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Abstract

In recent years, there has been significant interest in understanding users’ online
content consumption patterns. But, the unstructured, high-dimensional, and dy-
namic nature of such data makes extracting valuable insights challenging. Here we
propose a model that combines the simplicity of matrix factorization with the flex-
ibility of neural networks to efficiently extract nonlinear patterns from massive text
data collections relevant to consumers’ online consumption patterns. Our model
decomposes a user’s content consumption journey into nonlinear user and content
factors that are used to model their dynamic interests. This natural decomposition
allows us to summarize each user’s content consumption journey with a dynamic
probabilistic weighting over a set of underlying content attributes. The model is fast
to estimate, easy to interpret and can harness external data sources as an empirical
prior. These advantages make our method well suited to the challenges posed by
modern datasets. We use our model to understand the dynamic news consumption
interests of Boston Globe readers over five years. Thorough qualitative studies,
including a crowdsourced evaluation, highlight our model’s ability to accurately
identify nuanced and coherent consumption patterns. These results are supported
by our model’s superior and robust predictive performance over several competitive
baseline methods.

Keywords: Machine Learning; Deep Learning; Natural Language Processing;
Digital Marketing; User Profiling.
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1 Introduction

The advent of the Internet and digitization of consumer activity has provided a golden
opportunity for companies to gather more information about customers. Digital platforms
can use the abundant clickstream data collected from consumers for a variety of purposes.
For instance, they can track how consumers interact with their website and accordingly
make adjustments to improve the user experience to maintain a sustained level of user
engagement. They can also use consumer data to make product recommendations (Bo-
dapati, 2008), assess the churn probability and customer lifetime value (Moe, 2003; Moe
and Fader, 2004), generate dynamic personalizations (Hauser et al., 2009; Urban et al.,
2013), offer customizations (Ansari and Mela, 2003), target prices (Dubé and Misra, 2017),
target advertisements (Goldfarb and Tucker, 2011; Perlich et al., 2014), and personalize
search results (Yoganarasimhan, 2016). Beyond just its business value (Trusov et al.,
2016; Martens et al., 2016), consumer data can also be leveraged for public policy ends.
The digital trails left by consumers on social media websites like Twitter can be used
to gain insights into their psychological and physical well-being (Schwartz et al., 2013;
Sinnenberg et al., 2017).

It should come as no surprise that consumer information is increasingly viewed as an
essential strategic asset for companies. Despite or perhaps because of the exponential
growth in data generation and collection over the past decade, generating actionable in-
sights from this data faces three main challenges. First, online clickstreams and other
user-generated content (UGC) often contains significant unstructured information which
lives in very sparse and high-dimensional spaces.1 This makes statistical inference us-
ing traditional methods hard. Standard statistical inference methods typically estimate
a parameter for each dimension and hence are unable to handle such an explosion of
parameters efficiently. Second, the dynamic nature of this data further aggravates the
challenge posed by sparsity owing to the inherent nonstationarity of the data generating
process. However, it is this change in customer interests indicated by the dynamics of
content consumption that is commercially very valuable to model since it may indicate
purchase intent. Third, modeling user content consumption is an inherently different and
more complex problem than the canonical problem of modeling purchase data commonly
encountered in marketing. There is a finite assortment of products or items that cus-
tomers can purchase from, e.g., clothes, books, soap, etc., however, when it comes to
content consumption, users have access to an infinite assortment. For instance, there are
no two online news articles that are the same. So, online content consumption is a domain
where the assortment of products that customers can consume is always increasing, and
there is little incentive to repeat a “purchase.” Hence, a key idea in modeling customers’
content consumption is not to model the actual product, i.e., a specific news article, but

1By unstructured, we mean the kind of data that does not readily fit into a standard tabular format,
e.g., text, image, audio, and video data. The usual way of encoding such data is via a one-hot-encoding.
For example, in the case of text data such an encoding implies representing each word in English with a
sparse vector of size the vocabulary of English (∼ 300K) with all zeros, except a one at the location of
the lexicographically sorted index of that word.
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instead, assume that each product is composed of a set of latent attributes and customers
choose to consume those. For instance, those latent attributes can be news topics such as
sports, politics, business, etc. Despite these challenges, companies have indeed managed
to unlock some of the enormous potentials of textual data. Yet, it is clear that much
remains untapped.

This paper proposes a novel neural matrix factorization framework for modeling dynamic
user interests that addresses the above shortcomings. Our model refrains from directly
modeling the actual content consumed (e.g., the specific news article or blog post) for
the reasons just described but instead assumes that content is composed of a set of
underlying latent attributes or factors. Each user’s content consumption interests are
then derived as a time-varying convex combination of these latent content factors. In a
nutshell, our model factorizes a user’s content consumption journey into a set of common
content factors shared by all the users, and a set of user factors that define a user-specific
dynamic weighting over the content factors.

Since these user and content factors are estimated from the sparse and high-dimensional
content that users consume, we develop a novel neural network architecture that allows
us to efficiently extract nonlinear patterns from the content by learning flexible basis
functions. Neural Networks have enjoyed immense success lately in learning flexible ba-
sis functions that adapt to the underlying data, thus enabling them to model complex
nonlinear patterns in high-dimensional data such as text (Goodfellow et al., 2016). How-
ever, there is a concern regarding their “black-box” nature, which led us to combine
neural networks with matrix factorization. The user and content factors estimated by
our model lend interpretability to our results while still preserving the flexibility of neural
networks.

