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Abstract 

People tend to avoid exerting cognitive effort, and findings from recent behavioral studies 

suggest that effort allocation is in part determined by the opportunity cost of slothful 

responding—operationalized as the average reward rate per unit time. When the average rate of 

reward is high, individuals make more errors in cognitive control tasks, presumably owing to 

reduction in cognitive control. An open question remains whether the presumed modulations of 

cognitively effortful control processes are observable at the neural level. Here, we measured 

EEG while participants completed the Simon task, a well-known response conflict task, while 

the experienced average reward rate fluctuated across trials. We examined neural activity 

associated with the opportunity cost of time by applying generalized eigendecomposition, a 

hypothesis-driven source separation technique, to identify a midfrontal component associated 

with the average reward rate. Fluctuations in average reward rate modulated not only component 

amplitude, but most importantly, component theta power (4-8 Hz). Higher average reward rate 

was associated with reduced theta power, suggesting that the average reward rate modulates 

effort allocation. These neural results provide evidence for the idea that individuals modulate the 

amount of cognitive effort they exert based on their experienced average rate of reward.  
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Introduction 

 Owing to the limited capacity nature of human information processing, we tend to expend 

cognitive effort only when it is worthwhile. In the influential framework of cost-benefit cognitive 

effort decision-making, people allocate cognitive resources to a particular task when the benefits 

of effort exertion—for example, reward incentives tied to performance—outweigh their 

perceived costs (Kool & Botvinick, 2018; Shenhav et al., 2017). On this view, a growing body of 

work demonstrates that individuals dynamically allocate their level of effort investment in 

accordance with shifting costs and benefits (Botvinick & Braver, 2015; Kool et al., 2017; Otto et 

al., 2022; Otto & Vassena, 2021; Sandra & Otto, 2018; Westbrook & Braver, 2015). 

One important source of costs is the opportunity cost of time (Dora et al., 2021; Kurzban 

et al., 2013)—which has previously been formalized as the average reward rate per unit time 

(Niv et al., 2007). On this view, studies examining motor vigor—the costly outlay of effort 

assumed to be required for fast responding in free-operant tasks—find that individuals make 

faster responses in a simple vigilance task when the average rate of reward per unit time is 

high—suggesting that they balanced the costs of the harder work to emit faster actions (“vigor”) 

against the rewards foregone by responding slowly (Beierholm et al., 2013; Griffiths & 

Beierholm, 2017; Guitart-Masip et al., 2011). More recently, extending this idea to the domain of 

effortful cognitive tasks in a classic cognitive control task (Simon, 1990), we found that the 

average rate of reward per second time modulated the level of cognitive control that individuals 

applied towards inhibiting inappropriate, prepotent responses (Otto & Daw, 2019). During 

periods where participants experienced a higher rate of reward receipt per second, participants 

made more errors on difficult, incongruent trials, while participants made fewer errors on these 

trials when the experienced average reward rate was low. That is, when time was “expensive,” 
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individuals appeared to modulate (presumably effortful) controlled cognitive processing, which 

resulted in more errors on difficult, incongruent trials in the Simon task. More recently, this 

effect was replicated in a structurally similar Flanker task (Eriksen & Eriksen, 1974), which also 

requires cognitive control to inhibit distracting information (Devine et al., 2021).  

In short, these behavioral studies suggest that moment-to-moment varying average rate of 

reward influences individual’s strategic allocation of cognitive resources, which could be similar 

to the observed adjustments to cognitive control in accordance with, for example, recently 

experienced response conflict (Ridderinkhof, 2002) or cues signaling upcoming conflict (Gratton 

et al., 1992). However, it remains unclear whether this behavioral signature of average reward 

rate-evoked effort modulation (i.e., increased error rates on incongruent trials) is also 

accompanied by well-characterized neural signatures of cognitive control modulation—in 

particular, midfrontal theta oscillations (4-8 Hz) measured using electroencephalography (EEG; 

Cavanagh & Frank, 2014; Cooper et al., 2017, 2019; De Loof et al., 2019; Lin et al., 2018; 

Umemoto, Inzlicht, & Holroyd, 2019). Revealing such a relationship would demonstrate that 

shifts in the average reward rate prompts modulations of (effortful) cognitive control. Supporting 

this idea, a body of past work has observed increases in midfrontal theta power in response to 

cued conflict (van Driel et al., 2015), recently experienced conflict (Cohen & Cavanagh, 2011) in 

Simon-like tasks, deciding between similarly valued options in a delay discounting task (Lin et 

al., 2018), and strategic control allocation during decision making (Bogdanov et al., 2022; 

Cavanagh, Figueroa, et al., 2012). 

Accordingly, we recorded EEG from participants while they performed a Simon response 

conflict task (Forstmann et al., 2008; Simon, 1990). This design allowed us to not only replicate 

existing behavioral findings (Devine et al., 2021; Otto & Daw, 2019), but to also extend them by 
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examining the average reward rate per unit time modulates the neural processes underlying 

cognitive control allocation. Following previous work, we manipulated the (experienced) 

average reward rate of the environment and investigated whether a high average reward rate 

brings about modulations in midfrontal theta power—thought to reflect adjustments to effortful 

cognitive control processes originating in the anterior cingulate cortex (Cavanagh & Frank, 

2014; Cohen, 2014). 

In this task (Figure 1A), participants are required to respond to a green circle using a 

right-hand response, and to a blue circle with a left-hand response. Because the stimulus can 

appear either on the left or right side of the display, on most trials (“congruent” trials) 

participants can effectively use the location of the stimulus to guide responses, but on 

incongruent trials, participants must ignore the location of the stimulus in order to make a 

correct, color-based response. As most trials (75%) are congruent, incongruent trials require 

overriding a prepotent, stimulus-driven response established by congruent trials, and as a result, 

responses are markedly slower and more error-prone. To manipulate the average reward rate, we 

induced random fluctuations in the reward available for making a correct response (Figure 1B), 

which we used to compute a time-varying “experienced” average rate of reward per second 

(Figure 1C). As participants had 5 minutes per block to complete as many trials as they could, 

the average reward rate effectively imposed an opportunity cost for slow responding (Beierholm 

et al., 2013; Guitart-Masip et al., 2011), which we have previously observed (Devine et al., 2021; 

Otto & Daw, 2019) increases error rates on difficult, incongruent trials. In other words, because 

this task is self-paced (with a fixed amount of time per block), a reward-maximizing strategy is 
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to make responses as quickly as possible to ensure as many trials as possible—and this is 

especially true when the average rate of reward is high (versus low). 

