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PRÉCIS / SHORT ABSTRACT  

Loss of SA was enforced in two tasks requiring identification of target items (respectively, 

abstract concepts and urban “threat”). EEG recording and source-localization with sLORETA 

shows rapid co-activity of regions for visual perception and those with high-order duties.  

This may offer a basis for top-down effects on level 1 SA. 
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ABSTRACT 

Objective: The objective was to map brain activity during early intervals in loss of 

Situation Awareness (SA) to examine any co-activity in visual and high-order regions, 

reflecting grounds for top-down influences on level 1 SA. 

Background: Behavioural and neuroscience evidence indicates that high-order brain 

areas can engage before perception is complete. Inappropriate top-down messages may 

distort perception during loss of SA. Evidence of co-activity of perceptual and high-order 

regions would not confirm such influence but may reflect a basis for it.  

Methods: SA and Bias were measured using QASA (Quantitative Analysis of 

Situation Awareness) and brain activity recorded with 128-channel EEG 

(electroencephalography) during loss of SA.  One task (15 participants) required 

identification of a target pattern and another task (10 participants) identification of “threat” in 

urban scenes. In both, the target was changed without warning, enforcing loss of SA. Key 

regions of brain activity were identified using source localization with sLORETA 150-

160msec post-stimulus-onset in both tasks and also 100-110msec in the second task.  

Results: In both tasks, there was significant loss of SA and Bias shift (p ≤ .02), 

associated at both 150 and 100 msec intervals with co-activity of visual regions and 

prefrontal, anterior cingulate and parietal regions linked to cognition under uncertainty.  

Conclusion: There was early co-activity in high-order and visual perception regions 

that may provide a basis for top-down influence on perception. 

Application: Co-activity in high- and low-order brain regions may explain either 

beneficial or disruptive top-down influence on perception affecting level 1 SA in real-world 

operations. 

(word count: 250 words) 
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MAPPING BRAIN ACTIVITY DURING LOSS OF SITUATION AWARENESS:  

an EEG investigation of a basis for top-down influence on perception 

 
Effective interaction with the external environment requires that salient aspects are 

processed appropriately to produce or maintain good Situation Awareness (SA) (Adams, 

Tenney, & Pew, 1995; Endsley, 1995, 2000, 2013; Durso & Sethumadhavan, 2008; 

Parasuraman, Sheridan, & Wickens, 2008; Patrick & Morgan, 2010; Wickens, 2008). 

Complementary theoretical approaches define SA either as a “state of knowledge” about a 

situation (Endsley, 2013) and/or in terms of the processes for building that knowledge (Durso 

& Sethumadhavan, 2008), encompassing both explicit and implicit understanding (Durso, 

Rawson, & Girotto, 2007). The loss of SA, especially in challenging operational 

environments such as combat, transport, fireground or medical situations may precipitate 

critical errors with serious consequences (Borghini, Astolfi, Vecchiato, Mattia, & Babiloni, 

2012; Catherwood, Edgar, Sallis, Medley, & Brookes, 2012; Klein, Calderwood, Clinton-

Sirocco, 2010; Schulz, Endsley, Kochs, Gelb, & Wagner, 2013). Further investigation of the 

psychological dynamics underlying loss of SA is of paramount importance. 

Understanding of these dynamics has been achieved by the convergence of 

behavioural and neuroscience evidence. Neuroergonomic research (Parasuraman, 2003; 

Parasuraman &Wilson, 2008) using functional Magnetic Resonance Imaging (fMRI) and 

Electroencephalography (EEG) has identified brain response linked to behavioural aspects of 

SA, such as the association between activity in Prefrontal Cortex (PFC) or the theta EEG 

band and cognitive workload (Berka, et al., 2007; Borghini, et al., 2012; Brookings, Wilson, 

& Swain, 1996; Dussault, Jouanin, Philippe, & Guezennec, 2005; French, Clarke, Pomeroy, 

Seymour, & Clark, 2007; Lei & Roetting, 2011; Parasuraman, Warm, & See, 1998; Savage, 

Potter, & Tatler, 2013; Sterman & Mann, 1995; Wilson, 2000). EEG activity also reflects 
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aspects of team SA (Stevens, Galloway, Wang, & Berka, 2012). Investigation of behaviour 

linked to SA and corresponding brain activity may also provide deeper insights into another 

key issue regarding SA– namely, “top-down” influence on perception (level 1 SA). Loss of 

SA may be associated with perceptual lapses or impairment due to top-down factors such as 

prior memory or expectation (Durso et al., 2007; Durso & Gronlund, 1999; Endsley, 2013). 

Investigation of the associated brain dynamics may advance understanding of this issue for 

the following reasons. 

Most models of SA cite a processing trajectory from perception (level 1 SA) to 

cognitive integration (level 2) to projection (level 3), but it is acknowledged that top-down 

factors influence all levels of SA (Durso & Gronlund, 1999; Endsley, 2013). Individuals 

make more errors if situations do not fit expectations (Taylor, Endsley, & Henderson, 1996) 

and loss of SA may involve distortion of perception by faulty top-down processing. For 

example, in the Mt. Erebus aircraft disaster, the flight-crew’s expectation based on faulty 

flightpath data may have caused visual information about location to be overlooked (Mahon, 

1981) and in the Storm King Mountain wildfire tragedy, an overworked commander may not 

have perceived a shift in wind conditions (Sallis, Catherwood, Edgar, Brookes, & Medley, 

2013; Useem, Cook, & Sutton, 2005). 

Such cases resonate with neuroscience evidence indicating that information-

processing in the brain does not follow a strictly linear-hierarchical trajectory, but may 

involve bi-directional (“re-entrant”) communication between high-order cortical regions and 

low-order perceptual regions. There is ongoing discussion about the nature and timing of 

these brain dynamics (e.g., Fu, Fedota, & Parasuraman, 2012; Rauss, Pourtois, Vuilleumier, 

& Schwartz, 2012; Rauss, Schwartz, & Pourtois, 2011; Theeuwes, 2010), but high-order 

regions may rapidly transmit “predictive and adaptive” coding about a situation, based on 

expected input, learned contingencies or affective factors that can modulate perceptual 
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response (Bar, 2003; Damaraju, Huang, Barrett, & Pessoa, 2009; Dambacher, Rolfs, Göllner, 

Kliegel, & Jacobs, 2009; Delorme, Rousselet, Macé, & Fabre-Thorpe, 2004; Furmanski, 

Schluppeck, & Engel, 2004; Gilbert & Sigman, 2007; Hegdé, 2008; Kelley, Rees, & Lavie, 

2013; Paradiso, 2002; Poghosyan & Ioannides, 2008; Rauss,  et al., 2011; Schettino, Loeys, 

Delplanque, & Pourtois, 2011; Summerfield & Egner, 2009).  Indeed, expectation alone can 

excite visual cortex (Grill-Spector & Malach, 2004). Such top-down influence on perception 

may be critical during loss of SA. Establishment of SA or efforts to recoup lost SA may enlist 

top-down processing, but if premature or inappropriate, this could distort perception of the 

situation. For example, faulty expectation may have elicited visual focus on an irrelevant 

cockpit signal during loss of a 1972 Eastern Airlines flight (National Transportation Safety 

Board, 1973). “Looked but fail to see” accidents (Langham, Hole, Edwards, & O’Neil, 2002) 

may also be due to poor visual processing of the traffic environment if inconsistent with 

expectations. 

It may thus advance understanding of loss of SA to establish if high-order brain 

regions are co-opted while perceptual coding is actively proceeding. This issue is addressed 

in the current investigation. The approach is to build SA then enforce its loss in tasks 

requiring decisions about a target item. EEG source analysis will reveal if loss of SA is 

associated with concurrent activity in brain regions with high-order duties and those for 

perceptual (visual) processing. Parallel co-activity of these regions is not direct evidence of 

their interaction. Nevertheless it reflects potential conditions for such interaction, compared 

to a strictly linear sequence whereby perception subsides before high-order processing 

occurs. 

Combining theoretical approaches (Durso & Sethumadhavan, 2008; Endsley, 2013; 

Patrick & Morgan, 2010; Wickens, 2008), SA will be explored as a state of knowledge in 

relation to brain activity. As noted, there is already relevant neuroergonomic evidence on 
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brain response under high cognitive-load conditions associated with loss of SA (Parasuraman 

et al., 2008). This evidence mostly derives from Event-Related-Potentials (ERPs) and/or EEG 

spectral analysis (e.g., P300) (Foxe & Simpson, 2002; Makeig, et al., 2002; Philiastides & 

Sajda, 2006; Rousselet, Husk, Bennett, & Sekuler, 2007). These methods use summated 

estimates of brain activity, but fMRI studies have more precisely mapped sources of brain 

activity associated with SA: for example, in ACC (anterior cingulate cortex) and PFC 

(prefrontal cortex) during driving or aviation performance (Calhoun & Pearlson, 2012; 

Causse, Dehais, Péran, Sabatini, & Pastor., 2013; Causse, et al., 2013b; Peres, et al., 2000). 

fMRI however has slow temporal resolution (Raichle, 1998) and may not capture the early 

processing dynamics of interest here. EEG with source localization is better able to achieve 

this (Foxe & Simpson, 2002) and has been used to identify sources of brain activity under 

challenging conditions such as microgravity (space) flight (Brümmer, et al., 2011; de la 

Torre, et al., 2012; Schneider, Brümmer, Carnahan, Dubrowski, Askew, & Strüder, 2008).  

