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Abstract

Understanding how forward-looking consumers respond to price promotions in storable goods

markets is an important area of research in empirical marketing and industrial organization. In

prior work, researchers have assumed that consumers in these markets are very forward-looking,

and calibrated their weekly discount factors to levels around 0.9995. This calibration has been

used because earlier research has assumed that a consumer’s storage cost is a continuous func-

tion of inventory, which rules out exclusion restrictions that can be used to identify the discount

factor. We show that by properly modeling storage cost as a step function of inventory (be-

cause storage cost depends on the number of packages stored, instead of the actual amount of

inventory), natural exclusion restrictions arise that allow for the discount factor to be point

identified. In an application to a storable good category, we find that weekly discount factors

are very heterogeneous across consumers, and are on average 0.71. We show through a counter-

factual exercise that if one used a model which fixed the discount factor to be consistent with

the standard calibrated value, one would overpredict the effect of increased promotional depth

for a product on its quantity sold by 18% in the short-term, and 15% in the long-term.
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1 Introduction

Consumer stockpiling behavior of packaged goods has been widely studied in both the empirical

marketing (Erdem, Imai, and Keane (2003), Sun (2005), Chan, Narasimhan, and Zhang (2008),

Seiler (2013), Liu and Balachander (2014), Haviv (2014), Osborne (2018b)) and empirical indus-

trial organization literatures (Pesendorfer (2002), Hendel and Nevo (2006), Hendel and Nevo (2013),

Wang (2015), Pires (2016), Osborne (2018a)). Prices often follow a “hi-lo” pattern where they take

on a low promotional value for one or two weeks, and return to a higher regular retail price for a

longer period of time. When facing such a price process, forward-looking consumers will behave

strategically and respond to temporary price promotions by stockpiling the good, as they under-

stand that prices will be high in the future and they wish to have the good available for later use.

Much of the empirical literature on this topic employs the discrete choice dynamic programming

framework (Rust 1994), where a dynamic structural model of consumer behavior is estimated on

consumer purchase data and used to make counterfactual predictions. In the marketing literature,

past research has used structural models to quantify the impact of changing the price process’ vari-

ance, promotional frequency, and promotional depth on brand and category sales (Erdem, Imai,

and Keane (2003), Liu and Balachander (2014) and Osborne (2018b)). Understanding demand

responses to changes in the price process is of critical importance to retail managers who wish

to optimally allocate limited promotional budgets. In the empirical industrial organization litera-

ture, structural models have been used to understand the impact of stockpiling on merger analysis

(Hendel and Nevo 2006), food taxation (Wang 2015), and price index construction (Osborne 2018a).

A key parameter in dynamic discrete choice models is the discount factor, which measures

the strength of forward-looking behavior. The closer the discount factor is to 1, the more weight

consumers put on future payoffs when making current decisions. However, none of the preceding

dynamic structural papers on stockpiling estimate the discount factor. Instead, they assume that

consumers make inter-temporal trade-offs based on the prevailing interest rate, calibrating the

discount factor accordingly. This calibration approach leads to a weekly discount factor of about

0.9995.1 The calibrated discount factor is, however, at odds with a wealth of experimental studies

which find that the discount factors can range from between 0.00 to 0.99 (Frederick, Loewenstein,

and O’Donoghue (2002)). Such a wide range of estimates suggests that the discount factor could

1The calibration approach assumes a yearly interest rate of 5%, which is consistent with U.S. real interest rates in

the period 2001-2010. This interest rate implies a yearly discount factor of 0.95, and would produce a weekly discount

rate of about (1/(1 + 0.05))(1/52) ≈ 0.9995. In practice, researchers will sometimes set a slightly lower discount factor

than the calibration implies to reduce the computational burden of estimating the dynamic model. For example,

Seiler (2013) uses a value of 0.998.
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be context specific. Moreover, in stated choice experiments performed by Dubé, Hitsch, and Jindal

(2014), consumers appear to be much less forward-looking than what economic theory implies, with

average annual discount rates of 0.43. Dubé, Hitsch, and Jindal (2014) and Yang and Ching (2014)

also find substantial heterogeneity in discount factors across individuals.

The reason why the discount factor is typically not estimated in discrete choice dynamic pro-

gramming problems stems from an identification problem: If the researcher does not impose any

functional form restrictions on the structure of the current period utility function, the discount

factor cannot be identified (see Rust (1994), Magnac and Thesmar (2002)). Recently, Magnac

and Thesmar (2002), Fang and Wang (2015), and Abbring and Daljord (2018) have examined

the question of whether the discount factor can be identified when a dynamic model has exclusion

restrictions. Roughly speaking, exclusion restrictions occur when there exists at least one state vari-

able that impacts a consumer’s future payoffs, but not her current payoffs. The intuition behind

this is that if a consumer is completely myopic, then the consumer’s choice should be independent

of that variable. The extent to which a consumer’s choice is influenced by the state variable when

the exclusion restrictions hold provides information about how forward-looking the consumer is.

However, most recent research still fixes the discount factor according to the interest rate, because

the state variables of these dynamic models do not provide exclusion restrictions. Moreover, even

with such restrictions, point identification is not guaranteed (Abbring and Daljord 2018).

Our paper makes two important contributions to the literature on stockpiling. First, we argue

that one of the key state variables in these models, inventory, provides natural exclusion restrictions;

we show that with these restrictions, all model parameters, including the discount factor, are point

identified.2 Our key insight is that if an individual’s storage cost is a function of the number

of packages held, then for most inventory levels, a consumer’s current payoff does not vary with

inventory. To illustrate this insight, consider an example drawn from the laundry detergent market.

Suppose a consumer has a single bottle of laundry detergent in her home, and her consumption

rate is constant over time.3 If the consumer is forward-looking, as she keeps consuming the laundry

detergent, she may worry that if she does not buy another bottle soon when the price is low, she

may be forced to buy it at a higher regular price when she uses it up in the near future. This sense

of urgency will become stronger as inventory (i.e., the amount of detergent in the bottle) runs down,

and her demand would appear to become more sensitive to price cuts. Moreover, for any amount

2By “natural exclusion restrictions,” we mean the exclusion restrictions are well-justified by the institutional

details of the environment being studied.

3For example, this consumer has a habit of wearing clean clothes every day, and as a result does a single load of

laundry every week.
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of inventory remaining, the more forward-looking a consumer is, the more intense this feeling of

urgency will get. In contrast, the existing literature has assumed that a consumer’s storage cost

is a continuous function of inventory, which rules out these exclusion restrictions that naturally

arise from the institutional features of the problem. With a continuous and increasing storage cost

function, a consumer’s purchase probability will increase smoothly as inventory drops, even if the

consumer is myopic, making it difficult to identify forward-looking behavior.

To implement this insight, we make an additional assumption that an individual’s consumption

rate is constant (but it can differ across individuals).4 This assumption, together with the stan-

dard approach to handle the initial value of one’s inventory level, allows us to compute individual

specific inventory at any point in time. These assumptions allow us to take advantage of exclusion

restrictions and reduce the computational burden of estimating the model.

Our second contribution relates to the empirical and managerial implications of estimating

the discount factor. We estimate a dynamic structural model of consumer stockpiling behavior on

scanner data for laundry detergents, and recover the population distribution of discount factors. We

find that the average weekly discount factor is 0.71, which is significantly lower than the calibrated

benchmark. Additionally, there is a significant amount of heterogeneity in discount factors, as the

33rd and 66th percentiles of the population distribution are 0.62 and 0.99, respectively.

We demonstrate that estimating the discount factor matters through a series of counterfactual

exercises, which compare the impact of estimating versus calibrating the discount factor on predic-

tions of how consumer demand for a product responds to changes in the product’s price process.

Often times, firms need to evaluate a new price promotion policy soon after its implementation.

Consequently, consumer expectations about the price process may not have adjusted in a short

time frame. Therefore, we construct our comparisons for two scenarios: (i) the short-term, where

consumer price expectations correspond to the actual process observed in the data; and (ii) the

long-term, where price expectations correspond to the counterfactual price process. We evaluate

two different counterfactual changes to the price process: one where we increase the depth of price

promotions for a popular product, and the other where we increase their frequency.

In the model where the discount factor is estimated, we predict that by offering deeper discounts,

one can significantly increase consumer demand in both the short- and long-term. Relative to

these predictions, the model with the calibrated discount factor of 0.9995 significantly overpredicts

quantity sold, by 18% in the short-term, and 15% in the long-term. When the discount factor is

calibrated at 0.9995, consumers are more responsive to increased promotional depth because more

4This assumption is motivated by our observation that the consumption rate should be fairly constant for some

product categories (e.g., laundry detergent).
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forward-looking consumers have a stronger incentive to stockpile the product on promotion, instead

of other products. This effect is amplified in the short-term because consumers underestimate the

likelihood that such a promotion will occur in the future, leading to a larger bias in the short-

term prediction. We find that the calibrated discount factor model also overpredicts the impact of

increased promotional frequency on quantity sold, but by a smaller amount. These counterfactual

results suggest that if exclusion restrictions are available to help identify the discount factor, it

should be estimated, rather than calibrated.

The rest of the paper is presented as follows. In Section 2, we discuss related work. In Section

3 we use a stylized model to present the exclusion restrictions, and Section 4 develops our identifi-

cation proof. We describe our empirical application in Section 5, the counterfactuals in Section 6

and discuss future research paths in Section 7.

