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Abstract

We investigate two-dimensional neural �elds as a model of the dy-

namics of macroscopic activations in a cortex-like neural system. While

the one-dimensional case has been treated comprehensively by Amari 30

years ago, two-dimensional neural �elds are much less understood. We de-

rive conditions for the stability for the main classes of localized solutions

of the neural �eld equation and study their behavior beyond parameter-

controlled destabilization. We show that a slight modi�cation of original

model yields an equation whose stationary states are guaranteed to satisfy

the original problem and numerically demonstrate that it admits localized

non-circular solutions. Generically, however, only periodic spatial tessel-

lations emerge upon destabilization of rotationally-invariant solutions.

1 Introduction

Neural �elds (Amari 1977) describe the dynamics of distributions of activity
on a layer of neurons. Neural �elds have been suggested as models of internal
representations in natural agents (Takeuchi and Amari 1979, Gross et al. 1998)
as well as in robots (Steinhage 2000, Iossi�dis and Steinhage 2001, Erlhagen
and Bicho 2006). Various modalities are covered such as spatial localization,
viewing direction, attentional spotlight, the dynamics of decision making, ele-
mentary behaviors, and positions of other agents in the environment. More ex-
tensive studies in theoretical neuroscience (Suder et al. 1999, Mayer et al. 2002,
Bresslo� 2006) concentrate on primary visual cortex, cf. (Lieke et al. 1989),
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superior culliculus (Schierwagen and Werner 1996), the representation of mo-
toric primitives (Thelen et al. 2001, Erlhagen and Schöner 2002), and working
memory in prefrontal cortex (Schutte et al. 2003, Camperi and Wang 1998).

Recently neural �elds are experiencing attention in modeling and analysis of
brain imaging data, because they are able to represent the dynamic interaction
of an active medium with time-varying inputs, and because the spatial and
temporal scales in the data and neural �eld models are starting to become
comparable. Especially if information about connectivity is available from the
data (Jirsa et al. 2002) then neural �elds are of high explanatory power.

Moreover the analysis has reached a level where applications directly bene�t
from the theoretical progress, and at the same time, computational power be-
came available that allows us to perform on-line simulations of two-dimensional
neural �elds.

Generally speaking, neural �elds serve as nonparametric representations of
probability densities and their dynamics may perform operations on the densi-
ties such as Bayesian computations (Herrmann et al. 1999). One-dimensional
problems have been comprehensively studied already in the 1970s (Amari 1977,
Kishimoto and Amari 1979, Takeuchi and Amari 1979). While for spatially
extended, e.g. periodic patterns, the transition to the more relevant two-
dimensional case is nontrivial but fairly well understood (Ermentrout and Cowan
1979, Ermentrout 1998), localized activities in dimensions larger than one have
not yet been treated with the same rigor. The situation, however, does not seem
to be exactly complex: a large body of numerical studies together with theo-
retical considerations (Laing et al. 2002, Laing and Troy 2003) imply a general
instability of multi-bump solutions if the interactions are excitatory at small
and inhibitory at large distances (see also Laing and Chow (2001) for stability
analysis in one-dimensional models of spiking neurons). Further, there has been
numerical evidence that single-bump solutions in two dimensions for radially
symmetric interactions are essentially circular, which was exploited as an as-
sumption in Taylor's early attack to the two-dimensional case (Taylor 1999). In
ref. (Werner and Richter 2001) evidence has been provided for the existence of
ring-shaped solutions which are possible for certain types of neural interactions.
Along these lines one may conjecture that �nite mesh-like structures of higher
genus do exist as well.

The situation became more spirited only recently when in Refs. (Herrmann
et al. 2004, Bresslo� 2005, Doubrovinski 2005) the stability problem of localized
activations in two-dimensional �elds was eventually tackled. Although the gen-
erality which has been achieved in the one-dimensional neural �elds is presently
out of reach in two dimensions, a number of interesting variants of the circular
activity con�gurations were analyzed so far.

Here we present a concise and reproducible scheme for the analysis of the
stability of localized activity distributions in neural �elds. We show the ap-
plicability of the scheme not only to the special case of circular solution but
study also ring-shaped and bar-shaped solutions which present the complete set
of known localized solutions for simple kernels (Werner and Richter 2001). In
addition to the stability proofs which are based on the classical scheme (Pis-
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men 1999, Bresslo� 2005, Doubrovinski 2005), we are interested mainly in the
behavior beyond the phase transitions towards the unstable regions. The desta-
bilization of circular solution is known to lead to a transient elongation of the
activity bubble (Bresslo� 2005, Doubrovinski 2005) which ultimately causes the
localized solution to split or to form meandering bands. Either case is unstable
in a strict sense: the splitting into two continues toward a plane-�lling hexag-
onal pattern while the banded patterns develop a global stripe pattern or a
quasiperiodic arrangement.

The destabilization is thus fundamental since for typical Mexican-hat in-
teraction kernels there is no nearby stable state which is approached after the
bifurcation, while the spatially extended patterns are not approached in �nite
time (unless a general criterion for convergence is drawn into consideration). Yet
the destabilization, at least in the neurobiological applications is the most inter-
esting part of the theory. Divergences are usually very slow and may halt com-
pletely due to reasonable boundary conditions (cf. below), such that an activity-
based correlational learning scheme may organize anisotropies in the connections
which stabilizes the anisotropic activities as assumed in Ref. (Bresslo� 2005) and
exploited in (Schierwagen and Werner 1996). A theoretical account of the in-
teraction of activity dynamics and learning was studied in (Dong and Hop�eld
1992), in relation to activity e�ect on feature maps cf. (Mayer et al. 2002).

