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Vision is simple. We open our eyes and, instantly, the world surrounding 
us is perceived in all its splendor. Yet Artificial Intelligence has been 
trying with very limited success for over 20 years to endow machines 
with similar abilities. A large van, filled with computers and driving 
unguided at a mile per hour across gently sloping hills in Colorado and 
using a laser-range system to ”see” is the most we have accomplished so 
far. On the other hand, computers can play a decent game of chess or 
prove simple mathematical theorems. It is ironic that we are unable to 
reproduce perceptual abilities which we share with most animals while 
some of the features distinguishing us from even our closest cousins, 
chimpanzees, can be carried out by machines. Vision is difficult. 

1 Introduction 

In the last ten years, significant progress has been made in understanding 
the first steps in visual processing. Thus, a large number of well-studied 
algorithms exist that locate edges, compute disparities along these edges 
or over areas, estimate motion fields and find discontinuities in depth, 
motion, color and texture (for an overview see Horn 1986 or the last ref- 
erence at the end of this article). At least two major problems remain. 
One is the integration of information from different modalities. Fusion of 
information is expected to greatly increase the robustness and fault tol- 
erance of current vision systems as it is most likely the key towards fully 
understanding vision in biological systems (Barrow and Tenenbaum 1981; 
Marr 1982; Poggio et al. 1988). The second, more immediate, problem is 
the fact that vision is very expensive in terms of computer cycles. Thus, 
one second’s worth of black-and-white TV adds up to approximately 64 
million bits which needs to be transmitted and processed further. And 
since early vision algorithms are usually formulated as relaxation algo- 
rithms which need to be executed many hundreds of times before con- 
vergence, even supercomputers take their time. For instance, the 65,536 
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processor Connection Machine at Thinking Machines Corporation (Hillis 
1985), with a machine architecture optimal from the point of view of pro- 
cessing two-dimensional images, still requires several seconds per image 
to compute depth from two displaced images (Little 1987). Performance 
on microprocessor based workstations is hundreds of times slower. 

Animals, of course, devote a large fraction of their nervous system 
to vision. Thus, about 270,000 out of 340,000 neurons in the house fly 
Musca damestica are considered to be "visual" neurons (StrausfeId 1975), 
while a third of the human cerebral cortex is given over to the compu- 
tations underlying the perception of depth, color, motion, recognition, 
etc. One way for technology to bypass the computational bottleneck is 
to likewise construct special-purpose vision hardware. Today, commer- 
cial vendors offer powerful and programmable digital systems on the 
open market for a few thousand dollars. Why, however, execute vision 
algorithms on digital machines when the signals themselves are analog? 
Why not exploit the physics of circuits to build very compact, analog 
special-purpose vision systems? Such a smart sensor paradigm, in which 
as much as possible of the signal processing is incorporated into the sen- 
sor and its associated circuitry in order to reduce transmission bandwidth 
and subsequent stages of computation, is starting to emerge as a possible 
competitor to more general-purpose digital vision machines. 

2 Analog circuits for vision: the early years 

This idea was explicitly raised by Horn at MIT (1974), where he proposed 
the use of a 2-D hexagonal grid of resistances to find the inverse of the 
discrete approximation to the Laplacian. This is the crucial operation in 
an algorithm for determining the lightness of objects from their image. 
An attempt to build an analog network for vision was undertaken by 
Knight (1983) for the problem of convolving images with the Difference- 
of-two-Gaussians (DOG), a good approximation of the Laplacian-of-a- 
Gaussian filter of Marr and Hildreth (1980). The principal idea is to 
exploit the dynamic behavior of a resistor/capacitor transmission line, 
illustrated in figure 1. In the limit that the grid becomes infinitely fine, 
the behavior of the system is governed by the diffusion equation: 

(2.1) 

If the initial voltage distribution is V(z,O) and if the boundaries are in- 
finitely far away, the solution voltage is given by the convolution of 
V(z, 0) with a progressively broader Gaussian distribution (Knight 1983). 
Thus, a difference of two Gaussians can be computed by converting the 
incoming image into an initial voltage distribution, storing the resulting 
voltage distribution after a short time and subtracting it from the voltage 
distribution at a later time. A resistor/capacitor plane yields the same 