2 Review of Literature

Proofs of identification for dynamic discrete choice models often build on the conditional choice

probability approach introduced in Hotz and Miller (1993), who assume that all state variables

are observed to the researcher, and there is no unobserved heterogeneity across consumers. In this

setting, under a set of regularity conditions on the error term, one can non-parametrically estimate a

consumer’s choice specific value, which is the sum of the current period flow utility and the discount

factor multiplied by the value function. The choice specific values are identified conditional on a

normalization of the utility of one alternative (typically called the reference alternative), and given

the functional form of the error distribution. With no restrictions on the functional form of the

flow utility, the discount factor is not identified: In the conditional choice probability approach,

the moments that identify the model parameters are the probabilities of a consumer choosing each

alternative at each value of all the state variables. A fully flexible model would allow the utility

function to be unique for each alternative and each state. Hence, if the discount factor were fixed,

the number of moments and unknowns would be equal, and the model would be exactly identified.

Formally, to identify the discount factor, some restrictions must be put on the utility function.

Such restrictions will reduce the number of parameters in the model to be smaller than the number

of moments, allowing the discount factor to be identified.

One type of restriction that has been proposed to help identify the discount factor is called an

exclusion restriction. As explained in the introduction, this type of restriction requires the dynamic

model to have at least two values of state variables, where for some choice alternatives, the current

flow utilities remain unchanged but the expected future value could differ. Magnac and Thesmar
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(2002) is widely cited as the first paper which shows how exclusion restrictions can identify the

discount factor. However, it should be pointed out that their exclusion restriction is defined in a

way that is quite different from the definition that we use here. It is difficult to give an economic

interpretation to the exclusion restriction used in Magnac and Thesmar (2002). Fang and Wang

(2015) were the first to characterize the definition of the exclusion restriction in the way that we

use it. More recently, Abbring and Daljord (2018) show that the Fang and Wang (2015) exclusion

restrictions may not allow for the discount factor to be point identified.5 In our setting, we show

that we can obtain point identification if we exploit multiple exclusion restrictions.

To our knowledge, there are only a handful papers that explore such an identification argument

to estimate a consumer’s discount factor or her incentive to consider future payoffs (Chevalier

and Goolsbee (2009), Ishihara and Ching (2012), Chung, Steenburgh, and Sudhir (2013), Lee

(2013), Ching, Erdem, and Keane (2014), Ching and Ishihara (2018), Dalton, Gowrisankaran, and

Town (2019), De Groote and Verboven (2019)). These papers investigate sales force compensation

schemes, rewards programs, consumer learning, and how the price of used goods affects the demand

for new goods. As far as we know, none of the published research on structural models of consumer

stockpiling have attempted to estimate the consumer discount factor (e.g., Erdem, Imai, and Keane

(2003), Sun (2005), Hendel and Nevo (2006), Chan, Narasimhan, and Zhang (2008), Seiler (2013),

Liu and Balachander (2014), Pires (2016)). This is probably because previous structural models

on consumer stockpiling all have assumed that the storage cost is an increasing and continuous

function of inventory. This simplifying assumption, though convenient, has ruled out the exclusion

restrictions that we use in our identification arguments. As a result, all previous structural empirical

work on consumer stockpiling fixes the discount factor to be consistent with the interest rate, instead

of estimating it.6 Our paper is the first to argue that by properly modelling storage cost as a step

function of inventory, this key state variable provides natural exclusion restrictions that can help

identify the model’s parameters, including the discount factor.

In on-going research, Akça and Otter (2015) describes an alternative mechanism by which

inventory can be used to identify the discount factor. They show theoretically that if consumers

5Fang and Wang (2015) discuss identification of three discount factor parameters: the geometric discount factor,

hyperbolic discounting, and näıveté. Abbring and Daljord (2018) show that the case of geometric discounting is a

singular case in Fang and Wang (2015)’s proof, and present a proof of identification for this case.

6Note that with the assumption that the storage cost is an increasing and continuous function of inventory, a

consumer has an incentive to wait longer before buying a new bottle, since the storage cost keeps dropping as

inventory shrinks. This has the opposite effect of the increase in expected stock-out cost as the inventory drops.

Therefore, the models used in previous work do not have clear implications about consumer purchase behavior as

inventory drops.
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use brands within inventory in a last-in-last-out order and consumption rates are constant, the

discount factor can be identified. Their approach is much more computationally demanding than

ours because it requires consumers to track inventory at the brand level. Since most field datasets

have many brands, the state space of such a model would become very large. Moreover, our

approach does not rely on any particular assumption related to the order of consumption of brands

within inventory.

Finally, it is worth noting that Geweke and Keane (2000), Houser, Keane, and McCabe (2004)

and Yao, Mela, Chiang, and Chen (2012) explore another identification strategy which requires

the current payoffs are either observed or can be recovered from a static environment first. Yao,

Mela, Chiang, and Chen (2012) then assume consumers solve a dynamic programming problem and

use this strategy to estimate the discount factor. Because Geweke and Keane (2000) and Houser,

Keane, and McCabe (2004) do not assume consumers solve a dynamic programming problem, they

recover the expected future payoffs but cannot separately identify the discount factor.7

3 Exclusion Restrictions in the Stockpiling Model

In this section we develop a simple dynamic model of consumer purchase behavior for a storable

good, which we use to demonstrate how our exclusion restrictions can be used to identify the model’s

parameters. This model abstracts away from many complications we include in our empirical model,

such as price variation, preference heterogeneity, and purchase of multiple packages at once. We

assume that the researcher observes a market containing N consumers making purchase decisions

over T periods. Consumers are forward-looking and discount the future at a rate β < 1. In this

stylized model, we assume that a single product is available to consumers in a single discrete package

size. Each decision period t is broken up into two phases which happen sequentially: (i) a purchase

phase, and (ii) a consumption phase.

In the purchase phase, consumer i observes her inventory (Iit), the price of a package of the

product (p), an exogenous consumption need (c), and a choice-specific error (εijt). In each period,

the consumer’s decision is whether or not to purchase a single package of the product: j ∈ {0, 1}.

After making her purchase, the consumer enters her consumption phase and consumes an amount

c∗, which is determined by her consumption need and available inventory. We assume that the

7Ching, Erdem, and Keane (2014) extends this line of research to structural learning models by taking advantage

of the exclusion restrictions implied by the Bayesian updating rule. As a result, even though Ching, Erdem, and

Keane (2014) did not observe an individual’s current payoffs, they are able to recover an individual’s expected future

payoffs.
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maximum amount of inventory an individual can hold is M · b, where b is the size (or volume)

of a package, and M is the maximum number of packages that can be stored. For simplicity

of exposition, we will assume that b and c are both strictly positive integers, and b is divisible

by c. At the end of the period, the consumer incurs a storage cost s(·;ω). ω is a vector of

parameters determining how storage costs vary with the number of packages held. We make three

modeling assumptions which will guarantee that inventory generates exclusion restrictions, and

allow identification of model parameters from consumer choice probabilities.

Modeling Assumptions Related to Exclusion Restrictions

X1 Consumption c∗ = c if I + bj ≥ c, and c∗ = 0 otherwise. Flow utility from c∗ ≥ c is equal to

a constant, γ ≥ 0. If c∗ < c, the individual incurs a stockout cost of ν > 0.

X2 The storage cost function s is only a function of the number of packages held at the end of

the period, B, rather than inventory I.

X3 There are at least three inventory levels per package size where storage costs do not change,

and the maximum number of packages an individual can hold is at least two: c ≤ b/3,M ≥ 2.

Assumption X1 says that consumption rates will be constant over time and equal to c (if end

of period inventory is at least c). This implies that the individual’s end of period inventory will

be Ii,t+1 = min{max{Iit + b · j − c, 0},M · b}. X1 additionally states that underlying consumption

utility is equal to −ν < 0 if consumption is smaller than c, and is equal to γ for consumption

levels greater than or equal to c. We assume that γ ≥ 0 and ν > 0 so an individual would

prefer to avoid stockouts, and hence stockpile even with constant prices. With varying prices,

individuals would have an incentive to stockpile during price promotions, even without a stockout

cost. This assumption is slightly stronger than necessary: Because either of these parameters can

be normalized, it is only necessary that γ > −ν. We note that assumption X1, along with the

assumption that b is divisible by c, will imply that a consumer will never have positive inventory

below c. The divisibility assumption is made for simplicity of presentation here.

Assumption X2 makes it possible for there to be some values of I for which s(·;ω) does not

change. Together, Assumptions X1 and X2 allow for the possibility that there are values of I for

which exclusion restrictions can hold. Note that the number of packages held at the end of a period

can be written as the following function of inventory: Bi,t+1(j, I, c) = dmax{(Iit + b · j − c)/b, 0}e.8

For the remainder of this section and Section 4, we allow the storage cost function to be non-

8The ceiling function d·e returns the smallest integer that is greater than or equal to its argument
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parametric:

s(B;ω) = ωB. (1)

We assume that the cost of storing 0 packages is 0.

Assumption X3 guarantees that there will exist some levels of inventory where the exclusion

restrictions hold, by ensuring that for most inventory levels consumers face, the number of packages

held will remain unchanged (and hence storage costs will also stay the same). In particular, we

show in Section 4 that in order to uniquely identify β, it is necessary to observe choice probabilities

for at least three levels of inventory where the exclusion restrictions hold.