2 The neural �eld equation

The neural �eld model describes the activations of a layer of neurons when the
geometry of interactions rather than the speci�c connectivity among the neurons
is relevant. We assume positions r ∈ R2 for neurons with continuous-valued
activations u (r, t). The synaptic weights between neurons at the positions r
and r′ is expressed by isotropic interaction kernel w (r, r′) = w (|r− r′|) of
Mexican-hat shape. Neurons are activated if their total input is greater than
zero. We will study only equilibrium solutions without external input, and we
neglect slow learning e�ects, so the synaptic weights are constant over time.

The activation at a position results from a weighted integration over the
inputs from all other active locations in the �eld and a natural decay towards
a resting potential denoted by h. The dynamics of the neural �eld is thus
determined by the equation

τ
∂u (r, t)
∂t

= −u (r, t) +
∫
R[u]

w (|r− r′|) dr′ + h, (1)

where R [u] = {x | u (r) > 0} is the excited region, i.e. a neuron receives input
only from neurons within R. The boundary of R [u] is assumed to be smooth.
Rescaling time, τ can be set to unity without loss of generality. Equilibrium
solutions are de�ned by

u (r, t) =
∫
R[u]

w (|r− r′|) dr′ + h (2)
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and depend on the value of the threshold parameter h and the particular form of
w. Here we use a smooth kernel which is more general than the quasi-constant
kernel function in Ref. (Herrmann et al. 2004). The kernel is constructed as a
di�erence of Gaussian functions and is de�ned by four parameters K, k, M , m:

w = K exp
(
−k ‖r− r′‖2

)
−M exp

(
−m ‖r− r′‖2

)
(3)

If non-rotationally symmetric solutions are excluded from the beginning from
the consideration of Eq. 2, the situation simpli�es dramatically and it can be
shown (Taylor 1999) that one-bump solutions u (‖r‖) of certain radii are sta-
tionary states of the dynamics (1). Analogously, a ring-shaped solution (Werner
and Richter 2001) or a stripe-like solution, i.e. a degenerate ring of in�nite ra-
dius, can occur. However, when considering an arbitrarily small perturbation of
the solution, the symmetry might be broken and new phenomena can appear,
as will be studied in the following.

3 Stability

It has previously been shown that (1) admits rotationally invariant stationary
solutions with disc-shaped activated region (one-bump solutions). Generically,
these arise in the course of a �blue sky bifurcation� (Strogatz, 1994): no solution
is present in the subcritical parameter region whereas two solution branches
bifurcate as control parameter exceeds the critical value. The two solutions
are rotationally invariant one-bumps. Stability analysis of these states with
respect to rotationally invariant perturbation is essentially equivalent to stability
analysis of one-bump solution of the one-dimensional model. It reveals that the
unstable branch generically corresponds to the bump of smaller radius. Upon
destabilization the region of activation expands as the solution approaches the
stable branch, corresponding to the circular bump of larger radius (See Fig. 1).
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c d

Figure 1: (a) Stable one-bump solution of the neural �eld equation. Parameters
are K = 2.5, k = 5, M = 0.5, m = 0.5, h = −0.281 (b) Unstable one-bump
solution for the parameter valuesK = 2.5, k = 5,M = 0.5,m = 0.5, h = −0.294
(c) Annular solution with the parameters K = 2.5, k = 5, M = 0.5, m = 0.5,
h = −0.115 (d) A part of a stable stripe-like solution. Parameters are the same
as in (c). At the same parameters also an unstable solution exists (not shown).

Seeking a stationary solution u of the two-dimensional model (1) assuming
rotational invariance of the �eld (i.e. u (r) ≡ u (r) with r = ‖r‖) leads to a
problem, essentially equivalent to that of �nding stationary states in the one-
dimensional model (see Appendix). Two types of solutions besides the circular
one-bumps are readily constructed: solutions with annular activated regions and
solutions with stripe-shaped region of activation (see Fig. 1). The possibility of
existence of the former has been pointed out previously, whilst the latter can
be seen as degenerate annuli of in�nite inner radius.

We now turn to the analysis of the stability properties of the above-
mentioned stationary states. Consider the one-bump solution with disc-shaped
activated region (i.e. u (r) > 0 i� r < R ). Consider dynamics of a small
perturbation εη, i.e.

u (r, t) = u (‖r‖) + εη (r,t) (4)

Inserting into (1) and keeping terms of order at most 1 in ε one �nds that to
linear order the dynamics of the perturbation obeys

∂η (r, t)
∂t

= −η (r, t) +
∫

R2
w (‖r− r′‖) δ (u (r′)) η (r′, t) dr′ (5)
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where δ (u (r′)) is Dirac delta function (see Appendix). Substituting an Ansatz
of the form η (r, t) = exp (λt) ξ (r) one arrives at an eigenvalue problem which
in polar coordinates becomes (see Appendix)

λξ (r, θ) = −ξ (r, θ) + Γ
∫ 2π

0

g (θ − θ′) ξ (r, θ′) dθ′ (6)

Here g is a 2π periodic function depending on kernel w (‖r− r′‖) and Γ is a
constant given by

Γ = R

∣∣∣∣ ∂u (r)
∂r

∣∣∣∣
r=R

∣∣∣∣−1

(7)

i.e. the ratio of the radius of activated region R to the absolute value of the
slope of the radial pro�le of the stationary solution at r = R. Clearly, explicit
evaluation of Γ requires calculating the stationary solution which is implicitly
given by (2) in terms of a double integral. Equation (6) is known as Fredholm's
integral equation of the second kind. The integral operator in the right-hand side
of (6) is compact, bounded and self-adjoint implying that every spectral value
is an eigenvalue, all eigenvalues are real, each eigenspace is �nite-dimensional
and zero is the only possible accumulation point of eigenvalues (Kreyszig, 1978).
Solving (6) we obtain eigenvalues and eigenfunctions which in polar coordinates
read (see Appendix)