The current investigation will map brain activity during loss of SA using EEG source 

analysis with the sLORETA algorithm (see Method). This method will estimate sources of 

brain activity in terms of Brodmann Areas (BAs), useful markers of circuitry for brain 

functions (Amunts, Schliecher, & Zilles, 2007). As in other studies of SA (e.g., French et al., 

2007), ERPs (averaged EEG signals) will not be used, since as noted above, they may mask 

the early co-activity of interest here. Unaveraged EEG data may more directly reflect the 

brain dynamics of interest (Philiastides & Sajda, 2006; Rousselet, Husk, Bennett, & Sekuler, 

2007). 

Brodmann areas are not isolated modules, but typically contribute to wider networks 

and are used here in this respect (e.g., BA17 and BA20 are both on the visual pathways: 

Table 1). Neuroimaging methods reveal modularity for some brain functions (Downing, 
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2008; Downing, Liu, & Kanwisher, 2001) but it may be more informative to investigate brain 

operations on a broader scale that can reveal connectivity of processing (Poldrack, 2012). For 

example, an fMRI study showed that novice pilots display more distributed cortical activity 

than experienced pilots, reflecting differential expertise (Peres et al, 2000). Recording broad-

scale individual maps of brain activity may thus provide clues to global brain dynamics 

during loss of SA. The aim here is therefore not to simply identify active brain regions during 

loss of SA, but to examine any co-activity of regions with high-order duties and those for 

perception. Such co-activity may indicate a basis for top-down influence on perception. 

<Insert table 1 about here> 

During loss of SA many brain regions may be engaged with variations across 

situations and individuals. Nevertheless to address the central question of whether areas with 

high-order duties are aroused while perception is progressing, the following regions are of 

interest, based on prior evidence of their roles in these functions (see Table 1a and 1d for 

references).  

If visual perception is actively occurring, multiple regions may be engaged (Grill-

Spector & Malach, 2004; Tootell, Hadjikhani, Mendola et al., 1998). These include: primary 

visual cortex (V1 or BA17), ventral and dorsal areas for higher-level visual analysis (BAs 

5,18,19,20, 37), retrosplenial cortex (BA29-30) for visual scene integration and perirhinal 

cortex (BA35-36) for complex visual binding and figure-ground perception (see Table 1a).  

For high-order cognitive processing, many brain regions are of potential interest, but 

efforts to recoup lost SA must employ regions involved in cognitive integration (level 2 SA) 

and possibly projection (level 3 SA). The brain activity for these levels is not easily 

distinguished, but on the basis of prior evidence, numerous frontal, anterior cingulate and 
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parietal cortical regions may predictably be implicated for both (see Table 1d for a 

representative list with references). Loss of SA may especially enlist regions known to be 

active with cognitive uncertainty or ambiguity, low confidence, error and the need to reverse 

responses. These include: BA9 and BA46 (Dorsolateral PFC), BA11 (Orbitofrontal cortex), 

BA 47 (Orbitofrontal/ Ventrolateral frontal cortex), BA24, 32 and 33 (ACC) and BA7 

(Superior Parietal Lobule) (see Table 1d for references). The link between activity in these 

areas and loss of SA has not been specifically examined to date and evidence of their rapid 

involvement during active perception could afford new insights into brain conditions 

associated with top-down influences during loss of SA.  

The interval of interest for EEG analysis is that encompassing active perceptual 

processing of the situation prior to response on each trial. Visual perception involves activity 

and co-activity in multiple regions (Table 1a) for up to hundreds of milliseconds (Paradiso, 

2002). Coarse visual coding is complete by 80-90msec post-stimulus (or sooner), basic 

stimulus classification by 75-120msec and registration or identification of the “gist” of a 

visual context by 150msec (Bar, 2003; Delorme, et al., 2004; Foxe & Simpson, 2002; Rauss 

et al., 2011; Hegdé, 2008; Jolij, Scholte, Gaal, Hodgson, & Lamme, 2011; Schettino et al., 

2011; Thorpe, Fize, & Marlot, 1996). Decision-related visual processing can require 250msec 

(van Rullen &Thorpe, 2001) and activation of visual cortical areas can continue for 400msec 

before a motor response or conscious reporting of visual input (Foxe & Simpson, 2002; Jolij 

et al., 2011).  In consideration of these timeframes, 150msec post-stimulus-onset was selected 

to represent a phase when the basic visual situation has been “sensed”, but with ongoing 

visual processing to achieve a complete perceptual representation of the situation 

corresponding to level 1 SA (Endsley, 2000; 2013). This provides a justifiable timeframe for 

determining whether regions for higher-order operations engage during early perceptual 
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processing in loss of SA. Nevertheless if there is evidence of strong arousal of high-order 

regions at this interval, then an even earlier interval will be explored in Experiment 2. 

The approach here offers a relatively novel means for assessing brain response during 

loss of SA.  SA will be established to a criterion level and then loss of SA enforced at the 

same juncture for all participants. This general approach has been used in a recent study of 

confusion in reading incongruent text (Durso, Geldbach, & Corballis, 2012).  The current 

experiments involve an abstract “baseline” task and a similar task with more real-world 

content involving identification of threat in urban scenes. In both tasks the “situation” is 

defined in terms of target information within a visual field. The essential requirements 

resemble many real-world situations requiring perceptual and cognitive processing to identify 

a target item (e.g., decisions about whether symptoms indicate disease). The first task was 

chosen to be less likely to arouse prior knowledge or expectations than the second which may 

invoke knowledge about urban crime. This contrast allows assessment of whether high-order 

regions are aroused during perceptual processing regardless of whether the task is “abstract” 

or more “real-world”, or instead is more likely in the latter.  Both tasks however require at 

least two levels of SA (Endsley, 1995): participants must perceive the visual information 

(level 1) and integrate that information to comprehend and hypothesize about the correct 

target characteristics (level 2). Activity in brain areas for high-order processing would be 

required to achieve level 2, but the question is whether it occurs during activity for level 1.  

The loss of SA may elicit individual differences in response (perseveration, trial-and-

error, etc.), but regardless of the strategy, high-order cognitive functions will be required to 

re-attain level 2 SA. Discriminating brain patterns for different strategies is an issue for future 

investigation. The aim here is to answer the basic question of whether there is any brain 

activity consistent with high-order cognitive processing concurrent with perceptual 
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processing. To this end, the analysis will firstly determine if visual perceptual regions are 

actively engaged and if so, then assess if there is concomitant arousal of regions associated 

with cognition under uncertainty. It is hypothesized that despite individual differences, such 

co-activity will be apparent to some extent for all participants in both tasks, but possibly to a 

greater extent in Experiment 2. 

EXPERIMENT 1: BASELINE WISCONSIN CATEGORY LEARNING TASK 

This task is a variant of the Wisconsin Card Sorting Task (WCST) (Berg, 1948; Grant 

& Berg, 1948) employed here as a tool for exploring basic processes linked to loss of SA. 

The “situation” requires detection of a target “concept” amongst stimulus exemplars 

involving combination of features across three visual dimensions (colour, shape, line 

orientation). This requires (a.) perception of the elements (colours, etc.) (level 1 SA)  and (b.) 

cognitive integration of  these for generating hypotheses or responses, with this involving 

memory and processing to link responses to the feedback on each trial (all relevant to level 2 

SA). Once the correct category (= SA) is achieved, this will be changed without warning, 

occasioning loss of SA which participants then have to reattain. This approach brings all 

participants to a common reference point for loss of SA and the need to regain it.  

METHOD 

Sample. Participants were right-handed volunteers from the local student and staff 

population with no known neurological disorder. The experiment was completed by 23 

participants but 8 failed to achieve satisfactory SA and were not included in the final analysis, 

leaving a sample of 15 participants. 

Design. The study was within-participants (all did both phases of the experiment). 

Apparatus and stimuli.  Participants were presented with a series of computer 

displays, with each either containing examples of a ‘target category’ or not, and consisting of 
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four quadrants with one of three possible variations of a visual property. The top left quadrant 

had one, two, or three lines, the top right quadrant was red, green, or blue, the bottom left 

quadrant had vertical, horizontal or oblique lines and the bottom right quadrant had a 

diamond, circle, or square.  (See Figure 1.) The ‘target category’ in Phase 1 was “three lines 

and red”. In Phase 2, the target category was changed without notice to “oblique lines and 

circle”. Phase 2 trials contained the same displays as Phase 1, but the target category was 

changed.  