Given the information above, we can write down the consumer’s flow utility as follows:

u(j, Iit, εijt, p, c;θ) (2)

=

 γ − s(Bi,t+1(j, I, c);ω)− α · p · j + εijt if Iit + b · j ≥ c

−ν − α · p · j + εijt otherwise
,

where θ = (α, β, γ, ν,ω) is a vector of the consumer utility coefficients and the discount factor, α

is the price coefficient, and εijt is a choice-specific error. γ and ν cannot be separately identified,

and hence, we normalize γ = 0.9 Denoting the vector of choice-specific errors as εit, the consumer’s

Bellman equation can be written as follows:

V (Iit) = Eεit max
j∈{0,1}

{u(j, Iit, εijt, p, c;θ) + βV (Ii,t+1)}. (3)

Before turning to identification, we make some comments on our modeling assumptions. First,

in practice one may consider imposing a functional form on storage costs s. One possibility is

that the storage cost could be close to zero up to some limit, and increase dramatically beyond

that. For instance, for many households the laundry room may have reserved space for a few

bottles of detergent. Assumptions X1-X3 will limit the types of product categories where our

identification approach can be applied. In particular, they apply to product categories such as

laundry detergent, cleaning products, or breakfast cereals. In these categories, it is arguable that

individual consumption rates are relatively constant: consistent with X1 and X3, people likely eat

a fixed amount of cereal for breakfast and do laundry at regular intervals, and the consumption

rates in these categories are low relative to the size of a package. Consistent with X2, the storage

cost of the product will correspond to the space taken up by the bottle or package, but not the

amount of the product within the package.

9It can be shown that if we reduce γ by ε > 0 and add ε to ν, the difference in choice-specific utility remains

unchanged at all inventory states.
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Assumption X1 is likely to be violated for product categories such as snacks or sweets where the

temptation to consume may rise with larger inventory stocks (e.g., Sun (2005), Chan, Narasimhan,

and Zhang (2008)), and X2 is likely violated for products such as potato chips where the package

size can be shrunk as the product is used up. X3 would likely be violated for product categories

where every time consumption occurs, a package is used up, such as canned tuna or canned soup.

4 Theoretical Identification Proof

In this section, we present a constructive proof that the parameters of the model presented in Section

3 can be uniquely identified from choice data. We make three additional modeling assumptions

below:

Modeling Assumptions

A1 The consumption rate c = 1.

A2 The choice-specific error term, εijt, follows a type-1 extreme value distribution.

A3 Inventory, Iit, is observed to the researcher.

Assumption A1 is a normalization we make for notational simplicity. Assumption A2 is a

standard assumption that is maintained by the previous literature (Fang and Wang (2015), Abbring

and Daljord (2018)), which makes the derivations of choice probabilities simpler. Identification can

still be obtained with a non-logit error that has an increasing CDF and full support on the real line.

We maintain A3 because our constant consumption rate assumption, together with an assumption

on initial inventory, allows us to compute an individual’s inventory at any point in time. In this

section of the paper, we assume the consumption rate is known, and in our empirical application

we estimate the consumption rate outside the model. We provide discussion related to how we

estimate the consumption rate in the empirical application in Section 5.1. We provide an informal

discussion of how identification may be possible if inventory is unobserved to the researcher in

Appendix A.

Below, we define a rank condition, R1, that is necessary for identification of β. In Section 5.3,

we provide evidence that the purchase behavior observed in our data set satisfies R1.

Rank Condition R1

Let P̂ (I) denote the empirical probability of purchase at inventory level I. There exist two

levels of inventory, I and I + 1, where the exclusion restrictions hold and P̂ (I) 6= P̂ (I + 1), and
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log((P̂ (I + 1))− log(1− P̂ (I + 1))− (log(P̂ (I))− log(1− P̂ (I))) + (4)

log(1 + (1− P̂ (I + b+ 1))/P̂ (I + b+ 1))− log(1 + (1− P̂ (I + 1))/P̂ (I + 1))−

log(1 + (1− P̂ (I + b))/P̂ (I + b))− log(1 + (1− P̂ (I))/P̂ (I)) 6= 0.

Theorem 1 Suppose Assumptions A1-A3 (modeling assumptions), X1-X3 (exclusion restrictions)

and R1 (rank condition) hold. Then the parameters of the stockpiling model, α, β, ν, and ω1

through ωM , are uniquely identified.

Proof. Denote P̂ (I) as the observed probability of purchase at inventory level I. Define vj(I;θ)

to be the choice-specific value of buying j packages at inventory level I and the parameter vector

θ = (α, β, ν, ω1, ..., ωM ):

vj(I;θ) = −α · p · 1{j = 1} − ωB(j,I,1) − ν · 1{I + bj = 0}+ βV (max{I + bj − 1, 0}). (5)

Under the logit error assumption, we can write the choice probabilities in terms of choice-specific

values as follows,

∆ log(P̂ (I)) ≡ log(P̂ (I))− log(1− P̂ (I)) = v1(I;θ)− v0(I;θ). (6)

If a consumer can hold up to M packages, then the number of parameters we need to identify is

M + 3: these are the M different values of ωB, the stockout cost ν, the discount factor β, and

the price coefficient α. Below, we show that all the parameters of the model can be expressed in

terms of choice probabilities. We leave out some details on derivations, which are available from

the authors upon request.

Without loss of generality, let us assume that the exclusion restrictions hold for inventory levels

I through I + 2, where I + 2 ≤ b + 1 and I > 1. Additionally, suppose that Rank condition R1

holds at I. It is straightforward to show that the condition that P̂ (I) 6= P̂ (I + 1) in rank condition

R1 implies that β > 0.10 If we define

Φ̂(I) ≡ log

(
1 +

P̂ (I + b)

1− P̂ (I + b)

)
− log

(
1 +

P̂ (I)

1− P̂ (I)

)
,

and ∆v(I) = v1(I;θ) − v0(I;θ), then for β > 0 it can be shown that if the exclusion restrictions

hold for inventory levels I and I + 1, then

10The case of β = 0 is straightforward. If choice probabilities are flat for all inventory levels belonging to the same

package, we can infer that β = 0.
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∆v(I) =
1

β
∆v(I + 1)− Φ̂(I)− 2β − 1

β
(ω2 − ω1)− β − 1

β
αp.

If the above equation holds for three levels of inventory, I through I + 2, it is possible to difference

out the terms (ω2 − ω1) and αp to express β as

β̂ =
∆ log(P̂ (I + 2))−∆ log(P̂ (I + 1))

∆ log(P̂ (I + 1))−∆ log(P̂ (I)) + Φ̂(I + 1)− Φ̂(I)
(7)

for a value of I > 1 such that storage costs do not change over the interval I through I + 2. The

exclusion restrictions assumptions (X1-X3) will guarantee that such an interval can be found, and

rank condition R1 implies that a solution for β exists if the expression in Equation (4) is not 0. The

price coefficient, α, can be derived from the purchase probability when an individual’s inventory

reaches the capacity constraint:

α̂ = −∆ log(P̂ (Mb))

p
.11

Given (β̂, α̂), the stockout cost, ν, and the storage cost for one package, ω1, can be expressed as

the solution to the system of linear equations, β̂b−1−1

1−β̂
2β̂−β̂b−1

1−β̂
β̂b−1

1−β̂
β̂−β̂b+1

1−β̂

 ω̂1

ν̂

 =

 α̂p−∆ log(P̂ (0)) + β̂h0(β̂)

α̂p−∆ log(P̂ (1)) + β̂h1(β̂)

 , (8)

where the terms h0 and h1 are functions of β and choice probabilities, P̂ , for inventory values

between 0 and b:

h0(β̂) =
β̂b−1

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
+

b−2∑
i=0

β̂i ln

(
1 +

P̂ (b− 1− i)
1− P̂ (b− 1− i)

)
− 1

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
,

h1(β̂) =
β̂b

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
+

b−1∑
i=0

β̂i ln

(
1 +

P̂ (b− i)
1− P̂ (b− i)

)
− 1

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
.

Note that the system of equations (8) is derived from the purchase probabilities at inventory levels

of 0 and 1. Higher values of storage costs such as ω2 through ωM can be derived from the choice

probabilities at inventory levels 2, b+ 2, 2b+ 2, and so on. In particular, one can derive ω̂2 as

ω̂2 = −α̂p+ ω̂1 + β̂(V (b+ 1)− V (1))−∆ log(P̂ (2)), (9)

11We note that the identification of α arises from the assumption that when an individual has M packages in

inventory she disposes of the package that is currently being used and sets her inventory level to M · b. In general it

would be preferable to obtain identification of the price coefficient from price variation, rather than an assumption

about how inventory is filled up when a consumer reaches her maximum storage capacity.
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where V (b + 1) and V (1) can be expressed in terms of choice probabilities and the parameters β̂,

α̂, and ω̂1:

V (1) =
−β̂ν̂
1− β̂

+
β̂

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
+ ln

(
1 +

P̂ (1)

1− P̂ (1)

)
,

V (I) = −1− β̂I−1

1− β̂
ω̂1 −

β̂I ν̂

1− β̂
+

β̂I

1− β̂
ln

(
1 +

P̂ (0)

1− P̂ (0)

)
+

I−1∑
i=0

β̂i ln

(
1 +

P̂ (I − i)
1− P̂ (I − i)

)
,

for 2 ≤ I ≤ b+ 1.

Higher values of the storage cost can be derived from the equation

ω̂B = −α̂p+ ω̂B−1 + β̂(V ((B − 1)b+ 1)− V ((B − 2)b+ 1))−∆ log(P̂ ((B − 2)b+ 2)), (10)

where the value function difference V ((B − 1)b + 1) − V ((B − 2)b + 1) is a function of choice

probabilities and parameters that we have already solved for: α̂, β̂, ν̂, ω̂1, ..., ω̂B−1.

The proof above builds on prior work by Ching and Ishihara (2018), who consider a simple

dynamic store choice problem with rewards programs, but is much more involved than theirs.

