

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

IBM Journal of Research and Development 22.4 (1978): 413 – 421

DOI: http://dx.doi.org/10.1147/rd.224.0413

Copyright: © 1978 IBM

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1147/rd.224.0413

M. Alfonseca M. L. Tavera

A Machine-Independent APL Interpreter

Abstract: The problem of writing machine-independent APL interpreters is solved by means of a systems
programming approach making use of an intermediate level language specially designed for that purpose. This
paper describes the language, as well as the procedure used to build universal interpreters. Three compilers
that translate this language for three different machines have been written so far, and an APL interpreter has
been finished.

Introduction

When a new computer, is developed, it generally has its
own machine and assembly languages, usually different
from those of other machines; most software, including
high level language translators, must be rewritten for the
new machine. The cost of this work would be greatly re-
duced if some of the software could be made machine-
independent.
One high level language not commonly provided with
new machines is APL [1]. This highly sophisticated inter-
pretive language includes a large number of symbolic
built-in functions (primitive functions) and operators that
render it possible to write complicated programs in a con-
cise form with a simple syntax.

Primitive APL functions and operators take arrays as
well as scalars as their working objects, so that loopless
programs may be written. Thus, good APL programming
somewhat counteracts the loss in translation time inher-
ent in interpretive systems compared to compiling sys-
tems. Besides, many of the common array-handling oper-
ations, such as matrix products, matrix inversions, and so
forth, are primitives in the language.

A universal APL interpreter which would make this lan-
guage available on many machines would be welcome,
especially in view of the fact that use of the language is
growing.

As an example of this need, when the IBM System/7 (a
sensor-based computer) was first announced, it was pro-
vided with only a disk support system and a primitive as-
sembler. More complete software was added later, in-
cluding a FORTRAN compiler. We were interested in
being able to manage the SystemJ7 sensors by means of
APL.

We could not simply use one of the different APL systems
available for the IBM System/370, because the assembly
languages and architectures of the systems are different.
Therefore, we built a System/7 APL interpreter, written in
assembly language [2].

A new sensor-based computer, the IBM Series/1 [3], has
recently been announced as an alternative for System/7.
If we want to use the programs we wrote for the System/7
on the new computer, another APL interpreter will have
to be written, because the assembly languages and
architectures are again different.

Instead of building a Series/1 APL interpreter, and
probably having to face the same problem again in
the future, we decided to try to write a universal APL
interpreter, as independent as possible from the
machine.

APL system requirements
An interpretive APL system should have the
following properties [4]:

1. Time sharing should be provided for, no that
different users may have access to it at the same time
by means of terminals. Each user is assigned a section
of main storage, called an active work space, where
he may keep and execute his data and APL
functions. He is also assigned a library in auxiliary
memory where he may store copies of his active work
spaces. The available main memory is usually split up
into several active work spaces (slots). At a given
moment, the number of users connected to the system
may be greater than the number of slots. In this
case, copies of all active work spaces are kept in an
auxiliary file, and whenever a user is given
control, his active work space is swapped into one
of the memory slots.

2. The data contained in a work space may be
internally represented as one of the following types:

Boolean, occupying one bit per element of data,

Integer, one, two, or four bytes per element,

Floating point, typically eight bytes per element,

Literal, one byte per element,
Pointer, the value of which is an address.

Memory allocation within the work space is
dynamic; some garbage collection procedure
should be provided. Memory management requires
an extensive use of pointers.
3. The system is usually made up of the
following parts:

A supervisor, which manages the time sharing and
the terminal and disk input/output operations.

An interpreter, which must be reentrant, i.e., all modi-
fications should be done only in the work space.

The supervisor is in itself machine-dependent and a
general operating system or subsystem has often been
used as such [5]. However, this is not the case with the
interpreter, where only slight details, like paper width
or floating point precision limits, may have to be var-
ied with the machine.

Therefore, we decided to build a machine-independent
APL interpreter with a machine-dependent supervisor
to be added for each particular implementation.

Selection of the interpreter writing language

Having decided to write a universal APL interpreter,
we then had to face the problem of choosing the
language we would use to write it. Three criteria were
considered: the degree of machine independence of the
language, the extent to which the APL system
requirements described above could be met, and
finally the performance of the APL interpreter in terms
of both execution efficiency and minimal storage
requirements.