Our approach is efficient to estimate and easily scales to large data sizes as it does not
involve costly sampling procedures for model inference. It addresses the data sparsity is-
sue by embedding the high-dimensional clickstream data into low-dimensional projections
(also known as embeddings). As we will see later, these embeddings can be estimated
in advance on an external data source; hence they act as an empirical prior and pro-
vide a source of statistical efficiency to our estimation approach. Our model handles
dynamics efficiently by incorporating state dependence via a simple recurrent connection,
which is temporally smoothed to provide robust regularized estimates of users’ evolving
interests. In summary, our model addresses the issues posed by sparsity and dynamics
of large unstructured datasets and further models user interests over the latent content
attributes as opposed to directly modeling the specific content item (news article) that
was consumed.

We use our approach to model the dynamic news consumption interests of Boston Globe
readers over several years. The latent factors estimated by our model are used to predict
the content that users’ will consume in the future as well as to generate interpretable
trajectories of evolving user interests. The superior predictive performance of our model,
coupled with the coherence of our latent factors as validated by crowdsourced user studies,
highlights the potential of our approach as a news categorization, recommendation or
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user-profiling tool.

The rest of the paper is organized as follows. Next, we position our paper within the
broader marketing and machine learning literature. Then, in Section 3, we provide an
overview of the empirical setup of our problem and describe the data. We describe our
model specifications in Section 4. Section 5 describes the results of our model estimation
on content consumption data from Boston Globe. We discuss managerial implications
and provide avenues for future research in Section 6.

2 Related Work

Our work contributes to several strands of literature. First, our work contributes to the
marketing literature on modeling users’ online consumption behavior. One of the earliest
works in this area was by Montgomery et al. (2004), who model the users’ online behavior
by analyzing their path on a major online bookseller’s website. They build a dynamic
multinomial probit model to predict purchase conversions. Hui et al. (2009) considers a
hybrid online-offline setting where they use data collected via RFID trackers to analyze in-
store purchase conversions. This research on path analysis highlights some of the earliest
efforts on using digital traces to predict managerially relevant decisions, but unlike this
paper did not model the actual textual content consumed by the users. More recently,
Trusov et al. (2016) model the textual data consumed by users to generate user profiles
by extending Correlated Topic Models (CTM)—a variant of Latent Dirichlet Allocation
(LDA) (Blei et al., 2003). Their approach extends CTM to incorporate visitation intensity,
heterogeneity, and dynamics and is tailored towards the task of behavioral ad-targeting.
Methodologically, their approach relies on Markov Chain Monte Carlo (MCMC) sampling
for model inference, which makes it slow to estimate, and the results highly sensitive to
parameter initialization. Further, the complexity of their probabilistic model makes it
difficult to incorporate even simple nonlinearities in the dependence between the users’
interests and the text they consume. In contrast to that, our model is not only fast and
efficient to estimate but can also easily incorporate flexible nonlinearities.

Next, our work contributes to the literature on modeling evolution of consumers’ prefer-
ences and their sensitivities to various marketing variables. The most classic work in this
area is by Guadagni and Little (1983), which models the evolution of brand preferences
using exponential smooths of customer-level brand-loyalty parameters. Since then, there
has been much follow-up work on modeling the evolution of brand preferences. More
recently, Dew et al. (2020) have used Gaussian processes to model the dynamics of con-
sumer preferences. There has also been work on modeling nonlinear relationships between
other marketing variables, e.g., advertising and sales (Bruce, 2008), who used particle fil-
ters. Though this body of work is methodologically elegant and flexibly models consumer
heterogeneity—a key construct in marketing—these approaches are computationally in-
efficient and rarely scale to large datasets. Further, these approaches are more tailored
towards modelling physical products unlike our approach which models a digital product
with an ever-increasing assortment—news articles.
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Our work also contributes to the burgeoning literature in marketing using machine learn-
ing methods for studying customer interests using various forms of user-generated con-
tent (UGC). This literature uses multiple types of online feedback provided by users for
instance in the form of consumer reviews, online chats or searches to model their inter-
ests (Netzer et al., 2012; Tirunillai and Tellis, 2014; Büschken and Allenby, 2016; Liu
and Toubia, 2018; Timoshenko and Hauser, 2019). Substantively, this work is closest
to us in terms of modeling the latent structure in text. Our work is, however, different
as it models the consumption of content as opposed to content generation by users via
reviews, chats, or searches. In terms of methods, our work is significantly different from
any of these approaches. We propose a novel neural-network-based matrix factorization
approach to model text data. The neural network component of our model allows us to
incorporate flexible nonlinearities in our model. And, the matrix factorization formulation
adds interpretability to our results akin to some of the probabilistic models mentioned
above.

Finally, our work is also related to several matrix factorization-style models in machine
learning, recommender system, and operations research literature. At a high-level, our
model performs a similar matrix decomposition as done by Latent Semantic Analysis
(LSA) (Deerwester et al., 1990), by Latent Dirichlet Allocation (Blei et al., 2003)2 for
document-term matrices, or by Hierarchical Poisson Factorization (HPF) (Gopalan et al.,
2015) for implicit-feedback data. However, there are several critical differences, as we
discuss in Section 4.4. Our work also extends some of the recent work on dynamic collab-
orative filtering (Koren, 2009; Xiong et al., 2010) to settings in which the user feedback
is not merely limited to clicks or ratings but also includes textual content. One of the re-
cent works in the operations research literature by Farias and Li (2019) also shares some
methodological similarity with our work. It proposes a fast and efficient novel matrix
factorization approach for learning user preferences from online activity trails. However,
it is different in several critical aspects than our method. First, Farias and Li (2019) is
not interested in modeling the dynamics of user preferences, but instead, they model the
traditional consumer funnel of search, browse, and purchase. Second, their approach is
suited for products with a finite assortment such as online shopping, unlike news content
in which the variety of products increases continuously. Finally, and most importantly,
their approach doesn’t model nonlinearities in consumption.