They are able to take advantage of the feature that the value of state variables (rewards points

at stores) remain unchanged when one chooses the outside option. This feature allows them to

significantly simplify the proof, but it is not available in our model. Rossi (2018) applies the

identification results in Ching and Ishihara (2018) to estimate the consumer discount factor using

data from a retail gasoline reward program.

4.1 Discussion of the Intuition Behind Identification

In this section, we provide some additional comments on equation (7) in Theorem 1, which defines

β. A theoretical contribution of our research is to show that it is possible to uniquely identify β

from choice data in the stockpiling model using exclusion restrictions. This is important because

Abbring and Daljord (2018) have recently shown that even if one imposes the minimal exclusion

restrictions proposed by Fang and Wang (2015), β is generally not point-identified. In our case, in

order to express β only in terms of choice probabilities, we must solve two moment conditions,

∆ log(P̂ (I + 1))−∆ log(P̂ (I)) = β(V (I + b)− V (I)− (V (I + b− 1)− V (I − 1))) (11)

∆ log(P̂ (I + 2))−∆ log(P̂ (I + 1)) = β(V (I + b+ 1)− V (I + 1)− (V (I + b)− V (I))), (12)

12



where the exclusion restrictions hold for I, I + 1, and I + 2. We emphasize that the value function

differences such as V (I+b)−V (I)−(V (I+b−1)−V (I−1)) are functions of β and choice probabilities,

in addition to inventory. We have suppressed the additional arguments of V for simplicity of

presentation. In the standard formulation of the exclusion restrictions, one would invert one of the

above equations to obtain β. To illustrate how an identification failure can occur with only a single

moment restriction, in Figure 1 we plot the right hand side of equation (11) using a solid line and

equation (12) using a dotted line, for I = 3. The left hand sides of these two equations are data that

can be estimated by the researcher. Suppose that the researcher were to only use equation (11) for

identification, and the left hand side was ∆ log(P̂ (4))−∆ log(P̂ (3)) = −0.14. There are two possible

values of β that are solutions to equation (11), at 0.79 and 0.95. However, if the researcher were to

also exploit equation (12), and the left side of this equation were ∆ log(P̂ (5))−∆ log(P̂ (4)) = −0.10,

then only β = 0.79 would be a solution to both moment equations.

We note that the proof of identification describes the minimum number of moments one would

need to identify the discount factor, as well as the other model parameters. In practice, the number

of moments available to the researcher would likely be much larger. In many product categories,

it may take consumers many periods to use up a package, meaning that the exclusion restrictions

should hold for many values of inventory. These additional moments will improve the precision of

the model parameter estimates.
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∆log(P̂(4)) − ∆log(P̂(3))= −0.14

∆logP̂(5)) − ∆logP̂(4))= −0.1

β = 0.79 β = 0.95

Figure 1: Plots of the right hand side of equations (11) and (12), β(V (I + b)− V (I)− (V (I + b−

1)−V (I−1)), at I = 3, and possible solutions for β. The error term is logit, and parameter values

are ν = 0.33, α = 1, M = 3, p = 3.31, b = 8.

13



The formula for β derived in equation (7) has an intuitive interpretation: It suggests that β is an

increasing function of the ratio of how much purchase probabilities decrease with inventory at high

levels of inventory, as compared to low levels of inventory. To support this interpretation, in the left

panel of Figure 2, we plot the theoretical purchase probabilities as a function of inventory and β

for the model parameterization used to construct Figure 1. The purchase probability curve flattens

out as inventory increases because the disutility of a future stockout is discounted more for higher

inventory values. This can be seen in the right panel of Figure 2, which plots the expected future

benefit of a purchase as a function of inventory - this benefit is the value function from making a

purchase, minus the value function from not purchasing, and decreases in inventory because the

disutility of stocking out looms larger when inventory is lower. For a relatively myopic individual,

this disutility will not become apparent until inventory levels are low, and will be significantly

discounted at high levels of inventory. As a result, the purchase probability curve flattens out

more quickly for a more myopic individual. For a forward-looking individual, the disutility from

a future stockout will matter even at higher levels of inventory, resulting in less curvature of the

purchase probability function. Lower curvature of the purchase probability function will bring the

numerators and denominators of equation (7) closer together, producing an estimate of β that is

closer to 1.
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Figure 2: Theoretical purchase probability (left panel), and expected future payoff from purchase,

β [V (I ′1(I))− V (I ′0(I))] (right panel), as a function of I and β, for storage costs of zero. The error

term is logit, and parameter values ν = 0.4, M = 3, and p = 3.31. Note that I ′1(I) ≡ I − 1 + b

is an individual’s next period inventory if a purchase is made, and I ′0(I) ≡ max{I − 1, 0} is future

inventory if no purchase occurs.
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5 Empirical Application

5.1 Data and Sample Construction

The empirical contributions of our work are twofold: First, we estimate consumer discount fac-

tors, along with other structural parameters, for a frequently purchased consumer packaged good.

Second, we show that estimating the discount factor affects managerially relevant counterfactuals.

This is an important question because past structural research on storable goods purchases has

either assumed that individuals are myopic, or that they are very forward-looking. It is not known

whether actual discount factors may take intermediate values between 0 and 1. To address this

question, we estimate a stockpiling model using individual level IRI data in the laundry detergent

category (Bronnenberg, Kruger, and Mela 2008). An observation in our data is a household-week

pair, and the data records purchases and shopping trips between the years 2001 through 2007,

along with store-level prices. We create our estimation panel by combining IRI’s purchase panel,

household trip panel, and store price panel. The final 3 years of the data are used to estimate

the model parameters (our model likelihood is constructed for these years), while the first 4 are

used to construct initial inventories. To keep the choice set manageable, we restrict the sample to

households who only purchase the top 19 brands and the top 5 sizes (50, 80, 100, 128, and 200 oz)

by purchase share. If a household purchases multiple bottles within a shopping trip, we drop the

household if the trip records that more than 5 bottles, or different products were purchased (these

events occur very infrequently in the overall sample). We also restrict the sample to individuals who

make at least 5 purchases between 2005 and 2007, and for whom the maximum number of weeks

between purchases is smaller than 40 weeks. We do this to avoid the possibility that purchases are

missing for households who do not appear to purchase for long periods of time. Our sample used

for estimation contains 312 households.

After applying the exclusions described above, we compute a household level consumption rate

by computing the sum of total quantity over the window for which a household is observed, and

dividing by total observed weeks. We then compute inventory for each household and week of the

estimation sample by assuming inventory is zero in the first week of 2001, and calculating inventory

forward using the imputed consumption rates.12 The estimation sample for the structural model

corresponds to the final 3 years of data; our approach to computing initial inventory in the esti-

12The way we calibrate household level consumption rates and inventories is similar to Ching, Erdem, and Keane

(2019). Ching, Erdem, and Keane (2019) go a step further, by taking into account the quality differences across brands,

and introducing a composite measure of inventory. Their approach is particularly useful for handling households who

buy multiple brands regularly.
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mation sample, which makes use of the prior 4 years of data, follows the same procedure as the

earlier literature on stockpiling (Erdem, Imai, and Keane (2003), Hendel and Nevo (2006)).13 As

long as individuals do not stock out for long periods of time, which we believe is reasonable for

laundry detergent, then our estimated consumption rates and imputed inventory measure should

be accurate for the estimation sample. Details on the consumption rate calculation, as well as addi-

tional support for the reasonableness of our approach, are presented in Online Appendix B. There,

we document that (i) our measure of imputed inventory is sensible, as it suggests that an average

household holds about three bottles of detergent; (ii) decreases in inventory are highly correlated

with purchase, especially if inventory is low; (iii) consumption rates are positively correlated with

demographics such as household size and pet ownership; and (iv) households are not predicted to

stock out very often.

In the final sample, the average number of weeks between purchases is 9.9, and the average

probability of a purchase occurring is about 10%. 77% of purchases are of a single bottle, and the

most popular size is the 100 oz bottle (71% of purchases), followed by the 128 oz bottle (14% of

purchases), the 200 oz bottle (8.8% of purchases), and then the 50 and 80 oz sizes (less than 5%

of purchases each). The first two columns of Table 1 show the purchase shares (the number of

bottles purchased of a particular brand divided by the total number of bottles purchased in the

sample) as well as average prices (in cents per ounce) for each brand purchased by households in

the sample. Prices vary significantly across brands, but also within each brand-size combination.

In the last five columns of Table 1, we show the average within-household coefficients of variation

of price for all available brand-size combinations. For most products, the standard deviation of

prices that are observed by the household are about 15 to 20 percent of the average price, implying

that households observe a substantial amount of price variation for each product from trip to trip.

There is also a significant amount of time series price variation within a store. To show this, for

each store and product in the data, we calculated the average regular store price, the average deal

price, and the fraction of store-week observations where the product is on deal. When a product is

put on sale, the deal price is typically around 25 percent below the regular price, and deals typically

happen in 20 to 30 percent of weeks. If households are forward-looking, they will have an incentive

13We note that Erdem, Imai, and Keane (2003) and Hendel and Nevo (2006) assume that consumption rates may

vary stochastically over time, which will imply A3 cannot be maintained. They deal with unobserved inventory

by integrating out unobserved consumption using simulation, given the assumption that initial inventories are zero.