Since interpreters are usually about an order of magni-
tude slower than compilers for the same language, the
process of construction of our interpreter should not
introduce a noticeable degradation in its execution
speed. On the other hand, since we intend to make the
system available for both minicomputers and
mainframes, it should be as small as possible. Since
these two conditions are frequently opposed to each
other, an optimal solution for both cannot be met. We
are thus prepared to trade off slight losses in execution
speed for significant reductions in size.

Four different language classes were considered.

• Assembly languages
Assembly languages are the best suited to meet all the
system requirements; they allow maximum flexibility to
the system programmer, while providing the best size
and speed. However, they are completely inadequate for
meeting the independence criterion, since every machine
uses its own assembly language.

• Macro language
A first approach to getting machine independence
would be to design a general macro language. Each
macroinstruction would be generated by means of the
macro definition facilities provided in most assembly
languages. One advantage of this approach is that
flexibility of the language would be only slightly less
than that of assembly languages. On the other hand,
machine independence cannot be completely assured,
because not all assemblers are macroassemblers (as
was the case with the first version of the System/7

assembler), and not all of these have the same power.
There is a danger that either the number of
macroinstructions which must be defined will grow too
large or that each macro will become too complex. For
instance, suppose we want to define one or several
macros to add two or three arguments. Since we may
have to add arguments of different types (recall
requirement 2), there are two possible solutions to this
problem: define one macro for every possible
combination and for each number of arguments to be
added (at least 30 macros would be needed just for the
addition operation); define a single highly complex
macro which would combine all possibl6 cases. The
macroassembler would then have to provide conditional
macroinstructions and the ability to ascertain the
existence of an argument at preassembly time.

• High level languages
A second approach would be the use of an existing
high level language as the interpreter writing language.
Ideally, there would be a good, high level programming
language and, for each machine, a compiler to translate
this language into efficient machine code. However,
this situation does not exist yet, and current high level
languages, while highly readable and capable of
providing concise programs, add both to size and
execution time due to the compilation process and the
run-time environment. Two high level languages were
considered:

1. FORTRAN is a widely used high level language
which assures some degree of machine
independence, besuse compilers for different
machines differ only in minor details. However,
the limited flexibility of this language makes it
difficult to meet some of the APL system
requirements. In particular, FORTRAN data rep-
resentation does not allow easy management of
Boolean data or of integers occupying only one
byte. The required Boolean operations would
include logical AND, OR, exclusive OR, and
negation of bit strings, plus selection and testing of
individual bits or groups of bits. More important is
the fact that FORTRAN compilers cannot usually
generate reentrant code, a necessary condition for
writing a time sharing system.

2. PL/I is another commonly used high level
language, and compilers for it are provided for
most machines. It is a more flexible language than
FORTRAN, and data types are reasonably well
managed. Reentrant code generation can be
selected as an option. A drawback is that PL/I
compilers for different machines usually implement
different subsets of the language. Thus, should we
select a given subset, there is no guarantee that the

one implemented in a new machine will contain all
the features we have selected. The PL/I compiler
provided with the machine might have to be
extended to meet our requirements.

• Systems programming approach
The systems programming approach consists in the use
of a language higher than assembly language but lower
than high level languages as the systems programming
language. Assembler languages are obviously the most
flexible and efficient, while high level languages give the
maximum machine independence and readability.
Systems programming languages usually combine the
properties of both in the sense that they provide the
option of including built-in functions and assembly
language statements within the high level environment.
They are also provided with good optimizing compilers
which produce very efficient code.

