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Abstract
In studies where data are generated from multiple locations or sources it is common for there to
exist observations that are quite unlike the majority. Motivated by the application of establishing a
reference value in an inter-laboratory setting when outlying labs are present, we propose a local
contamination model that is able to accommodate unusual multivariate realizations in a flexible
way. The proposed method models the process level of a hierarchical model using a mixture with
a parametric component and a possibly nonparametric contamination. Much of the flexibility in
the methodology is achieved by allowing varying random subsets of the elements in the lab-
specific mean vectors to be allocated to the contamination component. Computational methods are
developed and the methodology is compared to three other possible approaches using a simulation
study. We apply the proposed method to a NIST/NOAA sponsored inter-laboratory study which
motivated the methodological development.
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1. INTRODUCTION
Random effects or multilevel models are commonly used to model data that have a
hierarchical or nested structure. These types of models are appealing because of their wide
applicability and the availability of estimation and inference for subject-specific and global
parameters. As with many statistical procedures, estimation and inference available from
these models are sensitive to the presence of observations that are unlike the majority. If the
data have a multivariate structure, then handling outliers can be even more complicated as
observation vectors can be composed of a combination of elements, some of which are
similar in magnitude to the majority of other observations and some of which are outlying.

As an example, consider a NIST/NOAA sponsored inter-laboratory study conducted to
assess the quality of trace element measurements in the marine mammal population. The 33
participating laboratories were instructed to produce five replicate measurements of the
concentration of 15 trace elements in a sample of marine mammal tissue. Figure 1 provides
boxplots of measured concentrations of arsenic (As) and selenium (Se) where each boxplot
corresponds to a lab. Notice that Lab 18 recorded concentrations for both trace elements that
are much larger than the other labs. Conversely, Lab 17 reported concentrations for Se that
are larger than the majority of the labs, but the concentrations measured for As seem quite
reasonable relative to the majority of the other labs. In light of this, there is a need to
develop methods that are able to handle multivariate outliers in a flexible way.

There is a large literature devoted to the development of statistical methodologies that are
robust to the presence of outliers. Rocke (1983), Mandel (1995), and Bednarski and Zontek
(1996) handled outliers by proposing robust estimators, such as M-estimators or estimators
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resulting from Frèchet differentiable functionals. Muller and Uhlig (2001) and Lischer
(1996) proposed estimators based on the differences between observations. Another
approach is to discard all measurements that are classified as outliers via a detection method
such as those proposed by Peña and Prieto (2001) and Penny and Jolliffe (2001). However,
the uncertainty associated with outlier detection is not considered. Song, Zhang, and Qu
(2007) provided an example of accommodating outliers by using heavy-tailed distributions.
Although the fatter tails of the t-distribution more readily accommodate outliers compared to
a Gaussian distribution, it still is fairly restrictive in that its shape is symmetric and
unimodal.

Introducing some distributional perturbation by way of a finite mixture is another approach.
Box and Tiao (1968) first proposed this method and used a two-component mixture to
accommodate outliers. Approaches that use mixtures of some kind can be quite flexible but
typically classify an entire multivariate object as being an outlier or not.

In this article we develop a Bayesian methodology that allows the different elements of a
multivariate vector to vary in their outlier status, while accommodating uncertainty in outlier
classification in estimation and inferences. The general idea is to introduce some
distributional contamination (Bayarri and Morales 2003) to accommodate multivariate
outliers. This is done by constructing a hierarchical model where the process is modeled
with a mixture of mixtures. A majority (non-outlying) component is modeled by a
multivariate normal, while the other component corresponds to unusual observations and is
modeled with a finite mixture. Much of the flexibility in the methodology is achieved by
allowing allocation to the non-Gaussian component to vary for the different vector elements.
One might think of this as a type of local clustering of the location/source mean vectors. The
notion of local clustering or clustering multivariate objects on a subset of attributes has been
introduced in the literature. Specifically, Dunson (2009) used the local clustering idea to
choose a prior for an unknown random effects distribution within a hierarchical model and
Hoff (2006) developed a model-based clustering approach that clusters a multivariate vector
of attributes using a subset of the attributes.