<Insert Figure 1 about here> 

Brain activity was recorded with Electrical Geodesics Incorporated (EGI)TM  EEG 

apparatus consisting of 128-channel HydroCel GeoDesic Sensor Net(s) (with a 

reference/vertex (Cz) sensor) connected to a wall-mounted NetAmpsTM  amplifier. The dense 

geodesic array of the net (Figure 2) optimises accurate recording. The 128 high-impedance 

electrodes with sponge inserts (with HydroCel saline electrolyte) include eye-blink and eye-

movement sensors. The signals from the 128 sensors were sent to a Macintosh computer 

running NetstationTM software for acquiring, viewing and navigating the data. Further source 

localization was performed using the GeoSource 2.0TM software that  has received both US 

FDA and European Medical Device Directive clearance (http://www.egi.com/home/385-

geosource-fda). See further details below. 

<Insert Figure 2 about here> 
 

Procedure. Participants were given instructions about the task and EEG procedure. If 

consent was given, an appropriate-sized EEG net was applied. Stimulus arrays and 

instructions were presented on a PC monitor via E-primeTM software, with presentation 

controlled by E-prime and responses made via the PC keyboard. The net was accurately 

positioned relative to the vertex point pre-marked on the scalp relative to the nasion, inion 

http://www.egi.com/home/385-geosource-fda
http://www.egi.com/home/385-geosource-fda
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and pre-auricular clefts.  Prior to testing, scalp impedances were adjusted below 50 kΩ. 

Testing was in low-light with shielding of electrical cables and equipment. 

There were 10 practice and 104 experimental self-paced trials (52 in random order in 

each phase) with no signal that Phase 2 had begun. To increase task difficulty, there was 

overlap between category exemplars: each Phase had 26 trials with the correct target and 26 

without, but for each Phase, 16 displays had category 1; 16 category 2; 10 both categories and 

10 neither category. Each trial began with a fixation marker for 1 to 1.5 seconds (randomised 

in this range) followed by a display. For each display, participants had to respond to the 

question: “This slide represents a member of the target category. T/F?”.  Feedback on 

correctness of response and reaction time was provided on each trial in both phases.  

Participants could quickly become aware in Phase 2 that their previously correct response 

was now incorrect. They still may not identify the new category as there are 6 possible 

pairings of the features and may perseverate with the old concept or try other strategies. The 

key issue however is whether SA is lost with the target change and QASA1 scores (see 

below) allow confirmation of this loss. 

Measures of performance. Performance was measured by (a.) QASA scores of SA 

and Bias (Edgar & Edgar, 2007; Edgar, Catherwood, Sallis, Brookes, & Medley, 2012; 

Rousseau, Tremblay, Banbury,  et al., 2010) and (b.) associated patterns of EEG activity.  

QASA  Analysis. QASA is based on a signal detection approach (Green & Swets, 

1966; Stanislaw & Todorov, 1999) and calculates (a.) Situation Awareness (SA) as 

Knowledge (how well true information is discriminated from false) and (b.) the Bias applied 

to the information (tendency to accept or reject information). Yes/no responses on “signal” 

trials (with target) and “noise” trials (without target) provide the proportion of hits (correct 

target identification) and false alarms (incorrect identification) to calculate: (a.) SA in terms 
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of A’, a “Knowledge” score (corrected for chance or guessing) and (b.) B”, a Bias score, both 

re-scaled from -100 to +100.  The computation for these scores (see Stanislaw and Todorov, 

1999: page 142) is: 

A’ = 0.5 + [ sign (H-F)  ]  

    B” = sign (H-F)  

(where  H= hit rate and F = false alarm rate and max (H,F) = either H or F, whichever is 

greater). Higher SA scores reflect better  SA, with scores below zero misguided or false SA. 

“Positive” Bias scores (above zero) reflect the tendency to reject information (conservative 

bias), “negative” scores to accept information (liberal bias) and zero scores no bias. Standard 

parametric signal detection measures (d’ and ß) were not used as the data may not meet the 

assumptions. A’ and B’’ are more robust and suitable for small samples (Verde, Macmillan, 

& Rotello, 2006).  A’ is conceptually related to “% correct” (Pastore, Crawley, Berens, & 

Skelly, 2003), enabling comparison with SA measures such as SAGAT (Endsley, 1987).  

EEG recording and Source Localization methods. Using the 128-channel apparatus 

(see above) and Netstation software, EEG was recorded at a 250 Hz sampling rate. For 

subsequent source analysis, only one sample at 150msec was needed, but a 10msec band 

(150-160msec: providing 2.5 samples on average) was employed to increase stability while 

still capturing rapid, early response. 

 The raw scalp data were initially processed by the software in the following 

respective operations: filtering (with notch filter centred on 50Hz to eliminate UK mains 

noise); segmentation of the recording into epochs linked to the experimental “events” 

(stimulus onset and offset,  trials, etc.); automatic artifact detection (identification of 

channels and segments likely to involve eye blinks or movements, etc.); bad channel 
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(electrode) replacement (replacement of bad channel data with interpolated data from 

neighbouring channels); ocular artifact removal (using data from eye blink and eye 

movement electrodes to remove affected data segments, according to an eyeblink threshold of 

14mV/ms, with separate algorithms for eye blinks and movements based on the Eye 

Movement Correction Procedure: Gratton, Coles, & Donchin, 1983; Electrical Geodesics 

Inc., 2006); artifact detection “overwrite” of all previous bad channels/segments; further 

bad channel replacement after this overwrite; averaging;  average re-referencing (using 

Polar Average Reference Effect or PARE correction with spherical spline interpolation to  

estimate a true zero reference value for the whole brain) and baseline correction with respect 

to the level of activity 100msec before stimulus onset. Then the processed data were analysed 

with GeoSource 2.0 software (E.G.I., 2011) using the following computations to estimate 

sources of brain activity and map these to Brodmann Areas. 

Source localization employed the computations implemented in the GeoSource 2.0 

software. This involved both a forward head model (assumptions about transmission from 

the dipoles/source locations to the scalp electrodes) and an inverse solution (best estimate for 

the sources based on measured scalp activity). Geosource 2.0  offers a dense  dipole set to 

represent “average” cortical space estimated by Montreal Neurological Institute MRI data 

(E.G.I., 2011) (see Figure 3), but the forward-head model for source localization used the 

Sun-Stok4-Shell Sphere model representing brain, cerebrospinal fluid, skull, and scalp– a 

commonly used approach for computational efficiency (Michel, Murray, Lantz, Gonzalez, 

Spinelli, & de Peralta, 2004). The inverse solution used the MNLS (minimum norm least 

squares) inverse method, a mathematical “least-squares” procedure providing the best 

solution for the sources of the EEG scalp data. It has a bias however towards superficial and 

weak sources so the sLORETA (standardised low-resolution electrical tomography) 

constraint was employed to standardize amplitude (current density) for both superficial and 
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deep sources (Pasqual-Marqui, 2002; see below). Finally to remove distortion from small 

“noise” variations, a further correction, the Tikonov (1 x 10 and -2) regularization strategy 

was applied. The resulting data are an estimate of sources of brain activity (with amplitude 

reflected in the standardized current density estimates). The Statistical Extraction Tool in 

the Geosource 2.0 software was employed for mapping to left and right hemisphere 

Brodmann Areas and the Hippocampus (90 regions total) and for calculating “mean 

amplitudes” of activity (mean standardized current density estimates) in these regions on 

each trial block.  

Source localization algorithms can only provide approximations of brain activity. 

Nevertheless, sLORETA is superior to previous algorithms such as LORETA (Pascual-

Marqui, 2002),  with  zero localization error in noise-free simulations (Michel, et al., 2004; 

Pasqual-Marqui, 2002; Sekihara, Sahani, & Nagarajan, 2005) and better performance than 

other algorithms in the presence of noise (Abe, Ogawa, Nittono, & Hori, 2008; Pascual-

Marqui, 2002), provided signals are relatively distinct (Wagner, Fuchs, & Kastner, 2004). 

Further validation comes from convergence of  intracranial EEG and sLORETA (and 

LORETA) solutions for scalp EEG in localizing epileptogenic zones (Maillard, Koessler, 

Colnat-Coulbois, Vignal, Louis-Dorr, & Vespignani, 2009; Ramatani, Cosandier-Riméle, 

Schulz-Bonhage, Maillard, Zentner, & Dümplemann, 2013; Rullmann, Anwander, 

Dannhauer, Warfield, Duffy, & Walters, 2009; Stern, et al., 2009; Vitacco, Brandeis, 

Pascual-Marqui, & Martin, 2002; Zumsteg, Friedman, Wennberg, & Wieser, 2005). 