If increases in the average reward rate prompts individuals to reduce their outlay of 

cognitive control, as suggested by our previous behavioral observations (e.g., Otto & Daw, 

2019), we should observe neural activity that reflects preparatory adjustments to effortful control 

in accordance with this average reward rate. Since neural activity originating in the anterior 

cingulate cortex and surrounding midfrontal regions (i.e., 4-8 Hz oscillations) are thought to 

underlie control-related processes (Cavanagh & Frank, 2014; Cohen, 2014), we therefore 

predicted that higher average reward should be associated with reduced midfrontal theta power, 

reflecting trial-to-trial reductions in cognitive control prompted by the average reward rate per 

second. Because the modulatory effects of trial-to-trial fluctuations in average reward rate on 

neural activity are likely to be weak (especially relative to task-unrelated neural activity), we 

leveraged generalized eigendecomposition method (GED; Cohen, 2017, 2022), a hypothesis-

driven source separation technique that can be used to increase signal-to-noise ratio, reduce data 

dimensionality, and identify task-relevant statistical neural sources. Specifically, following 

recent work that used GED to investigate the midfrontal neural components underlying cognitive 

control processing (Cohen, 2018; Zuure et al., 2020), we also used GED to investigate whether 

activity in midfrontal components is also modulated by trial-to-trial fluctuations in average 

reward rate. 
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Method 

Participants  

Twenty-six participants were recruited through McGill University’s classified ads system 

and gave written consent in accordance with the McGill Research Ethics Board. Participants 

were compensated $20 CAD for the session, and a performance bonus ranging from $1-5. We 

excluded the data of one participant who missed over 40 response deadlines in the Simon Task, 

yielding 25 participants for the behavioral analyses. We further excluded the data of 3 

participants for whom technical issues precluded the collection of usable EEG data, resulting a 

sample size of 22 participants in the EEG analyses. A sensitivity analysis indicated that we could 

detect EEG-based effect sizes of approximately r = .29 (d = 0.60) or greater with at least 80% 

statistical power. 

Simon Task  

 Our version of the Simon task used blue and green circles as stimuli (Figure 1A). The 

blue or green color was either associated with a left- or right-hand response (the ‘Z’ or ‘/’ buttons 

on the keyboard). Stimulus presentation sequence, triggers, and response timing were controlled 

by the Psychophysics Toolbox (Brainard, 1997). On each trial, a green or blue circle was 

presented on the left or right side of the screen (Figure 1A). In the version of the Simon task used 

here, 75% percent of trials were congruent—that is, the side on which the stimulus was presented 

matched the correct response hand. On the remaining 25% of trials, participants needed to use 

stimulus color and fully ignore the stimulus side in order to respond correctly.  

Following a short practice task phase to gain familiarity with the task, participants then 

completed ten 5-minute blocks of the Simon task, completing as many trials as they could in 
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blocks of 5 minutes, mirroring our previous Simon task study (Otto & Daw, 2019; Experiment 

2). During these blocks, the rewards available on each trial were determined using a Gaussian 

random walk with standard deviation 30 and reflecting boundaries at 5 and 95 cents (Figure 1B). 

At the outset of each trial, participants were presented visually with a number representing the 

reward on offer that trial, ranging from 1–100 cents (Figure 1A), which lasted from 750-1250ms, 

after which the Simon stimulus was displayed, and participants had 600ms to make a response. 

After the 500ms ISI following the response, reward obtained (e.g., “+9” for a correct response; 

or “0” otherwise) was displayed for 1000 ms. After each self-paced 5-minute block, participants 

were given a short break, and following the 10 five-minute blocks, participants were then paid a 

bonus proportional to their earnings in the task.  

Behavioral Data Analysis 

 Following previous work, we calculated the average reward  in units of reward per 

second, using the following update rule (Constantino & Daw, 2015; Otto & Daw, 2019): 

𝑟̅#$% = (1 − 𝛼),𝑟̅# + (1 − (1 − 𝛼),)	
𝑟
𝜏 

where r is the obtained reward on trial t, τ is the time elapsed since the last update (which 

depends, critically, on each trial’s RT and ITI), and α is a learning rate parameter. We fit a single 

learning rate to congruent trial RTs of the entire sample of participants, by running estimating a 

separate regression for each participant finding the learning rate that minimizes the total error 

across the group. Specifically, the participant-level RT regression included the following terms: 

𝑅𝑇 = 	𝑟	2 + 𝑅 + 𝑝𝑟𝑒𝑣	_𝑒𝑟𝑟𝑜𝑟 + 𝐼𝑇𝐼 + 𝑡𝑟𝑖𝑎𝑙_𝑛𝑢𝑚		 + 𝑟𝑒𝑠𝑝_𝑠𝑖𝑑𝑒 + 𝑠𝑡𝑖𝑚_𝑟𝑒𝑝 + 	𝑝𝑟𝑒𝑣_𝑡𝑦𝑝𝑒 

where RTs were log-transformed and z-scored response times, 𝑟̅	is the average reward rate, R is 

the reward available that trial, prev_error and prev_type are binary variables specifying whether 

an error response or incongruent stimulus (respectively) occurred on the previous trial, trial_num 
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is a linear term representing trial number (to capture practice effects), and resp_side represents 

whether a left or right-hand response was made (to capture simple response bias). Our estimation 

procedure yielded a best-fitting α of 0.0144.  