Standard systems programming languages, however,
can only be used at the expense of a loss in machine inde-
pendence, because of their machine language features,
which are obviously dependent on the computer. In
addition, some of the most widely used systems
programming languages do not manage floating point
data, obviously necessary to write an APL interpreter.
Even a subset of an existing systems programming lan-

guage would not be an optimal solution to our threefold
problem of machine independence, flexibility, and effi-
ciency. In the first place, the language would have to be
stripped of some of its flexible features to assure machine
independence. Thus, such languages would again
become high level languages, discussed in the
preceding paragraph. In the second place, the
semantics of these languages, usually PL/I- or
ALGOL-like, would make it difficult and time-
consuming to build good optimizing compilers. For
these reasons, to solve our specific problem, we
decided to design our own ad hoc systems program-
ming language. It should be really intermediate in the
sense that it should have the semantics of assembly lan
guages but with a higher level syntax, and it should be
as easy to analyze as possible, with an eye to reducing
the programming effort required to build compilers that
produce highly efficient code. We shall call such a
language an "intermediate language (IL)."
The procedure followed to design the IL instructions

was to select the most common operations in the
assembly languages of different IBM machines [6] and
to represent them with a high level syntax. Instructions
not arising naturally from the assembly level, such as
IF-THEN-ELSE, DO, and so forth, are not a part of IL
because our objective was only to define a substitute for
assembly languages; we were not concerned with high
level language properties such as complex operations
and those making structured programming easier. Also,

special instructions such as BXLE, TR (System/370
assembler) appearing in a few assembly languages have
not been selected, to safeguard machine independence.

The language
The only assumption about the machine in which IL may
eventually be implemented is that its memory is
considered to be a vector of units of fixed but not defined
size, consecutively numbered. Appendix A shows the
syntax of IL.

• Data objects
The data objects of the language are numeric constants
(fixed point integers and floating or decimal rational
numbers) and identifiers which may name different
types of data: four types of variables; pointers; labels;
routine names; and parameters.
A variable has four different attributes:

The memory address associated with it,
Its type,
Its length (number of elements),
The actual values of the elements.

The address of the variable defines the location of the
first memory unit of the space allocated to the
variable. Variable values may be integer or rational.
Integer values may be of three different types,
corresponding to the assignment of one, two, or four
memory units per element.

A variable may contain one or several elements in a
linear structure. The fact that we have defined IL
semantics to be as close as possible to machine language
level precludes the inclusion of more complex
structures (matrices, lists, etc.) which must always be
ultimately represented in a linear memory.
A pointer is a name the associated value of which is

considered to be the address of some variable. In most
cases a register would be assigned to it, although
memory locations may also be used.
Labels are names that may be associated with instruc-

tions, whereas routine names are entry points to the
different subprograms which may make up a complete
program. A subprogram may have several entry points.
A parameter is an identifier the value of which cannot
be changed during program execution.
The first letter of the name assigned to an identifier

implicitly declares its type. Appendix B shows the
conventions used.

• Program organization
An IL program consists of two different parts:

declarations and executable statements, separated by a
separation statement.
All variables appearing in a program must be

declared. This can be done in either of the following
ways:

1. Assigning one or more initial values to the variable

name. The length of the variable is thus defined as
the number of values given. The syntax of these
statements is

variable name ←values
2. Assigning a synonym to a variable name

previously declared. This feature permits the
declaration of variables with undefined attributes,
allowing the following possibilities:

a. Variables of different type, sharing the
same address,

b. Variables of different type, sharing the
same address,

c. Variables of undefined address, depending
on the value of a pointer on which the
variable is based. The address assigned to
the variable is computed as the addition of
the value of the pointer plus an offset.

All preceding possibilities are mutually compatible and
can be combined in a single statement with the
following syntax:
variable-name optional-index = variable-name
optional-index

Example 1 (see Fig.1):

A←1 2 3

B=A[1]

I[2]=B

Variable A is implicitly defined by its first letter as an
integer variable with four memory units per element. Its

length is three, and the initial values of its elements are 1,
2, and 3. Variable B is defined as a single element variable
with the same address as the second element of A (in-
dexing uses origin zero). Variable I is declared as an in-
teger variable with two memory units per element, of
length two, and the address of which is the same as that
of B.

Example 2 (see Fig. 2)
 W←4

 C[W]=P[2]

Variable W is defined as a single element integer vari-
able occupying a single memory unit and with an initial
value of 4.

Variable C is declared as an integer four-unit-per-ele-
ment variable the address of which is offset two units
from that pointed to by pointer P; its length varies with
the value of W.

Executable IL statements are analyzed from right to
left. Functions are executed without special precedence
rules, in the order they are found; parentheses are not
allowed. In addition to the assignment and the standard
arithmetic operations, the following functions are al-
lowed:

Pointing, P→X, assigns to pointer P the address of vari-
able X.