Additional validation for EEG with sLORETA derives from close correspondence with MRI, 

fMRI and PET data, including for deep sources such as the hippocampus (Cannon, Kerson, & 

Hampshire, 2011; Maillard et al., 2009; Olbrich, Mulert, Karch, et al., 2009; Ramatani et al., 

2013). 
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sLORETA (and LORETA) are capable of identifying regions active in visual-

perceptual and cognitive processing, including visual cortical, ACC and frontal areas of 

interest here (Lorenzo-Lόpez, Amendo, Pascual-Marqui, & Cadaveira, 2008; Ocklenburg, 

Güntürkün, & Beste, 2012; Olbrich et al., 2009). Of particular value is the capacity of 

sLORETA to identify sources for top-down control (Cannon, Kerson, & Hampshire, 2011; 

Li, Yao, & Yin, 2009) and to discriminate early and late visual regions (Kimura, Ohira, & 

Schröger, 2010; Schettino, Loeys, Delplanque, & Pourtois, 2011).   

These considerations indicate that the EEG methods will allow valid identification of 

brain activity in visual cortical regions and frontal-cingulate areas for high-order processing.   

RESULTS  

Firstly the QASA analysis and then the corresponding EEG data are considered.  

QASA results. The QASA analysis provided SA and Bias scores for trial blocks (20 

trials per block). The pre-change block at the end of Phase 1 and the change block at the start 

of Phase 2 are of most interest to determine if SA was attained during Phase 1 and then lost in 

Phase 2.  

A criterion of ≥70 SA by the end of Phase 1 (pre-change block) was applied, since 

high initial SA was needed to study the outcomes occasioned by its subsequent loss in Phase 

2. Eight participants failed to achieve this and were excluded from further analysis. The 

remaining 15 participants, by the end of Phase 1 on the pre-change block, showed a mean SA 

of 90.33 (SD 10.56) and Bias scores ranging from -100 to +100. All 15 participants showed 

loss of SA on the change block at the start of Phase 2, with mean SA of 44.55 (SD 29.07), a 

significant decline from the pre-change block scores: t (14) = 7.300, p <.001, d = 2.31. All 

participants also showed a Bias shift on the change block: 10 becoming more positive 

(conservative) and five more negative (liberal) with a mean percentage change in Bias from 

the pre-change block (disregarding direction of change) of 103.46% (SD 25.01), significant 
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compared to no-change (0%): t (14) = 16.024, p <.0001, d = 4.14. The participants thus 

showed significant loss of SA and shift in Bias with the target change. 

The next step was to use the EEG data to map corresponding brain activity during the 

loss of SA for these 15 participants.  

EEG activity with Loss of SA on the Change Block in Phase 2. Each EEG trial block 

had 10 trials matched to respective QASA blocks. The amplitude of EEG activity with loss of 

SA on the change block was estimated in terms of the standardised current density estimates 

provided by the Geosource 2.0 software with sLORETA (see Method). The software 

calculated the mean standardised current density estimates for the EEG samples from each 

trial and computed the mean of these estimates for the respective trial blocks for each 

Brodmann area. As noted, areas of most interest are those identified from prior research as 

having key roles respectively in visual perception and high-order cognitive functions (Table 

1a and d, respectively).  

The first question is whether there was evidence of active visual perception on the 

change block.  All 90 areas (left and right BAs and Hippocampus) were ranked by mean 

standardised current density estimates on the change block.2 LBA17 and/or RBA17 (V1, 

primary visual cortex) were the most active (highest-ranked) region(s) for six participants and 

highly active for others- for example, being in the top 20% of ranked areas for 12 

participants. Other visual areas (BAs 5, 18, 19, 20, 29, 30, 35, 36 and 37) also rank highly 

(e.g., in the top 20%) (Tables 1 and 2). On this evidence, visual perception was robustly in 

progress.3 

<Insert Table 2 about here> 

The next issue of interest is whether any regions with high-order duties showed 

increased activity on the change block while this visual processing was occurring. Using 
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mean standard density estimates per se is appropriate for examining visual processing of the 

situation because participants were clearly fixating the displays, but high-order region activity 

need not be linked to the situation: participants may have been thinking of unrelated matters. 

To ensure that this activity was associated with the change block content, the percentage 

increase in the standardised current density estimates on this block relative to those on the 

pre-change block was calculated. This reflects the extent to which a region had engaged or 

“fired up” on the change block and locks the high-order region activity to loss of SA. To 

further ensure that only the most reactive regions were identified, a criterion of at least 50% 

increase in activity was applied.  

In these terms, there was clear evidence of increased arousal in regions previously 

linked to high-order cognitive activity under uncertainty or error (see Table 1 for 

references)3: frontal BAs 6, 8, 9, 10, 11, 44, 45, 46, 47; anterior/posterior cingulate BAs 24, 

31, 32, 33 and parietal BAs 7, 39, 40 (Table 3) 4. There were individual profiles of response, 

but all participants showed increased activity in some of these high-order areas. If the mean 

percentage increase for all such areas is calculated for each participant, these scores 

significantly exceed the criterion of 50%: t (14) = 7.327, p <.001, d = 1.89 (mean 131.1, SD 

42.9).  These data thus confirm rapid and robust arousal of regions associated with high-end 

duties during this early processing interval during loss of SA. Of additional interest, there was 

also increased activity in regions for declarative memory (Hippocampus, BAs 21, 23, 27, 28, 

34, 38) and affective arousal (BAs 13 and 25) (see Table 1b and 1c respectively for 

references).  

<Insert Table 3 about here> 

As noted, this arousal of high-order regions occurred when there was also vigorous 

activity in visual regions. For example, for the 12 participants with BA17 amongst their most 



 EEG Mapping in Loss of SA          19 

 

active regions (consistent with active primary visual processing), there was concurrent 

arousal of regions with high-order duties (see all participants except 3, 11, 15 in Tables 2 and 

3). See Figure 3 for a graphic example for one participant of co-activity in both frontal and 

visual areas at 150msec on the change block. 

<Insert Figure 3 about here> 

CONCLUSIONS EXPERIMENT 1 

The important aspect of these results is that during loss of SA, there was rapid and 

robust engagement of brain regions associated with high-level cognitive processing while 

there was also active perceptual processing in Primary Visual Cortex (BA17) and associated 

visual regions.  Even for Participants with BA17 amongst their most vigorous regions, there 

was evidence of engagement of areas with high-order functions. There was also strong 

evidence of arousal of regions linked to declarative and working memory with the loss of SA.  

High-level cognitive and memory operations may thus have been quickly engaged while level 

1 visual-perceptual processing was in progress. Of additional interest was the arousal of areas 

linked to affective processing, consistent with emotional response to the loss of SA.  

Such early co-activity of high- and low-order regions is not direct evidence of their 

interaction, but may provide a potential basis for it and is consistent with accounts of  SA 

(Durso& Gronlund, 1999; Endsley, 2013) and neuroscience evidence (Rauss et al., 2011) 

indicating top-down influence on perceptual response. This experiment has clearly confirmed 

that during loss of SA, there may be rapid arousal of brain areas which contribute to high-

order cognitive processing. The next experiment assesses whether this is even more likely in 

a task with more associations with natural situations. 

EXPERIMENT 2: “URBAN THREAT” DETECTION EXPERIMENT 
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This experiment is similar to Experiment 1 in methods and analysis, except that more 

“natural” stimuli are used, with participants having to decide if a “terrorist threat” is present 

in photographs of urban scenes (e.g., an underground carriage).  The main aim is again to 

determine if during loss of SA, brain regions with high-order duties are engaged during active 

perceptual (visual) processing.  This task with more real-world content could produce even 

more extensive engagement of cognitive activity based on prior memory of a similar 

situation. The target information is whether a person in the scene has a bag or not. It should 

be stressed that this is not simply a perceptual “bag-spotting” task, but requires cognitive 

integration of a range of information to identify the correct target, consistent with level 2 SA. 

Although feedback is given as to correctness of response, no specific cues are provided and 

participants could focus on irrelevant attributes (ethnicity, age, etc.). Indeed many 

participants found the task challenging (see below). 

METHOD 

Participants. Initially 17 right-handed university students with no known neurological 

disorder completed the task (different sample to that in Experiment 1), but only 10 met the 

criterion for SA and were included in the final sample. 

Design. The design was within-participant (participants doing both phases). 

Apparatus and stimuli.  Each display showed a colour photograph of a person in a 

natural urban scene (from open-access sources) (e.g., city streets).  For Phase 1, the target 

feature defining the “threat” in each scene was whether a person had a bag of some kind 

(more complex categories were piloted, but participants failed to identify these). For Phase 2, 

the target category was whether the person was not carrying a bag.  

The EEG apparatus was the same as for Experiment 1. 
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Procedure.  The task involved the same basic structure as for Experiment 1: a series 

of 114 images were presented on a PC monitor via E-prime software, with 10 practice trials 

followed by 52 images for Phase 1 and the same 52 for Phase 2 (random image order in each 

Phase). Participants were instructed to act in the role of monitoring incoming images from 

surveillance cameras in the context of a possible terrorist threat to an urban environment and 

to identify whether or not the main subject of the picture constituted a “threat”. Each image 

was followed by a probe question: “The person in this slide represents a potential threat. 

