating a nonpersistent, monolithic, and single-user
version of the system. After being validated, the prototype evolves to the persistent,
distributed, and multi-user version.

The work shows that data storage and update — the insertion of an object when it
is created and its update when it is changed — can be modularized and the system can
be unaware of these features (obliviousness). On the other hand, the system should be
aware of data retrieval and deletion, since systems have to explicitly obtain or delete
persistent objects from an external source, which forbids programmers to be oblivious
of persistence. Therefore, in their solution the system has to use a specific interface
(PersistenceData) to retrieve an object and a specific class (PersistentRoot) to delete
it. This solution is quite similar to ours, however, we use a business-data interface
that provides methods to insert, update, retrieve, and delete the objects. By using an
interface, data management services, except transactions, can be implemented as Java
collections, files, relational databases, or object-oriented databases. This adaptability
is one of our goals, and is not supported by the related work that proposes solutions
specific to relational databases and briefly discusses on how the framework could be
adapted to suit other database technology, like object-oriented databases.

An interesting feature provided by that work is a SQL translation aspect that trans-
lates an object-oriented model to a relational database (object-to-relational mapping)
schema. It uses reflection (Java and AspectJ APIs) and generates SQL statements
to access the database, whereas our approach hard-codes the SQL statements in the
implementation of the data management aspects.

130

7.4 Concurrency and Transactions

A related work is another AspectJ implementation of transactions, which is indepen-
dently developed in the context of the OPTIMA framework for controlling concurrency
and failures with transactions [43]. This implementation does not consider distribution
and persistence concerns as we do here, but deals mostly with transactions for imple-
menting concurrency concerns. Nevertheless, there are similarities with our approach,
so we discuss it in detail here.

The authors of the OPTIMA approach first analyze the adequacy of AspectJ for
completely abstracting transaction concerns in such a way that transactional behavior
can be introduced in an automatic and transparent way to existing non-transactional
systems. They conclude that AspectJ is not suitable for this purpose. We have not
tried to analyze that in our restructuring experience since we believe that the main aim
of AspectJ, and aspect-oriented programming in general, is to modularize crosscutting
concerns, not to make them completely transparent. For some situations, this trans-
parency could be achieved by proper tools that would generate AspectJ code, but not
by the language itself.

The kind of transparency sought by the authors should not be confused with obliv-
iousness, which is supported by AspectJ and allows a system programmer to not worry
about inserting hooks in the code so that it is later affected by the aspects. This does
not mean that the system programmer should not be aware of the aspects that intercept
the system code. Likewise, the aspect programmer should be aware of the code that his
aspect intercepts. In this sense, there might be strong dependencies between AspectJ
modules, reducing some of the benefits of modularity. In spite of that, there are still
important benefits that can be achieved. Moreover, we believe that this problem could
be minimized by more powerful AspectJ tools providing multiple views, and associated
operations, of the system modules. Appropriate notions of aspect interfaces should also
be developed.

AspectJ’s ability to separate transactional interfaces (begin, abort, commit), defining
aspects to invoke the transactional methods whenever necessary, has also been analyzed
by the same authors. Their implementation is similar to what we present, but they do
not explore the variations that we present, such as separating read and write transac-
tions. Those variations can actually avoid the performance problems they mentioned.
They also faced the same problem we have with the impossibility of adding an excep-
tion to a method throws clause. However, our transaction control approach avoids this
problem, which actually appears here when dealing with the distribution concerns.

When separating the transactional interfaces, they also complain about the strong
dependencies mentioned before, suggesting that AspectJ might not be useful for this
task either. In the transactions case, we argue that the dependencies do not bring
major problems in practice. This is the case because changes in the transaction aspects
are minimal and usually do not affect the pure Java code, whereas changes in the Java
code have only a very small impact on the aspects, assuming that it has been established
that any exception that is thrown and not handled by a transactional method aborts
the transaction. In fact, powerful AspectJ tools for dealing with dependencies would
be needed much more for the data access on demand aspects than for the transaction
aspects. It seems that our AspectJ implementation of transactions can usually have
significant advantages over pure Java implementations. That is certainly the case for

131

systems such as the one used in our restructuring experience and experimental study
presented in Chapters 3 and 5.

Finally, the OPTIMA experience tries to separate transaction mechanisms, support-
ing different customizations for transaction and concurrency control. They conclude
that AspectJ is useful for that. Although we have not implemented much transaction
customization, we had the same positive experience using aspects to customize data
management and distribution services.

7.5 Concurrent Object Programming

This related work deals with separation of concurrency concerns using design patterns,
pattern languages, and object-oriented framework [18]. The work covers several issues
related to concurrent programming, including how to generate, control, and guarantee
interaction between concurrent objects. On the other hand, our thesis scope is limited to
how to control concurrency in a specific software architecture. In fact, our distribution
aspects generate the concurrency that is controlled by the concurrency aspects.

The work states the need for an incremental approach in order to first implement and
test functional requirements, before implementing concurrency, similar to our progressive
approach. However, as object-oriented programming is used instead of aspect-oriented
programming, it has some problems when adopting an incremental approach. For ex-
ample, there might be conflicts between using an incremental approach and the software
reusability. Instead of adding concurrency between two objects by only changing their
implementation, it might be necessary to change the interfaces between them, decreasing
their reusability. If the work used aspect-oriented programming, those interface changes
could be made by aspects, guaranteeing business objects reusability.

Another problem mentioned by the work is the inheritance anomaly when using
synchronization. When classes include synchronization code, it might not be trivial
reusing through inheritance. The anomaly happens when new subclasses, with new
methods or new method implementations demand changing synchronizations constraints
in the superclass methods. Our concurrency control concerns do not have such problem,
since there is no specific concurrency control in classes that are specialized in the specific
software architecture used. The classes that use to have subclasses in the architecture
are the basic classes. The concurrency control applied to them is based in its fields’ type,
if a single object can be concurrently accessed, or if it is possible two copies of a same
object be concurrently updated in the system. In both cases, the inheritance anomaly
does not materialize. When analyzing the fields of a basic object, each class defines
their own fields, and the concurrency control should be normally applied for the super
and subclass separately. In the case of two copies of a same object being concurrently
updated, new properties or behavior added by a subclass might request to control the
concurrent update of this object. However, this control is not made in the superclass
or in the subclass, the control is applied in other class of the architecture, the data
collection class. In fact, this control demands adding a timestamp field in the class to
be controlled, which it is made by an aspect. By using aspect-oriented programming,
the concurrency control is transparent for the business objects not compromising their
reuse.

Similar to our work, there are several design patterns and a framework to implement

132

the concurrency concerns. Additionally, the work also has a pattern language to describe
how to compose the concurrency concerns (classes) with the sequential software. In
our approach, this composition of concerns is made by the AspectJ weaver that uses
information in the aspects that describe how they should be composed with the software.

This related work provides general concurrency patterns and framework that can
be applied in several kinds of software. Whereas our aims in defining patterns and
framework specific to a software architecture. Despite being specific, this software ar-
chitecture can be used to implement several kinds of software (see Chapter 3) and allows
a more precise definition of the patterns, framework, and guidelines on how to use them.
Besides that, is also allows automatic generation of some aspects and classes necessary
to implement the software architecture and to use the aspect framework, which also
guides the concerns implementation.

7.6 D: A language framework for distributed pro-

gramming

D [50] is a domain specific language framework that consists of three languages: Jcore, an
object-oriented language to express basic functionality of the software (a subset of Java),
Cool, a language to express coordination of threads, and Ridl, a language to express
remote access strategies. The framework uses an aspect-oriented approach in order to
achieve separation of the distribution concerns from the basic software. Furthermore,
Cool and Ridl are aspect languages. A weaver is responsible for combining programs
written in these three different languages yielding the executable distributed software.

The work uses RMI and Java concurrency control primitives to exemplify how they
tend to cut across the implementation of business objects. On the other hand, our work
presents an aspect-oriented approach that uses a general-purpose language, AspectJ,
to separate those crosscutting concerns. Our approach is not tailored to the use of
RMI, which allows changing the distribution protocol. The same happens with the
synchronization policies. Moreover, our approach allows a fine grain implementation,
for example, instead of using the RMI API the programmer might need to use the
Socket API, for performance purposes. Although we have an aspect framework, other
aspects can be written to implement other distribution protocols, design patterns [30],
and concurrency control polices.