186 Christof Koch 

Figure 1 : One-dimensional lumped-element resistor/capacitor transmission 
line. The incoming light intensity is converted into the initial voltage distribu- 
tion V(Z, 0). The final voltage V ( s ,  t )  along the line is given by the convolution 
of V(z,O) with a Gaussian of variance u2 = 2t/RC and is read off after a certain 
time t related to the width of the Gaussian filter. From Koch (1989). 

result in two dimensions. Practical difficulties prevented the success- 
ful implementation of this idea. A team from Rockwell Science Center 
(Mathur et al. 1988) is reevaluating this idea by using a continuous 2-D 
undoped polysilicon plane deposited on a thick oxidized silicon sheet 
(to implement the distributed capacitor). The result of the convolution is 
read out via a 64 by 64 array of vertical solder columns. 

A different approach - exploiting CCD technology - for convolv- 
ing images was successfully tried by Sage at MIT's Lincoln Laboratory 
(Sage 1984), based on an earlier idea of Knight (1983). In this technology, 
incoming light intensity is converted into a variable amount of charge 
trapped in potential "wells" at each pixel. By using appropriate clock- 
ing signals, the original charge can be divided by two and shifted into 
adjacent wells. A second step further divides and shifts the charges and 
so on (Fig. 2). This causes the charge in each pixel to spread out in a 
diffusive manner described accurately by a binominal convolution. This 
represents, after a few iterations, a good approximation to a gaussian 
convolution. Sage extended this work to the 2-D domain (Sage and Lat- 
tes 1987) by first effecting the convolution in the z and then in the y 
direction. Their 288 by 384 pixel CCD imager convolves images at up 
to 60 times per second. Since CCD devices can be packed extremely 
densely - commercial million-pixel CCD image sensors are available - 
such convolvers promise to be remarkably fast and area-efficient. 

3 Analog VLSI and Neural Systems 

The current leader in the field of analog sensory devices that include 
significant signal processing is undoubtedly Carver Mead at Caltech 
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(Mead 1989). During the last years he has developed a set of subcircuit 
types and design practices for implementing a variety of vision circuits 
using subthreshold analog complementary Metal-Oxide-Semiconductor 
(CMOS) VLSI technology. His best-known design is the "Silicon retina" 
(Sivilotti et al. 1987; Mead and Mahowald 19881, a device which computes 
the spatial and temporal derivative of an image projected onto its pho- 
totransistor array. The version illustrated schematically in figure 3a has 
two major components. The photoreceptor consists of a phototransistor 
feeding current into a circuit element with an exponential current-voltage 
characteristic. The output voltage of the receptor G: is logarithmic over 
four to five orders of magnitude of incoming light intensity, thus per- 
forming automatic gain control, analogous to the cone photoreceptors of 
the vertebrate retina. This voltage is then fed into a 48 by 48 element 
hexagonal resistive layer with uniform resistance values R. The photore- 
ceptor is linked to the grid by a conductance of value G, implemented by 
a transconductance amplifier. An amplifier senses the voltage difference 
across this conductance and thereby generates an output at each pixel 
proportional to the difference between the receptor output and the net- 
work potential. Formally, if the voltage at pixel i , j  is V,, and the current 
being fed into the network at that location IZz3 = G(V, - K3), the steady 
state is characterized by: 

A r 
B 

C r 
D 

E 

Figure 2: Schematic of a potential "well" CCD structure evolving over time. The 
initial charge acrossthe 1-D array is proportional to the incoming light intensity. 
The charge packet shown in (A) is then shifted into the two adjacent wells by 
an appropriate clocking method. Since the total charge is conserved, the charge 
per well is halved (B). In subsequent cycles, (C, D and E) the charge is further 
divided and shifted, resulting in a binominal charge distribution. After several 
steps, this distribution is very similar to a Gaussian distribution. From Koch 
(1989). 
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On inspection, this turns out to be one of the simplest possible discrete 
analogs of the Laplacian differential operator V2. In other words, given 
an infinitely fine grid and the voltage distribution V(z, y), this circuit 
computes the current I ( z ,  y) via 