T/F?”.  Each image remained on the screen until the participant made a response. Feedback 

on correctness of the response was then presented on-screen.  To increase cognitive demand 

and “reality”, a ‘count’ of lives saved/lost by the participant’s responses (due to identifying or 

not identifying the threat) was also displayed, based purely on reaction time with faster 

responses losing fewer lives.  Following the practice trials, the main trials were presented, 

without pause between Phase 1 and 2. Participants were then debriefed.  

QASA was again used to provide SA (Knowledge) and Bias scores. During the task, 

brain activity was recorded with the EEG apparatus, using the same procedures for 

application of the net, acquisition and initial processing of the data and source estimation as 

for Experiment 1. The initial analysis of EEG data focussed on the 150-to-160msec post-

stimulus interval on each trial as for Experiment 1. (See Experiment 1: Method for full 

details.) Additionally however for this experiment, further examination of the data at 100 -

110msec was conducted for reasons explained below. 

RESULTS  

QASA results: Six participants did not meet criterion SA ≥70 on the pre-change block 

and another P did not lose SA on the change block, so their data were not included for 

analysis. The remaining 10 participants showed a mean SA score of 96.21 (SD 3.13) on the 
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pre-change block, with Bias scores ranging from -100 to +100. Their SA scores declined to a 

mean of 64.79 (SD 35.20) on the change block at the start of Phase 2, with this being a 

significant drop from the pre-change block: t (9) = 2.842, p =.019, d = 1.64, confirming an 

overall loss of SA. The decline in SA was accompanied by positive Bias shift for 6 

participants, negative shift for 3 participants and no change for one participant, with the 

percentage shift (disregarding direction) being significant compared to no-change (0%): t (9) 

= 7.844, p <.001, d = 2.48. Thus the 10 participants demonstrated significant loss of SA and 

shift in Bias on the change block. 

EEG activity during loss of SA on the Change Block Phase 2.  Key areas of interest 

are again those for which prior evidence indicates roles in vision and cognition respectively 

(see Table 1).The first question is whether there is active visual perception on the change 

block. As for Experiment 1, all regions were ranked by the mean of their standardised 

current density estimates on the change block.2 Primary visual cortex (BA17) was amongst 

the most active regions: for example, being amongst the top 20% for all 10 participants. 

Other higher-order visual perception areas (BAs 5, 18, 19, 20, 30, 35, 36 and 37) were also 

well-represented in the top 20% and almost identical to the inventory for Experiment13.  (See 

Tables 1 and 4). Notably, the mean ranks for these top 20% visual areas did not differ from 

those for Experiment 1: t (23) =. 940, p = .357, d = .37. (Experiment 1 mean rank: 8.6, SD 

2.2; Experiment 2 mean rank: 9.6, SD 3.2). These data reflect vigorous activity in visual 

processing regions, comparable to that in Experiment 1.  

<Insert Table 4 about here> 

The next question is whether there was concomitant arousal of areas with high-order duties. 

As for Experiment 1, to ensure that this activity was associated with the current situation, 

percentage increase in the activity scores on the change block was again calculated and a 
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criterion of ≥50% increase in activity was applied to reveal only strongly reactive regions. 

There were individual differences, but over the sample, the most reactive areas were almost 

identical to those in Experiment 1.  Of most interest was the marked increase in activity in 

key areas for high-level cognition under uncertainty (frontal BAs 6, 8, 9, 10, 11, 44, 45, 46, 

47; anterior cingulate BAs 24, 32, 33; posterior cingulate BA31; parietal BAs 7, 39, 40) (see 

Table 5 and Table 1 for references.) If the mean percentage increase for all such areas is 

calculated for each participant, these scores significantly exceed the criterion of 50%: t (9) = 

3.98, p < .003, d = 1.26 (mean 132.2, SD 65.4). These scores are equivalent to those in 

Experiment 1: t (23) <1, p=.96, d = .02, reflecting comparably rapid and robust involvement 

of these high-order regions with the loss of SA. As for Experiment 1, this high-order region 

arousal was concurrent with activity in primary visual cortex (BA17) for all 10 Participants 

(see Tables 4 and 5).  

<Insert Table 5 about here> 

Of additional interest, there was also arousal of regions for declarative memory 

(Hippocampus, BAs 21, 23, 27, 28, 34, 38) and emotional/affective response (BA 13, 25) 

(see Table 1b and c). 

Additional EEG Analyses at 100msec. The engagement of regions linked to high-level 

cognitive functions was thus remarkably rapid, but it is of interest to determine whether such 

arousal is evident at an even earlier interval. To this end, the EEG records for the 10 

participants in this experiment were re-analysed at 100-110msec from stimulus onset in the 

same manner as for the 150-160msec data, to provide mean estimates of activity 

(standardised current density) across all Brodmann Areas and the Hippocampus on the 

change block. Regions of interest were again those previously implicated in visual perception 

and high-order cognition (Table 1).  
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The areas were ranked by their mean standardised current density estimates. There 

was strong activity in visual regions –for example, with BA17 and other visual regions 

strongly represented amongst the top 20% (see Table 6). The mean rankings (mean 9.6, SD 

1.9) do not differ from those at the 150msec interval: t (9) = .008, p =.994, d = .003, with an 

identical overall inventory of regions, reflecting similar engagement of visual regions at both 

intervals. 

<Insert Table 6 about here> 

Areas with high-order duties also showed increased activity on the change block at 

this 100msec interval (percentage increase from the pre-change block, calculated as before). 

Again adopting a conservative criterion of  ≥50% increase in activity, all participants showed 

at least four such areas (see Table 7). The mean percentage increase across these areas for 

each participant again exceeds the criterion of 50%: t (9) = 2.852, p = .019, d = 0.90 (mean: 

154.67, SD 116.05), indicating vigorous arousal. 

<Insert Table 7 about here> 

CONCLUSIONS EXPERIMENT 2 

The results again testify to early engagement of cortical regions associated with high-

order cognitive functions under uncertainty even at 100msec. The increased arousal of these 

regions is tied to the loss of SA on the change block and is concurrent with active processing 

in visual perception regions. There is also evidence of engagement of regions for working 

and declarative memory and emotional arousal. These results closely resemble and extend the 

findings of Experiment 1 to include content relevant to natural situations. 

OVERALL DISCUSSION  
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In both experiments, loss of SA was accompanied by concurrent engagement of visual 

regions and high-order frontal, cingulate and parietal regions associated with cognition under 

uncertain conditions. There was also strong arousal in regions associated with memory 

functions indicating rapid memory operations during loss of SA. Although the precise 

patterns of brain response varied with individuals and may vary across situations, both 

experiments show comparably rapid and early co-activity of visual and higher-order regions 

for both “abstract” and more real-world content. The evidence of such co-activity at 100msec 

is remarkable, given that decision-related perceptual processing can require 250msec (van 

Rullen &Thorpe, 2001) and reporting of visual input 400msec (Jolij et al., 2011). 

 Importantly, the methods employed ensure that this brain activity is directly linked to 

loss of SA. The identified high-order regions have been formerly linked to cognition under 

uncertainty (Table 1) but this constitutes the first evidence of their association with measured 

loss of SA and may offer valuable insights in this regard.  For example, for many 

participants, with loss of SA, orbitofrontal cortex (BA11) was strongly activated. This area 

receives rapid perceptual and affective input, contributing to an “early warning system” about 

uncertain or affectively-charged contexts (Kveraga, Ghuman,& Bar, 2007; Table 1), and may 

have broadcast early top-down signals about the loss of SA.  

It must be stressed that co-activity of high-order and visual regions is not evidence of 

their interaction. Nevertheless it offers more fertile conditions for this than would a linear 

processing trajectory where active perception diminishes before high-order areas are 

engaged. The current evidence is thus critical in confirming the opportunity for early 

interaction of high-order and visual-perceptual regions, reflecting potential conditions for 

rapid top-down influence on perception during loss of SA.   
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The timing and mechanisms of any top-down influence on perception have yet to be 

decided (e.g., Fu et al., 2012; Rauss et al., 2012), but re-entrant feedback from high-order 

brain regions can influence visual processing (Bar, 2003; Furmanski, et al., 2004; Poghosyan 

& Ioannides, 2008; Rauss, et al., 2011, etc.). Top-down signals are beneficial in 

“Recognition-Primed Decision-Making” (Klein et al., 2010), but if flawed or irrelevant, may 

distort perception. In a natural situation resembling that in Experiment 2, top-down 

processing (expectation, fear) could cause premature judgment that someone’s bag contained 

an explosive device, terminating visual scrutiny/analysis that may reveal the bag to be empty. 

Many cases of loss of SA may be explained by such top-down modulation of perceptual 

processing. As noted, the Mt Erebus, Storm King Mountain and Eastern Airlines tragedies 

could conceivably have involved such processing scenarios.  