 To assess the influence of this inferred average reward rate (Figure 1C) upon log-

transformed Simon RTs at the group level, we conducted mixed-effects regressions using the 

lme4 package (Pinheiro & Bates, 2000) for R, using the following formula:	 

𝑅𝑇	~	0	 + 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡	 + 	𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡	 + 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡: (𝑝𝑟𝑣_𝑒𝑟𝑟𝑜𝑟𝑠	 + 	𝑟𝑢𝑛_𝑛𝑢𝑚 + 𝑖𝑡𝑖	

+ 	𝑡𝑟𝑖𝑎𝑙_𝑖𝑛_𝑟𝑢𝑛	 + 	𝑘𝑒𝑦_𝑟𝑒𝑝	 + 	𝑝𝑟𝑒𝑣_𝑡𝑦𝑝𝑒	 +	 	𝑟	2 + 𝑅 + 	𝑟𝑒𝑠𝑝_𝑠𝑖𝑑𝑒) 	

+ 	𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡: (𝑝𝑟𝑒𝑣_𝑒𝑟𝑟𝑜𝑟𝑠	 + 	𝑟𝑢𝑛_𝑛𝑢𝑚	 + 𝑖𝑡𝑖 + 			𝑡𝑟𝑖𝑎𝑙_𝑖𝑛_𝑟𝑢𝑛	

+ 	𝑘𝑒𝑦_𝑟𝑒𝑝	 + 	𝑝𝑟𝑒𝑣_𝑡𝑦𝑝𝑒	 +		 	𝑟	2 + 𝑅 + 		𝑟𝑒𝑠𝑝_𝑠𝑖𝑑𝑒) 

As we examined congruent and incongruent trials separately, our regression models jointly 

analyzed behavior using two dummy variables (congruent and incongruent) specifying the trial 

type. Similarly, the effect of the average reward rate upon error rates was estimated using a 

logistic regression, taking incorrect (versus correct) responses as the outcome variable: 

𝑒𝑟𝑟𝑜𝑟	~	0	 + 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡	 + 	𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡	 + 	𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡: (𝑝𝑟𝑣_𝑒𝑟𝑟𝑜𝑟𝑠	 + 	𝑟𝑢𝑛_𝑛𝑢𝑚

+ 	𝑡𝑟𝑖𝑎𝑙_𝑖𝑛_𝑟𝑢𝑛	 + 	𝑘𝑒𝑦_𝑟𝑒𝑝	 + 	𝑝𝑟𝑒𝑣_𝑡𝑦𝑝𝑒	 +	 	𝑟	2 + 𝑅 + 	𝑟𝑒𝑠𝑝_𝑠𝑖𝑑𝑒) 	

+ 	𝑖𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡: (𝑝𝑟𝑒𝑣_𝑒𝑟𝑟𝑜𝑟𝑠	 + 	𝑟𝑢𝑛_𝑛𝑢𝑚	 + 			𝑡𝑟𝑖𝑎𝑙_𝑖𝑛_𝑟𝑢𝑛	 + 	𝑘𝑒𝑦_𝑟𝑒𝑝	

+ 	𝑝𝑟𝑒𝑣_𝑡𝑦𝑝𝑒	 +		 	𝑟	2 + 𝑅 + 		𝑟𝑒𝑠𝑝_𝑠𝑖𝑑𝑒) 

All terms estimated at the fixed-effects level and as random effects at the participant level, taking 

all continuously-valued predictor variables as within-participant z-scores. Two-tailed probability 

values and degrees of freedom associated with each statistic was determined using the 

Satterthwaite approximation implemented in lmerTest (Kuznetsova et al., 2017). 

Electroencephalography (EEG) Data and Processing 
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EEG data were acquired using an ActiveTwo system (BioSemi, Amsterdam, 

Netherlands) from 64 Ag/AgCl electrodes positioned according to a 10-20 international system 

using a typical 64-channel montage. The data were recorded in an electrically shielded 

room. Stimuli were presented on a 16-inch CRT monitor and viewed from an approximate 

distance of 120cm. Horizontal and vertical electrooculograms (EOG) were recorded from the 

electrodes placed above and below the left eye and 1cm lateral to the left and right canthi.   

Offline, the EEG data were re-referenced to the average of electrodes placed on the two 

earlobes. The continuous data were high-pass filtered at 0.10 Hz (12 dB/oct, zero phase-shift 

Butterworth filter) and decomposed into independent components using the infomax independent 

component analysis algorithm implemented in the MATLAB toolbox EEGLAB (Delorme & 

Makeig, 2004). We inspected the independent components and used ICLabel, an extension for 

EEGLAB (Pion-Tonachini et al., 2019), to identify components that were classified as eye or 

muscle components. The algorithm assigns probabilities to 7 categories: brain, muscle, eye, 

heart, line noise, channel noise, other. The extension also provides an interface (see 

https://sccn.ucsd.edu/wiki/ICLabel) that shows the topography, time course, power spectrum, 

and ERP-image (sorted by trial number) of each component. Guided by ICLabel’s classification 

algorithm, for each participant, we excluded, on average, 2 to 3 eye frontal components (e.g., 

blinks, vertical/horizontal eye movements) and 1 to 3 muscle components (usually components 

that showed maximal activity at temporal channels). Components were considered blinks or eye 

movement components and were excluded if (1) there was a high probability (> 85% & < 1% 

brain) of them being classified as an eye-related IC; (2) the IC time course activity resembled 

blinks or vertical/horizontal eye movements (e.g., activity that looks like step-functions); and (3) 

the topography showed maximal activity at frontal channels. Components were considered as 
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muscle components and were excluded if (1) there was a high probability (> 95% muscle & < 

1% brain) of them being classified as a muscle component and (2) the power spectrum resembled 

noise or muscle activity more than neural activity (i.e., power peaks at higher frequencies rather 

than lower frequencies). 

To prepare the preprocessed EEG data for generalized eigendecomposition (GED; see 

next section Statistical Source Separation of EEG Data), we epoched the single-trial data relative 

to cue onset and Simon stimulus onset (see Figure 1A). The single-trial cue-locked epochs (time-

locked to reward onset; -2.5 to 2.5 s) were used to test the hypothesis that trial-to-trial 

fluctuations in average reward rate would modulate preparatory adjustments to effortful control. 

The single-trial stimulus-locked epochs (-0.2 to 0.8 s) were used to demonstrate, as a proof of 

principle, that the GED approach can effectively identify components or statistical sources 

associated with conflict and control-related neural processes.  

The single-trial cue- and stimulus-locked epochs were baseline-corrected by subtracting 

the mean amplitude (-0.2 to 0 s) before their respective event onsets. The single-trial epochs 

were then lowpass filtered at 30 Hz with a finite impulse response (FIR) filter (Hamming 

window with 0.0194 passband ripple and 53 dB stopband attenuation; upper passband edge of 30 

Hz; upper transition bandwidth of 7.50 Hz and -6 dB cutoff frequency of 33.75 Hz; filter length 

of 227 samples). Epochs containing artifacts, with amplitudes exceeding ±150 µV or gradients 

larger than 50 µV, were excluded from further analysis.  