Incrementing, P∆X, increments the value of pointer P by
the value of X.
Shifting, A ↑ B , shifts the value of B to the left A bits (this
operation is equivalent to a multiplication of B by the A
power of 2), while A ↓ B shifts B to the right.
Logical bit to bit operations, ∨ (inclusive or), ∧ (and),

µ (exclusive or), ∼ (not). They operate on values of any

integer type on a bit to bit basis.
Data objects of any integer type and pointers can be

freely mixed in the IL statements. The assignment
instruction also allows for conversion of integer to
rational data and vice versa.

Example 3

 F←P+I×A

Primitive operations only affect data objects of length
one, including indexed variables and pointers. The as-
signment statement, A←B, is again an exception, in
the sense that if A is a variable of length different from
one, the required number of memory units is copied,
one unit at a time, from the address of B to the address
of A in ascending order (the unit with the lowest
address is copied first).
The following transfer instructions have been included:

unconditional transfer, →E, corresponding to the
unconditional branch in most machine languages;
conditional transfer, →F IF CONDITION,
corresponding to the conditional branch; test bits;
→E IF V ∧ I, corresponding to the test under mask

instruction and meaning that the transfer is taken if the
"logical and" of V and I is not null.

IL does not contain special input/output instructions.
The reason is that all APL input/output operations are
managed by the supervisor and, whenever the
interpreter needs one, it calls a supervisor subroutine.

In an IL instruction, the symbol ä indicates that

everything at its right up to the end of the line is a
comment and should be ignored.

General procedure
The procedure for building a universal APL interpreter
using IL as a systems programming language is
accomplished according to the following schethe:

An APL interpreter is written in IL.
A compiler is built that translates IL programs into

assembly language for machine M1.

The interpreter is compiled. The final product is an
APL interpreter directly executable on machine M1.

This procedure is displayed in Fig. 3, where square
boxes represent APL interpreters written in the
language at the bottom. The T-like figure represents a
compiler written in the language at the bottom and
translating the language at the left into the language at
the right.

Figure 3 General procedure for building a universal
APL interpreter.

We have chosen APL as the language for writing the
compiler, in spite of the loss in efficiency inherent in any
interpretive language, because compiler performance
is not important at all in this environment; once the
APL/IL interpreter has been written, it must be
compiled only once for each machine. Besides that,
APL is a very suitable language for writing compilers
quickly [7, 8].
To obtain an APL interpreter directly executable on a

different machine, M2, only the code generator of the
compiler need be rewritten.
The compilers can be executed on any base machine

where APL is available. We are presently using APLSV
on a System/370, but the base machine can be changed
at any time with no further cost.
Let us consider three machines M1 M2, and M3. With

our procedure one interpreter and three compilers
must be programmed in order to implement APL on all
of them (see Fig. 4).

Figure 4 Application of the general procedure to three
different cases.

Efficiency of the procedure
Suppose we intend to implement an APL interpreter on
n different machines. Here we compare the effort by the
programmer, the amount of space required in storage,
and the execution speed of three different approaches.

1. The first solution would be to build one APL
interpreter directly in the assembly language of
each machine. Let W1, be the cost of building each
of these APL interpreters. The total cost of this
approach would be

C1= n × W1. (1)

2. The second approach would be to write a universal
APL interpreter in one of the present high level
languages. We assume that a compiler for the base
language is available for every machine and
implements the required subset of the language. Let
W2 be the cost of writing the high-level-language-
based APL interpreter. The total cost of this
approach would be

C2 = W2. (2)

3. Our approach consists in the use of IL as the system
programming language. Let W3 and W4 be the cost
of writing the IL-based APL interpreter and the cost
of building an IL compiler, respectively. The total
cost of this approach would be

 C3= W3+ n W4 . (3)

We have previously built [2] an APL interpreter in as-
sembly language at the cost of about four person-
years. The cost of writing each assembly language
APL interpreter, W1, would be much lower, because
of our previous experience and because most algorithms
would be available. We estimate it at about two

person-years. We have already written an IL APL
interpreter at a cost (W3) of over one person-year, a
smaller figure than the one estimated for W5, due to the
programming and debugging ease provided by the high
level syntax of IL. We also assume it is not possible to
write an APL interpreter in any high level language at a
cost (W2) lower than one person-year.