The methods developed here are applicable to any study in which multivariate
measurements arising from different studies are to be combined. This could include, for
example, meta-analysis and inter-laboratory studies. For clarity and ease of exposition we
motivate ideas from an inter-laboratory perspective. Because of this we provide a very brief
introduction to inter-laboratory studies here. These studies are conducted to ensure
measurement capability for commerce, evaluate national and international equivalence of
measure, and validate measurement devices and methods or standard materials. Typically,
the overarching goal in the analysis of data produced by inter-laboratory studies is to
establish a reference value, which can sometimes be thought of as an estimate of a
measurand (quantity intended to be measured), and estimate its uncertainty. To determine a
“degree of equivalence” each laboratory’s measurements are compared to the reference
value. This analysis is usually carried out under the guidelines set forth in The Guide to the
Expression of Uncertainty in Measurement (GUM) created by the International Organization
of Standardization (ISO). Since its inception criticisms and alternative approaches to
estimating a reference value have been proposed in the literature (Gleser 1998; Rukhin and
Vangel 1998; Rukhin 2007; and Toman 2007).

In what follows, Section 2 provides a detailed description of the model and Section 3
develops computational methods. Section 4 describes a simulation study conducted to
compare the performance of the proposed method to three reasonable alternatives. Section 5
provides an example using a NIST/NOAA marine mammal inter-laboratory dataset. In
Section 6 we make conclusions.
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2. DESCRIPTION OF THE LOCAL CONTAMINATION MODEL
Though we focus on an inter-laboratory application for clarity, the methodology can be
implemented in a more general setting. The proposed model will be referred to as a local
contamination (LC) model. We assume that the replicates for each laboratory vary according
to a normal distribution and that if a laboratory makes an unusual measurement for a
particular element (compared to the rest of the labs) it will continue to do so for that
element. However, within-laboratory outliers can be handled in a fairly straightforward
manner through the use of a heavy-tailed residual density such as a multivariate t-
distribution (e.g., Section 5.4). For sake of simplicity and ease of exposition we describe the
LC model with a Gaussian residual distribution.

Let yij = (yij1, yij2, …, yijp)′ be the jth vector of p measurements taken by the ith laboratory
with j = 1, …, ni and i = 1, …, m. Assume that

(1)

with μi = (μi1, μi2, …, μip)′ a lab-specific mean and Σi a lab-specific covariance which we
model with an inverse-Wishart [i.e., Σi ~ IW(ν,A)]. For studies where measurements are
physically constrained to be nonnegative one can simply log-transform the measurements
prior to analysis.

A novel contribution of the LC model is how the μi’s are modeled. Ultimately, we model the
μi with a multivariate normal whose mean and variance allow each μi to potentially be
composed of elements that are members of a majority (non-outlying) component and others
that are members of a non-majority (outlying) component which we refer to as a
contamination. This latent allocation structure is modeled by introducing classification
variables that classify the p elements of each lab mean vector μi as being part of the majority
or not. Let γi = (γi1, γi2, …, γip)′ be a p-dimensional vector of 0’s and 1’s such that

where  is a collection of elements that make up the majority component for the ith lab,

 is the number of elements in the majority component for the ith lab, and

 with  (aπ and bπ are user-supplied). πi is the prior
probability that lab i falls within the majority component for a randomly selected element.
By specifying a hyperprior for πi, we allow the data to inform about the proportion of
outlying elements. Typically, one would elicit aπ and bπ based on prior knowledge of the
proportion of outlying elements with aπ ≫ bπ so that E(πi) ≫ 0.5, with ideally E(πi) ≈ 1 −
ε for small ε. This leads to a local ε-contaminated model.