3 Empirical Setting

We model the dynamics of users’ interests in the context of online news. Online news
consumption is a perfect testbed for studying the evolution of user interests as a broad
representative base of internet users consume content online. Further, news consumption
patterns do often change saliently over time. For instance, there has been a substantial
increase in interest in political news after the 2016 USA Presidential election. Similarly,

2LDA is not a matrix factorization model. Still, it can loosely be considered a Bayesian version of
LSA.
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there is an uptick in the consumption of news articles related to basketball or football
during the playoff season. There are several reasons for these changes in news consumption
patterns. They can change owing to customers’ innate individual-level traits, for example,
via self-discovery or learning about a new topic on the Internet. They can also fluctuate
due to broad population-level trends, or they can change due to the variation in the
availability of certain kinds of content in specific periods.

Studying these evolving dominant and niche characterizations of users’ digital personas
over a long time-period could provide insights into their equilibrium interactions with
the news website. Modeling these news readership dynamics is also crucial from the
perspective of content providers since it presents them with a plethora of personalization
opportunities. Tapping into users’ fluctuating tastes could allow content providers to
optimize content placement on their website, for instance, via news categorizations tailored
to a user’s interests. It also opens up opportunities for personalized news stories through
the news website itself or via a newsletter. Content personalization has been shown to
increase reader engagement and customer lifetime value (CLV) and is, therefore, pivotal
from a business standpoint.

Finally, the digital personas estimated from the dynamic readership patterns may be used
for user profiling. User profiles concisely summarize a user’s interests and have numerous
digital marketing applications, including targeting advertisements. The model we propose
in this paper uncovers such user profiles from raw user consumption data and can allow
content providers to personalize content offerings.

3.1 Data

We use more than five-years worth of individual-level clickstream data from Boston Globe
from February 1, 2014 to May 13, 2019 to perform our analysis. Globe3 is one of the 25
largest newspapers by circulation in the USA. Our data contains fine-grained information
about the users’ online reading behavior and contains information such as which articles
they read, how much time they spent reading those articles, and their subscription status.
We further have access to granular demographic data for the visitors, such as area code,
zip-code, device type (mobile or desktop), operating system, and country.

We perform our analysis at the week level since news stories typically last for a few days.
Also, some people only read the news on weekends. So, one might not expect to see
interesting dynamics in content consumption behavior on a day-to-day basis. Moreover,
it is typical for users’ interests to crystallize over time spans longer than a day. We further
restrict our dataset by weeding out infrequent visitors—those who were active five times
or less during our entire observation period. In other words, every user in our dataset
visited the website at least five different times during our entire observation period from
2014-2019.

Our final dataset tracks 500,000 unique visitors over 276 weeks, leading to a total of

3Website: http://www.bostonglobe.com
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Figure 1: Frequency distribution of user activity.

5,610,008 non-zero person-week observations.4 Of the total visitors, about 96.7% were
from the USA. Table 1 shows the summary statistics of our dataset. As can be seen, an
average user made 1.64 visits to the website each week and read 3.83 articles. Further,
an average user was active in 12.40 weeks out of the entire 276 weeks, with a maximum
of 264 and a minimum of 5. The frequency distribution of the number of weeks that the
users were active is shown in Figure 1.

Similar to other e-commerce businesses, Globe also counts each hit to its website as a
unique visit, and a typical visit session lasts for 30 minutes. Hence, a visitor who spent
45 minutes on the site would have two visits attributed to them. Once a visitor clicks on
a given news story, that article is counted as read. Globe’s users fall into two categories:
subscribers and anonymous visitors. Subscribers enjoy unfettered access to news and can
be uniquely identified. Anonymous visitors, on the other hand, are identified via cookies.
If an anonymous visitor accesses the Globe website using two different browsers, then
they would be counted as two unique users in our dataset. We understand that this is
not an ideal scenario, but this is a shortcoming of all cookie-based digital fingerprinting
schemes.

4Our full dataset contained a total of 11,399,021 unique users; however, due to computational/memory
constraints, we randomly subsampled 500,000 users from the entire dataset. We were unable to estimate
any bigger models with the computational resources at our disposal.
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Min. Median Mean Max.

Visits per week 1 1 1.64 626
News articles per week 1 1 3.83 1400
Number of active weeks 5 8 12.40 264

Table 1: Summary statistics of the visitation and reading behavior of the visitors to the
Globe website. Note: Our dataset consists of only those users who were active in at least
5 different weeks during our observation period.

The textual component of our dataset consists of the headlines of the news stories that
the users’ read over the entire observation period. We do not use the actual body of
the news story since users often choose to read an article just based on its headline.
So, the headlines are predictive of users’ content interests by themselves. Second, we
excluded the body of the news stories due to computational issues as the headlines alone
contained more than one hundred million words. We processed the news stories using the
Natural Language Toolkit (NLTK) (Bird, 2006) by following a standard text-processing
pipeline. We performed tokenization, lowercasing, and removal of stop-words. Our final
processed text dataset consists of over one hundred million tokens (135,861,569) of text
with a vocabulary (the number of unique words) of 85228. Figure 2 plots the words in
the news stories consumed by users broken down temporally. As expected, we can see the
major sports and political events dominating consumption, but there is a high degree of
heterogeneity in the nuanced consumption tastes of users.