These results contribute to theoretical understanding of SA.  Of most importance they 

support incorporation of top-down influences (expectation, memory, etc.) in models of SA at 

level 1 (Durso & Gronlund, 1999; Endsley, 2013). As noted, this may be profoundly 

important in explaining cases of loss of SA. Secondly, the results coalesce theoretical 

approaches and endorse neuroergonomic methods to studying SA (Parasuraman & Wilson, 

2008) by demonstrating correspondence between behavioural product (SA as knowledge) and 

process (corresponding brain activity) and so further affirming that despite review (Dekker & 

Hollnagel, 2004), the construct of SA has resonance in brain processes as well as behaviour. 

SA models may also benefit from the evidence here of activity in ventral ACC 

(BA25) and the insula, possibly reflecting affective arousal (see Table1). Some individuals 

may react to loss of SA with negative affect, causing perceptual tunnelling (Gable & 

Harmon-Jones, 2010) and hampering reattainment of SA (Causse et al., 2013a). This may 

link to the Bias shifts accompanying loss of SA. Most participants showed more conservative 
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bias with loss of SA (tunnelling) although others showed more liberal bias (less exacting), 

with potential implications for regaining lost SA. It may be important to include emotional 

response and bias in models and assessments of SA. 

Individual differences were apparent in the location and number of active brain 

regions, possibly reflecting different strategies for recouping level 2 SA. Since any such 

strategy involves some high-order brain activity, this did not detract from the main aim to 

observe concurrent engagement of high- and low-order regions. Nevertheless, dispersion of 

brain activity discriminates novices from experts (Peres, et al., 2000) and may offer a useful 

focus for further study. 

Another issue of interest is that the active areas were often lateralised. Asymmetry of 

brain processes linked to SA may be a valuable focus for further research. For example, right 

hemisphere dominance occurs in vigilance for simple (but not complex) tasks (Helton, Warm, 

Tripp, Matthews, Parasuraman, & Hancock, 2010) with possible ramifications in operational 

contexts where location of items in the visual field is critical.  

The current results point to the importance of monitoring top-down factors during 

real-world operations. Even highly trained professionals may be susceptible to perceptual 

error due to faulty top-down expectation. On the fireground for example, well-trained 

firefighters may overlook a potential hazard such as a gas cylinder if not anticipating its 

presence (Catherwood et al., 2012). It is beyond the scope of the current paper to advocate 

specific strategies for improving operational risk due to such faulty top-down influences. 

Augmented cognition (AugCog) systems can, however, support perception in challenging 

situations such as the fireground (Wilson & Wright, 2007). Although currently a distant 

possibility, the real-time measurement of bias (using EEG or functional near infra-red 

spectroscopy – fNIRS) could provide a valuable input into an augmented cognition system to 
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give feedback to operators concerning their information-handling bias.  The amount and type 

of information provided to the user could also be adapted as part of an augmented cognition 

system able to track user bias. 

Nevertheless, even if feasible, such a system should be used cautiously.   There is no 

guarantee that perceptual information delivered by AugCog systems will necessarily be 

employed by potential users. Such information may also be vulnerable to top-down effects 

(expectations, memories, emotional arousal, etc.) producing perceptual distortions or 

oversights: availability of information is not sufficient to ensure accurate perception. The 

current data show that individuals may vary in the criterion or bias towards employing the 

available information. Loss of SA here was accompanied by shifts in bias- towards either 

rejecting or accepting the available information, respectively associated with “miss” or “false 

alarm” errors. Top-down influences may induce such bias, producing failure to make optimal 

use of available information. It may be feasible to adapt the amount of information presented 

and the method for presenting it depending on the operator’s bias, but the top-down 

influences discussed above may still affect how that information is used.   

Another possibility is to develop training routines that promote self-monitoring of 

such biases and of the nexus between top-down expectations and current perception.  Such 

self-checks could possibly employ a tool such as QASA to provide feedback on bias 

tendencies. Whatever the adopted strategy however, it should clearly acknowledge the 

potential for rapid high-end influence on visual perception of the situation. 

In sum, the current investigation reveals rapid co-engagement of visual and high-order 

regions during loss of SA. While not direct evidence of interaction of these regions, this co-

activity indicates a basis for top-down effects on perception during loss of SA that may 
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explain why highly-skilled professionals fly aircraft into visible mountains or overlook 

perceptible wind shifts while fighting wildfires. 
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Footnotes 

1QASA was originally developed as QUASATM (Edgar & Edgar, 2007) based on nominally 

non-parametric signal detection measures, but has also been implemented using parametric 

measures. The tool here uses the original nominally non-parametric approach and so is 

described as QASA to clarify the distinction in methods.  

 

2Standardised current density estimates do not provide measures of absolute activation 

(Pascual-Marqui, 2002) so the analyses here employ within-participant rankings and 

percentage changes.  

 

3The regions of high activity occurred in either left or right Brodmann Areas, but both left 

and right regions are represented over the sample in both experiments. 

 

4 BA8 was once considered to house the human frontal eye fields but these are now 

considered to be in BA6 (Brignani et al., 2007; Grosbras et al., 1999; Rosano et al., 2002), 

but both areas have been linked to task-reversal (see Table 1 for references).  
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KEY POINTS 
 
 

 128-channel EEG data and estimates of Situation Awareness (SA) and Bias using 

QASA were obtained during enforced loss of SA in one task requiring identification 

of a target pattern (N=15) and in another task of  “threat” in urban scenes (N=10). 

 

 Participant brain activity was examined 150msec post-stimulus-onset in both tasks 

and 100msec in the second task and sources of activity identified with sLORETA.  

 

 There was significant loss of SA and Bias shifts, with associated activity in brain 

regions for visual perception concurrent with arousal of cortical regions for cognitive 

operations under ambivalent, task-switching conditions (e.g., BA7, 9, 11, 46, 47). 

 

 The strong co-activity in visual and high-order brain regions may reflect a basis for 

rapid top-down influence (expectation, memory) on perception (level 1 SA). 
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FIGURE TITLES/CAPTIONS 

 

Figure 1. Example of displays in Experiment 1 (target= 3 lines + red) 
 
 

 
Figure 2. Example of the Electrical Geodesics Incorporated 128-channel EEG GeoDesic 
Sensor Nets used in both Experiment 1 and 2 
 
 
 
Figure 3. Experiment 1: GeoSource representation for one Participant of brain activity 
during loss of SA on the “change block” at 150msec after stimulus onset averaged 
across trials: Peak activity (crosshairs) is in LBA11 (left orbitofrontal region) but with co-
activity in other areas including RBA17 (V1). These displays consist of estimated source data 
shown as dipoles overlaid on 3D MRI sagittal, coronal and axial views of the “typical” 
Montreal Neurological Institute brain.  
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Table 1: References for key Brodmann Areas active in both Tasks and some associated key functions relevant to current tasks1 

(a.) PRIMARY AND HIGHER-LEVEL VISUAL PROCESSING: (LEVEL 1 SA): 
 BA 05  (with BA07,  superior parietal lobule) : spatial perception and imagery (Thompson et al., 

2009; Wenger et al., 2012) 
 BA17  primary visual/striate  cortex (V1) : primary visual processing(Amunts, Malikovic, 

Mohlberg et al., 2000) 
 BA18 & BA19 extra-striate occipital cortex (precuneus, cuneus, lingual gyrus,  lateral occipital 

gyrus): colour, shape, motion perception; contour integration (Tanskanen et al., 2009;  Thompson et 
al., 2009); figural/spatial reasoning (Goel et al., 1998) 

 BA 20 infero-temporal cortex: high-level visual processing and memory including for colour; 
visual categorization (Afifi & Bergman, 2005; Visser et al., 2010) 

 BA29 and BA30  part of retrosplenial cortex: episodic memory (Maguire 2001), but also:  high-
level visual scene integration (invariant representation) (Bar & Aminoff, 2003;  Henderson et al., 
2008; Park & Chun, 2009; Vann et al., 2009) 

 BA35 & BA36  perirhinal cortex: object recognition  but also: complex visual feature binding 
(colour, etc.) and discrimination; figure-ground perception (Barense, et al., 2011; Bellgowan, et al., 
2009;  Bussey et al., 2005; Lee et al., 2005; Murray & Richmond, 2001; Staresina & Davachi, 2008) 

 BA 37   infero- temporal region: colour / shape binding, attention, memory & judgments (Kastner 
& Ungerleider, 2000; Soie et al., 2009) 

 
(b.) WORKING/DECLARATIVE  MEMORY (ALL LEVELS SA): 

 BA 21 middle temporal gyrus: verbal/semantic working memory ( Schivde & Thompson-Schill, 
2004)   