Figure 5 Total programming effort of different
approaches vs number of machines, where x indicates
assembly language approach, 0 IL approach, and high
level language approach.

A first compiler written in APL and translating IL
programs into IBM System/370 assembly language has
been built at a cost of two person-months. The cost of
changing the code generator so as to translate IL Into the
assembly languages of IBM Series/1 and another
experimental computer was only one person-month. We
take this to be the value of W4.
Substituting the indicated values for Wi, W2, W3, and

W4 in Eqs. (1-3), we find (see Fig. 5)

 C1 = 24×n (4)

 C2 = 12 (5)

 C3 = 14+n (6)

To gain insight into the relative merits of the three ap-
proaches in terms of size, we have written several
portions of the APL interpreter (those most frequently
executed [9], totaling about 3 percent of the whole
program) in IL, FORTRAN, PL/I, and directly in

assembly language, and we have compiled them into
System/370 machine language. The FORTRAN
programs have been compiled by FORTRAN G and
also extended FORTRAN H compilers with the option
for maximum optimization. The results are shown in
Table 1, where the figures refer to the size in bytes of
the part of the object program corresponding to
executable instructions. The figures give directly a
good estimate of size. Since the same algorithms were
used in all cases, execution speed may also be roughly
estimated as being proportional to the number of
machine instructions generated and thus to the space
these instructions occupy. In order to get a better
estimate, the number of instructions within the inner
loops and the number of times they are executed should
be taken into consideration.
We may estimate from the above examples that there

is a loss of efficiency of about 10 percent when writing
the prow-am in IL as compared to assembly language.
On the other hand there is a loss of at least 70 percent
when the interpreter is written in FORTRAN or 150
percent when it is written in PL/I, respectively (even
with the optimizing compilers available), as compared
to the program written in IL.
The figures given in Table 1 contain in all instances

the overheads associated with call-return management,
data management, and so forth, allowing the chosen
examples to be incorporated into a full running
interpreter, so that they are truly, comparable.
Table 1 Results using different approaches.

Program PL/I FORTRAN
Compiled with

IL Assembler

F-G F-X

Lexical
analysis of
numeric
constants

2690 2324 1924 1260 1096

Syntax
analysis of

constants &
variables.

Assignments

2504 2062 1368 702 640

Vector
catenation

3302 2762 1900 1044 964

Total 8496 7148 5192 3006 2700

We have seen above that approaches 2 and 3 are much

more advantageous than approach 1 with respect to
programming . effort measured in person-time. Now,
comparing approaches 2 and 3, we see that the latter,
while slightly unfavorable with respect to
programming effort twith the assumption that
FORTRAN or PL/I compilers will ever be available),
from a space point of view is considerably better. We

have thus chosen the IL approach, which meets our
severest requirement, namely, limiting the size of the
interpreter.
The reason for the negligible overhead of IL programs

compared with equivalent assembly programs does not
lie in optimization properties of the compiler (which
would have made it too complex to be written in two
months) but in the semantic closeness of IL to
assembly language; many of the IL primitive
operations produce a single object instruction. The
only optimization feature introduced in the compiler
design is the propagation of the constants or
parameters contained in the registers of the machine in
order to save load and store instructions.
Optimization is thus a responsibility of the IL

programmer, as is also the case with any assembly
programmer. This agrees with our purpose in using IL
as a substitute for assembly languages, not for high
level languages.
If the need for even better performance arises once the

interpreter has been compiled for a given machine, an
assembler programmer (who obviously need not know
IL) could manually optimize the object assembly
program by taking advantage of the special instructions
of the machine.