4 Model

Our model assumes that users have evolving latent content interests, and that they re-
veal a noisy version of these interests via the content they consume. So, we model the
content consumed by users on Globe’s website to infer their dynamic latent propensities
for different types of content. It is accomplished in two steps. First, we assume that
text content is composed of a set of underlying latent attributes that encapsulate gen-
eral aspects of content that garner readers’ interest. Next, each user’s latent interests
are modeled as a nonlinear time-varying weighting over these latent content attributes.
Finally, we connect the users’ interests across time to ensure a smooth evolution of their
interests. These smoothed user-interest trajectories are then used to predict the users’
future content consumption.

We propose a simple matrix factorization approach to decompose a user’s content con-
sumption traces into underlying latent content and user attributes. These user and con-
tent factors estimated by our model, in turn, lend interpretability to our model. Since
these factors are learned from high-dimensional text data, we incorporate nonlinearities
in these estimated factors via a novel neural network architecture to further boost their
predictive ability. Before we delve into the details of our model, we introduce our notation
and then provide an overview of matrix factorization more broadly for modeling content
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Figure 2: Plot showing the prevalence of words in the news stories consumed by users in
each 52 week (1 year) period starting February 2014. Note: Larger font-size indicates
the higher prevalence of those terms in users’ consumption patterns.

interests.

4.1 Notation

Let’s denote the content consumed by user i in time-period t by the column vector xti ∈
Rp×1. The column length p represents the vocabulary size or the number of unique words
in our dataset. In our case, xti denotes the set of words in the headlines read by the
user i at time t. The words are encoded using their one-hot encodings of size p, so if
a word occurs more than once, the corresponding entry of the xti vector contains the
count of that word. Further, let’s assume that there are a total of n users, and τ is the
length of the observation period. Let’s also assume that each user’s unique identity is
represented by an n dimensional indicator vector ai, i.e., a user-specific intercept. So, to
summarize, our input data can be represented as τ slices of a p dimensional column vector
xti concatenated with a n dimensional column vector ai to generate a p + n dimensional
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column vector zti(= [xti; ai]) for each user. Putting it all together and transposing the
resulting matrix, our final input dataset consists of τ slices of n × (p + n) dimensional
matrices {Z}t=1:τ .

4.2 Matrix Factorization for Modeling Users’ Content Inter-
ests

Our input data {Z}t=1:τ can be seen as a type of interaction data where we observe the
interactions of readers with content over time.5 So, a natural generative model for this
data is to assume that each user i is associated with a K dimensional latent column vector
uti, and similarly, each word in the text j is generated from a K dimensional latent column
vector vj. This assumption is similar to the assumption about a word being generated
from a K dimensional topic made by Latent Dirichlet Allocation (LDA) (Blei et al., 2003).
Next, we want to approximate the data matrix using the user and content factors that
we assumed to have generated it as:

ztij ≈ v>j u
t
i (1)

where, > indicates matrix transpose. In the approximation given in Equation 1, only
the user factors uti change over time, whereas the content factors v stay constant. Do-
ing so permits a more parsimonious model; furthermore, there is no concrete reason to
assume that the semantic representation of latent content factors drifts significantly over
the observation period. Finally, the approximation described above can be recast as an
optimization problem using a suitable loss function L(·) as:

(U t, V ) = argmin
Ut,V

L(Zt, V >U t) (2)

Recommender Systems literature has studied this optimization problem extensively (Ko-
ren et al., 2009; Mnih and Salakhutdinov, 2008). In that literature, the input data is
usually the ratings, for instance, on a scale of one to ten, that the users give to items.
Typically, these items have a finite and fixed assortment size, e.g., movies, or music, unlike
news content that has an ever-growing assortment.

The optimization problem (Equation 2) requires a rank K reconstruction of the data
matrix Zt at each time step. We know that for squared-error loss function ‖Zt−V >U t‖2

2,
the best such reconstruction is provided by the top K eigenvectors of Zt (Eckart and
Young, 1936). So, one can solve this optimization problem by computing the singular
value decomposition (SVD) of the data matrix or it can be solved via iterative projection
methods (Seung and Lee, 2001; Mairal et al., 2010). Alternatively, one can formulate an
equivalent probabilistic version of this optimization problem by assuming Gaussian priors
on the user and content factor matrices, and a conditional Gaussian distribution over the

5More precisely, the input data also contains ai, which does not represent an interaction but describes
user features. These user features can, though, also be assumed to be generated from the user factor.
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observed data as (Mnih and Salakhutdinov, 2008) and compute its maximum a posteriori
(MAP) estimate:

p(Zt|U t, V, σ2) =
n∏
i=1

p+n∏
j=1

N (ztij|v>j uti, σ2)

p(U |σ2
u) =

n∏
i=1

N (uti|0, σ2
u)

p(V |σ2
v) =

p+n∏
j=1

N (vj|0, σ2
v)

It turns out that maximizing the log-posterior of the above probabilistic model with the
hyperparameters (i.e. the observation noise variance (σ2) and prior variances (σ2

u, σ
2
v))

kept fixed is equivalent to minimizing the sum-of-squared-errors objective function with
quadratic regularization terms shown in Equation 3:

(U t, V ) = argmin
Ut,V

n∑
i=1

p+n∑
j=1

‖ztij − v>j uti‖2
2 + λU

n∑
i=1

‖uti‖2
2 + λV

p+n∑
j=1

‖vj‖2
2 (3)

where λU = σ2

σ2
U

and λV = σ2

σ2
V

. Much of the recommender systems literature has ap-

proached this problem in this fashion and optimized the biconvex objective function pre-
sented in Equation 3, for instance, using Alternating Least Squares (ALS) (Koren et al.,
2009). This general matrix factorization framework is a bedrock of modern collaborative
filtering approaches to recommendation in academia and industry. A variant of the above
model also won the famous $1 million Netflix Prize.6

In this paper, we extend this basic matrix factorization framework along three main
dimensions to model the users’ dynamic content consumption interests.