In addition, JCore removes from Java the synchronization mechanisms (the synchro−
nized modifier, and wait, notify, and notifyAll methods), interfaces, and method
overloading, which makes Jcore a quite restrictive language. Interfaces and method over-
loading are basic object-oriented constructs and wait, notify, and notifyAll methods
might be necessary in order to implement business rules, and therefore, should not be
separated from the basic software.

The use of Cool to control concurrency and Ridl to insert distribution introduces
two new languages the programmer must know. Our approach also requires the pro-
grammer to know AspectJ, in addition to Java, however, this knowledge is used to
implement several concerns, not only concurrency control and distribution. In addition,
our approach uses the Java synchronization mechanisms, which were tested for innu-
merous programmers and researchers, instead of implementing our own synchronization

133

mechanisms. Complementary to our approach, a concurrency control implementation
method [80, 84] guides precisely how to control concurrency in a software using the spe-
cific architecture of Health Watcher, which is not provided by the D language framework.
In fact, the D framework is a general framework, whereas ours approach is architecture
specific. However, as previously mentioned, this specificity allows precise guidelines and
automatic code generation, which is not supported by D.

7.7 EJB

Another related work is The Enterprise JavaBeans (EJB) architecture [60, 93]. EJB
supports the development of distributed systems providing services such as transactions,
database connectivity, and multi-user safety, which is also supported by our method,
however, EJB implements those aspects in a transparent way.

The EJB transparency makes easy to write systems in the sense that developers
does not have to understand low-level transaction and state management details, multi-
threading, connection pooling, or other complex APIs. On the other hand, developers
cannot write their owns algorithms looking for performance improvements, which hap-
pens in our approach, where the developers have to write their own code to implement
transactions, database connectivity, distribution, and multi-user safety, dealing with
different APIs.

When using EJB to implement persistence, distribution and concurrency control,
usually in a non-progressive way, another problem is the deployment time, which might
be very high. To fix errors — including functional, persistence, and concurrency control
errors — a lot of time might be wasted by compiling the code and them deploying the
system into the application server.

Our implementation method does not aim to provide implementation transparency,
but to improve software modularity. This modularity allows the use of a progressive
implementation approach to early identify functional errors and does not mix these
errors with persistence, distribution and concurrency control errors.

Despite these differences between EJB and our approach, one possible implementa-
tion of our aspects can use the EJB architecture. Therefore, we would have aspects to
implement persistence, distribution, and concurrency control using the EJB architec-
ture. This would lead to better modularity, by using AOP, and it would also achieve
implementation transparency, provided by EJB. Our approach would also allow using
EJB in a progressive approach. Actually, another way to achieve transparency with
AspectJ, keeping the other benefits of AOP, is using code generation tools that would
generate aspects, similar to EJB that generates classes.

7.8 Other related works

The implementation of distribution and persistence concerns in pure object-oriented
systems is explored elsewhere, leading to specific design patterns [2, 53]. Those pat-
terns support the progressive implementation of distribution and persistence code in an
object-oriented system. Despite having similar goals, this approach does not achieve a
level of separation of concerns that is possible to achieve with aspect-oriented program-

134

ming (AOP); for instance, using these design patterns, the distribution and persistence
exception handling are tangled with user interface and business code. There is also
spread code over several units, such as in the serialization mechanism implementation,
and the identification of what objects should be made persistent, by using class inher-
itance. In fact, this is our motivation to study AOP and AspectJ in order to improve
the modularity of those concerns.

The need for higher adaptability and configurability of middleware is discussed else-
where [106]. That work discusses the problem of middleware architectures that vary
from general features in order to support several domains, to optimizations supporting
a particular domain with specialized runtime requirements. The work describes a case
study where AOP is used to improve modularization of the CORBA [65] middleware,
by factoring out aspects that were identified in CORBA. The identified aspects are im-
plemented in AspectJ to increase the middleware configurability, since the aspects can
be chosen at compile-time. That work is another example where AOP and AspectJ
are effectively used to modularized crosscutting concerns. However, that work differs
from ours because it modularizes concerns of a specific middleware (CORBA), making
it customizable, whereas our approach modularizes concerns of a system. Their ap-
proach is complementary to ours. We could use their improved version of CORBA to
implement another of the distribution aspects. In fact, our approach allows changing
the middleware implementation where their approach does not aim in doing that.

An experience to evaluate the suitability of AspectJ for modularizing crosscutting
concerns in a middleware product line is related in another work [8]. The motivation is
to use AOP to target multiple runtime environments with a single code base. Exam-
ples of addressed concerns are tracing and logging, event reporting, error handling, and
performance monitoring. The work also discusses the impact of AOP on architectural
quality. They derived conclusions about AspectJ similar to ours in the restructuring
experience (see Chapter 3), one of the issues is pointcut fragility, which is the pointcut
dependence on the system code. This demands refactoring tools to consider this de-
pendence in order to avoid refactorings breaking the aspect code. It is also considered
the need for improvements of the AspectJ compiler, mainly error messages, which could
give more support for the programmers. The main conclusion is that AspectJ can be
used to modularize many important crosscutting problems, however, they did not re-
port any interference problems as we did, probably because of the different nature of
our crosscutting concerns (data management, communication, and concurrency control)
in contrast to their concerns (tracing and logging, event reporting, error handling, and
performance monitoring).

Regarding distribution and aspects, another work [95] proposes a tool for supporting
aspect-oriented distributed programming. They have the same goal of implementing
distribution without changing the core system code. However, that work uses a specific
language to state what objects are located in a host, and modifies bytecodes using Java
reflection. In contrast, our approach uses a general-purpose language and does not worry
in define where the objects are located, but uses an API to implement remote methods
call from the user interface to the system facade [26].

The need for Quality of Service (QoS) aspects in distributed programs are discussed
elsewhere [6]. That work addresses QoS issues, such as, transmission errors, dynamic
bandwidth fluctuation, overload situations, partial failures, etc. They define an IDL

135

extension to allow QoS constructions and exemplify its use with CORBA. We agree
that some of these issues should be considered when implementing distribution aspects.
However, the approach in our restructuring experience (see Chapter 3) is to restructure
an OO system to an AOP version and to investigate some issues of such restructuring.
For example, how one aspect affects and is affected by others, what are the challengers
in AOP, what kind of modification should be made to the AspectJ language to allow a
better separation and composition of concerns, when a progressive approach is better
than a non-progressive one, and so on. As a future work we should care about QoS
aspects to improve our framework allowing QoS management.

The JST [79] language introduces an object synchronization aspect for the Java
language. The language allows programmers to define synchronization classes for Java.
JST is based on a state/transition language, where the basic idea is to define in the
synchronization classes all possible states for a concurrent class and what methods can
be executed in these states. The language has its own aspect weaver, implemented in
C++, which produces an OpenJava [96] meta-class for each synchronization aspect.
OpenJava is a compile-time reflective extension of Java. JST is more general than
our approach, which defines concurrency control aspects tailored to a specific software
architecture. However, by being specific, our aspects definition can be more precise and
might be more efficient [84] than a general approach. In addition, the guidelines derived
from our aspect definition supports programmers to control concurrency, which does
not happen with JST, where the programmers should figure out by themselves what
controls to apply in a system.

“Concurrent Programming in Java” [49] proposes models for implementing Java con-
current programs, design patterns to guarantee a safety execution in concurrent environ-
ments, and some rules to insert and to remove method synchronization. The approach
in that work insinuates that concurrency control must be applied during the imple-
mentation of the system functional requirements. This increases the implementation
complexity because the programmer has to worry about the concurrency control and
the implementation of the other requirements at the same time and in the same place
(tangled), which decreases the software maintainability. On the other hand, our ap-
proach allows implementing concurrency control separately (untangled), also separating
the reasoning about concurrency control. Our approach also allows using a progressive
approach [11, 86] where concurrency control is delayed until functional requirements
validation, in order to reduce the impact caused by requirement changes during de-
velopment. Another differential of our work is that is based on a specific software
architecture, which facilitates the definition of precise guidelines, also allowing a high
automatization level.