State of the work
An APL-IL interpreter has already been written, in

which the full APL language and a set of system
commands have been implemented. It includes an
editor to build and modify user functions.
The first IL compiler we built translates IL programs

into System/370 assembly language, in order to profit
from the fact that one of these machines is available to
us. This compiler has allowed us to translate and test
the interpreter, which is now being debugged. Two
other compilers are already available, translating IL
into the assembly languages of the Series/1 and an
experimental computer.
A machine-dependent supervisor has been added to

the System/370-translated interpreter to provide
management of the work space library and terminal
input/output, resulting in a prototype system that is
currently being used to test the interpreter and to
compare its performance with that of APLSV, also
available in the same machine. The translated
interpreter occupies a total space of 74 Kbytes (where
K = 1024), which is less than that needed for the
APLSV interpreter. Execution speed is not easily
compared, because different algorithms have been used
in both systems (ours trying to minimize size). How-
ever, figures currently obtained indicate that our
system is, on the average, about 1.15 times slower than
APLSV.

Conclusions
The systems programming approach has been found

optimal to solve the problem of building a machine-
independent APL interpreter. However, a special
systems programming language has been designed to
meet all the requirements of our problem. The
intermediate level language IL has a higher level
syntax than assembly languages. Its semantics are
closely related to those of assembly languages,
notwithstanding the fact that it maintains machine
independence. This approach eases programming,
debugging, and readability (because of its syntax)
compared to assembly languages. Also, compilers for
IL, producing efficient code, can be built at little cost
(because of its semantics).
We are using IL as a tool for systems programming, in

order to build a universal APL interpreter. It could also
serve as a kind of machine-independent assembly lan-
guage, once compilers for different machines have
been built.
We do not intend to present IL as an alternative to

programming in high level or other systems
programming languages. It was designed to meet the
severe requirements imposed by our particular
application, i.e., a universal APL interpreter
implementable both in small and large computers.
Languages similar to IL could be used in computer

science education as substitutes for assembly
languages. IL is easy to learn. Two staff members at
this Scientific Center who are fluent in FORTRAN,
PL/I, and APL, but who had never written programs in
assembly language, were able to write and successfully
execute their first IL program one day after they had
been given the manual for the language. The language
is completely designed, and compilers for three
different machines have been built. The universal APL
interpreter has been completed and is in the process of
being debugged.

Appendix A: Formal syntax of IL

In the following representation, Λ represents the null string.

<PROGRAM> : = <DECLARATIONS> <SECOND PART>
<SECOND PART>::= Λ | <SEPARATION> <EXECUTABLE STATEMENTS>
<SEPARATION> ::= / <END OF STATEMENT> | // <END OF STATEMENT>
<DECLARATIONS> ::= Λ | <DECLARATION STATEMENT> <END OF STATEMENT>
 <DECLARATIONS>

<DECLARATION STATEMENT> ::= <I.V.ASSIGNMENT> | <EQUIVALENCE>
<I.V.ASSIGNMENT> ::= VARIABLE NAME←<VNL> <DIMENSION> <VALUES> |

LABEL NAME ← <DIMENSION> LABEL NAME <LIST3>

<VNL> ::= Λ | VARIABLE NAME ← <VNL>
<DIMENSION> ::= Λ | INTEGER CONSTANT ρ
<VALUES> ::= CONSTANT <LIST1> | PARAMETER <LIST2>
<LIST1> ::= Λ | BLANK CONSTANT <LIST1> | , <VALUES>
<LIST2> ::= Λ | , <VALUES>
<LIST3> ::= Λ | , LABEL NAME <LIST3>
<EQUIVALENCE> ::= VARIABLE NAME <INDEX1> = <EQU OBJECT> |

PARAMETER = <PARAMETER EXPRESSION>

<EQU OBJECT> ::= VARIABLE NAME <INDEX2> | POINTER

 [<PARAMETER EXPRESSION>]
<INDEX1> :: Λ | [OBJECT1]
<INDEX2> ::= Λ | [<PARAMETER EXPRESSION>]
<OBJECT1> ::= VARIABLE NAME | <PARAMETER EXPRESSION>
<PARAMETER EXPRESSION> ::= <CONSTANT OBJECT> | <PARAMETER EXPRESSION>
 <DYADIC FUNCTION> <CONSTANT OBJECT>

<EXECUTABLE STATEMENTS> ::= Λ | <LABELED STATEMENT> <END OF STATEMENT>
<EXECUTABLE STATEMENTS>

<LABELED STATEMENT> ::= <LABEL> <STATEMENT> | LABEL NAME :