In our empirical application, we do not model unobserved consumption shocks, because our numerical analysis in

Appendix A suggests that the distribution of consumption shocks was difficult to separately identify from stockout

costs. Additionally, our assumption of observed inventories simplifies computation of the empirical model because

we do not have to simulate unobserved consumption.
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Table 1: Brand Level Purchase Shares, Prices, and Price Variation

Purchase Average Price Coefficient of Variation of Price (%)

Brand Share (Cents Per Ounce) 100 oz 128 oz 200 oz 50 oz 80 oz

Tide 23.8 8.61 13.81 - 14.65 13.9 13.03

Xtra 8.9 2.48 - 10.91 7.51 - -

Purex 9.2 4.81 17.71 15.4 11.06 10.43 -

All 7.9 5.64 12.8 - 10.64 10.92 16.58

Arm & Hammer 8.8 4.71 16.94 - 11.45 - -

Era 5.9 5.25 17.1 - 4.8 2.46 -

Dynamo 11.7 4.58 21.1 - 14.83 - -

Wisk 10.3 6.31 14.3 - 15.86 - 17.42

Private Label 3.8 3.51 13.89 8.76 - 5.26 -

Cheer 2.1 7.12 - - - - 7.76

Fab 1.4 6.08 11.73 - - 18.82 -

Yes 2.1 4.51 19.14 - - - -

Ajax Fresh 0.4 3.19 - 12.3 - - -

Gain 0.5 6.16 14.06 - 7.24 - -

Ajax 0.4 3.14 - 11.8 - - -

Trend 0.4 2.22 - 2.14 - - -

Sun 0.8 4.33 24.52 - - - -

Solo 1.3 3.88 21.79 - - - -

Ivory Snow 0.3 10.41 - - - 6.71 -

Notes: Purchase shares show the number of packages purchase of each brand in our trip-level data of 36,101 trips.

Prices are computed across all household trips. For each brand-size that exists in the sample, we compute the

coefficient of variation (standard deviation divided by mean) across household trips.

to stockpile in the face of the significant amount of price variation observed in the data.

5.2 Empirical Model and Estimation

The empirical model builds on the stylized model presented in Section 3 in a number of important

ways. First, we allow for unobserved heterogeneity across consumers in many of the model pref-

erence parameters, including the discount factor. Second, we extend the consumer’s choice set to

include purchases of different brands and sizes, and allow consumers to purchase multiple bottles

in a purchase occasion. Third, we model consumer expectations about the future price process and

likelihood of future store visits, in addition to expectations about future inventory. Since our model
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incorporates unobserved parameter heterogeneity, we use the modified Bayesian MCMC algorithm

proposed by Imai, Jain, and Ching (2009) to estimate the model.14

We make one simplification of the empirical model with respect to the stylized model, which

relates to the formulation of the storage cost function. There are two significant computational

complications that arise in situations where individuals can choose among multiple package sizes: in

our application we allow for five. The first problem is that one would need to track both the number

of bottles of each size held in inventory, and model the order in which different sizes of bottles

are consumed. The second problem is that if one attempted to model the storage cost function

nonparametrically, the number of parameters one would have to estimate would be extremely

large, leading to concerns about overparameterization. In this paper, we deal with these issues

by estimating two different empirical model specifications. In our preferred model specification,

presented below, we assume storage costs are zero. With this assumption, the inventory composition

and the order in which bottles are consumed does not need to be modeled. We present an alternative

specification in Online Appendix B, which allows for storage costs to increase with inventory.

In order to keep that specification computationally tractable, we had to make a few additional

simplifying assumptions related to inventory holdings. The estimated storage cost parameters from

that specification suggested that storage costs are close to zero for the majority of individuals; as

a result, we decide to focus on the zero storage cost specification here.

The stylized model abstracts away from a consumer’s brand choice, which can substantially

increase the size of the state space, since consumers potentially have to track the holding of each

brand in inventory as well as the prices of all brand-size combinations. To deal with these two issues,

in our empirical model we follow Hendel and Nevo (2006) and make two simplifying assumptions:

(i) consumers only care about brand differentiation at the time of purchase, and (ii) a generalized

form of Inclusive Value Sufficiency proposed by Osborne (2018a), which extends Hendel and Nevo

(2006), and assumes that consumers track quality-weighted averages of prices at the size level,

rather than all prices at the brand-size level. Assumption (i) means that all utility from consuming

a particular brand arises when a consumer makes a purchase, and at the time of consumption only

the overall level of inventory matters.15 This implies that the composition of the inventory (in

terms of brands) does not matter, and it drastically reduces the size of the state space.

14Hendel and Nevo (2006) propose a three step method for estimating stockpiling models that uses maximum

likelihood, but their approach cannot allow for unobserved heterogeneity across individuals. Ching, Imai, Ishihara,

and Jain (2012) provides a practitioner’s guide to the IJC approach.

15Formally, assumption (i) means that the consumption utility, γi, does not depend on the brand purchased (as we

argued earlier, the parameter γi is not identified so we normalize γi = 0).
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We denote assumption (ii) as Generalized Inclusive Value Sufficiency (GIVS), and define it

formally in Online Appendix C, Section C.1. The GIVS assumption has two key features that make

it different from standard Inclusive Value Sufficiency (IVS). First, it extends IVS to incorporate

multiple package purchase by assuming that the flow utility received from a particular brand scales

linearly with the number of packages: The flow utility from purchasing j = 0, ..., J packages of size

x = 1, ..., X and brand k = 1, ...,K is equal to j
J ξikx, where J = 5, X = 5, K = 19, and ξikx is a

product-level taste coefficient. During estimation, one ξikx coefficient is normalized to zero.16

The second key difference between GIVS and IVS relates to the distributional assumption made

on the choice-specific error term. The standard formulation of IVS used in Hendel and Nevo (2006)

relies on the assumption of logit errors, and assumes that consumers track the expected utility (the

inclusive value) across all brands, conditional on choosing a package size. If individuals can choose

to purchase multiple packages, and the error term is standard logit, then the number of packages

chosen, j, enters the inclusive value in a nonlinear way. As a result, the number of inclusive values

in the state space would equal the number of available package sizes, X, multiplied by the number

of packages an individual can purchase, J . Instead of the logit assumption, GIVS assumes that

the choice specific error can be written in the form of a nested logit. The nesting structure has

the choice of bottle size and number of bottles (x and j) in the outer nest, while the inner nest is

the choice of brand, k, for a given bottle size. The inclusive value parameter for the brand choice

nest is set to be j
J ; division by the number of packages an individual can choose, J , is necessary

for the inclusive value parameter to be between 0 and 1, which ensures the density of the error

is well-behaved (Cardell (1997)). The nested logit formulation of the error just described, along

with the assumption that the flow utility scales with j, allows j to be factored out of the expected

brand-specific utility, and as a result the inclusive values can be expressed independently from j.

Hence, when consumers can choose multiple packages, GIVS allows one to track only X inclusive

values, rather than J ·X, which would result from standard IVS.

Under GIVS, the consumer’s flow utility function from buying j > 0 units of size x of brand k

16We note that for the normalized product, the mean flow utility will not scale with j, but the flow utility from the

idiosyncratic error and price disutility will (see Online Appendix C.1). The assumption that utility scales linearly

with quantity purchased may be strong in some cases, especially if individuals purchase many packages at once, as

marginal utility from additional purchases could start to decrease. In our setting, we think this is likely less of an

issue since most people only buy 1 or 2 packages at a time.

19



can be written as:

uit(k, x, j, Iit, εijt, pit, ci;θi) (13)

=


j
J ξikx − αi · pikxt · j + FC · 1{j > 0}+ εikxjt if Iit + b(x)j ≥ ci

j
J ξikx − νi

ci−(Iit+b(x)j)
ci

− αi · pikxt · j + FC · 1{j > 0}+ εikxjt otherwise
,

where the first condition is the case when a consumer has sufficient inventory to cover the consump-

tion need ci, and the second condition is the case when inventory is smaller than the consumption

need; b(x) is the number of ounces in a bottle of size x, FC is a fixed cost of purchase, and
ci−(Iit+b(x)j)

ci
is the proportion of the consumption need that is not met if inventory is smaller than

the consumption rate. We found it necessary to include the FC parameter in order to properly fit

the low frequency of purchase we observe in the data. In the specification of flow utility for the

empirical model, if there is less inventory available than ci, we assume that the individual consumes

whatever inventory is left. We multiply the stockout cost by the proportion of the consumption

need that is not met to keep the model internally consistent.

Denoting C1 as the set of feasible (j, x) combinations and C2(x) as the set of brands which are

available in size x, the GIVS assumption entails that an individual’s expected utility over brands

for choosing j packages of size x can be written as:

j

J
Ωit(x) =

j

J
ln

 ∑
k∈C2(x)

exp (ξikx − J · αi · pikxt)

 .

Details on the above derivation are presented in Osborne (2018a). GIVS assumes that consumers

track only Ωit(x), rather than each individual price pikxt.

One final addition we make to the empirical model is that we allow for the possibility that a

consumer does not visit any store in some weeks, which happens in the data. We assume that store

visits occur exogenously with a probability πi, which we estimate prior to estimating the model.17

Accounting for store visits, the household’s Bellman equation can be written as

17Occasionally, a household may also visit multiple stores in a week without purchasing detergent. Since our

analysis is done at the weekly level, we assume that decision to not purchase is made at the store which the household

most often visits.
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V (Iit,Ωit) = (1− πi)
(
νi
ci − Iit
ci

1{Iit < ci}+ βiEΩi,t+1|Ωit
V (Ii,t+1,Ωi,t+1)

)
(14)

+πi ln

 ∑
(j,x)∈C1

exp

{
j

J
Ωit(x)− νi

ci − (Iit + b(x)j)

ci
1{Iit + b(x)j < ci}

+FC · 1{j > 0}+ βiEΩi,t+1|Ωit
V (Ii,t+1,Ωi,t+1)

})
,

where Ωit is an X-dimensional vector of inclusive values for all package sizes.