For the stimulus-locked analysis, we focused on the N2 conflict-related ERP component 

(Yeung et al., 2004) and determined the component window (peak: 0.28 s) by inspecting the 

grand average event-related potential (ERP) waveform at three midfrontal channels (Fz, FCz, Cz; 

(see Luck & Gaspelin, 2017). Then, for each single-trial epoch, we extracted the amplitude 
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(averaged across channels and all time points in a 0.06 s window [-0.25 to 0.31 s] around the 

peak) and fitted statistical models (see Statistical Analyses of EEG Data section) to these single-

trial data to examine the effects of congruency on component amplitudes. 

Statistical Source Separation of EEG Data 

EEG data recorded at the scalp are a mixture of electric fields, produced by separate 

underlying neural sources, that propagate simultaneously via volume conduction to all EEG 

scalp channels. Whereas standard univariate channel-level analytic approaches do not directly 

address this source mixing problem, recent work has proposed generalized eigendecomposition-

based (GED) multivariate methods that leverage the rich spatiotemporal dynamics of EEG data 

to decompose multi-channel time-series voltage data into independent but non-orthogonal 

statistical sources  (Blankertz et al., 2007; Cohen, 2017, 2022; Parra et al., 2005; Parra & Sajda, 

2003).  

To validate the GED approach before applying it to test our main hypothesis, we first 

applied GED to the stimulus-locked single-trial epochs to examine classic conflict-related neural 

processes in the Simon conflict task (Yeung et al., 2004). After providing a proof-of-principle 

demonstration, we then applied GED to the cue-locked data to test our main hypothesis (i.e., 

average reward rate modulates midfrontal activity). For each of the two sets of analyses, we 

performed GED by first identifying two time-windows (Figure 2): One contained task-related 

neural signals (stimulus-locked analysis: 0.24 to 0.32 s post-stimulus onset; cue-locked analysis: 

0.10 to 0.75 s post-cue onset) and the other task-unrelated or reference signals (-0.20 to 0 s pre-

stimulus or pre-cue onset). Then, we computed the 𝑆 (using task-related signals) and 𝑅 (using 

reference or baseline signals) channel-by-channel covariance matrices separately for activity in 

the two windows. The covariance matrices were computed separately for each single-trial epoch 
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before averaging over epochs. GED was implemented using the numpy Python library and the 

method numpy.linalg.eig(S, R).  

Note that the stimulus-locked window (0.24 to 0.32 s) was partly informed by previous 

work (e.g., Cavanagh et al., 2012; Yeung et al., 2004). On the one hand, stimulus congruency 

often modulates the relatively transient midfrontal N2 ERP component (often observed about 0.2 

to 0.3 s after stimulus onset). On the other hand, the cue-locked window was much longer (0.10 

to 0.75 s) in the present study because we did not have specific hypotheses about when these 

effects would occur and how long they would last. However, as the average reward rate depends 

on the integration of multiple variables (e.g., reward on offer, time elapsed), it is likely that the 

underlying neurocognitive processes involved in its computation would last longer. 

Since regularization can reduce noise and improve the quality of the decomposition 

(Wong et al., 2018), we added 1% shrinkage regularization to the 𝑅 matrix as follows (Cohen, 

2018; Zuure et al., 2020): 𝑅J = (1 − 𝛾)𝑅 + 𝛾𝛼𝐼, where 𝛼 = 𝑛L% ∑ 	N
OP% 𝜆O, and 𝛾 ∈ [0,1], where 𝑅J 

is the regularized 𝑅 covariance matrix, 𝑅 is the original "reference" covariance matrix, 𝐼 is the 

identity matrix, 𝛾 is the amount of regularization (can take only any value between 0 and 1), 𝜆O is 

the eigenvalue for eigenvector 𝑖, 𝑛 is the number of eigenvectors, and 𝛼 is the mean eigenvalue 

across all eigenvectors. To apply 1% shrinkage regularization, 𝛾 was set to 0.01. Note that if 𝛾 =

0, 0% or no regularization is applied, whereas 𝛾 = 1 is equivalent to 100% regularization, which 

essentially turns GED into principal component analysis (PCA). 

Like PCA, GED decomposes the data into eigenvectors and eigenvalues (the number of 

eigenvectors is equivalent to the number of EEG channels), and each eigenvector, 𝑤, is a new 

basis vector that acts as a spatial filter. When applied to the data, a spatial filter up- or down-

weighs different channels’ activities to amplify or suppress activity before summing across all 
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weighted channels to derive the component time series, 𝑤W𝑋. The component’s topography (also 

known as forward model of the filter or the activation pattern; Haufe et al., 2014) is computed by 

pre-multiplying the signal covariance matrix by the eigenvector, 𝑤W𝑆 (see component pattern in 

Figure 2).  

We used GED to reduce the multi-dimensional EEG dataset into a single dimension or 

component. This component is a statistical source that maximizes differences between the post-

event 𝑆 and pre-event	𝑅 activities, and it often has higher signal-to-noise ratio than the unfiltered 

EEG data (Cohen, 2017; Parra & Sajda, 2003). To identify this component, we visually inspected 

the component activation patterns and selected the midfrontal component with the largest 

eigenvalue for each participant (eigenvectors with larger eigenvalues explain more variance). For 

the stimulus-locked analysis, we selected a midfrontal component because the N2 component is 

usually localized to midfrontal channels (Yeung et al., 2004). We expected to find a GED 

component that has the characteristics of an N2 component—that is, the component amplitudes 

should be more negative on incongruent (vs. congruent) Simon-task trials. Similarly, we also 

selected a midfrontal component for the cue-locked analysis because previous work has 

consistently shown that that cognitive control processes (e.g., 4-8 Hz theta-band activity) are 

most apparent over midfrontal channels (Cavanagh, Zambrano-Vazquez, et al., 2012; Cavanagh 

& Frank, 2014). Thus, we expected the average reward rate to influence the amount of cognitive 

effort allocated to the upcoming Simon task trial, and that neural activity associated with effort 

allocation would be reflected in a GED component with a midfrontal topography. 