<LABEL> ::= Λ | LABEL NAME :
<STATEMENT> ::= <ASSIGNMENT> | <TRANSFER> | <ROUTINE CALL> |<RETURN>| SAVE
<ASSIGNMENT> ::= POINTER → <INDEXED VARIABLE> | POINTER ∆ <EXPRESSION> |
 <INDEXED VARIABLE> ← <EXPRESSION>
<INDEXED VARIABLE> ::= VARIABLE NAME <INDEX>

<INDEX> ::= Λ | [<PARAMETER EXPRESSION>]
<EXPRESSION> ::= <OBJECT> <DYADIC FUNCTION> <EXPRESSION> |
 <MONADIC FUNCTION> <EXPRESSION> | <OBJECT>

<OBJECT> ::= <INDEXED VARIABLE> | CONSTANT | PARAMETER

<DYADIC FUNCTION> ::= ← | + | - | × | ÷ | ↑ | ↓ | ∧ | ∨ | µ | ∆ | | | →

<MONADIC FUNCTION> ::= - | | ∼
<TRANSFER> ::= Λ | LABEL NAME <CONDITIONAL STATEMENT>

<CONDITIONAL STATEMENT> ::= Λ | IF <CONDITION>
<CONDITION> ::= <INDEXED VARIABLE> <RELATION> <EXPRESSION> |
 <INDEXED VARIABLE> ∧ <CONSTANT EXPRESSION> |
 <CONSTANT EXPRESSION>
<CONSTANT EXPRESSION> ::= <CONSTANT OBJECT> <DYADIC FUNCTION>
 <CONSTANT EXPRESSION> |
 <MONADIC FUNCTION> <CONSTANT EXPRESSION> |
 <CONSTANT OBJECT>
<CONSTANT OBJECT> ::= INTEGER CONSTANT | PARAMETER
<RELATION> ::= < | ≤ | = | ≠ | > | ≥
<ROUTINE CALL> ::= EXTERNAL ROUTINE NAME | LABEL NAME
<RETURN> ::= RET | → INTEGER CONSTANT <CONDITIONAL STATEMENT>
<END OF STATEMENT> ::= <COMMENT> CARRIAGE RETURN

<COMMENT> ::= Λ | ä <CHARACTER STRING>
<CHARACTER STRING> ::= Λ | NON CARRIAGE RETURN CHARACTER
 <CHARACTER STRING>

Appendix B: Identifier type conventions

Type of identifier

Integer
One memory unit per element
Two memory units per element
Four memory units per element

Rational
Pointer
Label
Routine names
Parameters

First letter of identifier

ORTUVW
IJKLMN
ABCDGH
F
P
E
S
X Y Z

References and notes

[1] APL Language, Publication No. GC26-3847-0, IBM
Corporation, Data Processing Division, White
Plains, NY, 1975.

[2] M. Alfonseca, M. L. Tavera, and R. Casajuana, "An
APL Interpreter and System for a Small Computer,"
IBM Syst. J. 16, 18 (1977).

[3] Series/i Model 5-4955 Processor and Processor
Features Description, Publication No. GA34-0021,
IBM Corporation, General Systems Division,
Atlanta, GA, 1977.

[4] VS APL Program Logic, Publication No. LY20-8032-1,
IBM Corporation, Data Processing Division, White
Plains, NY, 1976.

[5] VM/370-CMS and VSPC.
[6] IBM 1620, 1130, 7040, 7090, S/3, S/7, S/360, S/370,

Series/1.
[7] M. Alfonseca, "An APL-written APL-subset to

System/7- MSP Translator," Proceedings of the

APL Congress 73, North-Holland, Amsterdam,
1973.

[8] R. Aguilar, M. Alfonseca, and J. Bondia, APL to
System/? Assembler Compiler, SCR.05.73, Centro
de Investigacion UAM-IBM, Madrid, 1973.

[9] H. J. Sail and Z. Weiss, "Some Properties of APL
Programs," Proceedings of the APL Congress 75,
ACM, New York, 1975.

[10]Machine Oriented Higher Level Languages, W. L.
van der Poel and L. A. Maarssen, eds., North
Holland Publishing Co., Amsterdam, 1974.

The authors are located at the IBM Scientific Centre,
Madrid, Spain.