136

Chapter 8

Conclusions

This chapter presents conclusions made about this thesis work and suggests future work.

137

This work defines an aspect-oriented implementation method that modularizes data
management, distribution and concurrency control concerns. By using AspectJ, an
aspect-oriented extension of Java, these concerns implementation are separated from
business and user interface source code, which are written using Java. The aspects
implementation is presented through activities on restructuring a simple, but real and
non-trivial, web-based information system with AspectJ. In the new version of the sys-
tem, the implementation of the distribution, concurrency control, and data management
concerns are physically separated from each other and from the business and user in-
terface concerns, resulting in a software more modular than the object-oriented version.
Among other benefits, this allows us, for instance, to easily change the distribution
middleware or the persistence mechanism without affecting the implementation of the
other concerns.

A contribution in deriving such activities is to validate the use of AspectJ for im-
plementing several data management, distribution, concurrency control, and exception
handling concerns in the kind of application considered here. Moreover, we notice that
the implementation of those concerns brings significant advantages in comparison with
the corresponding pure Java implementation. The only exception is the data access on
demand concern; its implementation also has some disadvantages that could only be
minimized with more powerful AspectJ tools supporting aspect interfaces and multiple
views of the system modules, which would help programmers deal with strong depen-
dencies between the aspects and the pure Java code. In fact, the need for this kind of
tool is reported elsewhere [22]. The activities considered only basic remote communica-
tion concerns, not implementing distribution issues such as caching, fault tolerance, and
automatic object deployment for load balancing. However, we believe that those issues
could be implemented essentially using the presented approach, revealing no further
conclusions about the use of AspectJ.

In spite of our successful experience with AspectJ, we have identified a few draw-
backs in the language and suggested some minor modifications that could significantly
improve implementations similar to the one discussed here. Furthermore, we noticed
that AspectJ’s powerful constructs must be used with caution, since they might have
undesirable and unintended side effects. Moreover, as the definition of a pointcut iden-
tifies (by using methods signatures, class names, etc.) specific points of a given system,
the aspects become specific for that system, or for systems adopting the same naming
conventions, decreasing reuse possibilities. This suggests that we should either support
aspect parameterization or have the support of code generation tools when develop-
ing with AspectJ. Examples of such alternatives are defined elsewhere [51]. The need
for those tools has actually been noticed on several occasions during our experience.
AspectJ’s development environment is also quite immature and needs considerable im-
provements in compilation time and bytecode size. It is also true that they have been
continuously improved.

The distribution and data management concerns considered here can be implemented
separately. However, we noticed that the exception handling and state synchronization
aspects are actually necessary for both distribution and persistence aspects. Moreover,
the distribution and persistence aspects can be used separately, but if they are used
together then some distribution advice must intercept the execution of some persistence
advice. In addition, we show that the distribution aspects affect the persistence aspects

138

by breaking some of then, not allowing them to work. Therefore, additional aspects
are implemented to solve those problems when using persistence in a distributed en-
vironment. This is an example of crosscutting concerns that are physically, but not
semantically separated.

Therefore, careful design activities are also important for aspect-oriented program-
ming. This is the only way we can detect in advance intersections, dependencies and
conflicts among different aspects. Consequently, we can avoid serious development prob-
lems and better plan the reuse and parallel development of different aspects. This need
for design activities does not seem to have been considered in [43], leading to some of the
problems discussed there. It has been noticed before that distribution issues should not
be handled only at implementation or deployment time [102]. In fact, it is important to
clarify the use of the word “abstraction” in the aspect-oriented programming context.
This has noting to do with transparency, in the sense that any concern is semantically
tangled with business or other concerns; otherwise, they are not crosscutting concerns.
Aspect-Oriented Programming, in the beginning, and now Aspect-Oriented Software
Development have never tried to mean that, as some might believe.

Some of the aspects implemented in our restructuring experience are abstract and
constitute a simple aspect framework. They can be extended for implementing persis-
tence and distribution in other applications that comply with the architecture of the
health complaint system, a layer architecture used for developing web-based informa-
tion systems. Although specific, this architecture has been used for developing many
Java systems: a system for managing client information and mobile telephone services
configuration; a system for performing online exams, helping students to evaluate their
knowledge before the real exams; a complex point of sale system, and many others (see
Chapter 3). In fact, some of them can be easily used for other architectures, mainly
concurrency control and distribution aspects (see Chapter 3).

The other aspects are application specific and therefore have different implementa-
tions for different applications. Nevertheless, we suggest that different implementations
might follow a common aspect pattern, having aspects with the same structure. Else-
where [85], we document such an aspect pattern to implement distribution aspects in an
object-oriented application. These pattern structures can be encoded in code generation
tools and automatically generated for different applications, increasing productivity, as
we made with AJaTS, a tool support for the aspect-oriented implementation method
(see Chapter 6).

In addition, the aspect-oriented implementation method proposes an alternative for
implementing software, the progressive implementation approach. The approach aims
in validating functional requirements before implementing persistence, distribution and
concurrency control, towards to increase productivity. Moreover, an experimental study
was performed in order to characterize this alternative approach identifying when it is
useful to adopt it (see Chapter 5). Although the study suggests important advantages
when using the progressive implementation approach, additional experimental studies
should be performed to allows generalizing the results to others development teams.

Despite defining an implementation method, this work is also committed with the
whole development process. Therefore, we identify modifications that should be per-
formed to management, requirements, analysis and design, and test activities in order
to support the aspect-oriented implementation method and the progressive implemen-

139

tation approach. This is actually done in Chapter 4, where he we discussed how the
implementation method can be composed with RUP and Use-Case Driven Development.
Chapter 3 used UML for modeling aspects dynamics.

8.1 Future Work

Most examples on aspect-oriented programming and aspect-oriented software develop-
ment are non-functional requirements, but aspects are not limited to non-functional
requirements. Jacobson’s work [38, 36, 37] discussed on the related work chapter, pro-
vides a good starting point for identifying functional crosscutting concerns and write
them as aspects. Any use-case extension might be an aspect, if the extension demands
invasive changes in the base (extended) use case. This probably should be identified
by analysis and design models, and the current Health Watcher models have not such
situation. It might be necessary to refine Health Watcher analysis or look at a more
complex system.

More sophisticated distribution aspects can be written, for instance to guarantee
fault tolerance, caching, and automatic object deployment for load balancing. This
would also make necessary more sophisticated concurrency control, since an operation
might start in one server and finish in another. Imagine implementing transaction
control and other concurrency controls needed for such operations. The distribution
aspects can also be extended to consider QoS (quality of service) [6].

The tool support for the aspect-oriented implementation method generates classes
and aspects. More generally, AJaTS is a transformation tool, and therefore, can be
used to implement object-oriented and aspect-oriented refactorings. However, more
work should be done in order to define behavior-preserving transformations, maybe
extending the tool to provide some static analysis. In fact, a masters work in progress [14]
is investigating refactorings for aspect-oriented programming and will use and extend
AJaTS to perform those refactorings.

More experimental studies should be performed to better evaluate the progressive
implementation approach. In fact, experimental studies should be designed to evaluate
several results of this work. For example, studies to evaluate the aspect framework
and the tool support. Another interesting study can evaluate different instances of the
modified version of RUP that complies with the implementation method, aspect-oriented
development, and progressive approach. A third study can compare the aspect-oriented
implementation method with the object-oriented one [52]. Another study that can be
performed is to evaluate the use of the progressive implementation approach with other
development techniques.

An important future work is to investigate alternatives to some open issues and
workarounds used in this work. For example, some defined aspects use reflection to in-
crease the aspect reuse, however decreasing code legibility and reliability. On the other
hand, alternatives, such as aspect parameterization or code generation tools can provide
a much more reliable and elegant solution. Another future work is to investigate alter-
native to define remote pointcuts, which is one of the worst impacts of the distribution
aspects, which actually had break some data management aspects.

Since the implementation method uses a specific software architecture, another fu-
ture work is to generalize the software architecture, also executing case studies and

140

experimental studies to evaluate such proposals. In addition to the architecture gener-
alization, the implementation method and the activities impacted by the method should
also be generalized to be applied in a wider range of software.

141

Appendix A

Experiment Questionare

Answer the following questionnaire in order to collect information about your profiles
and experience with software development.