λn = −1 + Γ
∫ 2π

0
g (θ) cos (nθ) dθ

ξn =
∫ 2π

0
w (r, θ,R, θ′) cos (nθ′) dθ′ (8)

where R is the radius of the circular activated region. The nth eigenfunction
is 2πn-periodic in θ, implying that it is Dn-symmetric (symmetry with respect
to rotation by 2π/n around the origin and with respect to re�ections on the n
respective symmetry planes; the shape in Fig. 5a, e.g., is D4-symmetric) and
corresponds to a multi-periodic deformation of a circle. Eigenvalue spectra for
one-bump solutions are given in Fig. 2. Certain features of these are readily
interpretable. E.g. we see that for the bump of smaller radius the eigenvalue λ0,
corresponding to rotationally invariant deformation, is positive implying insta-
bility with respect to perturbations in radius of the bump. The spectrum, cor-
responding to the larger bump, however, is non-positive, implying stability with
respect to arbitrary perturbation in agreement with earlier results. Also, the
eigenvalue λ1, that corresponds to a 2π-periodic deformation (or, equivalently,
to a translation of the bump) vanishes, re�ecting the translational invariance of
(1). Exploiting this observation, it appears possible to re-express Γ in (7) more

explicitly as Γ = 1/
∫ 2π

0
g (θ) cos (θ) dθ, whereby the expressions for the other

eigenvalues simpli�es to

λn = −1 +

∫ 2π

0
g (θ) cos (nθ) dθ∫ 2π

0
g (θ) cos (θ) dθ

(9)
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Figure 2: Spectra of corresponding to solutions in Fig. 1 a, b, and c, respec-
tively. The positivity of the zeroth mode in (b) indicates the instability of this
solution with respect to circular perturbations. The solution (a) is stable, with
a marginal instability with respect lateral shift as visible from the vanishing �rst
eigenvalue. The instability of the annulus solution in (c) shows a characteristic
scale which causes the solution to split into three single bumps.

Note that contrary to (8), Eq. 9 does not contain explicitly the stationary
solution u, which allows us to calculate the nth eigenvalue as a function of the
radius of activated region without evaluating double integrals in the implicit
expression for u. Only integrals over one-dimensional manifolds appear in (9),
greatly simplifying the calculation of the spectrum. Apart from theoretical con-
siderations, this is of importance for technical applications since the knowledge
of stability properties of solutions of (1) could a�ect their use for representing
probability distributions e.g. in implementations of autonomous robot memory.
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Figure 3: (a) Four eigenvalues versus bump radius R. The curve which repre-
sents λ0 described the stability with respect to perturbations in bump radius.
The others are (from left to right) λ2 (re�ection-invariant deformation), λ3 (D3-
invariant eigenmode) and λ4 (D4-invariant eigenmode). λ1 is identically zero
re�ecting the metastability of the solutions w.r.t. lateral shifts. Parameters are:
K = 1.5, k = 5, M = 0.5, m = 1.5 (b) Spectrum determining stability of
stripe-shaped solutions shown in Fig. 1(d). Only the information for the stable
solution if given here. This solution looses stability for a band of values of Ω.

Previous work (Werner-Richter 2001) conjectured the bifurcation branch cor-
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responding to the stable one-bump to remain stable for all values of control
parameter. Using (9) this is readily proved false: higher and higher frequency
eigenmodes progressively turn unstable as the radius of the stationary solution
is increased (see Fig. 3).

Strictly speaking, the assertion that linear stability analysis as outlined
above correctly determines stability properties of stationary solutions relies on
additional assumptions on operators appearing in the right-hand side of (1)
(Schaefer and Golubitsky 1988). For in�nitely-dimensional non-smooth �elds
these generically need not hold. In order to check whether stability analysis
is indeed adequate, correctly determining stability properties of the stationary
solutions, we performed a number of numerical simulations. Fig. (4) depicts a
simulation of unstable one-bump whose corresponding stability spectrum reveals
that the maximal (positive) eigenvalue is that of the D2-symmetric eigenmode.
As the time elapses, initially circular activated region keeps deforming, forming
blob-like protrusions. These subsequently bud o� from the middle-bump. The
newly-formed activated domains keep splitting, progressively tiling the plane in
a hexagonal pattern. We would like to stress that the pattern which is formed
immediately after destabilization of the stationary state is D2-symmetric as
would be expected from the properties of the eigenvalue spectrum. That is, sta-
bility properties of the stationary solutions as well as qualitative aspects of the
pattern, forming upon destabilization of the steady state, are correctly predicted
from the above-mentioned linear stability analysis.

Figure 4: (Upper panel) Time evolution of an unstable bump, undergoing
stability loss at a D2-eigenmode. Parameters are: K = 1.5, k = 5, M = 0.5,
m = 1.5, h = −1.46 · 10−2. (Lower panel) Time evolution of an unstable bump,
undergoing stability loss at a D3 invariant eigenmode. Parameters: K = 1.5,
k = 5, M = 0.5, m = 1.5, h = −4.43 · 10−3.