V2V = R G ( v - V )  = RI. (3.2) 

The current I at each grid point - proportional to 17 - V and sensed 
by the amplifier - then corresponds to a spatially high-passed filtered 
version of the logarithmic compressed image intensity. Operations akin 
to temporal differentiation can be achieved by adding capacitive elements 
(Sivilotti et al. 1987). The required resistive elements of this circuit are de- 
signed by exploiting the current-voltage relationship (Fig. 3b) of a small 
transistor circuit, instead of using the resistance of a special metallic pro- 
cess. As long as the voltage across the device is within its linear range 
(a couple of 100 mV's), it behaves like a constant resistance whose value 
can be controlled over five orders of magnitude. The current saturates 
for larger voltage values, a nonlinearity with very desirable effects (see 
below). This, then, is the basic circuit element used for most vision chips 
coming out of Caltech. 

The response of the silicon retina to a 1-D edge projected onto the 
phototransistors is shown in figure 3c. The voltage trajectory can be well 
approximated by the second spatial derivative of the smoothed bright- 
ness intensity. In 2-D the response is similar to that obtained by convolv- 
ing the image with the DOG edge detection operator (Marr and Hildreth 
1980). A different circuit (Tanner 1986) computes the optical flow field 
induced by a spatially homogeneous motion, such as moving a pointing 
device over a fixed surface (for example, an optical mouse). 

A serious practical problem in designing the type of networks dis- 
cussed here is that unwanted oscillations can spontaneously arise when 
large populations of active elements are interconnected through a resis- 
tive grid. These oscillations can occur even when the individual elements 
are quite stable. Using methods from nonlinear circuit theory, Wyatt and 
Standley (1989) at MIT have shown how this flaw can be circumvented. 
They have proven that if each linear active element in isolation is de- 
signed to satisfy the experimentally testable Popov criterion from control 
theory (which guarantees that a related operator is positive real), then 
stability of the overall interconnected nonlinear system is guaranteed. 

Mead's principal motivation for this work comes from his desire to 
understand and emulate neurobiological circuits (as expressed in his new 
textbook, Mead 1989). He argues that the physical restrictions on the 
density of wires, the low power consumption of the CMOS process in 
the subthreshold domain, the limited precision and the cost of commu- 
nication imposed by the spatial layout of the electronic circuits are sim- 
ilar to the constraints imposed on biological circuits. Furthermore, the 
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Figure 3: The “Silicon retina.” (a) Diagram of the hexagonal resistive network 
with an enlarged single element. A photoreceptor, whose output voltage is 
proportional to the logarithm of the image intensity, is coupled - via the con- 
ductance G - to the resistive grid. The output of the chip is proportional to the 
current across the conductance G, or in other words, to the voltage difference 
between the photoreceptor and the grid. (b) The current-voltage relationship for 
Mead’s resistive element. As long as the voltage gradient is less than FZ 100 mV, 
the circuit acts like a linear resistive element. The output current saturates for 
larger gradients. (c) The experimentally measured voltage response of a 48 by 
48 pixel version of the retina when a step intensity edge is moved past one 
pixel. This response is similar to the one expected by taking the second spatial 
derivative of the smoothed incoming light intensity. Adapted from Mead and 
Mahowald (1988). From Koch (1989). 
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silicon medium provides both the computational neuroscience and the 
engineering communities with tools to test theories under realistic, real- 
time conditions. To further the spread of this technology into the general 
academic community, all circuits are fabricated via the silicon foundry 
MOSIS. 