We now introduce atoms {( ); h = 0, 1, …, L} that are used to construct the mean

and covariance matrix corresponding to μi. The pair ( ) are the mean vector and
covariance matrix that correspond to the majority component (which makes  of principal

interest in an inter-laboratory study analysis), while ( ) for h = 1, …, L correspond to
the L clusters that make up the contamination.  is sampled a priori from Np(m,S) while the
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’s for h = 1, …, L are sampled independently from tp(m, S, ν) a priori. [Here tp(m,S, ν)
denotes a scaled (S) and shifted (m) p-dimensional t-distribution with ν degrees of freedom.]
Multivariate t-distributions are used to accommodate the possibility of contamination cluster
locations being highly variable. For computational purposes (detailed in Section 3) the

’s are diagonal matrices with diagonal entries , k = 1, …, p. To preserve conjugacy

we use an inverse-Gamma prior  for k = 1, …, p (values for aσ, bσ are
supplied by the user). Thus, depending on γi, the mean and covariance matrix corresponding

to μi is made up of elements from  and  and/or elements from  and  for some ℓ =
1, …, L.

The value of L actually represents an upper bound on the number of clusters that make up
the contamination. The form of the contamination is motivated by a finite Dirichlet
approximation to the Dirichlet process as proposed by Ishwaran and Zarepour (2002). As
this upper bound increases, there is convergence to a nonparameteric limit, but the finite
approximation is somewhat simpler to implement. Allowing the contamination to potentially
consist of more than one cluster provides more flexibility in handling outliers compared to a
one-cluster contamination. The necessity of this flexibility can be seen in Figure 1. It is
fairly obvious that the As and Se entries of Lab 18’s mean vector will occupy a cluster of the
contamination. Also, it is possible that the As entry of Lab 26’s mean vector will be
allocated to the contamination. If this turns out to be the case, then at least two
contamination clusters will be necessary to accommodate the two element means.

To identify the ℓth contamination cluster used to construct the mean vector and covariance
matrix associated with μi we introduce an Si for each of the i = 1, …, m labs. The Si’s take
on values ℓ = 1, …, L with Pr(Si = ℓ) = νℓ. For simplicity, all elements of the mean and
covariance matrix of μi that are allocated to the contamination come from the same
contamination cluster. The vector of probability weights on the L clusters that make up the
contamination is modeled as

with α = 1 being fixed in the applications that we consider to favor high weights on few
clusters.

Finally, we model the μi’s independently for i = 1, …, m with

The entries of the vector δγi depend on γik in the following way. If γik = 1, then ,

otherwise,  for all k = 1, …, p. This structure can be succinctly written as

where ⊗ denotes the Hadamard or element-wise multiplication.

Page and Dunson Page 4

Technometrics. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Tγi is constructed in a similar fashion. Since , for h = 0, …, L, are diagonal matrices Tγi

is diagonal as well. The kth entry on the diagonal of Tγi is the kth diagonal value of  (or

) if γik = 1; otherwise, it is the kth diagonal entry of  (or ). Thus we can construct
Tγi as

Figure 2 provides a graphical representation of how the mean and covariance matrix of μi is
constructed.

Values for all parameters denoted by Roman letters need to be specified by the user. To
automate prior specification and avoid problems inherent to dealing with multivariate data
on vastly different scales, we recommend standardizing the p variables prior to analysis. If
this is done, the prior specification of m = 0 and S = Ip is natural. Because the p variables
are standardized using all data (including any outliers), values for (aσ, bσ) should be chosen

so the majority of prior distribution mass associated with the ’s is less than 1. Informal
investigation indicated that inferences from the LC procedure are fairly insensitive to the

prior specification for . In this article we use an inverse-Gamma distribution with mean

0.25 and standard deviation 0.5 giving . Following suggestions made by
Verdinelli and Wasserman (1991), to make probability of being an outlier small (≈0.05), we
set aπ = 9.5 and bπ = 0.5.