Symmetry breaking accompanying destabilization of a stationary bump was
examined for a broad range of parameters (e.g. parameters which yielded solu-
tions with maximal eigenvalue of the respective spectrum corresponding to D3-,
D4- and D8-symmetric perturbations, see Fig. 4). In all of the cases, the course
of the symmetry breaking was appropriately determined by linear stability.

Stability analysis of annular solutions proceeds along the same lines as that
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of one-bumps (see Appendix). The essential di�erence is that instead of a singe
equation (6), a system of two equations results, meaning that to every non-
negative whole number corresponds a pair of real eigenvalues. (In general, to
every boundary of an activated domain there corresponds an equation in the
corresponding eigenvalue problem). We �nd that in the case of annular solu-
tion shown in Fig. 1d the largest eigenvalue corresponds to a D3-symmetric
perturbation. Simulations demonstrate that initially rotationally invariant an-
nulus splits into three adjacent blobs which gradually drift apart (not shown).
The symmetry of the resulting state is the same as that of the largest eigen-
value. Again, stability of the stationary solution as well as qualitative aspects
of the emerging pattern are readily predicted from the analytically computed
spectrum.

Finally, let us consider the stripe-shaped solutions. Their stability is gov-
erned by an eigenvalue problem, similar to that governing stability of the annuli.
However, the corresponding linear operator is no longer compact (this is a conse-
quence of activated region being unbounded) and the spectrum needs no longer
remain discrete. Actually, in this case the spectrum is continuous: to every
real corresponds a pair of (real) eigenvalues. Fig. 3b shows results of linear
stability analysis of the stripe solution, depicted in Figure 1d. In the corre-
sponding simulation the stripe is seen to split into a row of separate bumps �
a �chain-of-pearls� con�guration. The inter-bump separation is the same as the
wave-length of the eigenmode, corresponding to the largest eigenvalue. Again,
stability and semi-quantitative properties of patterns resulting from the station-
ary state destabilization are readily predicted from the respective eigenvalue
spectrum.

In summary, preceding section describes all of the stationary non-
homogeneous solutions of the two-dimensional Amari equation known up to date
and exhaustively examines their stability properties. Quite strikingly, stability
analysis of the non-homogeneous steady state is possible since the eigenvalue
problem (8) is e�ectively one-dimensional although a two-dimensional system is
being considered.
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a b

c d

Figure 5: Dynamics of the modi�ed �eld with and without noise. (a) In the
absence of noise an unstable bump develops four identical protrusions subse-
quently splitting into four separate blobs. (b) In presence of noise a ring-shaped
region of activation is initially annular, but (c and d) develops gradually into
an irregularly meandering pro�le. Parameters are k = 5, m = 1.6,K = 1.5,
M = 0.45, h = −0.0505, p = −6.25 · 10−4.

4 Modi�ed equation

A long-standing question regarding Amari-model is existence of non-rotationally
invariant stationary solutions with bounded and connected region of activation.
Such states are likely to bifurcate from circular solutions upon destabilization
at a non-rotationally invariant eigenvalue. In fact, stability loss of one branch
is always accompanied by emergence of another in its vicinity provided that the
mappings de�ning the dynamical system under consideration are su�ciently
smooth (Crandall and Rabinowitz 1971). However, in the above simulations
exclusively periodic patterns resulted upon destabilization of circular solutions.

In order to address existence of non-rotationally invariant solutions of (1)
with bounded and connected activated region we shall modify the original
Amari-model (1) so as to obtain a related (�modi�ed�) equation ful�lling the
following three conditions.

1. Stationary solutions of the modi�ed equations should be solutions of the
unmodi�ed equation (2).

2. The modi�ed equation should not admit solutions with unbounded acti-
vated region.
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3. Stability of a solution of Eq. (2) should remain unaltered by the modi�-
cation.

According to condition 3 rotationally invariant stationary solutions behave like
those of the unmodi�ed Amari-model, admitting symmetry breaking at a non-
rotationally invariant eigenvalue. However, the symmetry breaking cannot re-
sult in a spatially extended periodic pattern according to condition 2. Conse-
quently, a non-rotationally invariant localized state is likely to emerge. It will
be a solution of the original (unmodi�ed) Amari model with desired properties,
provided that its region of activation remains connected in the course of desta-
bilization. Note, however, that conditions 1-3 do not su�ce to ensure that the
activated domain will not start splitting into separate disconnected region upon
symmetry breaking.

We now turn to the construction of a modi�cation of (1) satisfying the above-
mentioned conditions 1-3. Consider some circular one-bump solution uh of (1)
with resting potential h and the area of activated region A[uh]. Let us modify
(1) according to

∂tu = −u (r, t) +
∫
R[u]

[w (|r− r′|) + q] dr′ − qA[uh] + h′ (10)

where q is any real number. Suppose that u is a stationary solution of (10) for
a certain q. Substituting u into (10) one obtains with the area of R [u] being
denoted by A[u]:

0 = −u (r, t) +
∫
R[u]

[w (|r− r′|) + q] dr′ − qA[uh] + h′ =

= −u (r, t) +
∫
R[u]

w (|r− r′|) dr′ + qA[u]− qA[uh] + h′ (11)

implying that u is a solution of (2) with the resting potential h replaced by
h′ − qA[uh] + qA[u]. Consequently, condition 1 is satis�ed. Note that the
circular one-bump solution uh of the original problem (2) which was used when
constructing (10) solves the modi�ed problem (10) with h′ = h and any q.

Eq. (10) does not admit stationary solutions with unbounded region of ac-
tivation. Indeed, assuming that such a solution û exists, substituting û into
(10) we were to conclude that the integral term of the right-hand-side of (10) is
in�nite which forms a contradiction. Therefore condition 2 above is satis�ed.