1. We incorporate nonlinearities into the user-specific latent factors. These nonlineari-
ties are parameterized by a novel neural network architecture designed for the prob-
lem of modeling dynamics of content consumption. Neural Networks have enjoyed
immense success in the recent past in extracting patterns from high-dimensional
data by learning adaptive basis functions (Goodfellow et al., 2016). Hence, our
neural network allows us to flexibly model the nonlinear dependence between the
high-dimensional textual content and the users’ latent interests.

2. We introduce state-dependence between the latent user factors as uti=f(ut−1
i ). It is

an important element of our model as prior research has shown strong evidence of
habit formation in news consumption. We model this evolution of user tastes also
via our neural network architecture. We connect the current and past estimates
of the latent states of the user interests and then smooth them via exponential
smoothing.

6https://en.wikipedia.org/wiki/Netflix_Prize.

11

https://en.wikipedia.org/wiki/Netflix_Prize


3. We adapt the general matrix factorization (MF) framework presented in Equation 3
to the task of text modeling. MF has been used extensively in generating rec-
ommendations via collaborative filtering based on rating data. News articles are,
however, inherently different than the “items” typically considered in the recom-
mender systems literature as their assortment increases rapidly over time. That
said, our approach does have connections to some of the text-modeling frameworks
which loosely fit into the MF framework. We discuss those connections in detail in
Section 4.4.

In light of these, Equation 3 changes as:

[
{U}t=1:τ , V,Θ

]
= argmin

{U}t=1:τ ,V,Θ

n∑
i=1

p+n∑
j=1

τ∑
t=1

‖ztij − g(v>j u
t
i; Θ)‖2

2 + λU

n∑
i=1

τ∑
t=1

‖uti‖2
2

+λV

p+n∑
j=1

‖vj‖2
2 such that uti = f(ut−1

i ) ∀ t = 1 : τ (4)

where g(·) encodes the neural network parameterized by Θ and f(·) represents the func-
tional form of the state-dependence between the user interests. Next, we describe our
model in detail.

4.3 Neural Network Architecture

Our model is described by Equation 4. We operationalize the nonlinearities and the
state-dependence via a novel neural network architecture. Neural Nets have enjoyed
remarkable success in the last decade in terms of providing state-of-the-art performances in
several tough problems involving high-dimensional datasets such as those arising in speech,
text, images, and video (Murphy, 2012; Goodfellow et al., 2016). Further, Neural Nets
allow us to flexibly incorporate families of nonlinearities, which is harder to accomplish
with splines, kernel methods, or other nonlinear modeling techniques. A comprehensive
introduction to Neural Nets is beyond the scope of this paper. We instead refer the reader
to a popular textbook on this subject by Goodfellow et al. (2016).

The key behind the success of Neural Nets is their ability to learn superior data repre-
sentations, and central to the notion of representation learning is the concept of an em-
bedding (Bengio et al., 2003, 2013). An embedding is essentially a dense low-dimensional
representational summary of a high-dimensional input such as text or an image. In our
case, the embedding ew of a word w is a map ew : Rp → Rd, where p, as defined earlier, is
the high-dimensional one-hot representation of a word and d is the embedding dimension-
ality with p� d. Recall that p is the number of unique words in our data. The one-hot
encoding for a word, then, is just a vector of size p with all zeros and just a one at the
lexicographically sorted index of that word. The embedding dimensionality is the only
new notation that we need to operationalize our model. The various modeling steps are
described below.
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4.3.1 Embedding the Input Data.

As the first step, we embed the high-dimensional input data {xti, ai} into d-dimensional
spaces separately. This low-dimensional projection is performed via matrices Ex and Ea,
respectively. The embedding matrix Ea is a model parameter and is estimated from the
data. On the other hand, the matrix Ex, which embeds the words in the news headline,
is fixed, and hence not estimated from the data. The embedding dimensionality d is a
hyperparameter of our model.

Embeddings capture generic properties of the high-dimensional input that they are pro-
jecting down to a low-dimensional space. So, the word embedding matrix Ex encodes
semantic information about the words that they are projecting down. Words with similar
meanings are, therefore, closer in the embedding space (Mikolov et al., 2013b; Dhillon
et al., 2015). Hence, we can estimate Ex on an independent dataset that is much larger
than the size of our dataset, for instance, the entire Wikipedia, or all the English newswire.
There are several such word embeddings trained on more massive datasets than ours that
are publicly available, e.g., word2vec (Mikolov et al., 2013b,a), GloVe (Pennington et al.,
2014), and Eigenwords (Dhillon et al., 2011, 2012, 2015) among others. Using these
“pretrained” word embeddings serves the purpose of a valuable empirical prior. How-
ever, no such pretrained embeddings are available for ai since the identity of users in our
dataset is unique to our dataset and is not a general property that can be transferred
from other datasets. Hence, the embeddings Ea need to be estimated from the data. The
low-dimensional embedding of a given user i can be simply obtained as Eaai.