 BA 23: posterior cingulate cortex: episodic memory (Sugiura et al., 2005; Salimpoor et al., 2009) 
 BA 28 & BA 34: part of entorhinal  cortex: declarative/episodic memory system; spatial-object 

memory (Bellgowan et al., 2009; Jeffery, 2007; Preston & Gabrieli, 2002; Schott et al., 2011) 
 Hippocampus and BA 27 in hippocampal formation: working memory ; memory consolidation-

binding (Axmacher et al., 2010; Finke et al., 2008; Hassabis et al., 2009; Lee et al., 2005; Morgan et 
al., 2011; Piekema et al., 2006; Staresina & Davachi, 2009; Vann & Albasser, 2011; Wixted & 
Squire, 2010)  

 BA 38: temporal pole: declarative memory ; binds emotion  & perception; insight, passive 
conceptualisation (Blaizot et al.,2010; Kröger et al., 2012; Olson et al., 2007; Simmons & Martin, 
2009) 

 
(c.) AFFECTIVE/EMOTIONAL ROLES (ALL LEVELS SA): 

 BA13 anterior insula : Interoception  (Cauda et al., 2011) reward-related / risky/ aversive  decision-
making or learning (Causse et al., 2013a; Craig, 2009; Wittmann et al., 2010) 

 BA 25: anterior cingulate cortex:  “affective” division of ACC (Bush, Luu & Posner,2000; Luu & 
Posner, 2003; Paus 2001) 

(d.) HIGH-ORDER COGNITION: TASK INTEGRATION/APPRAISAL/HYPOTHESIS-TESTING/ 
SWITCHING  (LEVELS 2 AND 3 SA): 
 

 BA 06 Supplementary Motor Area (SMA: criterion-, task-  and rule –switching  under 
uncertainty; response conflict monitoring ( Dove, 2000; Crone et al., 2006; Hanakawa et al., 2002; 
Miller et al., 2001; Woodward et al., 2008;); Human FEF (Brignani et al., 2007; Rosano et al., 2002)  

 BA07 superior parietal lobule/precuneus: task-switching ; spatial cognition (Brass & von 
Cramon, 2004; Crone et al., 2006; Curtis et al., 2004;  Rushworth et al., 2002; Thompson et al., 
2009) 

 BA8  pre-SMA (pre-supplementary motor  area): decisions under uncertainty/conflict; visuo-
spatial working memory (Bhanji et al., 2010;Volz et al., 2004; Woodward et al., 2008); formerly 
thought to be FEF (but now these considered to be in BA6) 

 BA 9 dorsolateral PFC: use/switch of complex rules; hypothesis-testing; ambivalence, low 
confidence, negative feedback; attention;working memory for new goals (Bunge & Zelazo, 2006; 
Burgess et al., 2007; Causse et al., 2013b; Crone et al., 2006;  Fleck et al., 2006; Jung et al., 2008; 
Miller, 2001; Schnider et al., 2005; Zanolie et al., 2008) 

 BA10  frontal polar area: mediates stimulus-oriented vs independent attention (Burgess et al., 
2007; Okuda, Gilbert, Burgess, Frith, Simons, 2011); other functions as above for BA09 

 BA 11 orbitofrontal cortex: monitors expected S-R contingencies especially if rewarding/ 
evaluative/ affective aspects & ambivalent conditions and if  need to reverse S-R associations 
(Bunge 2006; Jung et al., 2008; Kringelbach & Rolls, 2004;Kveraga, Ghuman, & Bar, 2007; Öngur 
& Price, 2000; Zald & Rauch, 2006) 

 BA 24, BA32  and BA33: Anterior Cingulate Cortex: responds to violations of S-R associations 
& uncertainty; conflict and error detection (Botvinik, Cohen & Carter, 2004; Bush et al., 2000; 
Deppe et al., 2005; Kerns et al., 2004; Paus, 2001; Miller et al., 2001)  

 BA 31: Posterior Cingulate Cortex: task-switching involving colour (Dove at al., 2000)  
 BA 39 (angular gyrus): Language but also: arithmetical cognition; object- location working 

memory (Sestieri et al., 2011; Shah et al., 2012) 
 BA40 (supramarginal gyrus – with BA39 = Inferior Parietal Lobule): visuo-spatial cognition; 

divergent problem-solving (Arsalidou & Taylor, 2011;Uddin et al., 2010; Shah et al., 2011; Silk et 
al., 2010) 

 BA 44-45:  Broca’s Area2 verbal working memory  but also hypothesis-testing, task-switching/ 
rule-based choices (Bhanji et al., 2010; Dove et al., 2000;  Elliott & Dolan, 1998) 

 BA46 (part of dorsolateral PFC): rule-switching especially if low confidence; visuo-spatial 
cognition (Bunge & Zelazo, 2006; Crone et al., 2006; Fleck et al., 2006) 

 BA47: orbitofrontal/ventrolateral frontal cortex: switching tasks and rules; implications of 
negative events for future actions; contextual relevance of emotion in decision-making (Beer et al., 
2006; Elliott, Dolan, & Frith, 2000;  Kringelbach & Rolls, 2004; Zanolie et al., 2008) 

 
 

1 This is meant to be a general guide to SOME key roles for the Brodmann Areas which can have numerous functions and are often part of larger networks. Any area active in cognition under uncertainty has been 
classified here as “high-order”.    2BA44 and 45 (Broca’s Area) are associated with speech function but also with verbal rehearsal and working memory and hypothesis-testing.   
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Table 2 
EXPERIMENT 1: WISCONSIN CATEGORY TASK:  

Brodmann Areas associated with Visual Perception in the top 20% of ranked Brodmann areas for mean activity on Change Block at 150msec  
Participant             

P1 L17 R17 L35 R35 R18 R30 L36 L18 L30 R36 R37 -- 
rank in top 

20% 
1 2 3 6 7 8 9 10 12 13 18  

P2 R37 R18 R20 R36 R30 R17 R35 L17 R19 L36 L20 L35 
rank 1 2 3 5 6 7 8 9 11 14 15 16 
P3 R35 --           

rank 7            
P4 L17 R17 R18 L18 L35 R35 L36 R36 L30 --   

rank 1 2 3 4 5 6 8 12 13    
P5 L17 L36 L35 R17 R18 L18 L37 L20 L30 R30 --  

rank 1 2 3 4 7 8 9 11 12 17   
P6 L17 R17 R5 L36 L35 R35 --      

rank 3 5 13 15 16 17       
P7 R35 R36 R20 R18 R30 L17 R37 L36 R17 L35 --  

rank 2 3 9 10 11 12 13 14 16 18   
P8 L36 L35 R17 L20 R36 R30 R35 R18 --    

rank 4 5 8 9 12 14 17 18     
P9 L17 R20 R35 R17 R36 L18 L30 --     

rank 3 4 6 7 8 13 17      
P10 L17 R17 R20 R18 L18 R30 R37 L30 --    
rank 1 2 4 5 6 10 11 15     
P11 R35 L35 L36 R36 R30 --       
rank 1 6 11 12 15        
P12 R17 L35 L36 R18 R35 R36 L30 L17 --    
rank 1 2 3 9 12 15 16 17     
P13 R35 R36 R20 R37 R30 L17 R17 L35 R18 L36 --  
rank 1 2 7 9 10 12 13 15 16 18   
P14 R17 L17 R18 R30 L18 L30 R35 R19 L36 R36 R29 -- 
rank 1 2 3 4 5 7 11 14 15 16 17  
P15 R35 R36 R20 R37 --        
rank 6 8 15 18         

 
L= left Brodmann Area    R= right Brodmann Area                           -- no further regions meeting the criterion
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Table 3 
EXPERIMENT 1: WISCONSIN CATEGORY TASK: Brodmann Areas associated with “high-order” cognition 

that showed at least 50% increase in activity from the pre-change block to the change block (ranked from left by percentage increase)  
Participant most 

increase 
             

P1 R39 L40 R44 --           
% increase 82.1 74.8 59.3 --           

P2 R 46 L 08 L45 L06 R10 L44 R11 R40 L46 --     
% increase 225.5 220.3 98.6 94.5 92.4 88.4 76.5 65.1 59.3 --     

P3 L 10 L 44 L 09 L 11 L 45 R 33 L33 R32 R10 R7 L47 L32 L46 -- 
% increase 173.8 160.5 159.6 148.1 147.9 129.4 124.4 117.3 98.1 91.3 84.9 74.6 59.2 -- 

P4 R 09 L 09 L47 L06 L24 R46 L11 L32 --      
% increase 160.0 136.3 89.9 77.1 72.2 69.7 59.8 54.4 --      

P5 L06 R 47 R 07 R44 --          
% increase 378.9 204.9 166.1 82.2 --          

P6 R 07 R 31 L 31 R 39 L 07 R44 L24 R24 R33 R45 --    
% increase 579.2 434.1 204.1 203.1 181.5 112.7 102.5 96.5 57.2 56.5 --    

P7 R39 R40 R06 --           
% increase 89.7 88.5 66.2 --           

P8 L 09 L 10 L 11 R 44 L 47 L40 L06 R06 --      
% increase 288.5 263.1 162.7 126.2 121.4 91.5 71.7 64.4 --      