Finally, we show that the modi�cation (10) preserves stability properties
of the stationary solution uh (which is a stationary solution of both the mod-
i�ed and the unmodi�ed problems (1) and (10) respectively by construction).
Recall that in deriving equation (8) we did not make use of any particular
assumptions on the form of the integral kernel w (|r− r′|). Consequently,
this expression for the eigenvalue spectrum is equally valid for the modi�ed
problem as well as for the unmodi�ed one. Note, however, that when de-
riving stability spectrum in the case of the modi�ed problem (10) we shall
exchange g (θ − θ′) by g (θ − θ′) + qA[uh] (see derivations in the Appendix).

11



Using
∫ 2π

0
qA[uh] cos (nθ) dθ = qA[uh]

∫ 2π

0
cos (nθ) dθ = qA[uh]2πδn0 it now fol-

lows from (8) that all eigenvalues of the stability spectrum of uh (except for
λ0 corresponding to perturbations of the radius of the bump) remain unaltered
by the modi�cation. Consequently, if uh is unstable with respect to some non
rotationally-invariant perturbation in the original problem (1), it is unstable
with respect to such a perturbation in the modi�ed problem (10), whereby con-
dition 3 holds.

The above arguments imply that a rotationally invariant solution uh of
Eq. (1) that is unstable at a non-circular eigenmode solves also the modi�ed
equation (10) and is unstable with respect to the same eigenmode of the dy-
namics (10). Furthermore, contrary to the case of (1), the dynamics of (10) can
never result in a periodic pattern with unbounded activated region if q < 0.

As stated above, conditions 1 � 3 do not su�ce to guarantee that the acti-
vated region will remain connected as uh follows the dynamics (10). Neverthe-
less, by tuning the parameter q in (10) one is able to trap the dynamics in the
vicinity of instability in a state with connected activated region.
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Figure 6: (a) Contour plot of the D2-symmetric solution superimposed with
its level-curves. The zeroes level-curve (corresponding to u = 0) delimits the
activated region. The symmetries of the equation and initial condition allow
to restrict the simulation to one quarter of the domain. The resulting blob is
roughly ellipse-shaped with the vertical semi-axis being longer than the horizon-
tal one. (b) Cross-section through the pro�le of the stationary solution along
the coordinate axes. (c) Rate of growth of the solution versus iteration step cal-
culated as maximal deviation between two subsequent time steps. Parameters
are K = 1.5, k = 5, M = 0.5, m = 1.5, h = 1.50, q = 0.02850.

Assume that for q = 0 the dynamics in vicinity of the bifurcation tends to
increase the area of the activated region. Note that q could be understood as
a Lagrange multiplier, which ensures the constancy of the area for one special
value, which we certainly exclude. Suppose now that q is chosen to be negative.
The additional term in the integrand of (10) will tend to counterbalance the
area increase. We can now choose q such that two e�ects counterbalance and
a non-rotationally invariant steady state with bounded and connected region of
activation will result. The calculation of e�ective values of q requires the consid-
eration of higher orders of the dynamics which can be expressed by a Ginzburg-
Landau equation, cf. Doubrovinski (2005). Here, we will instead take resort to
numerical simulations. These con�rm the emergence of non-rotationally invari-
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ant steady states with bounded and connected region of activation. For example,
Fig. 6 shows the destabilization of a circular one-bump which is unstable at a
D2-symmetric eigenmode, developing into a non-rotationally invariant steady
state with ellipse-shaped activated region. Only one quarter of the domain was
simulated (the �eld in the other three quadrants is determined by that on the
simulated quadrant due to Euclidean symmetry of dynamic equations and D2-
symmetry of initial conditions) on a grid of 300× 300 pixels in order to increase
the accuracy. Symmetries corresponding to higher eigenvalues are irrelevant
because the eigenvalues λn are stable for n ≥ 3 for the given parameters. The
length di�erence of the half-axes of the activated domain of the resulting D2-
symmetric stationary state was much larger than the spatial discretization step
(some 30 pixels) allowing to conclude that that the stationary solution obtained
is not a discretization artifact.

Another example is given in Fig. 7 showing the dynamics in the vicinity of
stability loss at a D3-symmetric eigenmode. Initially the �eld is D3-symmetric.
We see that initially a D3-symmetric state with connected activated region does
indeed result. The system dwells in this state during considerable time, breaking
D3-symmetry due to small numerical perturbations (in absence of perturbations
D3-symmetry must be preserved by the dynamics (10) due to invariance under
Euclidean transformations). Supposedly, the emerging D3-symmetric state is
stable when the dynamical system is con�ned to the subspace of D3-symmetric
functions. The �nal peak in Fig. 7e, however, indicates an instability with
respect to a D2-symmetric perturbation.

a b

c d e
0 20 40 60 80 100

0

0.02

0.04

0.06

0.07

Iteration

G
ro

w
th

 r
at

e

Figure 7: (a)-(d): Time evolution of activated region. (e) Rate of growth of
the solution versus iteration step calculated as maximal deviation between two
subsequent time steps. The initial deep �valley� corresponds to the shape of
activated region shown in panel (b). Parameters are: K = 1.5, k = 5, M = 0.5,
m = 1.5, h = −0.0260, q = 0.0125.

In conclusion we would like to stress that the particular choice of modi�ca-
tion according to (10) is very restrictive. In fact, many other equations whose
stationary states satisfy (1) and do not admit solutions with unbounded re-
gions of activation are readily constructed along the same lines. For instance
∂tu = −u +

∫
R[u]

w (|r− r′|) dr′ −
∫
R[u]
|r− r′| dr′dr + h can be shown to have
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these properties, arguing essentially as when proving that conditions 1 and 2
above are satis�ed by stationary states of (10). We believe that further investi-
gation of such modi�cations will provide insights into the properties of unstable
solutions of Amari-equation.