Time-Frequency Analysis of Cue-Locked GED Component Activity 

We performed time-frequency analysis on single-trial GED cue-locked component data 

using custom Python scripts and the MNE Python library (Gramfort et al., 2014, 2014). Each 
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trial consisted of 5 s (-2.5 to 2.5 s relative to cue onset) to avoid potential time-frequency 

decomposition edge artifacts. Time-frequency measures were computed by multiplying the fast 

Fourier transformed (FFT) power spectrum of single-trial EEG data with the FFT power 

spectrum of a set of complex Morlet wavelets, and taking the inverse FFT. The wavelet family is 

defined as a set of Gaussian-windowed complex sine waves, 𝑒LOZ[#\𝑒L#]/Z_], where 𝑡 is time, 𝑓 

is frequency (increased from 1 to 25 Hz), and 𝜎 is the width or cycles of each frequency band 

(increased from 3 to 10 in logarithmically spaced steps). Time-frequency power was normalized 

by converting to a decibel (dB) scale, 10 ∗ 𝑙𝑜𝑔%c(
defghi

defghjklmnopm
), allowing different frequency 

bands to be directly compared, and 𝑝𝑜𝑤𝑒𝑟qrsgtONg  is the mean power from -0.30 to -0.10 s pre-

cue onset. Two windows were selected for further analysis based on examination of peak time-

frequency points in the grand average time-frequency representations: The first window was 4-6 

Hz at 0.15 to 0.25 s (captured the positive 5 Hz theta peak at 0.20s) and the second window was 

6-8 Hz at 0.60 to 0.70 s (captured the negative 7 Hz theta peak at 0.65s). For each participant, 

single-trial power values in these two windows were exported for statistical analyses.  

Statistical Analyses of EEG Data 

Stimulus-locked analysis. To validate the GED approach, we fitted linear mixed-effects 

single-trial regression models to examine the effects of congruency (coded -0.5 [congruent] and 

0.5 [incongruent], then within- participant z-scored) on the N2 ERP and GED component 

amplitudes. The models were fitted using (Pinheiro & Bates, 2000) [syntax: lmer(amplitude ~ 

congruency + (1 + congruency | participant)]. After validating the GED approach by showing 

that GED component amplitudes were sensitive to stimulus congruency, we then explored 

whether the N2 and GED component amplitudes were also sensitive to reward on offer and 

average reward rate [syntax: lmer(amplitude ~ congruency * (reward_on_offer + 
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average_reward_rate) + (1 + congruency * (reward_on_offer + average_reward_rate) | 

participant)] (reward on offer and average reward rate were within-participant z-scored).   

Cue-locked analysis. For each participant, we regressed the component amplitude at each 

time point on reward on offer and average reward rate (𝑦	~	𝑏c +	𝑏%𝑟	+	𝑏Z𝑟̅) to obtain the 

regression coefficients for average reward rate. We then performed non-parametric permutation 

tests using the MNE library (Gramfort et al., 2013; Gramfort et al., 2014) to determine the 

temporal clusters where the regression coefficients significantly differed from 0 (5,000 

permutations, threshold = 5.00,  p<.01).  

We fitted linear mixed-effects single-trial regression models to examine time-frequency 

power effects in the two windows described above. Time-frequency power values were regressed 

on reward on offer and average reward rate; they were nested within participants and the models 

included varying intercepts and slopes for both regressors, which were within- participant z-

scored. The models were also fitted using [syntax: lmer(power ~ reward_on_offer + 

average_reward_rate + (1 + reward_on_offer + average_reward_rate | participant)].  

 

Results 

Behavioral Results 

Mirroring typical Simon task performance (Forstmann et al., 2008; Simon, 1990), we 

found that participants made more errors (Figure 3A; mixed-effects logistic regression β=2.835,     

SE=0.299, p<.0001) and were slower to respond on incongruent trials compared to congruent 

trials (Figure 3B; mixed-effects regression β= 0.1483, SE=0.0054, p<.0001).  

We then turned to examining the effect of the average reward rate upon Simon task 

performance. Notably, we found that a high average reward rate engendered a marked decrease 
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in accuracy on the more difficult incongruent trials (Figure 2A). Statistically, this accuracy effect 

was confirmed by a mixed-effect logistic regression, which revealed a significant effect of 

average reward rate upon error rates only on incongruent trials (β=0.2332, SE=0.1094, p= 0.033; 

see Table 1 for full coefficient estimates) but not congruent trials (β=-0.0635, SE=0.2221, 

p=0.775). We observed a marginally significant linear contrast between the average reward 

effects on incongruent versus congruent trials (p= 0.063). Further, we found no main effects of 

reward on offer on either trial type (ps>0.785), mirroring our previous work (Otto & Daw, 2019) 

and observations by others (Beierholm et al., 2013; Guitart-Masip et al., 2011). Put another way, 

the average reward rate of the environment, but not the reward available for making a correct 

response modulated effortful control. 

While a high average reward rate appeared, visually, to slightly speed responses across 

both trial types (Figure 3B), the mixed-effects RT regression only revealed a non-significant 

(negative) effect of average reward rate on congruent trials (β= -0.005, SE=0.0034, p=0.145; see 

Table 2) but no apparent effect on incongruent trials (β=-0.0004, SE=0.0057, p=0.946).  

EEG Results: Stimulus-Locked Conflict-Related Activity 

Consistent with previous work (Yeung et al., 2004), the stimulus-locked N2 component 

was larger (i.e., more negative) for incongruent (vs. congruent) Simon-task trials (β=-0.63, 

SE=0.13, p<.001; Figure 4A). This component peaked at 0.28 s after stimulus onset: Contrasting 

the activity on incongruent and congruent trials revealed a predominantly central topographical 

distribution (Figure 4B right panel). Note that this topography is not evident when averaging 

activity across all trials (Figure 4B, left panel), likely because activity in other regions (e.g., P3 

in the parietal region) is stronger and thus masks the relatively weak N2 effects.  
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We then applied the GED approach to all the stimulus-locked EEG trials to demonstrate, 

as a proof of principle, that the GED approach not only addresses the volume conduction 

problem associated with regular ERP analyses, but most importantly, isolates task-relevant 

relevant statistical sources (Cohen, 2017)—and by extension, cognitive processes of interest (see 

Figure 2). As a large body of work has linked activity over midfrontal channels to conflict 

processing and/or cognitive control processes (Cavanagh, Zambrano-Vazquez, et al., 2012; 

Cavanagh & Frank, 2014), we therefore identified, for each participant, a component with 

maximally midfrontal spatial distribution (Figure 4D). As with the N2 component (Figure 4A), 

activity in this GED component (peaked at around 0.27 s) was also larger for incongruent (vs. 

congruent) Simon-task trials (β=-0.25, SE=0.07, p<.001; Figure 4C). Unlike the ERP topography 

for all trials (Figure 4B left), the GED component spatial distributions (i.e., activation patterns) 

across all trials and the difference between incongruent and congruent trials were maximal at 

midfrontal channels (Fig. 4D), which is unsurprising given that we explicitly selected, separately 

for each participant, a component with a predominantly midfrontal spatial distribution.  