Turning to specification details, because we include 19 brands and 5 sizes in our analysis,

we separately estimate brand and size taste coefficients for many brand-size combinations.18 For

some of the larger share brands, such as Tide, we do include taste coefficients that are brand-size

specific, as we can identify those coefficients and allowing additional flexibility improves the model’s

ability to fit purchase shares. We also allow most model parameters to be heterogeneous across the

population. For the purpose of identification, we make the fixed cost of purchase, the brand and

size shifters for 7 smaller share brands and 3 smaller share sizes of popular brands, homogeneous

across the population (there are 39 brand-size combinations in the data). In general, in a random

coefficient model, at least some coefficients must be homogeneous to guarantee identification (Ruud

1996).

The MCMC algorithm of Imai, Jain, and Ching (2009) that we employ for estimation is an

iterative procedure where in each iteration one draws the model parameters from their posterior

distribution, and then updates an estimate of the value function by performing a single iteration on

the Bellman equation. We describe the details of the construction of the inclusive value transition

process in Online Appendix C.1, of how parameters are drawn in Online Appendix C.2, and of the

value function updating in Online Appendix C.3.

5.3 Identification Assumptions and the Data

In this section, we discuss evidence that the assumptions necessary for the proof of identification

in Section 4 are satisfied in our data. First, we note that the exclusion restriction assumptions X1

(exogenous consumption rates) and X2 (discontinuous storage costs) will generally be informed by

theory or institutional knowledge. We believe X1 is behaviorally sensible because bottles of laundry

18To be precise, we assume that ξikx = ξik +ξix for most products. We made this simplification because the number

of purchases for many brand-size combinations was small, which made it difficult to identify unrestricted brand-size

coefficients for these products. We provide exact details on where this restriction is relaxed in the discussion in Online

Appendix D.
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detergent come with guidelines on how much to use when washing a load, and so individuals are

unlikely to gain or lose additional utility by deviating from these guidelines. X2 also applies to our

setting, since liquid laundry detergents are sold in plastic bottles of fixed sizes. Turning to X3 (at

least 3 periods are necessary to use up a package), our implied consumption rates suggest that the

majority of households do at most 4 or 5 loads of laundry per week. The most popular sizes of

detergent contain 32 or 64 loads, and so it will take an average household around 8 weeks to use

up a bottle. The maximum consumption rate in the data is about 13 loads per week, and even for

this consumption rate it will take a household five weeks to use up a 200 ounce bottle of detergent.

Details on consumption rate levels are provided in Online Appendix B.

Identification of the stockpiling model also requires that Rank condition R1 holds. This rank

condition essentially requires that the probability of purchase as a function of inventory becomes

more steeply sloped as inventory decreases. We provide support for this with a reduced-form exercise

where we run a regression of a dummy variable for purchase on a flexible function of inventory. The

function of inventory we use allows the purchase probability to be different depending on whether

inventory is 0, 0 to 50 ounces, 50 to 100 ounces, 100 to 200 ounces, or more than 200 ounces. The

estimated purchase probability increases at an increasing rate as inventory declines, and sharply

increases when inventory hits 0. This pattern is qualitatively consistent with the plots in Figure

2 and consistent with substantial stockout costs (Assumption X1). The exact specification, along

with parameter estimates, are presented in Online Appendix B, Table B.1.

A final comment relates to the identification of unobserved parameter heterogeneity: Our iden-

tification arguments still apply if we only observe data for one individual, provided that the number

of observations is sufficiently large. Here, we estimate our model on 3 years of weekly scanner panel

data. Hence, we allow for heterogeneous parameters in the estimation. To provide more evidence

that the heterogeneity can be identified, we perform an artificial data experiment in Online Ap-

pendix E, where we simulate purchases given our estimated parameters from Section 5.4, and show

our estimation procedure recovers the population distribution of the utility parameters quite well.

5.4 Estimation Results

To obtain parameter estimates, we run our MCMC sampler for 20,000 iterations, and save the final

10,000 draws. The MCMC algorithm appears to converge after about 2,000 to 3,000 draws, so our

cutoff point is conservative. In Table 2, we present estimates of the moments of the population

distribution of the parameters that affect an individual’s dynamic decision: the price coefficient,

stockout cost, discount factor, and fixed cost of purchase. The table presents the 33rd, 50th,

and 66th percentiles as well as the population mean, and shows there is a significant amount of
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Table 2: Dynamic Parameter Estimates

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.29 -0.24 -0.27 -0.21

[-0.31, -0.28] [-0.26, -0.23] [-0.29, -0.26] [-0.22, -0.2]

Stockout Cost 0.29 0.39 0.48 0.5

[0.24, 0.36] [0.31, 0.49] [0.37, 0.66] [0.4, 0.67]

Discount Factor 0.62 0.94 0.71 0.99

[0.14, 0.89] [0.81, 0.98] [0.58, 0.82] [0.98, 1]

Fixed Cost of Purchase - - -1.83 -

[-1.91, -1.77]

Log-likelihood -19585.37

Deviance Information Criterion 40510.98

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median column shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

individual-level heterogeneity in all of the estimated model parameters. Additionally, the magni-

tudes of the parameters indicate that price sensitivities, stockout costs, and fixed cost of purchase

have significant effects on purchase behavior. Estimates of the product-specific taste coefficients

are shown in Table D.6 of Online Appendix D.

Turning to the discount factor, the population average of the weekly discount factor is about

0.71, which is much lower than the value of (1/(1 + 0.05))(1/52) ≈ 0.9995 that one would calibrate

from the annual interest rate of 5%. There is also a significant amount of heterogeneity in discount

factors. The upper tertile of the distribution of discount factors is around 0.99, while the lower

tertile of the distribution of discount factors is 0.62, indicating a substantial number of individuals

are myopic. This heterogeneity can also be seen in Figure 3, where we plot a kernel density of the

average estimated discount factor for the population (for each individual, we compute the average of

the discount factor estimate for all saved draws). The individual estimates suggest there is a mass of

individuals who are forward-looking, and the rest of the population is spread out until the discount

factor is about 0.1 or 0.05. In the specification presented in the main text, we did not interact

the heterogeneous parameters with demographic coefficients, because in artificial data experiments

we found it difficult to precisely recover the coefficients of the demographic interactions. We also

estimated an auxiliary specification where we included demographic interactions, but found that
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the demographic interactions did not significantly affect the discount factor.
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Figure 3: Kernel Density of Individual-Specific Discount Factor Estimates.

Our findings that estimated discount factors are lower than the calibrated benchmark, and

that there is a significant amount of heterogeneity across individuals, are both consistent with

recent work that has estimated discount factors. In the context of cell phone usage, Yao, Mela,

Chiang, and Chen (2012) find that the weekly discount factor is 0.91, and in one of their robustness

exercises they find that the population distribution of discount factors has a standard deviation of

0.26. For Blu-Ray player purchases, Dubé, Hitsch, and Jindal (2014) find average annual discount

factors of about 0.4 (which is around 0.97 after converting to a weekly discount factor), and a

significant amount of heterogeneity across individuals. Moreover, Yang and Ching (2014) document

(in their Appendix B) that Italian consumers’ annual discount factors range from 0.8 to 1 when

considering intertemporal trade-offs of one’s annual income. Taken together, this pattern suggests

that as the stakes involved in a dynamic decision increase, consumers may be willing to spend more

mental resources to plan further ahead, which will be reflected in a higher discount factor. We

should note that a discount factor in the range of our estimated value is consistent with a setting

where consumers plan several weeks ahead when they make their purchase decisions. This seems

reasonable for laundry detergent. In contrast to what the standard calibrated discount factor (i.e.,

a weekly discount factor 0.9995) would imply, it seems implausible that consumers plan years ahead

for laundry detergent purchases.

Earlier research on dynamic discrete choice models has either assumed that individuals are

very forward-looking, or completely myopic. To gauge these alternative assumptions, we estimate

two additional specifications: (i) β = 0.9995 for all households; here we calibrate β using an

annual interest rate of 5%; (ii) a myopic specification where β = 0 for all households. In both

specifications, we estimate all parameters other than β. Estimates of the dynamic parameters

for each of these specifications are shown in Table 3, along with the marginal log-likelihood and
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Deviance Information Criterion (DIC). Both of these models provide a worse fit to the data, in

terms of both the marginal log-likelihood and DIC, relative to the specification where the discount

factor is estimated. In terms of parameter estimates, most are similar across the specifications,

with the exception of the stockout cost. The β = 0.9995 model produces lower estimated stockout

costs: If individuals discount the future at a higher rate, the stockout cost will have a bigger effect

on purchase likelihoods. Consistent with this reasoning, the myopic model produces significantly

higher estimates of stockout costs.

The model specification with estimated discount factors also provides a better fit to many

moments of the data, relative to the two more restricted specifications. In particular, we find that

the main specification provides an improved fit over the β = 0.9995 specification to interpurchase

times, purchase probabilities given inventory levels, and price sensitivity. When compared to the

myopic specification, the main specification produces substantially more accurate predictions of

product level market shares, and does a better job of capturing how purchase probabilities vary

with inventory. More detailed comparisons of model fits are provided in Online Appendix F.