1. Name:

2. Fill the following form with the appropriate information about your experience
with the following items. ATENTION: You should fill the form using the letters
A and I to define your experience in academia (A) and in the industry (I) or mark
the OITC square if your experience is only in this course. For example, if you have
5 months of experience in academia and 3 years in industry in one technology you
should fill the column “< 6m” with A and column “2-4y” with I.

OITC - only in this course

< 6m - less than 6 months

6m-2y - Between 6 months and 2 years

2y-4y - Between 2 and 4 years

4y-6y - Between 4 and 6 years

> 6y - more than 6 years

Item OITC < 6m 6m-2y 2-4y 4-6y > 6y

Java
Databases
JDBC
Distributed systems
RMI (Remote Method Invocation)
Java Servlets
Object-oriented design
AspectJ
Use Cases
Software development projects

3. What is your current situation?

142

• M.Sc. student.

• Ph.D. student.

• Other. Please, specify:

143

Appendix B

AJaTS templates

This appendix presents transformation files used to generate code with AJaTS in order
to support the aspect-oriented implementation method. The templates use a naming
convention adding lhs and rhs suffixes standing for left hand-side (source template)
and right hand-side (target template), and named with the extension .ajast.

B.1 Software architecture

The following transformation files generate types of the spectific software architecture
used by the implementation method.

B.1.1 Basic class source template

//BasicClass_lhs.ajats

#[PackageDeclaration:#PD_BASIC;]#

ImportDeclarationSet:#IDS_BASIC;

ModifierList:#M_BASIC class #BASIC #[extends #SC_BASIC]#

#[implements NameList:#IFS_BASIC]# {

FieldDeclarationSet:#ATTRS_BASIC;

InitializerSet:#IS_BASIC;

ConstructorDeclarationSet:#CONS_BASIC;

MethodDeclarationSet:#MTDS_BASIC;

}

B.1.2 Business-data interface target template

//BusinessDataInterface_rhs.ajats

package #< #BASIC.toVariableName() >#

ImportDeclarationSet:#IDS_BASIC;

import java.rmi.RemoteException;

ModifierList:#M_BASIC interface #< #BASIC.addPrefix("I")

.addSuffix("Repository") ># {

forall #md in #SELECTED_MDS {

MethodDeclaration:#< #md.toInterfaceMethodDeclaration() >#;

}

}

144

B.1.3 Business collection target template

//BusinessCollection_rhs.ajats

package #< #BASIC.toVariableName() >#

public class #< #BASIC.addSuffix("Record", false) ># {

private #< #BASIC.addPrefix("I").addSuffix("Repository") >#

#< #BASIC.addSuffix("s", false).toVariableName() >#;

public #< #BASIC.addSuffix("Record", false) >#() {

this.#< #BASIC.addSuffix("s", false).toVariableName() ># =

new #< #BASIC.addPrefix("I")

.addSuffix("Repository") >#();

}

public void cadastrar(#BASIC #< #BASIC.toVariableName() >#) {

if(#< #BASIC.addSuffix("s", false).toVariableName() >#

.has(#< #BASIC.toVariableName() >#.getId())) {

throw new #< #BASIC.addSuffix("AlreadyRegisteredException",

false) >#();

} else {

#< #BASIC.addSuffix("s", false).toVariableName() >#

.insert(#< #BASIC.toVariableName() >#);

}

}

public void update(#BASIC #< #BASIC.toVariableName() >#) {

#< #BASIC.addSuffix("s", false).toVariableName() >#

.update(#< #BASIC.toVariableName() >#);

}

public void remove(String id) {

#< #BASIC.addSuffix("s", false).toVariableName() >#.remove(id);

}

public #BASIC search(String id) {

return #< #BASIC.addSuffix("s", false).toVariableName() >#

.search(id);

}

public boolean has(String id) {

return #< #BASIC.addSuffix("s", false).toVariableName() >#

.has(id);

}

}

145

B.1.4 Facade target template

//Facade_rhs.ajats

#[PackageDeclaration:#PD_FACADE;]#

ImportDeclarationSet:#IDS_OPTIONAL;

ImportDeclarationSet:#IDS_FACADE;

public class #FACADE #[extends #SC_FACADE]#

#[implements NameList:#IFS_FACADE]# {

private #< #BASIC.addPrefix("Cadastro").addSuffix("s", false) >#

#< #BASIC.addSuffix("s", false).toVariableName() >#;

FieldDeclarationSet:#ATTRS_FACADE;

InitializerSet:#IS_FACADE;

public #FACADE() {

Block:#CONST_BLOCK;

#< #BASIC.addSuffix("s", false).toVariableName() ># =

new #< #BASIC.addPrefix("Cadastro").addSuffix("s", false) >#();

}

ConstructorDeclarationSet:#CDS_FACADE;

public void #< #BASIC.addPrefix("cadastrar") >#(

#BASIC #< #BASIC.toVariableName() >#) {

#< #BASIC.addSuffix("s", false).toVariableName() >#

.cadastrar(#< #BASIC.toVariableName() >#);

}

public #BASIC #< #BASIC.addPrefix("procurar") >#(String id) {

return #< #BASIC.addSuffix("s", false).toVariableName() >#

.procurar(id);

}

public void #< #BASIC.addPrefix("remove") >#(String id) {

#< #BASIC.addSuffix("s", false).toVariableName() >#.remove(id);

}

public void #< #BASIC.addPrefix("update") >#(

#BASIC #< #BASIC.toVariableName() >#) {

#< #BASIC.addSuffix("s", false).toVariableName() >#

.update(#< #BASIC.toVariableName() >#);

}

MethodDeclarationSet:#MTDS_FACADE;

}

146

B.2 Data management templates

The following target templates use the same basic class source template used by the
software architecture templates.

B.2.1 Array data collection target template

//RepositoryArray_rhs.ajats

#[PackageDeclaration:#PD_BASIC;]#

public class #< #BASIC.addSuffix("RepositoryArray", false) ># implements

#< #BASIC.addPrefix("I").addSuffix("Repository") ># {

private #BASIC[] #< #BASIC.addSuffix("s", false).toVariableName() >#;

private int index;

public #< #BASIC.addSuffix("RepositoryArray", false) >#() {

#< #BASIC.addSuffix("s", false).toVariableName() ># =

new #BASIC[100];

index = 0;

}

public void insert(#BASIC #< #BASIC.toVariableName() >#) {

#< #BASIC.addSuffix("s", false).toVariableName() >#[index] =

#< #BASIC.toVariableName() >#;

index = index + 1;

}

public void update(#BASIC #< #BASIC.toVariableName() >#) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

int i = getIndex(#< #BASIC.toVariableName() >#.getId());

if(i == index) {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

} else {

#< #BASIC.addSuffix("s", false).toVariableName() >#[i] =

#< #BASIC.toVariableName() >#;

}

}

public void remove(String id) throws #< #BASIC.addSuffix(

"NotFoundException", false) ># {

int i = getIndex(id);

if(i == index) {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

} else {

index = index - 1;

#< #BASIC.addSuffix("s", false).toVariableName() >#[i] =

#< #BASIC.addSuffix("s", false).toVariableName() >#[index];

}

}

147

public #BASIC search(String id) throws #< #BASIC

.addSuffix("NotFoundException", false) ># {

#BASIC response;

int i = getIndex(id);

if(i == index) {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

} else {

response = #< #BASIC.addSuffix("s", false)

.toVariableName() >#[i];

}

return response;

}

public boolean has(String id) {

boolean response;

int i = getIndex(id);

if(i == index) {

response = false;

} else {

response = true;

}

return response;

}

private int getIndex(String id) {

boolean found = false;

int i = 0;

while((!found) && (i < index)) {

if(#< #BASIC.addSuffix("s", false).toVariableName() >#[i]

.getId().equals(id)) {

found = true;

} else {

i = i + 1;

}

}

return i;

}

}

148

B.2.2 List data collection target template

//RepositoryList_rhs.ajats

#[PackageDeclaration:#PD_BASIC;]#

public class #< #BASIC.addSuffix("RepositoryList", false) ># implements

#< #BASIC.addPrefix("I").addSuffix("Repository") ># {

private #BASIC #< #BASIC.toVariableName() >#;

private #< #BASIC.addSuffix("RepositoryList", false) ># next;

public #< #BASIC.addSuffix("RepositoryList", false) >#() {

#< #BASIC.toVariableName() ># = null;

next = null;