3. COMPUTATION
The joint posterior distribution of the parameters in the LC model is analytically intractable.
We use a Gibbs sampler to obtain correlated draws from the posterior distribution. The full
conditional distributions which can be used to construct a Markov chain whose stationary
distribution is the joint posterior are described. In what follows we use [θ|-] to denote the
distribution of θ conditioned on all other parameters. As an example, [μi|-] is shorthand for

[μi|{μj}j≠i, , y]. The
following full conditionals are fairly common and can be derived using routine algebra:

(2)

(3)

(4)

(5)
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(6)

where φ(·; μ, σ2) denotes a normal density with mean μ and variance σ2.

Full conditionals are also needed for the component-specific parameters. We first provide

the full conditionals for  and . Here, we introduce some useful notation. Let T0:γi=0
denote the matrix that results from setting the entries of the rows and columns of the matrix
Tγi that are associated with γik = 0 for k = 1, …, p to zero. Similarly T0:γi=1 denotes the
matrix whose row and column entries associated with γik = 1 for k = 1, …, p are set to zero.
The full conditional for  is

(7)

This result is a consequence of the assumption that  is diagonal.

Since  is a diagonal we consider the ’s individually for each k. The complete

conditional for the kth diagonal element of  is

(8)

Derivations of (7) and (8) are provided in the Appendix.

To facilitate computation we use a scale mixture of normal representation of the t-
distributions that correspond to the contamination cluster locations. This requires
introducing an auxiliary variable [ωℓ ~ IG(w/2,2/w)] for each of the L contamination clusters
where w is the degrees of freedom (which we set to 4). The complete conditionals for

{( ); h = 1, …, L} are then

(9)

(10)

The full conditional of the auxiliary variable ω is [ωh|–] ~ IG(0.5(w +p),

(11)

Page and Dunson Page 6

Technometrics. Author manuscript; available in PMC 2013 December 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The full conditional of Si is discrete with probability mass function

(12)

where φ(·; μ, Σ) denotes a multivariate normal density, , and

.

A Markov chain associated with the joint distribution of interest can be had by iteratively
cycling through the complete conditional distributions on an individual basis.

When using auxiliary variables for classifying in a mixture setting it is possible for chains
coming from an MCMC algorithm to mix poorly. To improve mixing, we use an adaptive
type of Gibbs sampler (Roberts and Rosenthal 2007). This was done by replacing p* in (4)
with

where t = 1, …, M denotes the tth MCMC iterate. This initially pulls p* to 0.5 but then
converges to (4) exponentially fast as t → ∞. Since the adaptation vanishes at an
exponential rate, the necessary regularity conditions are satisfied and the algorithm
converges to the correct distribution.

4. SIMULATION STUDY
We compare the performance of the LC model in estimating a reference vector to three other
reasonable alternatives by way of a simulation study. The simulation study consists of
generating several multivariate datasets (with and without outlying elements) and for each,
estimating a reference vector using three competing methods and the LC model. The four
procedures were compared using frequentist metrics such as bias and mean squared error
along with credible region area and coverage. In this section, we briefly describe the
competing methods, detail how datasets were generated, and provide the simulation study
results.

4.1 Description of Competing Methods

We compare the performance of the LC procedure in estimating  to three reasonable
alternatives via a simulation study. The description of the three competitors follows.

1. The first competing method is a random effects model with random effects
assumed to originate from a MVN distribution. Specifically,

, and . Σ and Σ0 are drawn
from inverse-Wishart distributions. We refer to this model as the MVN model.

2. The second competing method is a random effects model with random effects
assumed to originate from a multi-variate t-distribution. More specifically,

, and . A uniform (0, 100)
prior is used for η. The other parameters were assigned the same priors as in the
MVN model. The t-distribution is often used as a robust alternative to the MVN
when outliers are present and we refer to this model as the MVT model.
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3. The third competing method is a random effects model with the random effects
being modeled with an unknown density. A Dirichlet Process (DP) is used as a

prior for the unknown density. That is, , μi ~ , and  ~

DP(αP0). Here P0 follows a  and . Similarly to the LC
model we fixed α = 1. Other parameters were assigned the same priors as in the
MVN and MVT models. This model is very flexible in accommodating unusual
observations and we refer to it as the DP model.