4 Regularization theory and analog networks 

Problems in vision are usually inverse problems; the two dimensional 
intensity distribution on retina or camera must be inverted to recover 
physical properties of the visible three dimensional surfaces surround- 
ing the viewer. More precisely, these problems are ill-posed in that they 
either admit to no solution, to infinitely many solutions or to a solution 
that does not depend continuously on the data. In general, additional 
constraints must be applied to arrive at a stable and unique solution. 
One common technique to achieve this, termed "standard regulariza- 
tion" (Poggio et al. 1985), is via minimization of a given "cost" functional 
(for earlier examples of this see Grimson 1981; Horn and Schunck 1981; 
Ikeuchi and Horn 1981; Terzopoulos 1983; Hildreth 1984). The first term 
in these functionals assesses by how much the solution diverges from the 
measured data. The second term measures how closely the solution con- 
forms to certain a priori expectations, for instance that the final surface 
should be as smooth as possible. Let us briefly consider the problem 
of fitting a 2-D surface through a set of noisy and sparse depth mea- 
surements, a well-explored problem in computer vision (Grimson 1981). 
Specifically, a set of sparse depth measurements is given on a 2-D lattice, 
diJ, which are corrupted by some noise process. It is obvious that in- 
finitely many surfaces, fij, can be fitted through the sparse data set. One 
way to regularize this problem is to find the surface f that minimizes 

in which a depends on the signal-to-noise ratio and the second sum only 
contains contributions from those locations i where data exists. Equa- 
tion (4.1) represents the simplest possible functional, even though many 
alternatives exist (Grimson 1981; Terzopoulos 1983; Harris 1987). This 
and all other quadratic regularized variational functionals of early vision 
can be solved with simple linear resistive networks by virtue of the fact 
that the electrical power dissipated in linear networks is quadratic in the 
current or voltage (Poggio et al. 1985; Poggio and Koch 1985). The resis- 
tive network will then converge to its unique equilibrium state in which 
the dissipated power is at a minimum (subject to the source constraints). 
The static version of this sta ement is known as Maxwell's Minimum Heat 
Theorem. The steady-state o d the resistive network in figure 4a minimizes 
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Figure 4: Surface interpolating network. (a) At those locations where depth data 
are available, the values of the battery V,, and of the conductance G are set to 
their appropriate values, via additional sample-and-hold circuitry. The output 
is the voltage Volt, at each location. This circuit solves, for small enough voltage 
gradients, a modified form of Poisson’s equation, via minimization of equation 
(4.2). Experimental results from a 48 by 48 subthreshold, analog CMOS VLSI 
circuit are shown next (Luo et al. 1988). (b) The input voltage vn,, corresponding 
to a flat, 2 pixel wide, strip around the periphery and a central 4 pixel wide 
tower (solid coloring). At these locations, the conductance G is set to a constant, 
fixed value, while G is zero everywhere else. Thus, no data are present in the 
area between the bottom of the tower and the outside strip. (c), (d), and (e) 
show the output voltage for a high, medium, and low value of the transversal 
resistance R. If R is small enough, the resulting smoothing will flatten out the 
central tower. 
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expression (4.1) if the voltage V,, is identified with the discretized so- 
lution surface fl,, the battery Et3 with the data dlJ and the product of 
the variable conductance G,, connecting the node to the battery and the 
constant horizontal resistance R with a. The power minimized by this 
circuit is then formally equivalent to the functional of equation (4.1). The 
performance of an experimental 48 by 48 subthreshold, analog CMOS 
VLSI circuit is illustrated in figure 4 (Luo et al. 1988). For an infinitely 
fine grid and a voltage source E(z ,  y) the surface interpolation chip com- 
putes the voltage distribution V(z, y) according to the modified Poisson 
equation 

V2V+RGV = RGE, (4.2) 

with either an arbitrary Dirichlet boundary condition (such as zero volt- 
age along the boundary) or a zero voltage slope (that is, no current across 
the boundary) Neumann boundary condition. If RG is a constant across 
the grid, this equation is sometimes known as the Helmholtz equation. 
Note that the difference to equation (3.2) lies in the choice of observ- 
able, current I ( z ,  y) versus voltage V(z, y). A large number of problems 
in early vision, such as detecting edges, computing motion or estimat- 
ing disparity from two images have a similar architecture, with resistive 
connections among neighboring nodes implementing the constraint that 
objects in the real world tend to be smooth and continuous. 