In terms of the operationalization of pretrained word embeddings, we obtain the “pre-
trained” Ex matrix as just described and fix it. Hence, these word embeddings are not
estimated along with the rest of the model. The embedding of a specific word w can then
be retrieved as Exw. The content consumed by users, xti, however, consists of more than a
single word, e.g., the headline “GE unveils striking new headquarters for Fort Point.” We
obtain the embeddings for the entire sequence by retrieving the embeddings for individual
words in the headline as Exx

t
i and then averaging them.

4.3.2 Estimating a nonlinear hidden state for each user.

A user’s time-varying consumption and their unique identifier ai contribute to their latent
state `ti that represents their content interests at a given time step. So, once we have
projected the inputs {xti,ai} to a d-dimensional space, we combine them nonlinearly to
get the hidden state of that user at a given time step as shown in Equation 5,

`ti = σ1(W` · [Exxti;Eaai]) (5)

where “;” indicates row-wise concatenation. The nonlinear activation function is denoted
by σ1(·). We choose a Rectified Linear Unit (ReLU) as the nonlinearity for the sake of its
simplicity and due to its lower susceptibility to the vanishing gradient problem (Glorot
et al., 2011). A ReLU activation function is operationalized as: σ1(x) = max(0, x). The
ReLU nonlinearity is parameterized by the matrix W`, which is a model parameter that is
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estimated from the data. The hidden state `ti obtained after the nonlinear transformation
is a d-dimensional column vector.

4.3.3 Incorporating dynamics by combining a user’s current and previous
hidden states.

Since the users’ interests evolve, their final hidden state uti depends not only on the current
inputs but also on the hidden state from the previous time step. We allow uti to depend
nonlinearly on `ti and ut−1

i as:

uti = σ2(Wu`
t
i +Wru

t−1
i ) (6)

The nonlinear transformation is parameterized by the matrices Wu and Wr, both of which
are estimated from the data. The output dimensionality of the user factor uti is K, where
K can be thought of as latent content attributes. The role of K in our model is analogous
to the number of topics in a topic model such as Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). It is a model hyperparameter, and we show the robustness of our results to
different choices of K.

Since the user factor uti captures K different tastes of the user at that time step, it is
natural that they represent probabilities and hence sum-to-one. Hence, we employ the
softmax function as the nonlinearity σ2(·) here. Softmax normalizes real-valued numbers
into probabilities over the K different content interests. It is operationalized as σ2(z)i =

exp(zi)∑K
j=1 exp(zj)

, for i = 1, . . . , K and z = (z1, . . . , zk).

One would expect that a user’s interests evolve gradually and smoothly. For instance, it is
uncharacteristic for a user to be consuming content with emotional valence up to a certain
time and then never engaging it with again. So, one issue with our operationalization
shown in Equation 6 is that it doesn’t ensure that user interest trajectories are smooth,
and it turns out empirically that indeed they are choppy. We borrow an idea from the
time-series modeling and brand choice modeling (Guadagni and Little, 1983) literature
to address this problem. We use exponential smooths of the hidden state vectors to
obtain user factors that evolve smoothly. The degree of smoothing is controlled by the
hyperparameter α. In light of this modification, Equation 6 changes as:

uti = α ·
[
σ2(Wu`

t
i +Wru

t−1
i )
]

+ (1− α) · ut−1
i (7)

4.3.4 Combining the user and content factors.

The user factor uti provides a probability distribution over a user’s interest in the K latent
content attributes at time t.7 The temporal snapshots of the user factor at different times
give us the dynamics of their interests. The content factor, denoted by the matrix V ,

7ut
i may no longer be a probability distribution after performing exponential smoothing. So, we scale

it to make it sum-to-one after the smoothing step.
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represents the words that constitute each of the K content attributes. V projects each of
the K latent content attributes to a d-dimensional space, the same low-dimensional space
as the word embeddings. Hence, one can find the words that constitute each of the K
latent content attributes by finding the nearest neighbors of each row of the V matrix from
the word embedding matrix Ex. Finally, the user and content factors are combined to
provide a noisy rank-K and d-dimensional reconstruction of the original input xti as:

rti = V >uti (8)

The reconstruction vector rti can be seen as a projection of the K-dimensional user factor
uti onto the d-dimensional embedding space.

4.3.5 Minimizing the Loss function.

The content and user latent factors condense the content consumption of all the users
into (1) K content attributes shared by all the users encoded into the matrix V , and (2)
a user’s dynamic weighting over those K content attributes which is embedded into the
vector uti. The vector rti obtained by multiplying V and uti provides a reconstruction of
the input data as it lies in the same d-dimensional space.

We define our loss function to minimize the discrepancy between the input xti and its
reconstruction rti . Our loss function can be seen as similar to the one used by Principal
Component Analysis (PCA) (Murphy, 2012) or autoencoders (Goodfellow et al., 2016) as
these methods also minimize reconstruction error. Trivially, our model can be seen as an
encoder-decoder architecture also, where uti encodes the inputs into a fixed-length vector,
and the decoder then decodes it into some destination format, e.g., a translated sentence
in a new language (Bahdanau et al., 2014). However, the crucial difference is that in our
case, the source and destination are the same as we’re reconstructing the input itself at
each time step. Hence, our model is a recurrent autoencoder.

We optimize a squared-error loss function for the sake of simplicity and due to some recent
results showing its superior performance on various text, image, and speech tasks (Hui
and Belkin, 2020). The optimization problem is shown in Equation 9. A key observation
that can be made is that fixing the word embeddings Ex and making them non-trainable
is important for making our model work.