Having established the effectiveness of the GED approach for separating sources that are 

mixed at the scalp via volume conduction and isolating stimulus-locked conflict processes, we 

then explored whether trial-by-trial fluctuations in reward on offer and average reward rate also 

modulated these stimulus-locked conflict processes. GED component amplitude was not 

significantly modulated by reward on offer (β=0.002, SE=0.05, p=0.968), average reward 

(β=0.06, SE=0.06, p=0.288), and their interactions with stimulus congruency (ps>0.151). 

Similarly, N2 amplitude was not significantly modulated by (β=0.07, SE=0.15, p=0.618), 

average reward (β=0.09, SE=0.14, p=0.519), and their interactions with stimulus congruency 
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(ps>0.135). These results suggest that stimulus-locked reactive control was not modulated by 

reward on offer and average reward rate. 

EEG Results: Cue-Locked Activity Associated with Average Reward Rate Processing 

We now turn to our primary analysis of interest, in which we examine whether 

preparatory (proactive) control neural activity is modulated by fluctuations in average reward 

rate. We applied GED to the pre-stimulus cue-locked component and identified a component 

with midfrontal topography in each participant (Figure 5A; see inset) because the behavioral 

results from the current and previous studies suggest that average reward rate modulates effortful 

control allocation (Devine et al., 2021; Otto & Daw, 2019; Sharp et al., in preparation), which, in 

turn, has been associated with changes in theta-band dynamics over midfrontal channels 

(Cavanagh, Figueroa, et al., 2012). The time-series activity of the midfrontal component is 

depicted in the top panel of Figure 5A.  

To examine whether component amplitude correlated with average reward rate, for each 

participant, we regressed the amplitude at each timepoint on reward on offer,	𝑟, and average 

reward rate, 𝑟̅. We then performed non-parametric permutation tests to determine the time 

windows or temporal clusters where the regression coefficients for average reward rate were 

statistically significant and different from 0 (p<.01). The t-statistic time series for the significant 

cluster (0.04 to 0.75 s after cue onset) of regression coefficients are shown Figure 5A (bottom 

panel). Importantly, we observed a significant negative relationship between average reward rate 

and component amplitude: a higher average experienced reward rate—which was associated 

with increased errors on incongruent trials—was associated with reduced amplitude of the 

component identified by GED (Figure 5B), and this effect was statistically significant for an 

extended period (at least 0.71 s; Figure 5A; blue shaded regions). Note that this effect may have 
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lasted even longer, but we had to restrict our analyses from 0 to 0.75 s to prevent overlap with 

activity related to the processing of the stimulus, which was shown between 0.75 to 1.25 s after 

cue onset (see Figure 1A).  

The above results suggest that the GED approach has effectively isolated a midfrontal 

component whose source activity reflects the neural activity associated with average reward rate 

processing across trials. We next turned to time-frequency analysis of the component time-series 

data to examine whether average reward rate (but not reward on offer) modulated theta power (4-

8 Hz) in this midfrontal component. The analysis revealed two distinct time windows where we 

observed changes in theta power (Figure 5C). Theta power in the earlier window (4-6 Hz, 0.15 to 

0.25 s) did not correlate with reward on offer (β=0.02, SE=0.02, p=.739) or average reward rate 

(β=0.004, SE=0.01, p=.432). However, theta power in the later window (6-8 Hz, 0.60 to 0.70 s) 

correlated negatively with average reward rate (β=-0.02, SE=0.01, p=.043), whereas reward on 

offer did not correlate with theta power (β=-0.01, SE=0.01, p=.256). To ensure these estimates 

had not been biased by outliers (because single-trial power estimates can be relatively noisy), we 

applied a robust outlier-detection approach, which identified 5.88% of the trials with power 

estimates ±3 times the median absolute deviation (Leys et al., 2019). After excluding these 

single-trial theta power outliers, we again found a negative effect for average reward rate (β=-

0.03, SE=0.01, p=.010) and a non-significant effect for reward on offer (β=-0.01, SE=0.01, 

p=.589). That is, when average reward rate is high, theta power in this midfrontal component 

was reduced, suggesting reduced cognitive control allocation (Figure 5D). Mirroring the 

behavioral analyses, the reward on offer did not appear to modulate theta power in either 

direction. 
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Discussion 

The idea that we invest (versus withhold) cognitive effort in accordance with the costs and 

benefits of effort exertion has been an influential proposal which has found broad empirical 

support and stemmed considerable interest in the last decade (Frömer et al., 2021; Inzlicht et al., 

2018; Kool & Botvinick, 2018; Kurzban et al., 2013; Otto et al., 2022; Shenhav et al., 2017). 

Within this framework, here we considered the more specific hypothesis that individuals should 

reduce their use of cognitively costly processing in accordance with the time-varying, experienced 

average reward rate of the environment (Otto & Daw, 2019), examining behavioral and EEG 

signatures of cognitive control modulations in accordance with the average reward rate, in a Simon 

response conflict task. Behaviorally, we observed that individuals modulated their level of 

(presumably effortful) controlled processing—manifesting as higher error rates on difficult, 

incongruent trials—when the average reward rate was high but readily employed cognitive control 

when the average reward rate was low, replicating our previous performance results in simple 

response conflict tasks (Devine et al., 2021; Otto & Daw, 2019).  

Examining neural activity by applying generalized eigendecomposition (GED) to 

perform statistical source separation on each participant’s single-trial EEG time-series data 

(Cohen, 2017), we could identify, separately for each participant, one predominantly midfrontal 

component to examine task-relevant cue-locked neural activity that occurred prior to 

presentation of the Simon stimulus (i.e., preparatory adjustments to effortful control). We found 

that the average rate of reward correlated negatively with theta power (6-8 Hz) in a midfrontal 

component identified via GED. Specifically, on trials in which the average reward rate per 

second was high, theta power was reduced in the GED-identified midfrontal component; 

conversely, when this average reward rate was low, component theta power was enhanced. In 
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other words, echoing the observed modulation of effortful behavior (evinced by incongruent trial 

accuracy; Figure 3A), the trial-to-trial strength of participants’ component theta power—which 

we take to index preparatory effortful control allocation (Cavanagh & Frank, 2014; Umemoto et 

al., 2019)—also varied inversely with the experienced trial-to-trial environmental average reward 

rate. Together, these behavioral and neural results provide evidence for the idea that the average 

reward rate per unit time modulates adjustments to effortful control. 