}

public void insert(#BASIC #< #BASIC.toVariableName() >#) {

if(this.#< #BASIC.toVariableName() ># != null) {

next.insert(#< #BASIC.toVariableName() >#);

} else {

this.#< #BASIC.toVariableName() ># =

#< #BASIC.toVariableName() >#;

this.next =

new #< #BASIC.addSuffix("RepositoryList", false) >#();

}

}

public void update(#BASIC #< #BASIC.toVariableName() >#) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

if(this.#< #BASIC.toVariableName() ># != null) {

if(this.#< #BASIC.toVariableName() >#.getIdentificador()

.equals(#< #BASIC.toVariableName() >#

.getIdentificador())) {

this.#< #BASIC.toVariableName() ># =

#< #BASIC.toVariableName() >#;

} else {

next.update(#< #BASIC.toVariableName() >#);

}

} else {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

}

}

public void remove(String id) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

if(this.#< #BASIC.toVariableName() ># != null) {

if(this.#< #BASIC.toVariableName() >#.getIdentificador()

.equals(id)) {

this.#< #BASIC.toVariableName() ># =

next.#< #BASIC.toVariableName() >#;

this.next = next.next;

} else {

next.remove(id);

149

}

} else {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

}

}

public #BASIC search(String id)

throws #< #BASIC.addSuffix("NotFoundException", false) ># {

#BASIC response;

if(this.#< #BASIC.toVariableName() ># != null) {

if(this.#< #BASIC.toVariableName() >#.getIdentificador()

.equals(id)) {

response = this.#< #BASIC.toVariableName() >#;

} else {

response = next.search(id);

}

} else {

throw new #< #BASIC.addSuffix("NotFoundException", false) >#();

}

return response;

}

public boolean has(String id) {

boolean response;

if(this.#< #BASIC.toVariableName() ># != null) {

if(this.#< #BASIC.toVariableName() >#.getIdentificador()

.equals(id)) {

response = true;

} else {

response = next.has(id);

}

} else {

response = false;

}

return response;

}

}

150

B.2.3 Relational database data collection target template

//RepositoryBDR_rhs.ajats

#[PackageDeclaration:#PD_BASIC;]#

import java.sql.*;

import java.util.Vector;

import java.util.Collection;

import #EXCEPTION_PCKG.PersistenceSoftException;

import #EXCEPTION_PCKG.#< #BASIC.addSuffix("NotFoundException", false) ># ;

import #EXCEPTION_PCKG.ExceptionCode;

import #POOL_PKG.PersistenceMechanismRDBMS;

import #POOL_PKG.TransacaoException;

import #POOL_PKG.PersistenceMechanismException;

ImportDeclarationSet:#IDS_BASIC;

public class #< #BASIC.addSuffix("RepositoryRDBMS", false) ># implements

#< #BASIC.addPrefix("I").addSuffix("Repository") ># {

private PersistenceMechanismRDBMS pm;

public #< #BASIC.addSuffix("RepositoryRDBMS", false) >#() {

try {

pm = PersistenceMechanismRDBMS.getInstance();

} catch(TransacaoException ex){

throw new PersistenceSoftException(ex);

}

}

public void insert(#BASIC #< #BASIC.toVariableName() >#) {

String sql = #SQL_I;

Statement stmt = null;

try {

stmt = (Statement)pm.getCommunicationChannel();

stmt.execute(sql);

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

finally {

try {

stmt.close();

pm.releaseCommunicationChannel();

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

}

}

151

public void update(#BASIC #< #BASIC.toVariableName() >#) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

Statement stmt = null;

String sql = #SQL_A;

try {

stmt = (Statement)pm.getCommunicationChannel();

int resultadoAtualizacao = stmt.executeUpdate(sql);

if(resultadoAtualizacao == 0) {

throw new #< #BASIC.addSuffix("NotFoundException",

false) ># ();

}

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

finally {

try {

stmt.close();

pm.releaseCommunicationChannel();

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

}

}

public void remove(#BASIC #< #BASIC.toVariableName() >#) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

Statement stmt = null;

String sql = #SQL_R;

try {

stmt = (Statement)pm.getCommunicationChannel();

int resultadoAtualizacao = stmt.executeUpdate(sql);

if(resultadoAtualizacao == 0) {

throw new #< #BASIC.addSuffix("NotFoundException",

false) ># ();

}

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

finally {

try {

152

stmt.close();

pm.releaseCommunicationChannel();

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

}

}

public #BASIC search(#BASIC #< #BASIC.toVariableName() >#) throws

#< #BASIC.addSuffix("NotFoundException", false) ># {

Statement stmt = null;

ResultSet rs = null;

#BASIC #< #BASIC.toVariableName().addSuffix("Return") ># = null;

String sql = #SQL_P;

try {

stmt = (Statement)pm.getCommunicationChannel();

rs = stmt.executeQuery(sql);

if(rs.next() == false) {

throw new #< #BASIC.addSuffix("NotFoundException",

false) ># ();

}

#< #BASIC.toVariableName().addSuffix("Return") ># =

new #BASIC();

forall #fd in #ATTRS_BASIC {

forall #vd in #< #fd.getVariables() ># {

#if(#fd.getTypeCode() !=

cin.jats.engine.parser.nodes.JType.OBJECT) {

#< #BASIC.toVariableName().addSuffix("Return") >#

.#< #vd.addPrefix("set") >#(

rs.#< #fd.getDefaultQueryMethod() >#(

#<#MAP_TABLE.getTableEntry(

#<#vd.getName()>#)>#));

} else {

#< #BASIC.toVariableName().addSuffix("Return") >#

.#< #vd.addPrefix("set") >#((#< #fd.getType() >#(

rs.getObject(

#<#MAP_TABLE.getTableEntry(

#<#vd.getName()>#)>#));

}

}

}

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

153

} finally {

try {

rs.close();

stmt.close();

pm.releaseCommunicationChannel();

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

}

return #< #BASIC.toVariableName().addSuffix("Return") >#;

}

public Collection searchAll() throws TransacaoException{

Statement stmt = null;

ResultSet rs = null;

#BASIC #< #BASIC.toVariableName() ># = null;

Collection collection = new Vector();

String sql = #SQL_PT;

try {

stmt = (Statement)pm.getCommunicationChannel();

rs = stmt.executeQuery(sql);

while(rs.next()) {

#< #BASIC.toVariableName() ># = new #BASIC();

forall #fd in #ATTRS_BASIC {

forall #vd in #< #fd.getVariables() ># {

#if(#fd.getTypeCode() !=

cin.jats.engine.parser.nodes.JType.OBJECT) {

#< #BASIC.toVariableName() >#

.#< #vd.addPrefix("set") >#(

rs.#< #fd.getDefaultQueryMethod() >#(

#<#MAP_TABLE.getTableEntry(

#<#vd.getName()>#)>#));

} else {

#< #BASIC.toVariableName() >#

.#< #vd.addPrefix("set") >#(

(#< #fd.getType() >#(

rs.getObject(

#<#MAP_TABLE.getTableEntry(

#<#vd.getName()>#)>#));

}

}

}

collection.add(#< #BASIC.toVariableName() >#);

}

} catch(SQLException e) {

154

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

finally {

try {

rs.close();

stmt.close();

pm.releaseCommunicationChannel();

} catch(SQLException e) {

throw new PersistenceSoftException(e);

} catch(PersistenceMechanismException e) {

throw new PersistenceSoftException(e);

}

}

return collection;

}

}

155

B.3 Distribution templates

The following templates generate distribution aspects and auxiliary types. They use a
source template that matches the facade class.