[{U}t=1:τ , V ] = argmin
Ut=1:τ ,V

n∑
i=1

τ∑
t=1

‖Exxti − rti‖2
2 (9)

To summarize, the various details of our model are shown in Figure 3.
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Figure 3: Neural Net architecture for modeling dynamic user interests.
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4.4 Connection to Other Machine Learning Models

Our model essentially estimates a dynamic nonlinear low-rank approximation of the input
content consumed by users. In the process of doing so, it uncovers latent content attributes
as well as each user’s evolving tastes over those content attributes.

Our approach bears connections to several machine learning and natural language process-
ing models that estimate similar low-rank projections for text data. One of the oldest such
methods is Latent Semantic Analysis (LSA) (Deerwester et al., 1990). It approximates a
document-term matrix, that is, a matrix containing counts of words in each document,
with low-rank document and term factor matrices. These estimated factors can then be
used, for instance, for information retrieval by computing the similarity between differ-
ent documents. Our approach is also related to Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), a popular Bayesian generative model of text. The β and θ topic-word and
document-topic probability matrices that LDA estimates can be seen as analogous to our
V and Ut matrices respectively. A recently proposed probabilistic model, Hierarchical
Poisson Factorization (HPF) (Gopalan et al., 2015), also shares some similarities with
our model. It also estimates low-dimensional user preference and item attribute factors,
though, for modeling implicit feedback data such as movie ratings.

All these models share similarities with our proposed approach. They were proposed
in a similar spirit as our model—to uncover latent low-dimensional structure from high-
dimensional text data. However, our approach is different than these methods in modeling,
(1) nonlinearities via a novel neural net architecture, (2) dynamics, and (3) incorporating
data-driven empirical priors via “externally estimated” word embeddings. That said,
there are a few probabilistic text models that can model dynamics also, e.g., Blei and
Lafferty (2006), Koren (2009), and Charlin et al. (2015). However, their methodological
approach is significantly different than ours.

4.5 Model Estimation & Optimization

Neural Net models are estimated just like other statistical models. An estimate of model
error (or loss) is computed over the entire dataset. Next, we calculate the gradient of the
model parameters with respect to the loss and then move parameters in the direction of
the gradient. Due to the nonlinearities, the likelihood function of neural nets, in general,
is non-convex. Non-convex objective functions may get stuck in a local minimum or
a saddle point and hence can result in getting different parameter estimates based on
different parameter initialization. Therefore, one needs to be careful in the optimization
of neural network parameters.

The PyTorch deep learning library was used to estimate our model (Paszke et al., 2019).
We used Adam to optimize our model parameters (Kingma and Ba, 2014), and the learning
rate was set at 0.001. The training was performed for 30 epochs when the convergence
criteria were met. The model hyperparameters K and α were selected according to the
results on a validation set. The values that were finally selected were K = 30 and α = 0.5.
The word embedding matrix Ex was initialized with pretrained GloVe embeddings. We
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pretrained the GloVe embeddings (dimensionality d = 300) on the Globe dataset.8 The
attribute embeddings Ea as well as other trainable model parameters were all initialized
uniformly at random, as is standard practice. The model estimation was performed on
a Nvidia RTX 2080 Ti GPU server with 512 GB of RAM. The model estimation took
around 30 hours to converge. Our model has recurrent parts due to temporal dependence
between the hidden states. That contributed to the slow model training as it is hard to
parallelize recurrent computations.

5 Results

This section showcases the empirical performance of our approach in capturing the nuances
of users’ evolving content consumption tastes. We divide our results into four parts.
First, we visually present the trajectories of users’ interests U t as well as the latent
content attributes V estimated by our model. Then, we perform a crowdsourced study to
assess the coherence of the content attributes determined by our model. Next, we turn to
quantitative evaluations that highlight the predictive power of the representations learned
by our model. Finally, we test the robustness of our findings in several ways, including
performing ablation studies to uncover the relative contribution of different aspects of our
model.

5.1 Visualizing Trajectories of User Interests

Our model was estimated as described in the previous section. The matrix V uncovers
the latent content attributes. For each of its K rows, we found the words associated with
that content attribute by computing the nearest neighbors of each row of V from the word
embedding matrix Ex. A set of handpicked content attributes and associated words are
shown in Figure 4.

It is easy to see that the content attributes loosely correspond to intuitive categories of
user interests. The topical content of the attributes discovered by our model is more fine-
grained than the typical section-based categorization of content by newspaper websites.
For instance, several topics relate to sports content, e.g., basketball, baseball, and football,
and several that correspond to lifestyles, such as vacation and entertainment. Further,
there are some subtle tastes brought to the forefront by our model, e.g., content on social
issues, crime, or content related to local (Metro Boston) politics. It is worth emphasizing
that the set of content attributes shown in Figure 4 is hand-picked, and like any other
mixed-membership text model, our model also results in some less interpretable clusters.
For example, one such cluster comprises the words {house, white, game, thrones, trump,
visit, harvard}, which superimposes politics and entertainment content attributes. The
full list of all the content attributes is in the Online Appendix.

8We also experimented with the pretrained GloVe embeddings downloaded from http://nlp.

stanford.edu/data/glove.840B.300d.zip. The performance of both the sets of embeddings was com-
parable though the embeddings trained on Globe data were slightly better since we did not need to deal
with the issue of out-of-vocabulary words.
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Figure 4: The constituent words of a select few content attributes. Note: (1) The full list
of all the content attributes is in the Online Appendix, (2) Our model outputs a clustered
collection of words. The actual names of the content attributes were assigned manually
by three research assistants. Whenever there was a conflict, we used the majority label.