5 The time course of symmetry breaking

Bifurcation theory describes the time course to critical behavior in low-
dimensional systems. Under certain conditions the parametric destabilization
of an activity distribution does not lead to a nearby stable state, but initiates a
cascade of symmetry breaking events which eventually approaches a new distant
stable con�guration. It has been a motivation for the present study to demon-
strate the complex evolution of the state of the �eld after the loss of stability.
It is these con�gurations that bear the greatest computational potentials.

For the Amari equation with a simple kernel only the existence of rotation-
ally invariant bumps has been proven. This work demonstrates existence of two
other non-periodic stationary states: stripe-shaped and annular solutions. Sta-
bility analysis of these would be expected to be very involved. Surprisingly, the
special form of the Amari equation makes this stability problem amenable to an-
alytical treatment. The total synaptic input to a given neuron is only dependent
on the shape of the boundary of the activated domain, making the eigenvalue
problem e�ectively one-dimensional, thereby allowing for fairly straight-forward
calculation of the spectrum for each of these cases.

Strictly speaking, spectral properties of the linearized operator do not guar-
antee the stability of the stationary state unless additional assumptions are
satis�ed. However, our extensive numerical investigation shows that stability is
indeed correctly predicted by eigenvalue analysis. Furthermore, the spectrum
allows to predict certain semiquantitative features of solutions approached after
the onset of instability.

Our numerical experiments showed that exclusively spatially extended so-
lutions (i.e. those with unbounded activated domain) appeared in the unstable
parameter region. Yet, a slight modi�cation of the interaction kernel, introduc-
ing long-range interactions circumvents this, yielding non-rotationally invariant
stationary states with bounded and connected region of activation which at the
same time are stationary states of the original unmodi�ed equation. This set-
tles a longstanding question regarding existence of solutions of this type. This
bears also relevancy for biological systems. Assuming a certain degree of shift-
twist symmetry the existence of elongated blobs suggests mechanisms for the
emergence of orientation selectivity in neurons of the primary visual cortex.
Although the degree of asymmetry of non-rotationally invariant solutions was
moderate, these e�ects could in principle be enhanced by (Hebbian) learning
which we disregarded in our treatment.
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A Appendix

A.1 Circular one-bump solution

Consider the development of a small perturbation εη of a stationary rotationally-
invariant one-bump ū. Substituting into the Amari equation and linearizing in ε
we have

∂η (x, t)
∂t

= −η (x, t) +
∫

R2
w (|x− x′|) δ (ū (x′)) η (x′, t) dx′. (12)

In polar coordinates we write (somewhat informally) w (|x− x′|) =
w (r, θ, r′, θ′), and use the rotational invariance of ū, such that

∂η (r, θ, t)
∂t

= −η (r, θ) +
∫ 2π

0

∫ ∞
0

r′w (r, θ, r′, θ′) δ (ū (r′)) η (r′, θ′) dr′dθ′ (13)

Recall that

δ (f (x)) =
∑
xi

δ (x− xi)∣∣∣df(xi)
dx

∣∣∣ , (14)

where the sum is over the roots of f , provided that f is di�erentiable at the
corresponding points. Using (14), (2) simpli�es to

∂η (r, θ)
∂t

= −η (r, t) +
∫ 2π

0

Rw (r, θ,R, θ′)
1∣∣∣∂ū(R)
∂r

∣∣∣η (R, θ′) dθ′, (15)

where R is the radius of the (circular) region of activation of ū. Substituting
η = eλtξ (r, θ) we arrive at the following eigenvalue problem.

λξ (r, θ) = −ξ (r, θ) + Γ
∫ 2π

0

w (r, θ,R, θ′) ξ (R, θ′) dθ′, (16)

where Γ ≡ R/ |(∂ū (R) /∂r)|. By restriction of both sides to r = R, the eigen-
value problem (16) is solved by

ξn (R, θ) = cosnθ

λn = −1 + Γ
∫ 2π

0
w (R, θ,R, 0) cos (nθ) dθ, (17)

where n are nonnegative integers. The last equation can be veri�ed by noting
that w (R, θ,R, θ′) is a function of (θ − θ′) alone and Fourier-expanding the
integrand of (16).

The r-dependence of the eigenfunctions can be derived from (17) by exploit-
ing the special form of the eigenvalue problem (16).

ξn (r, θ) =
∫ 2π

0

w (r, θ,R, θ′) cos (nθ′) dθ′ (18)
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Shift invariance allows us to conclude that λ1 = 0. Thus, Γ is obtained more
explicitly from Eq. 17.

Γ =
1∫ 2π

0
w (R, θ,R, 0) cos (θ) dθ

(19)

Now the eigenvalues can be calculated without evaluating the slope of the sta-
tionary solution ū:

λn = −1 +

∫ 2π

0
w (R, θ,R, 0) cos (nθ) dθ∫ 2π

0
w (R, θ,R, 0) cos (θ) dθ

(20)

Eq. (20) is particularly convenient for examining stability properties of circular
one-bump solutions.