4.2 Creation of Synthetic Datasets
We consider the MVN and MVT models as data generating mechanisms. We generate μi

vectors from a MVN or MVT distribution after fixing values for  and Σ0. Then after fixing
Σ, lab-specific observation vectors are generated by using a MVN with mean μi and
covariance Σ and then log-transformed. We used the marine mammal dataset as a guide to
picking appropriate values for , Σ0, and Σ. The marine mammal dataset was also used to
choose the number of laboratories (30), the number of observations per laboratory (5), and
the dimension of the observation vectors (15).

We fix the kth entry of  at the median of the kth element computed across all laboratories
from the marine mammal dataset. Σ0 is fixed to be a diagonal matrix whose kth entry is set
by computing the variance between the empirical lab-specific means for the kth element. For
the data generation process, Σ is also a diagonal matrix whose kth entry is fixed at the
average of the lab-specific sample variances of the kth element. For datasets containing
outliers, 10 of the 30 labs are randomly selected to have outliers in at least one entry of μi.
Five of the ten have one element randomly selected to be an outlier, two have two elements
as outliers, two have five elements, and one has ten elements. This outlier structure is similar
to that found in the marine mammal dataset. An outlier is generated by setting the mean for
an outlying element to . Figure 3 provides an example of the datasets used in the
simulation study with and without outliers.

4.3 Results
Using the MVN, 500 datasets with and without outliers are generated. This is repeated using
MVT, giving a total of 2000 datasets. For each dataset, posterior distributions of  were
obtained using the four procedures. Posterior distributions are summarized by posterior
mean vectors and 15-dimensional 95% credible regions. The credible regions are 15-
dimensional rectangles formed as the product of fifteen (0.95)1/15 × 100% credible intervals,
one for each of . We refer to the posterior means as . To compare the
four procedures’ performance in estimating , we use empirical coverage ratios and
credible region volume along with two metrics related to the frequentist bias and MSE. As a
type of total absolute bias the following was computed for each procedure:

Here,  is the kth element of the  and d is an index for the D = 500 datasets
that were generated. Values in the MSE column were computed using
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This might be thought of as a type of total MSE averaged over the 500 datasets. Results can
be found in Table 1.

When no outliers are present and the data are generated using the MVN model, results from
the LC procedure are very much comparable to the other four procedures in terms of
coverage, volume, bias, and MSE. The fact that these intervals did not attain the nominal
95% coverage is to be expected as we are working with Bayesian posterior probability
intervals which have a different interpretation than confidence intervals in a finite sample
setting. When outliers are introduced, the MVN and DP models are more negatively affected
than the MVT and LC models and the LC model performs much better in all four metrics.
When the data are generated using MVT and there are no outliers, the MVT model performs
the best out of the four procedures in terms of bias and MSE. This is to be expected.
However, when outliers are introduced, the LC procedure has a lower MSE and bias than the
MVT. It appears that the LC procedure has a clear advantage over the other three procedures
at estimating  when outlying laboratories are present. In other simulation results (not
shown) the advantages of using the LC model (in terms of smaller bias and MSE) compared
to the MVT model become more obvious as the ratio of outlying labs to participating labs
increases or as the distance between an outlying lab mean and the majority component mean
increases.