B.3.1 Facade source template

//Facade_lhs.ajats

PackageDeclaration:#PD_FACADE;

ImportDeclarationSet:#IDS_FACADE;

public class #FACADE #[extends #SC_FACADE]#

#[implements NameList:#IFS_FACADE]# {

FieldDeclarationSet:#ATTRS_FACADE;

InitializerSet:#IS_FACADE;

ConstructorDeclarationSet:#CDS_FACADE;

MethodDeclarationSet:#MTDS_FACADE;

}

B.3.2 Singleton target template

//Singleton_rhs.ajats

PackageDeclaration:#PD_FACADE;

ImportDeclarationSet:#IDS;

public class #FACADE #[extends #SC_FACADE]#

#[implements NameList:#IFS_FACADE]# {

private static #< #FACADE ># singleton;

FieldDeclarationSet:#ATTRS_FACADE;

InitializerSet:#IS_FACADE;

forall #cd in #CDS_FACADE {

#< #cd.getModifiers().removeAllModifiers() >#;

#< #cd.getModifiers()

.addModifier(java.lang.reflect.Modifier.PRIVATE) >#;

}

ConstructorDeclarationSet:#CDS_FACADE;

public #< #FACADE ># getInstance() {

if (singleton == null) {

singleton = new #< #FACADE >#();

}

return singleton;

}

MethodDeclarationSet:#MTDS_FACADE;

}

156

B.3.3 Server-side target template

//Server_side_rhs.ajats

package ##TARGET_PACKAGE##;

import cin.aspects.framework.distribution.AbstractServerSideAspect;

import java.rmi.Remote;

public aspect #< #FACADE.addSuffix("ServerSideAspect", false) >#

extends AbstractServerSideAspect {

public static final String SYSTEM_NAME = "##SYSTEM_NAME##";

public static final String RMI_SERVER_NAME = "##RMI_SERVER_NAME##";

declare parents: #< #FACADE ># implements

#< #FACADE.addPrefix("IRemote", false) >#;

declare parents: ##SERIALIZABLE_TYPE_LIST##

implements java.io.Serializable;

Remote initFacadeInstance() {

return #< #FACADE >#.getInstance();

}

String getSystemName() {

return SYSTEM_NAME;

}

pointcut facadeMainExecution(String[] args):

execution(static void #< #FACADE >#.main(String[])) &&

args(args);

public static void #< #FACADE >#.main(String[] args) {

// just to enable the super aspect

}

}

B.3.4 Client-side target template

//ClientSideAspect_rhs.ajats

package ##TARGET_PACKAGE##;

import cin.aspects.framework.distribution.AbstractServerSideAspect;

import cin.aspects.framework.updateState.UpdateStateControl;

import javax.servlet.http.HttpServlet;

import org.aspectj.lang.SoftException;

public aspect #< #FACADE.addSuffix("ClientSideAspect", false) >#

extends AbstractClientSideAspect {

private #< #FACADE.addPrefix("IRemote", false) >#

#< #FACADE.toVariableName() >#;

void setRemoteFacade(#< #FACADE.addPrefix("IRemote", false) ># remote) {

#< #FACADE.toVariableName() ># = remote;

}

public Object getRemoteFacade() {

prepareFacade();

return #< #FACADE.toVariableName() >#;

}

157

pointcut facadeCallers():

this(HttpServlet) ||

within(UpdateStateControl);

pointcut facadeCalls():

call(* #< #FACADE.addPrefix("IRemote", false) >#+.*(..)) &&

!call(static * #< #FACADE.addPrefix("IRemote", false) >#+.*(..));

pointcut facadeLocalCalls():

facadeCallers() &&

facadeCalls();

Object around():

facadeCallers() &&

call(* #< #FACADE.addSuffix("ServerSideAspect", false) >#

.getInstance()) {

return null;

}

private synchronized void prepareFacade() {

if (#< #FACADE.toVariableName() ># == null) {

try {

System.out.println("About to lookup...");

#< #FACADE.toVariableName() ># =

(#< #FACADE.addPrefix("IRemote", false) >#)

java.rmi.Naming.lookup("//" +

#< #FACADE.addSuffix("ServerSideAspect", false) >#

.RMI_SERVER_NAME + "/" +

#< #FACADE.addSuffix("ServerSideAspect", false) >#

.SYSTEM_NAME);

System.out.println("Remote #FACADE found");

} catch (Throwable ex) {

throw new SoftException(ex);

}

}

}

}

158

Bibliography

[1] Vander Alves. Progressive development of distributed object–oriented applica-
tions. Master’s thesis, Informatics Center — Federal University of Pernambuco,
Brazil, February 2001.

[2] Vander Alves and Paulo Borba. Distributed Adapters Pattern: A Design Pattern
for Object-Oriented Distributed Applications. In First Latin American Conference
on Pattern Languages of Programming — SugarLoafPLoP, Rio de Janeiro, Brazil,
October 2001. Published in UERJ Magazine: Special Issue on Software Patterns.

[3] Vander Alves and Paulo Borba. An Implementation Method for Distributed
Object-Oriented Applications. In XV Brazilian Symposium on Software Engi-
neering, pages 161–176, Rio de Janeiro, Brazil, October 2001.

[4] Scott Ambler. Process Patterns-Building Large-Scale Systems Using Object Tech-
nology. Cambridge University Press, 1998.

[5] Victor Basili, Richard Selby, and David Hutchens. Experimentation in Software
Engineering. IEEE Transactions on Software Engineering, SE-12(7):733–743, July
1986.

[6] C. Becker and K. Geihs. Quality of service - aspects of distributed programs. In
International Workshop on Aspect Oriented Programming (ICSE 1998), February
1998.

[7] Lodewijk Bergmans and Mehmet Aksit. Composing Crosscuting Concerns Using
Composition Filters. Communications of the ACM, 44(10):51–57, October 2001.

[8] Ron Bodkin, Adrian Colyer, and Jim Hugunin. Applying aop for middleware
platform independence. In Practitioner Report of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD’03), March 2003.

[9] Grady Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, second edition, 1994.

[10] Grady Booch, Ivar Jacobson, and James Rumbaugh. Unified Modeling Language
— User’s Guide. Addison-Wesley, 1999.

[11] Paulo Borba, Saulo Araújo, Hednilson Bezerra, Marconi Lima, and Sérgio Soares.
Progressive Implementation of Distributed Java Applications. In Engineering Dis-
tributed Objects Workshop, ACM International Conference on Software Engineer-
ing, pages 40–47, Los Angeles, EUA, 17th–18th May 1999.

159

[12] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael
Stal. A System of Patterns: Pattern-Oriented Software Architecture. John Wiley
& Sons, 1996.

[13] Fernando Castor and Paulo Borba. A language for specifying Java transformations.
In V Brazilian Symposium on Programming Languages, pages 236–251, Curitiba,
Brazil, 23th–25th May 2001.

[14] Leonardo Cole. Deriving Refactorings for AspectJ. Master’s thesis, Centro de
Informática – Universidade Federal de Pernambuco, 2004. To appear.

[15] Leonardo Cole and Paulo Borba. Deriving Refactorings for AspectJ. In Poster at
OOPSLA’2004, October 2004. To appear.

[16] D. Coleman, D. Ahs, B. Lowther, and P. Oman. Using Metrics to Evaluate
Software System Maintainability. IEEE Computer, 24(8):44–49, August 1994.

[17] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison–Wesley, 2000.

[18] M. Ferreira Rito da Silva. Concurrent Object–Oriented Programming: Separa-
tion and Composition of Concerns using Design Pattern, Pattern Languages and
Object–Oriented Frameworks. PhD thesis, Technical University of Lisbon, 1999.

[19] Marcelo d’Amorim, Clóvis Nogueira, Gustavo Santos, Adeline Souza, and Paulo
Borba. Integrating Code Generation and Refactoring. In Workshop on Generative
Programming, ECOOP’02, Málaga, Spain, June 2002.

[20] Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems.
Addison–Wesley, second edition, 1994.

[21] Tzilla Elrad, Robert Filman, and Atef Bader. Aspect–Oriented Programming.
Communications of the ACM, 44(10):29–32, October 2001.

[22] Robert Filman and Daniel P. Friedman. Aspect–Oriented Programming is Quan-
tification and Obliviousness. In Workshop on Advanced Separation of Concerns,
OOPSLA’00, 2000.

[23] David Flanagan. JavaScript The Definitive Guide. O’Reilly & Associates, Inc.,
second edition, 1997.

[24] Martin Fowler et al. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[25] Erich Gamma and Kent Beck. Contributing to Eclipse: Principles, Patterns, and
Plug-ins. Addiso Wesley, first edition, October 2003.