A.2 Annular solutions

The existence of solutions with annular region of activation was suggested al-
ready in (Amari 1977). Denoting the inner radius by R1 and the outer radius
by R2, (15) is immediately rewritten

∂η (r, θ)
∂t

= −η (r, θ) + Γ1

∫ 2π

0

w (r, θ,R1, θ
′) η (R1, θ

′) dθ′

+Γ2

∫ 2π

0

w (r, θ,R2, θ
′) η (R2, θ

′) dθ′, (21)

where Γ1 = R1/ |∂ū (R1) /∂r|, Γ2 = R2/ |∂ū (R2) /∂r|. Analogously to the
derivation of (16), we set η = eλtξ (r, θ) and restrict both sides to R1 and R2.

λξ1 = −ξ1 + Γ1

∫ 2π

0
w (R1, θ, R1, θ

′) ξ′1θ
′ + Γ2

∫ 2π

0
w (R1, θ, R2, θ

′) ξ′2dθ
′

λξ2 = −ξ2 + Γ1

∫ 2π

0
w (R2, θ, R1, θ

′) ξ′1dθ
′ + Γ2

∫ 2π

0
w (R2, θ, R2, θ

′) ξ′2dθ
′(22)

where ξi = ξ (Ri, θ) and ξ′i = ξi (θ′) , i ∈ {1, 2}. It is natural to seek the
eigenfunctions of the form [ξ1, ξ2] = v cos (nθ), where v is some two-dimensional
vector. Using this substitution it turns out that the eigenvalues of (22) are the
same as those of the matrices[

−1 + Γ1

∫ 2π

0
w11 cosnθdθ Γ2

∫ 2π

0
w12 cosnθdθ

Γ1

∫ 2π

0
w12 cosnθdθ −1 + Γ2

∫ 2π

0
w22 cosnθ

]
(23)

such that Eq. 23 allows us to construct the spectrum of (22).

A.3 Stripe-shaped solutions

Stripe-shaped solutions can be constructed by assuming the region of activation
of the form R [ū] = {(x, y) | 0 ≤ x ≤ L} and can be seen as degenerate annuli
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with in�nite inner radius, considered in the previous section. Interestingly, in
this case it appears possible to give an explicit expression for the stationary
one-bump solution in terms of the model parameters:

ū (x, y) = π
2km (Km erf

(√
kx
)
− kM erf (

√
mx)−

−Km erf
(
−
√
kL+

√
kx
)

+Mk erf (−
√
mL+

√
mx))− h (24)

The counterpart of (21) now reads

∂η

∂t
= −η +

∫
R2
w (|x− x′|) δ (ū (x′)) η (dx′)

= −η +
∫ ∞
−∞

w (x, y, 0, y′)
1∣∣∣∂ū(0)
∂x

∣∣∣η (0, y′) dy′ (25)

+
∫ ∞
−∞

w (x, y, L, y′)
1∣∣∣∂ū(L)
∂x

∣∣∣η (L, y′) dy′, (26)

where (x, y) and (x′, y′) are Cartesian coordinates of x and x′ respectively. As
in the former cases, substituting η (x, y, t) = eλtξ (x, y) and restricting to 0 or
to L we �nd

λξ1 = −ξ1 + Γ1

∫∞
−∞ w (0, 0, 0, y′) ξ′1dy

′ + Γ2

∫∞
−∞ w (0, 0, L, y′) ξ′2dy

′

λξ2 = −ξ2 + Γ1

∫∞
−∞ w (L, 0, 0, y′) ξ′1dy

′ + Γ2

∫∞
−∞ w (0, 0, L, y′) ξ′2dy

′ (27)

where now ξ′i denotes ξi (y′). Subscripts 1 and 2 designate restrictions to x = 0
and x = L, respectively, according to Γ1 = 1/ |∂ū (0) /∂x|, Γ2 = 1/ |∂ū (L) /∂x|
and ξ1 (y) = ξ (0, y), ξ2 (y) = ξ (L, y). Arguing in exactly the same way as
when considering annular solutions we conclude that (26) admits an uncountable
in�nity of eigenvalues which are the same as those of matrices[

−1 + Γ1ŵ0 (Ω) Γ2ŵL (Ω)
Γ1ŵL (Ω) −1 + Γ2ŵ0 (Ω)

]
(28)

where ŵ0 (Ω) =
∫∞
−∞ w (0, 0, 0, y′) cos (Ωy′) dy′ =∫∞

−∞ w (L, 0, L, y′) cos (Ωy′) dy′, ŵL (Ω) =
∫∞
−∞ w (L, 0, 0, y′) cos (Ωy′) dy′ =∫∞

−∞ w (0, 0, L, y′) cos (Ωy′) dy′. To every nonnegative real number corresponds
a pair of eigenvalues. The corresponding eigenfunctions can be evaluated
from (27).

Acknowledgment

The authors would like to thank S. Kaijser, T. Geisel, and S. Amari for their
kind support of this work and for helpful remarks. We further like to thank
Hecke Schrobsdor� for stimulating discussions.

17



References

S. I. Amari (1977) Dynamics of pattern formation in lateral-inhibition type neural
�elds. Biological Cybernetics 27, 77-87.

P. Bresslo� (2005) Spontaneous symmetry breaking in self-organizing neural
�elds. Biological Cybernetics 93, 256-274.

M. Camperi, X. J. Wang (1998) A model of visuospatial working memory in
prefrontal cortex: Recurrent network and cellular bistability. Journal of
Computational Neuroscience 5:4, 383-405.

M. G. Crandall, P. H. Rabinowitz (1971) Bifurcation from simple eigenvalues. J.
Funct. Anal. 8, 321-340.

D. W. Dong, J. J. Hop�eld (1992) Dynamic properties of neural networks with
adapting synapses. Network: Computation in Neural Systems 3:3, 267-283.