To demonstrate the utility of a contamination model with more than one cluster, we report in
Table 2 several summaries of the outlying clusters identified by the LC model. At each
iteration of the MCMC algorithm we count the number of clusters that contained an element
that had been allocated to the contamination. The “clusters occupied” column reports the
median of this value across MCMC iterates and the 500 datasets. For data generated using
the MVN with outliers, approximately three clusters of the contamination were occupied
while four were occupied for data generated from MVT with outliers. We also enumerated
the total number of elements that were classified as outliers [using E(γik|y) < 0.1 as the
outlier criterion]. The values found in the column “outlying elements” is the median number
of elements allocated to the contamination across the 500 datasets. Recall that 29 elements
were randomly selected to be outliers for datasets that contained outliers. The median
number of labs that had at least one outlying element is also consistent with the true value of
10 or 0 labs (as is seen in the “outlying labs” column). Table 2 indicates that the LC model
is fairly accurate in its allocation of outlying elements.

5. DATA ANALYSIS OF THE NIST/NOAA SPONSORED INTER–
LABORATORY STUDY

In this section we briefly describe the data that were produced from the marine mammal
inter-laboratory experiment, provide results of the analysis from the LC model along with
the three other methods outlined in the previous section, and assess model fit using cross-
validation.

5.1 Description of NIST/NOAA Inter-Laboratory Study Data
In 2005 a NIST/NOAA sponsored inter-laboratory study was conducted to improve the
quality of trace element measurements in marine environmental systems. The NIST
prepared fresh-frozen marine mammal control materials [white-sided dolphin liver
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homogenate (QC04LH4)]. A glass jar containing approximately 8–10 grams of the frozen
material was distributed to 33 participating laboratories. Each lab was asked to keep the
material in an environment that would preserve its authenticity and to divide the material
into five aliquots. Measurements of 15 trace elements (Ag, As, Cd, Co, Cs, Cu, Fe, Hg, Mn,
Mo, Rb, Se, Sn, V, and Zn) using in-house analytical techniques were to be taken on each
aliquot. The raw measurement results were submitted to the NIST. Figure 1 provides a
graphical display of measurement results for As and Se. Additional details are provided in
the article by Christopher et al. (2007).

Some labs did not measure all 15 trace element concentrations on each aliqout. We imputed
values for the missing data under the missing at random (MAR) assumption (Gelman et al.
2004) within our proposed MCMC algorithm. The core assumption of MAR is that the
missingness mechanism does not depend on the missing data. Information regarding the
rationale behind a lab’s decision not to measure the concentration of all 15 trace elements on
each aliqout is not available. However, there is no obvious indicator of a MAR assumption
violation and it seems completely plausible that the missingness mechanism did not depend
on the trace element.

Algorithms to impute missing values and update posterior draws for the four procedures
were written in the C programming language. For each procedure 10,000 posterior draws
were collected after a burn-in of 20,000 and thinning of 5. With regard to computation time,
the computer code associated with the two simpler models required slightly less time (MVN,
584 seconds and MVT, 602 seconds) to run than that of the more complicated models (DP,
980 seconds and LC, 818 seconds). The added flexibility afforded by the LC model comes at
a minimal computational cost.

5.2 Results From the Marine Mammal Data Analysis
Prior to analysis the data were normalized and log-transformed. After transforming back to
the original scale, marginal posterior means and 95% credible intervals were calculated for
each trace element and are provided in Table 3.

From Table 3 it can be seen that the 95% credible interval widths are generally the smallest
under the LC model. In fact, the average credible interval width is smaller for the LC (1.58)
compared to the DP model (6.10), the MVT model (1.97), and the MVN model (5.49).
Notice that in terms of estimating the location of , the LC and MVT procedures are very
similar. The advantage that the LC procedure has over the MVT is mainly in the estimation
of the variability associated with .

We set L = 10 when fitting the LC model to the marine mammal dataset. Table 4 gives the
posterior probability distribution on the number of occupied contamination clusters. Five
occupied contamination clusters turned out to have the highest posterior probability.