5 Discontinuities 

However, the most interesting locations in any scene are arguably those 
locations at which some feature changes abruptly, for instance the 2-D 
optical flow at the boundary between a moving figure and the stationary 
background or the color across the sharp boundaries in a painting. Ge- 
man and Geman (1984) (see also Blake and Zisserman 1987) introduced 
the powerful concept of a binary line process l,,, which explicitly codes 
for the absence ( l zJ  = 0) or presence ( l z ,  = 1) of a discontinuity at location 
i ,  j in the 2-D image. Further constraints, such that discontinuities should 
occur along continous contours (as they do, in general, in the real world) 
or that they rarely intersect, can be incorporated into their theory, which 
is based on a statistical estimation technique (see also Marroquin et al. 
1987). In the case of surface interpolation and smoothing, maximizing 
the a posteriori estimate of the solution can be shown to be equivalent to 
minimizing: 
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where l:J and 12, are the horizontal and vertical depth discontinuities, p a 
fixed parameter and V a potential function containing a number of terms 
penalizing or encouraging specific configurations of line processes. In the 
case of surface interpolation, a simple example is V(l,V,) = 1;;; that is, the 
line process lFj between Z , J  and z + 1 , ~  will be set to 1 if the ”cost” for 
smoothing, that is ( f z + l j  - fz,)2, is larger than the parameter P. Otherwise, 

= 0. Discontinuities greatly improve the performance of early vision 
processes, since they allow algorithms to smooth over unreliable or sparse 
data as well as account for boundaries between figures and ground. In 
fact, it can be argued that the introduction of discontinuities represents 
the single biggest advance in machine vision in the last 5 years. They 
have been used to demarcate boundaries in the intensity, color, depth, 
motion and texture domains (Geman and Geman 1984; Terzopoulos 1986; 
Blake and Zisserman 1987; Marroquin et al. 1987; Gamble and Poggio 
1987; Hutchinson et al. 1988; Poggio et al. 1988; Chhabra and Grogan 
1988). 

Line discontinuities can be implemented in various ways. In a hy- 
brid implementation, each line process is represented by a simple binary 
switch. When the switch is open, no current flows across the connection 
between the two adjacent nodes I , ]  and z + 1 , ~ .  The network operates 
by switching between distinct modes. In the analog cycle the network 
settles into the state of least power dissipation, given a fixed distribution 
of switches. In the digital phase, the line processes are evaluated using 
expression (5.1); that is, the switches are set to the state minimizing this 
expression. Such a hybrid implementation is illustrated in figure 5 for 
the case of computing the optical flow in the presence of motion dis- 
continuities. The flow field - induced by the time-varying image inten- 
sity I ( z ,  y, t )  - is regularized using a smoothness constraint (Horn and 
Schunck 1981). The amount of smoothing is governed by the constant re- 
sistance value R of the upper and lower horizontal grids. In a complete 
analog implementation, each line process is represented by a ”neuron” 
whose output varies continuously between 0 and 1 (Koch et al. 19861, 
similarly to Hopfield and Tank’s (1985) use of such continuous variables 
to solve the “traveling salesman problem.” Another possibility exploits 
the saturation inherent in Mead’s design for resistances (Mead 1989). As 
illustrated in figure 3b, the current-voltage relation of the resistive ele- 
ment is linear for voltage differences on the order of 100 mV, while the 
element saturates for larger voltage differences. In other words, the peak 
current is independent of the size of the voltage gradient (as long as it 
is larger than some threshold), implementing a first approximation of a 
binary line process. This occurs in figure 4c, where segmentation starts 
to occur due to the large voltage gradient between the base and the top 
of the ”tower.” 
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A very promising implementation is via ”resistive fuses” (Harris et 
al. 1989): in such a two-terminal nonlinear resistor, the current flow- 
ing through is proportional to the voltage difference across as long as 
that difference is less than a threshold. If the voltage gradient exceeds 
the threshold, the current decreases and, for large enough voltage gra- 
dients, is set to zero. The experimentally determined voltage-current 
relationship of this device (Harris et al. 1989) is closely related to the cost 
function used with the “analog” line discontinuities (Koch et al. 1986). It 
can also be derived from the cost function used in the “graduated non- 
convexity” method of Blake and Zisserman (1987). The notion of mini- 
mizing power in linear networks implementing quadratic regularization 
algorithms must be replaced by the more general notion of minimizing 
the total co-content J for linear networks with “resistive fuses” (where 
J = Jd/ f(V/’)dV’ for a resistor defined by I = f(V)). 