Indeed, a body of previous work has found that activity in midfrontal regions (in 

particular, theta-band oscillatory activity) relates to the application of effortful control processes 

involved in processing conflicting stimulus-response requirements (Cavanagh & Frank, 2014; 

Cohen, 2014, 2017). Enhancements in the strength of these theta oscillations have been observed 

following events that suggest an increased need for action monitoring—for example, following 

an error or the experience of response conflict (Cavanagh, Zambrano-Vazquez, et al., 2012). On 

this view, these frontal midline theta dynamics are thought to reflect synchronization of goal-

relevant information in the service of successful action selection, possibly reflecting the control 

function of the anterior cingulate cortex (ACC; Cavanagh & Frank, 2014; Holroyd & Umemoto, 

2016). Of note, a large body of theoretical and empirical work has implicated the ACC in both 

cost-benefit valuation of cognitive control and regulation of the level control applied (Shenhav et 

al., 2017; Fromer et al., 2021). In light of this proposed role for ACC function, the observed trial-

to-trial modulations of cue-locked (pre-stimulus) midfrontal component theta power observed 

here suggest the possibility that these modulations of midfrontal activity reflect reductions in 

effortful cognitive control prompted by the experienced average reward rate.  

 Critically, our analyses of average reward-induced modulations in the strength of 

midfrontal component power focused on the period of each trial before the Simon stimulus onset 
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(i.e., preparatory/proactive effortful control adjustments; see Figure 1A) which suggests that 

these modulations of component theta power did not stem from the congruence of the current 

trial (as participants would have no knowledge of stimulus congruence during this period) but 

rather appear to evidence a calculation of background average reward rate computed on the basis 

of recent history of rewards obtained per second. Crucially, even though the GED analysis was 

not informed by the average reward rate or reward on offer on each trial during the pre-stimulus 

period, activity in the midfrontal component we identified was selectively sensitive to only 

average reward rate, but not reward on offer. This dissociation mirrors participants’ lack of 

behavioral sensitivity to reward on offer—observed both here and in previous studies examining 

cognitive control (Devine et al., 2021; Otto & Daw, 2019; Sharp et al., in preparation) and motor 

vigor (Beierholm et al., 2013; Guitart-Masip et al., 2011), which employ an identical average 

reward rate manipulation. A feature of this available reward manipulation worth noting is that 

reward incentives change on a trial-to-trial basis, rather than manipulated in a block-wise 

fashion, as is often found in studies examining reward-motivated cognitive control (Chiew & 

Braver, 2014; Locke & Braver, 2008; Massar et al., 2016; Otto & Vassena, 2021). One 

possibility for the apparent lack of sensitivity to reward on offer levels here—and in our previous 

work—is that individuals are reluctant to adjust their control levels if they believe these control 

levels will only be appropriate for very short periods of time. This idea dovetails with a recent 

theoretical proposal, building upon the cost-benefit model of effort allocation, that a 

“reconfiguration cost” accompanying adjustments to control levels rides atop a control cost 

(Grahek et al., 2022). Crucially, average reward rate and reward on offer did not modulate 

stimulus-locked neural activity, suggesting that they did not influence reactive control. This 

finding is consistent with recent work showing that people combine information about expected 
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reward and task efficacy to proactively (but not reactively) adjust control allocation (Frömer et 

al., 2021). Together, these behavioral and neural results provide evidence for the idea that the 

average reward rate modulates preparatory but not reactive adjustments to effortful control. 

Further, as a proof of principle, we also used GED to investigate a well-characterized 

ERP component—namely the stimulus-locked N2, a negative wave typically observed between 

200 and 350 ms, which has been associated with incongruence in Simon and Simon-like 

response conflict tasks (Folstein & Van Petten, 2008). As expected, a traditional ERP analysis 

revealed a stronger negative deflection on incongruent (versus congruent) trials across midline 

channels (Fz, FCz, and Cz). Mirroring this result, our analysis of midfrontal GED-identified 

component time-series data revealed a similar pattern of deflections (i.e., more negative 

deflections on incongruent versus congruent trials) in a nearly identical time window. In other 

words, our GED analysis of stimulus-locked EEG was able to uncover component deflections 

that resemble the typical patterns of N2 obtained in traditional ERP analyses. 

Our results also highlight the utility of applying multivariate source separation techniques 

that not only decompose multi-channel EEG data into independent sources, but also 

simultaneously highlight task-relevant neural activity and de-emphasize task-unrelated 

background activity (e.g., Cohen, 2017). The midfrontal component we identified clearly 

captured neural activity associated with trial-to-trial fluctuations in average reward rate but not 

reward on offer, but this dissociation only indicates that reward on offer was not tracked by this 

particular midfrontal component. In fact, because GED produces as many statistical components 

as the number of channels in the EEG data, it is likely another component’s activity might 

covary with reward on offer but not average reward rate. However, this possibility does not 
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affect our main finding that average reward rate modulates proactive allocation of cognitive 

resources, and that we found evidence for this modulation in a midfrontal component. 

Finally, it is important to note that the strength of conclusions drawn from these EEG-

based results is constrained by the exploratory nature of our analysis and the limited sample size 

of our study (N=22). While we did observe a statistically significant behavioral effect of the 

average reward rate upon incongruent trial accuracy—thereby replicating a series of previous 

results obtained using employing Simon or Simon-like tasks (Devine et al., 2021; Otto & Daw, 