A nice characteristic of the LC model is that it is possible to estimate the posterior
probability of the ith lab being part of the majority. This can be done by computing E(πi|y),
the posterior mean of πi. In addition, E(γik|y), the posterior mean of γik, provides the
posterior probability that the kth element corresponding to the ith lab is part of the majority.
These probabilities are listed in Table 5. The number of trace elements for each lab such that
E(γik|y) < 0.1, E(γik|y) < 0.5, and E(γik|y) < 0.9 are found in parentheses. Lab 18 reported
measurements for multiple trace elements that might be considered to be far from the
majority and this is reflected in its posterior probability of being an outlier. With regard to
the trace elements referenced in Section 1, the posterior probability of As belonging to the
majority component for Lab 17 is 0.87, for Lab 18 is 0.00, and for Lab 26 is 0.05, while the
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posterior probability of Se belonging to the majority component for Lab 17 is 0.025, for Lab
18 is 0.00, and for Lab 26 is 0.80.

We assessed model fit using cross-validation. A testing partition of the marine mammal data
was created by removing two randomly selected observations from 10 randomly selected
laboratories. The MVN, MVT, DP, and LC models were fit to the remaining portion of the
marine mammal dataset and the removed observations were imputed within the MCMC
algorithm.

Typically the goal in using out-of-sample prediction to assess model fit is to determine how
concentrated the posterior distribution for the predictive values is around the truth. Often
this is done by computing the mean squared prediction error (MSPE). However, the MSPE
only provides a measure of how close a point estimate of the predicted value is to the true
value. That is, it does not consider in any way how concentrated the posterior distribution is
around the truth. In addition, when outliers are present it is not completely clear that the
MSPE is a good metric to assess out-of-sample prediction. Since outliers make up a small
minority of the observations, overly simple models that underestimate the true uncertainty
may do well in terms of MSPE as the bias introduced by the outliers is dominated by the
smaller variance. Because of this we propose the following measure of how concentrated the
posterior distribution for a predicted value is to the truth:

(13)

Here ypredtk is the tth MCMC iterate of the kth entry of the predicted vector and ytestk is the
kth entry of a data vector from the testing dataset. This metric incorporates each MCMC
iterate to assess concentration around the truth. The value of (13) averaged over the twenty
predictions under the LC model (0.062) was slightly smaller than that of the other three
models [MVN (0.064), MVT (0.064), and DP (1.130)]. The average prediction interval
width was also slightly smaller for the LC model (1.59) compared to the other three [MVN
(1.63), MVT (1.60), and DP (5.18)].

5.3 Univariate Analyses
A very simple approach to the analysis of these types of data is to perform an independent
analysis for each trace element. Indeed this was the approach the NIST originally used to
establish a reference value (Christopher et al. 2007). Here we compare the performance of
the LC model in establishing a reference value to that obtained by performing 15
independent univariate analyses. There are any number of approaches one might take to
conduct a univariate analysis that would be robust (accommodating) to the presence of
outliers. None of these approaches are exactly comparable/analogous to the LC model.
Because of this we use the following univariate model that accommodates univariate outliers
very flexibly:

In addition a normal-inv-Gamma prior was used for ( ) and an inv-Gamma prior was

used for . Hyperprior values equaling those used for the LC model were used. Using a

Dirichlet process prior to model the density of ( ) provides a great deal of flexibility
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and hopefully this results in the ability to make reasonable comparisons between the LC
model and 15 independent univariate analyses. The above model was fit to each of the 15
trace elements found in the marine mammal dataset. Posterior means and 95% credible
intervals associated with  were computed for each trace element and are listed in Table 6.

Apart from the fact that performing separate univariate analyses effectively ignores the
dependence structure and therefore can produce misleading results, there appear to be some
pragmatic gains to using the LC procedure. The credible interval widths associated with the
LC model are shorter compared to those coming from the 15 independent analyses.
Obviously shorter credible intervals are desirable only if point estimates corresponding to
the intervals are near the truth. We argue that this is indeed the case in the present setting
using the results from the simulation study (the bias associated with estimates using the LC
procedure was very small in the presence of outliers) and the fact that the LC model and 15
independent univariate analyses produce point estimates that are fairly similar. In the cases
for which the point estimates from the two procedures differ (e.g., Se), those associated with
the 15 independent univariate analyses are greater than those from the LC procedure. This
could be an indication that results from the univariate analyses are still influenced by
outlying labs as outlying labs produced measurements greater than the majority in the
marine mammal dataset.