Although the method proposed by Geman and Geman (1984) requires 
stochastic optimization techniques and complicated potential functions 
(V in expression (5.1)) to implement the various constraints under which 
line discontinuities operate, computer simulations have shown that var- 
ious deterministic approximations as well as much simplified potential 
functions can be used (see also Blake 1989). 

6 Analog chips versus digital computers 

As we have seen, all of the above circuits exploit the physics of the sys- 
tem to perform operations useful from a computational point of view. 
Thus, the transient voltage or charge distribution at some time in the 
networks of figures 1 and 2 corresponds to the solution, in this case con- 
volution of the image intensity with a Gaussian. In the networks derived 
from the appropriate variational functionals, the stationary voltage dis- 
tribution corresponds to the interpolated surface (Fig. 4) or to the optical 
flow (Fig. 5). These quantities are governed by Kirchhoff’s and Ohm’s 
laws, instead of being symbolically computed via execution of software 
in a digital computer. Furthermore, the architecture of the analog re- 
sistive circuits reflects the nature of the underlying computational task, 
for instance, smoothing, while digital computers - being Turing univer- 
sal - do not. One of the advantages of these non-clocked analog circuits 
is that their operating mode is optimally suited to analog sensory data 
since they avoid temporal aliasing problems caused by discrete temporal 
sampling. Furthermore, their robustness to imprecisions or errors in the 
hardware, their processing speed and low power consumption (Mead‘s 
retina requires Iess than a mW, most of which is used in the photo- 
conversion stage) and their small size make analog smart sensors very 
attractive for tele-robotic applications, remote exploration of planetary 
surfaces and a host of industrial applications where their power hungry, 
heat producing, bulky and slow digital cousins are unable to compete. 
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Figure 5: Hybrid resistive network to compute the optical flow in the presence 
of discontinuities. The algorithm computes the smoothest flow field compatible 
with the measured motion data (Horn and Schunck 1981; Hutchinson et al. 
1988). The steady-state voltage distribution in the upper grid is equivalent to 
the x component and the stationary voltage distribution in the lower grid is 
equivalent to the y component of the optical flow. A high voltage at location 
i , j  will spread to its four neighboring nodes. The degree to which voltage 
spreads, and thus the degree of smoothness, is governed by the value of the 
constant horizontal resistance R. The value of the batteries E, and E, and the 
conductances G,, G, (for clarity, only two such elements are drawn) and G 
depend on the measured spatial and temporal intensity gradients V I  and It 
and will be set by on-chip photoreceptors. Binary switches 1 implement motion 
discontinuities, since an arbitrary high voltage, that is, velocity, will not affect 
the neighboring site across the discontinuity. Adapted from Hutchinson et al. 
(1988). 
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The two principal drawbacks of analog VLSI circuits are their lack 
of flexibility and their imprecision. The above circuits are all hard- 
wired to perform very specific tasks, unlike digital computers which 
can be programmed to approximate any logical or numerical operation. 
Only certain parameters associated with this algorithm, for instance the 
smoothness in the case of figures 4 and 5, can be varied. Thus, digital 
computers appear vastly preferable for developing and evaluating new 
algorithms; analog implementations should only be attempted after such 
initial exploration of algorithms. Furthermore, although 12 and even 16 
bit analog-to-digital converters are commercially available, it seems un- 
likely that the precision of analog vision circuits will exceed 7 to 8 bit 
of resolution in the next few years. However, for a number of impor- 
tant tasks, such as navigation or tracking, the incoming intensity data are 
rarely more accurate than 1% in any case. 