In addition to the model specifications discussed above, we perform a number of additional

estimation exercises to verify that our estimate of low discount factors is robust to changes in the

consumption rate. In particular, we re-estimate the model with consumption rates set to 5%, 15%,

and 25% higher and lower than the estimated rates. For differences of 5%, the estimated model

parameters look very similar to the main specification. There are larger differences in the estimated

parameters for bigger changes to the consumption rates, but this is not surprising because increases

or decreases of 15% or more imply either unrealistically large inventory holdings, or unrealistically

long periods of stocking out. Nonetheless, even in these cases our qualitative findings of low discount

factors is maintained, and the mean estimates almost always lie within the 95% confidence bounds

of the main model. We also note that the model specification with increasing storage costs produces

lower discount factor estimates (with a population average of 0.55). Notably, that version of the

model provides a worse fit to the data, likely due to the additional restrictions related to inventory

bounds and size choice. A full description of these robustness exercises is discussed in Online

Appendix B.

6 Counterfactuals

There is a long history of research in empirical marketing that quantifies the impact of changing the

time series process of promotional prices on product sales (Mela, Jedidi, and Bowman (1998), Jedidi,

Mela, and Gupta (1999), Liu and Balachander (2014), Osborne (2018b)). Correctly forecasting the
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Table 3: Dynamic Parameter Estimates: Alternative Assumptions on The Discount Factor

Discount Factor Fixed at 0.9995 (Interest Rate Calibrated)

Parameter 1st Tertile Median Mean 2nd Tertile

Price Coefficient -0.31 -0.27 -0.29 -0.23

[-0.33, -0.3] [-0.28, -0.26] [-0.3, -0.28] [-0.24, -0.22]

Stockout Cost 0.27 0.33 0.36 0.39

[0.24, 0.3] [0.29, 0.37] [0.32, 0.41] [0.34, 0.45]

Fixed Cost of Purchase - - -1.89 -

[-1.98, -1.81]

Log-likelihood -19768.02

Deviance Information Criterion 40773.41

Discount Factor Fixed at 0 (Myopic)

Price Coefficient -0.28 -0.23 -0.26 -0.2

[-0.29, -0.27] [-0.24, -0.22] [-0.27, -0.25] [-0.21, -0.19]

Stockout Cost 0.74 0.9 1.01 1.09

[0.64, 0.83] [0.8, 0.99] [0.91, 1.1] [0.98, 1.19]

Fixed Cost of Purchase - - -1.77 -

[-1.85, -1.69]

Log-likelihood -19629.16

Deviance Information Criterion 40560.51

Notes: This table shows average moments of the posterior distribution of the population distribution of the

dynamic parameters. Only the mean is shown for parameters that are fixed across the population. For

example, the median column shows the average of the population median of a given parameter, where the

average is taken across MCMC draws. Square brackets show 95% confidence intervals.

impact of such policy changes on product sales is important to retail managers. Previous structural

work has made these forecasts under the assumption that β is set to its calibrated value of 0.9995.

In this section, we will quantify how much bias this standard approach could entail if the true value

of β is different from its calibrated value.

To quantify this bias, we will compute the impact of two counterfactual changes to the price

process on product sales, for the model specification with estimated discount factors, as well as

the specification with β = 0.9995. The first counterfactual price change is to increase the depth of

promotions, and the second is to increase the frequency of promotions. Moreover, because consumer

price expectations may take time to adjust, we will perform the comparison under two different

scenarios: (i) a short-term effect, where price expectations have not adjusted yet, and remain at
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Table 4: Counterfactual Effect of Increased Promotional Depth/Frequency on Quantities and Rev-

enues

Increased Promotional Depth

Estimated Discount Factor β = 0.9995

Counterfactual Quantity Revenue Quantity Revenue

Long-Term 502.72 1018.48 576.95 1183.98

[448, 560] [777.49, 1256.67] [514, 641] [916.38, 1452.15]

Short-Term 507.56 1034.54 599.05 1255.78

[452, 566] [794.98, 1269.93] [532, 669] [972.66, 1542.56]

Increased Promotional Frequency

Estimated Discount Factor β = 0.9995

Counterfactual Quantity Revenue Quantity Revenue

Long-Term 49.34 232.99 55.19 276.34

[-11, 110] [-214.35, 679.05] [-7, 118] [-171.78, 734.91]

Short-Term 49.62 234.77 55.83 279.28

[-11, 111] [-213.24, 681.19] [-7, 119] [-172.65, 735.99]

Notes: This table shows the simulated change in total number of units sold (quantity) and revenues

for the 100 oz bottle of Tide over the 3 year period of the estimation sample. Changes are shown for

each of the counterfactual price processes in the panel headings, compared to simulated choices from

the prices observed in the data. In the row ‘Long-Term’, consumers’ beliefs about the price process

reflect the counterfactual process. In the row ‘Short-Term’, consumers’ beliefs about the price process

correspond to those in the original data, rather than the counterfactual prices. 95% confidence bounds

are shown in brackets.

the actual observed price process; (ii) a long-term effect, where consumer price expectations have

adjusted to the counterfactual process. We compute both short-term and long-term effects because

often times, firms need to evaluate a new price promotion policy soon after its implementation. In

a short time interval, consumer expectations may not have adjusted to the new price process.

We compute counterfactual price changes for the 100 ounce Tide bottle. To increase promotional

depth, we identify all promotional prices for the focal UPC, and then divide the prices by 2. To

increase promotional frequency, our procedure is to first identify deals in the store data using IRI’s

supplied price reduction flag. We double the number of store-upc date observations where a deal is

observed by randomly assigning some non-deal observations to be deals. In particular, if there are

N deal observations in the original price data, we leave alone those N deals, and randomly assign

another N non-deal observations to be deals, so the total number of deals in the counterfactual
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price series is 2N . To construct the price at the new deal observations, we multiply the observed

regular retail price by the average discount observed in that particular store-upc-year. When

we compute short-term counterfactuals, we update the observed price process, but assume that

consumer expectations about future prices do not change, and correspond to those in the original

data. In the long-term counterfactuals, consumer expectations are fully adjusted and correspond

to the counterfactual price process.

The simulated changes in quantities and revenues for 100 oz Tide are shown in Table 4.19 The

top panel shows the changes for the increased depth counterfactual, and the bottom for increased

frequency. The first two columns show the effects when discount factors are estimated. When

promotions are deepened, the main specification suggests that in the long-term the number of

bottles sold increases by 502 units; the short-term effect (shown in the second row) is slightly larger

than the long-term effect. In the short-term, individuals do not realize that deeper promotions

will occur on a regular basis, and stockpile even more in response to the observed deal. The

counterfactual price change does not lead to a large increase in quantity sold for the entire laundry

detergent category - on the order of 100 units. Hence, the increase in Tide’s quantity comes at

the expense of sales for competing products. We note that there are two mechanisms by which

forward-looking behavior can result in consumers switching to Tide. The first is that if Tide

increases its promotional depth, when individuals purchase on sale they will purchase more units

and will be less likely to purchase other brands in the future, due to having higher inventories.

The second effect is driven by price expectations: if a forward-looking individual who is running

out of detergent observes a price promotion on a brand that competes with Tide, she may skip the

promotion and wait for Tide’s promotion, because she knows the Tide promotion will be better.

Increasing promotional frequency will also increase quantity purchased and revenues, although the

confidence bounds of the effect of this counterfactual change contain zero.

The results of this counterfactual analysis shed light on the behavioral mechanism underlying the

effects of promotions identified by Jedidi, Mela, and Gupta (1999). Jedidi, Mela, and Gupta (1999)

find that improved promotions for a brand make it less necessary for a consumer to switch brands,

19We compute counterfactual quantities and revenues given a counterfactual price series by simulating choices at

each parameter draw, allowing us to put confidence bounds around the counterfactuals. The computational burden

of the counterfactual exercise arises from having to compute individual-specific value functions at each parameter

draw. To mitigate this burden, we follow a procedure outlined in Ching, Imai, Ishihara, and Jain (2018), where they

propose that one should iterate through the saved parameter draws from the MCMC sampler. At each saved draw,

we update the value function once at the counterfactual prices given an approximate value function constructed from

saved value functions, and simulate choices. The value functions computed in this way will converge to the true value

functions after the saved draws have converged. We show the counterfactuals for the last 10,000 draws.
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and argue that the behavioral mechanism behind this finding is that forward-looking consumers

will be more likely to skip promotions on competing brands, and will instead wait for a better

promotion on the focal brand. As we describe above, our structural stockpiling model explicitly

models this mechanism.

The second two columns of Table 4 show the counterfactual results when we fix β = 0.9995 and

estimate the rest of the structural parameters. In this standard approach, one would substantially

overpredict the increase in units sold, by 18% in the short-term, and 15% in the long-term. This

overprediction mainly occurs because more forward-looking consumers are also more responsive

to the improved price process. The extent of bias in the forecasted quantity sold is larger in the

short-term. This is because before consumers adjust their price expectation, they think a deep

discount is highly unlikely. Therefore, in the short-term, consumers with higher values of β will

have a stronger incentive to take advantage of a better discount and stockpile more. The model

with β = 0.9995 also overpredicts the effectiveness of increased promotional frequency, but by a

smaller amount (about 10%). Compared the β = 0.9995 specification, in the specification where

the discount factor is estimated, the differences between the predicted short-term and long-term

effects are small. In that specification, our estimate of the discount factor is low, which may explain

why expectations have little impact on the counterfactual predictions.

Table 5 further demonstrates how one’s responsiveness to promotional depth varies with the

discount factor. In this table, we present the long-term predicted change in quantity (number of

bottles of 100 oz Tide purchased by a consumer), purchase frequency (overall number of predicted

purchases divided by number of weeks), and revenues (for 100 oz Tide) per consumer, for individuals

whose estimated discount factor is above the median of the individual-specific estimates (first row)

or below the median (second row).20 The results are intuitive. In response to an increase in

promotional depth, quantity purchased and revenue increases significantly, while the change in

purchase frequency is positive but very small. Moreover, individuals with higher discount factors

buy more. The results in Table 5 show that most of the increase in consumer demand documented

in Table 4 is driven by the behavior of forward-looking consumers. These results also provide

additional support for the conjecture of Jedidi, Mela, and Gupta (1999), which relies on forward-

looking behavior.