5.4 Using a t-Distribution Residual to Accommodate Within-Lab Outliers
In addition to outlying labs, it is possible for within-lab outliers to exist. These types of
outliers can easily be accommodated by changing (1) to

where tp(μ, Σ, κ) denotes a shifted (μ) and scaled (Σ) p-dimensional t-distribution with κ
degrees of freedom. Conceptually this is a very straightforward modification of the LC
model. Computationally, we lose conjugacy if the t density is used directly. However, the t-
distribution can be represented as a scale mixture of normals and this characterization of the
t preserves full conjugacy. Thus, a t-density residual can be obtained with the following
hierarchy:

With this representation of the t-distribution (2) and (3) change in the following ways:

In addition, the full conditional for γij is
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One can assign a prior to but for simplicity we set = 4. Using the same prior values for the t-
residual LC model as those used for the Gaussian residual LC model, we fit the t-residual
LC model to the marine mammal dataset. Posterior means and 95% credible intervals for

, k = 1,…, p, are listed in Table 6. The results are fairly comparable to a Gaussian LC
model. The average credible interval length across the 15 trace elements turned out to be
1.58 with all 15 point estimates being very similar to those from the Gaussian residual LC
model. Using E(γik|y) < 0.1 as a criterion to classify the kth element of the ith lab as an
outlier, there were 29 outlying elements (compared to 27 using the Gaussian residual) and
11 labs with at least one outlying element (compared to 11 using the Gaussian residual).

6. CONCLUSION
We have developed a methodology that does very well in accommodating multivariate
outliers in a multilevel/hierarchical modeling framework. Although the presentation of the
model is necessarily a bit notation heavy, the fundamental idea to handling multivariate
outliers (locally allocating multivariate vector entries to a contamination) could not be more
natural and is quite simple and intuitive. In addition to being robust to the presence of
outliers, the methodology provides probabilistic inference on lab/element outlier
classification. This type of information should be of interest to practitioners. Also, the
methodology incorporates the uncertainty associated with lab/element outlier classification
in parameter estimation and inference. These nice features are available at a minimal
computational cost, as a straightforward Gibbs sampler is all that is required to implement
the methodology. Computer code is available from the first author by request.
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APPENDIX: DERIVATION OF FULL CONDITIONALS

Here we only include details regarding [ ] and [ ] as the derivations of [ ] and

[ ] follow similar arguments. We begin with [ ]:

Now [ ] can be obtained by
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Figure 1.
Boxplots for concentrations of As and Se measured in the NIST/NOAA sponsored inter-
laboratory study and recorded as mass fraction mg per gram.
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Figure 2.
Graphical display of how the mean and covariance matrix of μi is constructed. Recall that Si

= ℓ with probability νℓ for ℓ = 1, …, L and ( ) with probability πi for i =
1, …, m.
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Figure 3.
Boxplots of concentrations of Se from a randomly generated dataset used in the simulation
study. Plots (a) and (c) contain no outliers while plots (b) and (d) do. The data in plots (a)
and (b) are generated using the MVN model and those in plots (c) and (d) are generated
using MVT. In plot (b) two of the ten outlier labs have outlying Se values. Three of the ten
outlying labs have outlying Se values in plot (d).
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Table 2

Results from the simulation study with regard

Procedure Clusters occupied Outlying elements Outlying labs

MVN No outliers 2 0 0

10 outliers 3 29 10

MVT No outliers 3 10 4

10 outliers 4 35 12

NOTE: Outlier allocation accuracy and contamination cluster occupancy.
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