7 TheFuture 

Within the last year, a number of potentially very exciting developments 
have occurred which bode well for the future of analog vision circuits. 
Mahowald and Delbriick (1989) from Mead's laboratory have built and 
tested an analog CMOS VLSI circuit implementing a version of Marr and 
Poggio's (1976) cooperative stereo algorithm. Two 1-D phototransistor 
arrays, with 40 elements each, located next to each other on the chip 
provide the input to the circuit. A winner-take-all circuit selects the most 
active node among the seven possible disparity values at each pixel, 
replacing the inhibitory interaction in the original algorithm. 

A problem plaguing analog subthreshold circuits are random offsets 
which vary from location to location and are caused by fluctuations in the 
process accuracy as well as dark currents. Such offsets, while usually not 
problematic for digital circuits, can be very disruptive when operating 
in the analog domain, in particular when spatial or temporal derivatives 
are required. Mead (1988) has recently developed a variant of the "float- 
ing gate technology" used for a long time for resetting programmable 
read-only-memory cells (EPROM) by means of ultra-violet light. While 
previously the chips were bombarded with UV radiation to erase mem- 
ory, Glasser (1985) of MIT demonstrated how this technology could be 
used to selectively write a " 0  or a "1" into the cell. Mead is the first 
to have applied this technique to the analog domain, by building a local 
feedback circuit at every node of the retina (Fig. 3) which senses the local 
current and attempts to keep it at or near zero by charging up a capacitor 
located between two layers of poly positioned above each node. Expo- 
sure to UV light excites electrons sufficiently to enable them to surmount 
the potential barrier at the silicon/silicon dioxide interface. In order to 
adapt the retina, a blank, homogeneous image is projected for a fraction 
of a minute onto the chip - in the presence of the UV light. This ef- 
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fectively creates a "floating" battery at each location, which induces a 
current exactly counteracting the effect of the offset current at that pixel. 
Mead (1988) has even been able to show after-image-like phenomena. 

Another problem with most resistive networks for early vision prob- 
lems is that the values of the individual circuit elements, such as con- 
ductances or voltage sources, depend on the measured data or can even 
be negative in value (the associated operator is not, in other words, of 
the convolution type) raising problems with network stability. Harris at 
Caltech has shown how this problem can be circumvented via the use 
of so-called "constraint boxes", which impose a generalized constraint 
equation (Harris 1987; 1989). For the case of reconstructing surfaces us- 
ing a smoother functional than the one of equation (4.1) (so-called cubic 
spline or thin plate interpolation), his circuit implements an equation of 
the form V,  - - V, = 0. The VLSI circuit has been tested successfully 
(Harris 1989) and is unusual in that all of its terminals can act as input or 
output nodes. Thus, if nodes n and b are held constant, then the c node 
is fixed to V, - K. Using these constraint boxes in the case of computing 
smooth optical flow (Horn and Schunck 1981; Hutchinson et al. 19881, 
all resistance values are positive and data independent, a considerable 
advantage when building these circuits. 

A team at MIT headed by J. Wyatt, and including B. Horn, H.-S. Lee, 
T. Poggio, and C. Sodini, is initiating an ambitious effort to fabricate 
analog, early vision chips exploiting different circuit technologies, such 
as CCD or mixed bipolar and CMOS devices. They plan to build vari- 
ous 2-D spatial correlator and convolver circuits, analog image memories 
and single-chip moment calculators and motion sensors. As part of this 
effort, new methods for estimating first and second image moments or 
computing optical flow under various constraints (for example, rigid en- 
vironment) are being developed purely for such analog implementations 
(Horn 1989). Fusion of information on-chip is being attempted in Koch's 
laboratory at Caltech, by integrating a set of simple resistive networks 
computing depth and depth discontinuities, as well as edges and optical 
flow onto a small, autonomous moving vehicle. A number of other labo- 
ratories are also engaged in efforts to build vision sensors. In particular, a 
group at UCLA and Rockwell International (White et al. 1988) is design- 
ing a 2-D network for edge detection on the basis of Poggio, Voorhees 
and Yuille's (1985) proposal via a set of four l-D resistive lines. Thus, it 
appears that the analog computers of the 1940s and 1950s (Karplus 19581, 
until recently considered extinct, are making a sort of comeback in the 
form of highly dedicated smart vision chips. 
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