20In the short-term, we find similar patterns but slightly stronger effects, especially for more forward-looking

consumers.
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Table 5: Response to Increase in Promotional Depth Given Discount Factor Estimate

Change in Tide Purchase Tide

Quantity Frequency Revenues

Discount Factor

Above Median 1.7106 0.0024 2.9849

Discount Factor

Below Median 1.5116 0.0034 1.1879

Notes: The first row of the table shows the average simulated

change in Tide’s quantity (number of 100 oz bottles), purchase

frequency (fraction of weeks where a purchase occurs), and rev-

enues, for individuals whose estimated discount factor is above

the median of the individual-specific values. The second shows

the same predicted changes for individuals whose estimated

discount factors are below the median of the individual-specific

values. The number of observations is 312.

7 Conclusion and Discussion

Consumer stockpiling behavior in packaged goods categories is often cited as an example of a

situation where consumers are forward-looking. However, previous research (most notably, Erdem,

Imai, and Keane (2003), Hendel and Nevo (2006)) has imposed smoothness assumptions on the

storage cost function, assuming it to be continuous in inventory. We emphasize that this seemingly

innocuous simplifying assumption on storage cost rules out exclusion restrictions which naturally

arise from the institutional features of this problem. This is why previous work has assumed that

consumers are homogeneous in their discount factors, and the discount factor is set according to the

prevailing interest rate. By properly modeling storage cost as a step function of inventory (because

storage cost only depends on the number of packages stored), the key state variable of this model,

inventory, provides natural exclusion restrictions that can help identify the parameters of this

model, including the discount factor. Our finding that consumer discount factors are heterogeneous

and much lower than the interest-rate calibrated benchmark of 0.9995 has important implications

for future research. In particular, it suggests that if possible, researchers should estimate, rather

than calibrate discount factors.

The preceding discussion suggests at least two possible avenues for future research. One is that

in order to understand whether our finding related to estimated discount factors generalizes to

other categories, one could identify additional product categories where the discount factor could
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be estimated. The results of this exercise would shed light on the extent to which discount factors

are context-dependent. This research direction could also improve our understanding about what

drives one’s forward-looking behavior. An additional avenue for research stems from the fact that

our proof is for the case of observed inventory, which we feel is a reasonable assumption for the

laundry detergent category. The set of categories where such analysis could be performed could

be broadened if a formal proof of identification could be developed for situations where inventory

is unobserved, due to stochastic consumption shocks or endogenous consumption. In Appendix A,

we provide evidence from numerical analysis of an extension to the model presented in Section 3

that identification may be possible for this case, but leave a formal proof to future research.
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A Appendix: Identification with Unobserved Inventory

Prior empirical work in stockpiling has assumed that consumption needs vary stochastically, and

are unobserved to the researcher (see Erdem, Imai, and Keane (2003) or Hendel and Nevo (2006)),

which implies a failure of Assumption A3. In this section, we provide an informal discussion of

how identification may still be obtained if consumption is exogenous, but stochastic. We note that

Hendel and Nevo (2006) assume endogenous consumption (an individual’s optimal consumption is

a function of inventory); we leave this case to future research.

In the case of observed inventory, the moments that identify the model parameters are the

choice probabilities at different levels of inventory. In the case of unobserved inventory, the analog

to these moments are the choice probabilities given the amount of time elapsed since the last

purchase occurred, which is the purchase hazard. Because constructing the purchase hazard involves

integrating out unobserved consumption shocks and inventories held at the time of the last purchase,

there is no straightforward way to compute choice-specific values from moments and solve for the

model parameters directly. As a result, we discuss intuitively how the properties of the purchase

hazard may help identify the model parameters, based on numerical solutions of an extended version

of the model presented in Section 3. In the extended model, we set M = 3, b = 8, and assume the

consumption need, c, is stochastic, i.i.d. across time and individuals, and takes on the value 1 with

probability πc and 2 with probability 1− πc.

To aid the discussion of identification, we present the simulated purchase hazard for a similar

model parameterization as in Figure 2, but with stochastic consumption rates where c ∈ {1, 2} and

πc = 0.5. To better illustrate the effect of changing model parameters on the purchase hazard,

we lower the stockout cost to 0.25 from 0.4, and the price to 2 from 3.31. When we compute the

purchase hazard, we integrate over unobserved inventory at the time of purchase through simulation,

where inventory is drawn from the steady state distribution of inventory in the population. We

also integrate out consumption shocks that occur after purchase. The plots in Figure 4 show

the purchase probabilities averaged over both unobserved inventories and unobserved consumption

shock draws. It is important to note that the population distribution of inventory at the time of

purchase ranges from 0 to 2 full packages. In particular, some consumers may be very close to

using up one package.

We can provide a straightforward intuitive argument for the identification of β if the researcher

is willing to restrict the storage cost parameters to be zero (i.e., ω1 = ω2 = ω3 = 0). The purchase

hazard for this case is presented in the left plot of Figure 4. Focusing first on the purchase hazard

when β = 0, it can be seen that the purchase probability does not change for the first three periods

after a purchase. In contrast, for forward-looking individuals the purchase hazard increases during
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the first three periods. The intuition behind this difference is that in the first few periods after a

purchase occurs in period 0, flow utility does not change with inventory, and so when β = 0 the

purchase probability does not change; raising the discount factor increases the future value of a

purchase and increases the purchase hazard’s slope during these periods. Hence, if storage costs

are zero, the slope of the purchase hazard in the first few periods provides identifying information

about the discount factor. It is also notable that when β = 0, the purchase hazard is s-shaped, and

raising β smooths out the purchase hazard. Intuitively, a myopic consumer is not willing to trade

off future utility for current utility, so her purchase hazard will start to rise sharply after 4 periods

when individuals start facing stock outs. In particular, individuals who have no inventory at the

time of purchase (period 0), and receive four consecutive draws of c = 2 in a row, will stock out

in period 4, since b = 8. Hence, the purchase probability will start to increase after this point. In

contrast, a forward-looking consumer will be more willing to purchase early, and so the purchase

hazard will be smoother for such a consumer. The extent to which the purchase hazard is s-shaped

will also provide identifying information about β.
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Figure 4: Probability of purchase as a function of the number of periods since the last purchase

occurred (period 0). Parameter values ν = 0.25, πc = 0.5,M = 3, p = 2, and logit error term, for

different values of the discount factor and storage cost.

Turning to the identification of the other model parameters, ν, πc, and α, we also investigated

the impact of changing both ν and πc on the purchase hazard, and found that for low values of

β, these parameters had very similar effects. Decreasing πc will increase the rate at which an

individual runs out, and shift up the purchase hazard in later periods, while having little effect on

it in earlier periods. Increasing ν also shifts up the purchase hazard in later periods, but has little

effect in earlier periods, because increasing this parameter makes stockouts more costly. As a result,
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we suspect these two parameters may be difficult to separately identify. We note that Hendel and

Nevo (2006) normalize the distribution of consumption shocks in their empirical application, likely

as a result of such an identification problem. In practice, researchers may wish to normalize one of

these parameters; the other parameter can then be identified by the level of the purchase hazard

in later periods. Finally, increasing or decreasing α will shift the purchase hazard up and down for

all periods, because α affects the overall purchase probability. In practice, price variation would

help identify α.

We have not found a straightforward argument for the identification of β when the researcher

wishes to estimate the storage cost parameters in addition to β, because increasing one of the ωB

parameters and increasing β can have similar effects on the purchase hazard: Increasing either

parameter will increase both the purchase hazard’s slope in periods soon after purchase, and make

it smoother. To see this, consider the right plot of Figure 4, which shows how the purchase hazard is

affected by changing β when we set the storage cost for three packages to be positive (i.e., ω3 > 0),

but we keep ω1 = ω2 = 0. Comparing the left and right plots, for a given value of β, the purchase

hazard’s slope in the first few periods is higher when ω3 is positive. Increasing the storage cost

will increase the slope of the purchase hazard, even for a myopic individual, because inventory is

unobserved to the researcher at the time of purchase (period 0). Recall that in the left plot, the

increase in purchase hazard at period 4 when β = 0 is driven by individuals with no inventory at

the time of purchase. In the right plot, the initial increase in the purchase hazard is driven by

individuals who have 3 packages in inventory, but are close to using up one of them. Some of these

individuals will use up a package shortly after period 0, leading to a decrease in storage cost from

0.5 to 0, and a corresponding increase in the purchase probability. We also note that when storage

costs are higher, the purchase hazard appears smoother for each level of β.

When inventory is unobserved, the exclusion restrictions can help fulfill a necessary condition

for identification, which is that the number of periods where the purchase hazard is observed must

be greater than the number of parameters being estimated. The exclusion restrictions will limit

the number of storage cost parameters to M , and as long as the purchase hazard can be computed

for at least M + 3 time periods, this necessary condition will be satisfied. Assuming without loss

of generality that πc is normalized, the model parameters to be estimated will be the storage costs,

ω1, ..., ωM , α, β, and ν. A sufficient condition for identification of β would be that one could not

completely fit the purchase hazard with the M storage cost parameters, ν, and α. The variation

in the purchase hazard that is not explained by storage costs, ν, and α will inform the size of the

discount factor.
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