[26] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[27] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Spec-
ification. Addison-Wesley, second edition, 2000.

160

[28] R. Graddy. Succesfully Applying Software Metrics. IEEE Computer, 27(9):18–25,
September 1994.

[29] Ian S. Graham. The HTML Sourcebook. Wiley Computer Publishing, second
edition, 1996.

[30] Jan Hannemann and Gregor Kiczales. Design Pattern Implementations in Java
and Aspectj. In Proceedings of the 17th ACM conference on Object-oriented
programming, systems, languages, and applications, OOPSLA’02. ACM Press,
November 2002.

[31] Erik Hilsdale and Gregor Kiczales. Aspect–oriented programming with AspectJ.
In OOPSLA’01, Tutorial, Tampa FL, 2001.

[32] Jason Hunter and Willian Crawford. Java Servlet Programming. O’Reilly &
Associates, Inc., first edition, 1998.

[33] Object Technology International Inc. Eclipse Platform Technical Overview. White
Paper. Dispońıvel em http://www.eclipse.org/, Julho 2001.

[34] Lieberherr K. J., Silva-Lepe I., and et al. Adaptive Object–Oriented Programming
Using Graph–Based Customization. Communications of the ACM, 37(5):94–101,
1994.

[35] Ivar Jacobson. Object-oriented development in an industrial environment. In Pro-
ceedings of the OOPSLA’87 conference on Object-oriented programming systems,
languages and applications, pages 183–191. ACM Press, December 1987.

[36] Ivar Jacobson. Aspects: The missing link. Software Development, October 2003.
Avaliable at http://www.sdmagazine.com.

[37] Ivar Jacobson. The case for aspects. Software Development, September 2003.
Avaliable at http://www.sdmagazine.com.

[38] Ivar Jacobson. Use cases and aspects - working seamlessly together. Journal of
Object Technology, July/August 2003. Avaliable at http://www.jot.fm.

[39] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software Devel-
opment Process. Addison-Wesley, 1999.

[40] Raj Jain. The art of computer systems performance analysis: techniques for ex-
perimental design, measurement, simulation and modeling. Wiley, 1991.

[41] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. Getting Started with AspectJ. Communications of the
ACM, 44(10):59–65, October 2001.

[42] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc, and John Irwin. Aspect-Oriented Programming. In European Confer-
ence on Object-Oriented Programming, ECOOP’97, LNCS 1241, pages 220–242,
Finland, June 1997. Springer-Verlag.

161

[43] Jörg Kienzle and Rachid Guerraoui. AOP: Does it Make Sense? The Case of Con-
currency and Failures. In European Conference on Object-Oriented programming,
ECOOP’02, LNCS 2374, pages 37–61, Málaga, Spain, June 2002. Springer–Verlag.

[44] Uirá Kulesza, Cláudio Sant’Anna, Alessandro Garcia, Carlos Lucena, and Arndt
von Staa. Evaluating distribution and persistence concerns implementation using
AspectJ. Technical report, Informatics Department, PUC-Rio, 2004. To appear.

[45] Ramnivas Laddad. I want my AOP!, Part 1: Separate software concerns with
aspect-oriented programming. JavaWorld, January 2002. Avaliable at http://-
www.javaworld.com/javaworld/jw-01-2002/jw-0118-aspect.html.

[46] Ramnivas Laddad. I want my AOP!, Part 2: Learn AspectJ to better understand
aspect-oriented programming. JavaWorld, March 2002. Avaliable at http://www.-
javaworld.com/javaworld/jw-03-2002/jw-0301-aspect2.html.

[47] Ramnivas Laddad. I want my AOP!, Part 3: Use AspectJ to modularize cross-
cutting concerns in real-world problems. JavaWorld, April 2002. Avaliable at
http://www.javaworld.com/javaworld/jw-04-2002/jw-0412-aspect3.html.

[48] Eduardo Laureano. Persistence implementation with AspectJ. Master’s thesis,
Informatics Center — Federal University of Pernambuco, Brazil, January 2002.

[49] Doug Lea. Concurrent Programming in Java. Addison–Wesley, second edition,
1999.

[50] Cristina Lopes and Gregor Kiczales. D: A language framework for distributed
programming. Technical report, Xerox Palo Alto Research Center, 1997.

[51] Neil Loughran and Awais Rashid. Framed aspects: Supporting variability and
configurability for aop. In Proceeding of the 8th International Conference on Soft-
ware Reuse: Methods, Techniques and Tools, ICSR 2004, pages 127–140, July
2004.

[52] Tiago Massoni. A Software Process with Progressive Implementation Support (in
portuguese). Master’s thesis, Informatics Center — Federal University of Pernam-
buco, Brazil, February 2001.

[53] Tiago Massoni, Vander Alves, Sérgio Soares, and Paulo Borba. PDC: Persistent
Data Collections pattern. In First Latin American Conference on Pattern Lan-
guages of Programming — SugarLoafPLoP., pages 311–326, Rio de Janeiro, Brazil,
October 2001. Published in University of São Paulo Magazine — ICMC, 2002.

[54] Hidehiko Masuhara and Gregor Kiczales. Modular Crosscutting in Aspect-
Oriented Mechanisms. In European Conference on Object-Oriented Programming,
ECOOP’2003. Springer-Verlag, July 2003.

[55] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, second
edition, 1997.

[56] Sun Microsystems. JavaCC Project. Available at https://javacc.dev.java.net.

162

[57] Sun Microsystems. Package java.sql. Available at http://java.sun.com/products/-
jdk/1.2/docs/api/java/sql/package-summary.html.

[58] Sun Microsystems. Java Remote Method Invocation (RMI). Dispońıvel em
http://java.sun.com/products/jdk/1.2/docs/guide/rmi, 2001.

[59] Sun Microsystems. Java Remote Method Invocation (RMI). At http://java.sun.-
com/products/jdk/1.2/ docs/guide/rmi, 2001.

[60] Richard Monson-Haefel. Enterprise JavaBeans. Oreilly, second edition, 2000.

[61] Michiaki Tatsubori Muga Nishizawa, Shigeru Chiba. Remote pointcut: a language
construct for distributed aop. In Proceedings of the 3rd International Conference
on Aspect-Oriented Software Development, AOSD 2004, pages 7–15, March 2004.

[62] Gail Murphy, Robert Walker, and Elisa Baniassad. Evaluating Emerging Soft-
ware Development Technologies: Lessons Learned from Assessing Aspect-Oriented
Programming. IEEE Transactions on Software Engineering, 25(4):438–455,
July/August 1999.

[63] Gail C. Murphy, Robert J. Walker, Elisa L.A. Baniassad, Martin P. Robillard,
Albert Lai, and Milk A. Kersten. Does aspect–oriented programming work? Com-
munications of the ACM, 44(10):75–77, October 2001.

[64] Bashar Nuseibeh. Crosscutting requirements. In Proceedings of the 3rd interna-
tional conference on Aspect-oriented software development, AOSD’04, pages 3–4.
ACM Press, March 2004.

[65] Robert Orfali and Dan Harkey. Client/Server Programming with Java and
CORBA. Wiley, 1998.

[66] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying suject–
oriented composition. TAPOS, 2(3):179–202, 1996. Special Issue on Subjectivity
in OO Systems.

[67] Harold Ossher and Peri Tarr. Using subject–oriented programming to overcome
common problems in object–oriented software development/evolution. In Interna-
tional Conference on Software Engineering, ICSE’99, pages 698–688. ACM, 1999.

[68] Harold Ossher and Peri Tarr. Hyper/J: multi–dimensional separation of concerns
for Java. In 22nd International Conference on Software Engineering, pages 734–
737. ACM, 2000.

[69] Shari Pfleeger. Design and Analysis in Software Engineering, Part 1: The Lan-
guage of Case Studies and Formal Experiments. Software Engineering Notes,
19(4):16–20, October 1994.

[70] Shari Pfleeger. Experimental Design and Analysis in Software Engineering, Part 2:
How to Set Up an Experiment. Software Engineering Notes, 20(1):22–26, January
1995.

163

[71] Shari Pfleeger. Experimental Design and Analysis in Software Engineering, Part
3: Types of Experimental Design. Software Engineering Notes, 20(2):14–16, April
1995.