2019; Sharp et al., in preparation)—further research is needed to bolster our conclusions, 

especially with regards to the relationship between EEG and average rate of reward. Specifically, 

we see a need for independent and high-powered studies to 1) directly replicate how the 

experienced average reward rate correlates with midfrontal activity, and 2) to probe for possible 

correspondences between behavioral reactivity (i.e., average reward-rate-driven modulations of 

accuracy) and average reward rate-induced changes in midfrontal oscillatory power, both at the 

intra- and interindividual levels.   
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Figure 1. (A) Task flow in the Simon task. Before the stimulus is displayed, participants were 
shown the potential reward for making a correct response, after which they responded to 
a circle on the basis of its color, ignoring its location. (B) We induced random fluctuations in 
trial-to-trial available rewards (C) An example participant’s experienced average reward rate, in 
units of reward per second, computed jointly from the participant’s history of rewards and RTs, 
yielded an experienced, empirical average reward. 
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Figure 2. Generalized eigendecomposition (GED) on EEG data. From the recorded EEG data, 
we defined two periods of activity: pre-event (green) and post-event (blue) periods. We then 
compute the respective channel-by-channel covariance matrices, 𝑅 and 𝑆 (typically, separately 
for each epoch and then compute the mean covariance across epochs). GED decomposes multi-
channel EEG data into independent but non-orthogonal sources by finding weighted 
combinations of activities across different channels. The weights, 𝑊, are defined by some 
criteria specified by the contrast between the 𝑆 and 𝑅 covariance matrices. To generate a single 
component time series, we select a column in 𝑊 —i.e., one eigenvector—and use it to compute 
the linear weighted sum of activity across all channels. The resulting component maximizes the 
difference between activities in the post-event (blue) and pre-event (green) periods, resulting in 
hypothesis-driven source separation and dimension reduction. 
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Figure 3. (A) When the average reward rate was high, participants made more errors on 
incongruent Simon trials, where they needed to override inappropriate, prepotent responses. (B) 
Participants did not make significantly faster responses, in either congruent or incongruent trials, 
when the average reward rate was high versus low. High and low average reward rate conditions 
were computed with a tertile split on participants’ experienced average reward rate. Error bars 
indicate standard error of the mean. 
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Figure 4. Event-related potentials (ERPs) and generalized eigendecomposition (GED) of EEG 
Simon-task stimulus-locked data. (A) The N2 component (0.25 to 0.31s) amplitude was more 
negative on incongruent (vs. congruent) Simon conflict task trials. (B) Spatial topographies at 
peak N2 amplitude (0.28 s) for grand average (all trials; left) and the difference between 
incongruent and congruent trials (right). (C). A GED component time series also differentiated 
between congruent and incongruent trials (0.24 to 0.30 s). (D). We identified a GED component 
(see C) with midfrontal topography because the N2 ERP component is usually observed in 
midfrontal channels (see A). Statistical analyses were performed on the mean activity in the blue 
shaded regions.   
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Figure 5. Generalized eigendecomposition of EEG cue-locked data identified a component 
associated with average reward rate processing. We identified a component with midfrontal 
topography (see inset in panel A) because theta (4-8 Hz) activity in midfrontal channels (FCz, 
Cz) has been associated with cognitive control and effort processes. (A) Component time series 
(top) and t-statistic time series indicating that from 0.04 to 0.75 s, higher average reward rate was 
associated with reduced component amplitude. Blue shaded regions indicate statistically 
significant clusters identified using non-parametric permutation tests (5000 permutations). (B) 
Component time-series activity for average reward rate (a continuous variable) split into four 
equally-sized bins. (C) Time-frequency representation of component time-series activity. The 
two highlighted windows showed changes in component theta power (window 1: 4-6 Hz at 0.15 
to 0.25 s; window 2: 6-8 Hz at 0.60 to 0.70 s). Only theta power in the second window correlated 
negatively and significantly with average reward rate, such that higher average reward rate was 
associated with reduced component theta power. (D) Model-predicted component theta power 
(6-8 Hz at 0.60 to 0.70 s) as a function of average reward rate (±1 SE). The gray lines are the 
average reward rate effects for individual participants.  
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Table 1. Mixed-effects logistic regression coefficients indicating the influence of the average 

reward rate and other trial-by-trial covariates upon accuracy in the Simon Task. Asterisks denote 

significance at the .05 level.  

 

Coefficient Estimate (SE) p-value 

congruent -4.8502 (0.4712) <0.0001* 

incongruent -1.4626 (0.2027) <0.0001* 

congruent:prev_errors 0.1202 (0.3364) 0.721 

congruent:run_num -0.1256 (0.2422) 0.604 

congruent:trial_in_run -0.0476 (0.1869) 0.799 

congruent:key_rep 0.0462 (0.2078) 0.824 

congruent:prev_type 1.0666 (0.2664) <0.0001* 

congruent:avg_reward -0.0635 (0.2221) 0.775 

congruent:reward -0.0499 (0.1832) 0.785 

congruent:resp_side -0.2232 (0.2149) 0.299 

incongruent:prev_errors 0.8538 (0.1868) <0.0001* 

incongruent:run_num 0.1667 (0.1046) 0.111 

incongruent:trial_in_run 0.003 (0.0912) 0.973 

incongruent:key_rep -0.1661 (0.0857) 0.053 

incongruent:prev_type -0.7975 (0.1407) <0.0001* 

incongruent:avg_reward 0.2332 (0.1094) 0.033* 

incongruent:reward -0.0068 (0.0872) 0.938 

incongruent:resp_side -0.0393 (0.0844) 0.642 
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Table 2. Mixed-effects Regression coefficients indicating the influence of the average reward 

rate and a number of other trial-by-trial covariates upon RTs in the Simon Task. Asterisks denote 

significance at the .05 level. 

 

Coefficient Estimate (SE) p-value 

congruent 5.9015 (0.0157) <0.0001* 

incongruent 6.0783 (0.015) <0.0001* 

congruent:prev_errors 0.0655 (0.0143) <0.0001* 

congruent:run_num -0.0063 (0.0038) 0.102 

congruent:iti -0.0166 (0.0028) <0.0001* 

congruent:trial_in_run 0.0015 (0.0032) 0.626 

congruent:key_rep 0.0337 (0.0072) <0.0001* 

congruent:prev_type 0.0426 (0.0064) <0.0001* 

congruent:avg_reward -0.005 (0.0034) 0.145 

congruent:reward -0.0039 (0.0028) 0.161 

congruent:resp_side -0.0225 (0.0077) 0.004* 

incongruent:prev_errors 0.0271 (0.0245) 0.269 

incongruent:run_num -0.0099 (0.0061) 0.104 

incongruent:iti -0.0126 (0.0048) 0.009* 

incongruent:trial_in_run -0.0012 (0.0054) 0.827 

incongruent:key_rep 0.0105 (0.0096) 0.274 

incongruent:prev_type -0.0395 (0.0107) 0.0* 

incongruent:avg_reward -0.0004 (0.0057) 0.946 

incongruent:reward 0.0049 (0.005) 0.332 

incongruent:resp_side -0.0209 (0.011) 0.059 

 
 

 