P9 R 44 R 47 R32 L32 R33 R45 L10 R11 L06 L33 L11 L24 L47 -- 
% increase 251.8 241.7 141.5 135.5 125.5 140.4 104.1 99.1 97.0 90.4 75.6 66.2 54.0 -- 

P10 R 31 L 31 R 39 L24 R24 R11 R47 R33 L33 R07 L08 L07 L11 R06 
% increase 464.6 395.3 319.1 279.7 253.6 130.9 127.7 115.8 113.0 91.5 90.4 73.1 69.4 56.2 

P11 R 40 L 11 L 07 R 11 L44 --         
% increase 169.2 165.6 108.1 100.1 71.0 --         

P12 R40 R47 L33 L24 L32 R33 R11 L09 --      
% increase 166.2 152.3 118.2 93.4 88.7 64.5 53.4 50.7 --      

P13 R 45 R 44 R47 R11 R09 R33 L44 R06 --      
% increase 553.0 235.9 144.2 127.6 126.2 66.4 62.2 61.2 --      

P14 L 39 R11 L 11 L 47 R40 L07 R07 R09 --      
% increase 198.3 142.1 131.9 113.5 88.5 70.2 67.2 63.8 --      

P15 R 39 L33 R33 L08 L 24 R24 L32 --       
% increase 171.8 159.3 150.3 118.3 111.5 85.2 63.1 --       

( L= left  and R= right Brodmann Area)     ( -- no further regions meeting the criterion)   (BAs 1,2,3,4,41,42,43: primary somatosensory, motor, auditory BAs excluded: not 
relevant to task)  
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Table 4 
EXPERIMENT  2: URBAN THREAT TASK:  

Brodmann Areas associated with Visual Perception in the top 20% of ranked Brodmann areas for mean activity on Change Block at 150msec  
 

Participants:          
P1 L20 L17 L36 L35 R35 R5 R19 L5 L18 

rank  3 4 5 6 8 9 11 12 18 
P2 R5 L5 R20 R36 R17 R35 R18 R19 -- 

rank 3 4 5 8 9 10 11 14 -- 
P3 L17 R17 L18 R19 R20 R35 R36 R30 -- 

rank 1 2 4 7 8 9 14 15 -- 
P4 R36 R35 R20 L35 L17 L36 --   

rank 9 10 13 16 17 18 --   
P5 R35 R36 R17 R13 --     

rank 5 9 13 14 --     
P6 L35 L36 L37 L20 L30 L17 R17 L18 R37 

rank 1 2 6 8 9 11 13 14 18 
P7 R35 R36 R30 R17 R18 R37 L35 L36 -- 

rank 1 3 6 7 8 10 15 17 -- 
P8 R17 L17 L30 R18 L35 L36 L18 L37 -- 

rank 1 2 4 5 6 7 8 9 -- 
P9 R35 R36 L17 --      

rank 15 16 18 --      
P10 R5 L5 L30 R17 -- --    
rank 2 6 15 16 -- --    

 
L= left Brodmann Area; R = right Brodmann Area      -- no further regions meeting the criterion 
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Table 5 
EXPERIMENT 2: URBAN THREAT TASK: 150msec data: Brodmann Areas associated with “high-order” cognition 

that showed at least 50% increase in activity from the pre-change block to the change block 
 (ranked from left by percentage increase)  

 
P most 

increase               

P1 L46 R07 L07 R31 --           
%  163.0 147.8 106.2 80.9 --           
P2 L31 R32 R31 R24 R07 R33 L07 L24 R11 L32 R06 R44 R40 L33 R08 
%  124.7 123.0 112.6 87.8 87.4 83.0 81.2 78.9 78.5 77.1 75.9 71.3 66.7 65.3 52.5 
P3 R08 R07 L07 R31 L31 L39 --         
%  185.2 150.3 146.4 127.3 94.5 78.3 --         
P4 L11 R11 R06 L32 R32 L47 L33 R33 R10 L10 --     
%  175.3 136.0 128.2 126.2 114.0 103.1 94.2 93.2 73.4 65.0 --     
P5 R46 L09 R45 R09 L08 L44 R08 L46 -- --      
%  676.7 317.9 286.9 285.2 254.4 223.3 182.9 170.1 --  --      
P6 R09 R10 --             
%  113.9 84.6 --             
P7 L31 R06 L06 L39 R24 R31 L08 R09 L24 R40 R46 R32 R39 --  
%  242.2 215.6 169.7 132.6 89.2 89.1 85.1 77.7 70.3 66.0 53.8 53.8 53.1 --  
P8 L10 L31 L11 R06 L47 --          
%  185.4 94.2 71.5 63.0 60.2 --          
P9 L07 R31 L09 --            
%  106.0 104.4 53.2 --            

P10 L10 L46 L07 L08 R07 R24 L24 L11 --       
%  536.2 223.9 219.2 117.3 114.1 107.4 92.4 50.9 --       

( L= left  and R= right Brodmann Area)     ( -- no further regions meeting the criterion)   (BAs 1,2,3,4,41,42,43: primary somatosensory, motor, auditory BAs excluded: not 
relevant to task)  
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Table 6 

EXPERIMENT  2: URBAN THREAT TASK:  
Brodmann Areas associated with Visual Perception in the top 20% of ranked Brodmann areas for mean activity on Change Block at 100msec   

 
Participant            
P1 R35 R36 L36 L35 L20 R20 L37 R17 R30 --  
rank 2 4 5 11 12 15 16 17 18 --  
P2 R20 R35 R36 L17 R5 L5 R17 R37 --   
rank 3 4 5 10 11 15 17 18 --   
P3 L17 L18 L30 R17 R35 R19 L37 R30 R36 L35 -- 
rank 1 2 3 5 6 13 14 15 16 18 -- 
P4 R17 L17 R18 R30 L35 R20 R35 --    
rank 1 7 8 12 15 16 17 --    
P5 R35 R37 R36 L35 L36 --      
rank 5 6 7 14 18 --      
P6 L35 R35 L36 R36 --       
rank 8 11 13 15 --       
P7 R35 R36 R30 R37 L30 L35 L17 R18 --   
rank 1 3 6 12 15 16 17 18 --   
P8 L17 R17 L30 L18 R35 L35 L36 R37 R19 R30 L19 
rank 1 2 3 4 7 8 9 11 12 14 17 
P9 R17 L17 L30 R30 L18 L19 R18 R35 --   
rank 1 5 6 8 9 10 12 16 --   
P10 L20 L36 L35 L37 --       
rank 1 4 5 12 --       
L= left Brodmann Area; R = right Brodmann Area        -- no further regions meeting the criterion 
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Table 7 
EXPERIMENT 2: URBAN THREAT TASK: 100msec data: Brodmann Areas associated with “high-order” cognition 

that showed at least 50% increase in activity from the pre-change block to the change block)  
(ranked from left by percentage increase)  

 
p most 

increase 
              

P1 L40 R10 R46 L08 L46 L09 L33 --        
%  140.1 96.5 86.4 81.5 79.0 78.3 54.2 --        
P2 L10 L47 L45 L46 L44 R32 R10 L08 R47 R45 R44 --    
%  294.5 223.6 222.9 161.7 160.9 149.7 122.8 74.7 69.6 68.3 60.7 --    
P3 R33 R24 L31 R31 R07 L24 R11 R40 --       
%  114.3 85.2 81.5 80.2 68.2 66.5 63.2 54.2 --       
P4 L31 R39 R31 R11 --           
%  222.2 93.7 85.8 57.0 --           
P5 R46 L46 L45 L44 L09 R45 L08 R06 R08 R44 R39 R09 L47 R10 R47 
%  1446.1 998.3 788.1 716.3 526.4 491.9 433.3 353.5 351.3 240.9 208.4 184.6 152.6 144.0 59.1 
P6 R32 L33 L32 R33 R11 L11 L34 R34 R08 --      
%  135.6 93.4 87.4 85.6 77.1 74.2 72.1 72.1 59.7 --      
P7 L07 R07 L06 R40 L31 R24 L24 R32 R06 R09 R08 R31 --   
%  318.8 187.8 169.7 132.0 128.7 90.3 86.2 85.1 72.5 66.9 61.9 51.6 --   
P8 R32 L39 L32 L31 L07 --          
% 344.8 118.0 78.0 59.5 51.8 --          
P9 R08 R32 R09 R46 R44 L45 L32 R33 R24 L09 R06 L33 R40 --  
%  276.3 240.4 212.6 171.8 140.9 135.6 129.5 107.0 73.7 71.0 68.5 65.0 54.9 --  

P10 L46 L10 L45 R47 L47 R10 R46 R09 L44 L11 L39 --    
%  442.1 395.5 284.5 199.0 117.9 109.6 99.7 92.0 90.5 67.9 61.0 --    

( L= left  and R= right Brodmann Area)     ( -- no further regions meeting the criterion)   (BAs 1,2,3,4,41,42,43: primary somatosensory, motor, auditory BAs excluded: not 
relevant to task)  
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