[72] Shari Pfleeger. Experimental Design and Analysis in Software Engineering, Part
4: Choosing an Experimental Design. Software Engineering Notes, 20(3):13–15,
July 1995.

[73] Shari Pfleeger. Experimental Design and Analysis in Software Engineering, Part
5: Analyzing the Data. Software Engineering Notes, 20(5):14–17, December 1995.

[74] Roger Pressman. Software Engineering: A Practitioners Approach. McGraw-Hill,
5th edition, 2000.

[75] Awais Rashid and Ruzanna Chitchyan. Persistence as an aspect. In Proceedings
of the 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03), pages 120–129. ACM Press, March 2003.

[76] Rational. Rational Web pages, Rational Software Corporation. At http://www.-
rational.com.

[77] Yau S. and Collofello J. Some Stability Measures for Software Maintenance. TSE,
SE–6, 1980.

[78] Carolyn Seaman. Qualitative Methods in Empirical Studies of Software Engineer-
ing. IEEE Transactions on Software Engineering, 25(4):557–572, July/August
1999.

[79] L. Seinturier. Jst: An object synchronization aspect for java. In Workshop on
Advanced Separation of Concerns (ECOOP 1999), June 1999.

[80] Sérgio Soares. Progressive Develpoment of Object Oriented Concurrent Programs
(in portuguese). Master’s thesis, Informatics Center (CIn) — Federal University
of Pernambuco (UFPE) — Brazil, February 2001.

[81] Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases (in portuguese). In V Brazilian Symposium on Programming Languages,
pages 252–267, Curitiba, Brazil, May 23-25 2001.

[82] Sérgio Soares and Paulo Borba. Concurrency Manager. In First Latin American
Conference on Pattern Languages of Programming — SugarLoafPLoP, pages 221–
231, Rio de Janeiro, Brazil, October 2001. Published in UERJ Magazine: Special
Issue on Software Patterns.

[83] Sérgio Soares and Paulo Borba. AspectJ — Aspect-Oriented Programming in
Java (in portuguese). In Tutorial in SBLP 2002, VI Brazilian Symposium on
Programming Languages., pages 39–55, PUC-Rio, Rio de Janeiro, Brazil, June 5-7
2002.

164

[84] Sérgio Soares and Paulo Borba. Concurrency Control with Java and Relational
Databases. In Proceedings of 26th Annual International Computer Software and
Applications Conference, pages 834–849, Oxford, England, August 2002. IEEE
Computer Society Press.

[85] Sérgio Soares and Paulo Borba. PaDA: A Pattern for Distribution Aspects. In
Second Latin American Conference on Pattern Languages of Programming — Sug-
arLoafPLoP 2002., pages 87–99, Itaipava, Rio de Janeiro, Brazil, August 2002.
Published in University of São Paulo Magazine — ICMC.

[86] Sérgio Soares and Paulo Borba. PIP: Progressive Implementation Pattern.
In Michael Gnatz, Frank Marschall, Gerhard Popp, Andreas Rausch, Maura
Rodenberg-Ruiz, and Wolfgang Schwerin, editors, Proceedings of the 1st Workshop
on Software Development Patterns (SDPP’02), Technical Report TUM-I0213, Mu-
nich University of Technology, Munich 12/2003, November 2002.

[87] Sérgio Soares and Paulo Borba. Progressive implementation with aspect–oriented
programming. In The 12th Workshop for PhD Students in Object–Oriented Sys-
tems, ECOOP’02, volume 2548 of LNCS (Lecture Notes in Computer Science),
pages 44–54, Málaga, Spain, June 2002. Springer Verlag.

[88] Sérgio Soares and Paulo Borba. An aspect-oriented implementation
method. Student Research Extravaganza (Poster Session), Interna-
tional Conference on Aspect-Oriented Software Development, AOSD 2004.
http://www.aosd.net/2004/extravaganza.php. Lancaster, UK, March 2004.

[89] Sérgio Soares, Marcelo d’Amorim, Denise Neves, Marcelo Faro, Luciana Valadares,
Gibeon Soares, and Antonio Valenca. Implementing Object-Oriented Web Sys-
tems Using Java Servlets (in portuguese). In IV Brazilian Symposium on Pro-
gramming Languages, pages 290–299, Recife, Brazil, May 17-19 2000.

[90] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Distribution and Persistence
as Aspects. Software: Practice & Experience. Submitted, August 2004.

[91] Sérgio Soares, Eduardo Laureano, and Paulo Borba. Implementing Distribution
and Persistence Aspects with AspectJ. In Proceedings of the 17th ACM confer-
ence on Object-oriented programming, systems, languages, and applications, OOP-
SLA’02, pages 174–190. ACM Press, November 2002. Also appeared in ACM
SIGPLAN Notices 37(11).

[92] Geórgia Sousa, Sérgio Soares, Paulo Borba, and Jaelson Castro. Separation of
Crosscutting Concerns from Requirements to Design: Adapting the Use Case
Driven Approach. In Bedir Tekinerdoan, Ana Moreira, Jo ao Araújo, and Paul
Clements, editors, Early Aspects 2004: Aspect-Oriented Requirements Engineer-
ing and Architecture Design. Workshop at International Conference on Aspect-
Oriented Software Development, AOSD 2004, Workshop Report., pages 93–102
(97–106), March 2004.

[93] Sun Microsystems. The Enterprise JavaBeans Specification Version 2.1, August
2002. At http://java.sun.com/products/ejb.

165

[94] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N degrees
of separation:multi–dimensional separation of concerns. In 1999 International
Conference on Software Engineering, pages 107–119. ACM, 1999.

[95] Michiaki Tatsubori. Separation of Distribution Concerns in Distributed Java Pro-
gramming. In OOPSLA’01, Doctoral Symposium, Tampa FL, 2001.

[96] Michiaki Tatsubori, Shigeru Chiba, Marc-Olivier Killijian, and Kozo Itano. Open-
java: A class-based macro system for java. In Walter Cazzola, Robert J. Stroud,
and Francesco Tisato, editors, Lecture Notes in Computer Science 1826, Reflection
and Software Engineering, pages 117–133. Springer-Verlag, 2000.

[97] AspectJ Team. The AspectJ Programming Guide. At http://dev.eclipse.-
org/viewcvs/indextech.cgi/∼checkout∼/aspectj-home/doc/progguide/index.html
http://eclipse.org/aspectj, 2003.

[98] Bedir Tekinerdogan, Paul Clements, Ana Moreira, and Jo ao Araújo. Early as-
pects 2004: Aspect-oriented requirements engineering and architecture design. In
Workshop at International Conference on Aspect-Oriented Software Development,
AOSD 2004, March 2004.

[99] Walter Tichy. Should Computer Scientists Experiment Mode? IEEE Computer,
31(5):32–40, May 1998.

[100] Guilherme Travassos, Dmytro Gurov, and Edgar Amaral. Introduction to ex-
perimental software engineering (in portuguese). Technical Report ES-590/02,
Computer Systems Engineering Program, COPPE/UFRJ, April 2002.

[101] Euricelia Viana and Paulo Borba. Integrating Java with Relational Dadabases
(in portuguese). In III Brazilian Symposium on Programming Languages, pages
77–91, Porto Alegre, Brazil, May 1999.

[102] Jim Waldo, Samuel C. Kendall, Ann Wollrath, and Geoff Wyant. A Note on Dis-
tributed Computing. Technical Report TR-94-29, Sun Microsystems Laboratories,
Inc., November 1994.

[103] Seth White and Mark Hapner. JDBC 2.1 API. Version 1.1. Sun Microsystems,
October 1999.

[104] C. Wohlin, P. Runeson, M. Höst, B. Regnell, and A. Wesslén. Experimentation in
Software Engineering: An Introduction. Kluwer Academic Publishers, 2000.

[105] Marvin Zelkowitz and Dolores Wallace. Experimental Models for Validating Tech-
nology. IEEE Computer, 31(5):23–31, May 1998.

[106] Charles Zhang and Hans-Arno. Jacobsen. Quantifying aspects in middleware plat-
forms. In Proceedings of the 2nd International Conference on Aspect-Oriented
Software Development (AOSD’03), pages 130–139. ACM Press, March 2003.

166