K. Doubrovinski (2005) Dynamics, stability and bifurcation phenomena in a
nonlocal model of cortical activity.
http://www.matj.uu.se/research/pub/Doubrovinski1.pdf

W. Erlhagen, G. Schöner (2002) Dynamic �eld theory of movement preparation.
Psychological Review 109:3, 545-572.

W. Erlhagen, E. Bicho (2006) The dynamic neural �eld approach to cognitive
robotics. Journal of Neural Engineering 3,R36-R54.

G. B. Ermentrout, J. D. Cowan (1979) A mathematical theory of visual
hallucination patterns. Biological Cybernetics 34, 137-150.

G. B. Ermentrout (1998) Neural networks as spatiotemporal pattern forming
systems. Rep. Prog. Phys. 61:4, 353-430.

M. A. Giese (1998) Dynamic neural �eld theory for motion perception. Kluwer
Academic Publishers, Boston.

H.-M. Gross, V. Stephan, M. Krabbes (1998) A neural �eld approach to
topological reinforcement learning in continuous action spaces. IEEE World

Congress on Comput. Intell. (1998).
J. M. Herrmann, K. Pawelzik, T. Geisel (1999) Self-localization of autonomous

robots by hidden representations. Autonomous Robots 7:1, 31-40.
J. M. Herrmann, H. Schrobsdor�, T. Geisel (2004) Localized activations in a

simple neural �eld model. CNS 2004.
I. Iossi�dis, A. Steinhage (2001) Controlling an 8 DOF manipulator by means of

neural �elds. International Conference on Field and Service Robotics (2001).
V. K. Jirsa, K. J. Jantzen, A. Fuchs, J. A. S. Kelso (2002) Spatiotemporal

forward solution of the EEG and MEG using network modeling. IEEE
Transactions on Medical Imaging 21:5, 493-504.

K. Kishimoto, S. I. Amari (1979) Existence and stability of local excitations in
homogeneous neural �elds. Mathematical Biology 7, 303-318.

E. Kreyszig (1978) Introductory functional analysis with applications. Wiley, New
York.

C. R. Laing, C. Chow (2001) Stationary bumps in networks of spiking neurons.
Neural Computation 13:7, 1473-1494.

18

http://www.matj.uu.se/research/pub/Doubrovinski1.pdf


C. R. Laing, W. C. Troy, B. S. Gutkin and G. B. Ermentrout (2002) Multiple
bumps in a neuronal model of working memory. SIAM Journal of Applied

Mathematics 63:1, 62-97.
C. R. Laing, W. C. Troy (2003) PDE methods for nonlocal problems. SIAM

Journal of Dynamical Systems 2:3, 487-516.
E. E. Lieke, R. D. Frostig, A. Arieli, D.Y . Ts'o, R. Hildesheim, and A. Grinvald

(1989) Optical imaging of cortical activity: Real-time imaging using extrinsic
dye-signals and high resolution imaging based on slow intrinsic-signals. Annu.
Rev. Physiol. 51, 543-559.

N. Mayer, J. M. Herrmann, T. Geisel (2002) Curved feature metrics in models of
visual cortex. Neurocomputing 44-46, 533-539.

L. M. Pismen (1999) Vortices in nonlinear �elds. Form liquid crystals to

super�uids. From non-equilibrium patterns to cosmic strings. Clarendon Press.
Oxford Science Publications.

A. Schierwagen, H. Werner (1996) Saccade control through the collicular motor
map: Two-dimensional neural �eld model. In: Lecture Notes In Computer
Science. Vol. 1112, Springer-Verlag, 439-444.

A. R. Schutte, J. P. Spencer, G. Schöner (2003) Testing the dynamic �eld theory:
Working memory for locations becomes more spatially precise over
development. Child Development 74:5, 1393-1417.

A. Steinhage (2000) The dynamic approach to anthropomorphic robotics.
Proceedings of the fourth Portuguese Conference on Automatic Control,

Controlo 2000.
K. Suder, F. Wörgötter, T. Wennekers (2001) Neural �eld model of receptive �eld

restructuring in primary visual cortex. Neural Computation 13, 139-159.
A. Takeuchi, S. I. Amari (1979) Formation of topographic maps and columnar

microstructures. Biological Cybernetics 35, 63-72.
S. Tanaka, J. Ribot, K. Imamura, T. Tani (2006) Orientation-restricted

continuous visual exposure induces marked reorganization of orientation maps
in early life. NeuroImage 30:2, 462-477.

J. G. Taylor (1999) Neural 'bubble' dynamics in two dimensions: foundations.
Biological Cybernetics 80, 393-409.

E. Thelen, G. Schöner, C. Scheier, L. B. Smith (2001) The dynamics of
embodiment: A �eld theory of infant perseverative reaching. Behavioral and
Brain Sciences 24, 1-84.

H. Werner, T. Richter (2001) Circular stationary solutions in two-dimensional
neural �elds. Biological Cybernetics 85, 211-217.

H. R. Wilson, J. D. Cowan (1973) A mathematical theory of the functional
dynamics of cortical and thalamic nervous tissue. Kybernetik 13:2, 55-80.

J. Y. Wu, Y. W. Lam, C. X. Falk, L. B. Cohen, J. Fang, L. Loew, J. Prechtl, D.
Kleinfeld, Y. Tsal (1998) Voltage-sensitive dyes for monitoring multineuronal
activity in the intact central nervous system. Histochem. J. 30:3, 169-187.

19


	Introduction
	The neural field equation
	Stability
	Modified equation
	The time course of symmetry breaking
	Appendix
	Circular one-bump solution
	Annular solutions
	Stripe-shaped solutions