As a natural next step, we investigate the evolving tastes of specific segments of users. We
focus on three managerially relevant customer personas.9 Those three customer personas
are:10

• Locals and Ex-pats: These users are mostly interested in local New England
news, e.g., local politics, holidays, or sports.

• Sports Fanatics: As the name suggests these users predominantly consume sports
content.

• Political Junkies: These users mostly consume politics content.

For each of these three personas, we classify the corresponding trajectories also into two
categories based on temporal trends:

• Stable Interests: User interests are stable if the relative ranking of their interests
does not change over the entire observation period.

• Evolving Interests: User interests are assumed to evolve if the relative ranking
of their interests changes over the observation period. Further, there are two possi-

9Based on personal communication with Globe.
10It is essential to note that, for instance, locals and ex-pats could also consume sports and political

content, but it is not what they consume predominantly. Predominant user interests are assumed to
account for at least 50% of their interest weights.
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bilities. This change in relative rankings of interests could be persistent, or a user
could have vacillating interests with fluctuating relative rankings.

Figure 5 shows the dynamic interests of sample users with the three personas that were
just described. These users predominantly consumed content on sports, politics, or local
affairs, which can be confirmed from the attribute weights estimated by our model. These
were stable user interests as their ranking did not change during our observation period.
Our definition of stable user interests concerns the ranking of the interest weights as
opposed to the actual weights. For example, the “Political Junkie” sample user shown
in Figure 5 had an increase in politics-related content around the time of the 2016 USA
Presidential election. However, since that user always consumed high amounts of political
content, this increased attention did not impact the rankings of their latent interests,
which stayed steady. Similarly, the “Sports Fanatic” user had a decrease in their interest
in baseball, but they still consumed a high amount of such content relatively. Hence,
though, the actual interest weights could shift over time, but that even might not indicate
a significant departure from the status quo as the relative rankings are stable.

Figure 5: (Stable user interests) The plots show the dynamics of the top-5 interests
(based on weights from the U t matrix) of sample users with the different personas. These
interests are classified as stable as the relative ranking of these interests does not change.
The interests are listed at the top of the figure; the words corresponding to each interest
can be found in Figure 5. The y-axis plots the weighting on various interests based on
the U t matrix.

Along similar lines, Figure 6 shows two users with evolving interests. As opposed to stable
interests, we assume users have evolving interests when there is a change in the ranking
of their interests. This change can further occur in two different ways. There could be a
persistent change in the rankings, which could potentially be due to a permanent change
in the underlying content preferences. The left panel in Figure 6 shows a user with
persistently evolved interests. Starting around January 2017, their interest in politics
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waned, and they started paying more attention to football news.

The user interests could also vacillate, leading to a temporary change in rankings. The
right panel in Figure 6 shows such a user. As can be seen, the sample user’s interest in
vacation-related content waxes and wanes over time, perhaps due to their seasonal interest
in such content or due to a fluctuation in their underlying preferences. Needless to say,
but this distinction between stable and evolving interests is a valuable piece of information
for a marketing analyst who is monitoring this user and wants to intervene.

Figure 6: (Evolving user interests) The plots show the dynamics of the top-5 interests
(based on weights from the U t matrix) of sample users with evolving interests. The
interests are listed at the top of the figure; the words corresponding to each interest can
be found in Figure 5. The y-axis plots the weighting on various interests based on the U t

matrix.

To summarize, our approach uncovers both evident and nuanced trends in user interests.
The classification of interests into stable and evolving captures a critical distinction in the
underlying user preferences and can be leveraged by marketers to tailor their messages to
the user. Depending on the context, evolving user interests could, for instance, indicate
purchase intent, or they might suggest the need for a personalized nudge.11

11The stratification of user interest trajectories into stable and evolving was developed by us to sum-
marize managerially meaningful dynamics of user interests.
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5.2 Crowdsourced Evaluation of Content Attributes

To further solidify the qualitative evidence presented by the trajectories of user interests,
we perform a crowdsourced evaluation. The trajectories that we visualized appear to
capture nuanced user tastes, but lack impartial human assessment. So, we use Amazon
Mechanical Turk (MTurk) to perform a human evaluation of the coherence of the content
attributes estimated by our model.

To assess the efficacy of the content attribute matrix V in capturing coherent and mean-
ingful concepts, we perform the word intrusion task as specified by Chang et al. (2009).
In the word intrusion task, human subjects have to identify the intruder words from the
list of words belonging to a topic or a content attribute in our case. For example, in
the list of words {celtics, bruins, canadiens, rangers, apple, giants}, most people identify
apple as the intruder word since the other words make sense together (they are names of
sports teams).

We follow the evaluation strategy outlined by Chang et al. (2009) firmly. For each content
attribute represented by a row of the V matrix, we choose five words that are closest to it
in terms of cosine-similarity. Next, we choose an intruder word that has a lower similarity
to a given row of the K matrix but has a higher similarity to another row of K. Finally, all
six words are randomly shuffled and presented to human subjects. The human judgments
are evaluated using the model precision metric defined in Equation 10, where k indexes the
content attributes (the row index of V ), and S is the total number of human subjects. The
variable ik,s denotes the intruder word defined by a human subject for a particular content
attribute; wk is the correct intruder word that was used for that content attribute.

Mean Precisionk =
S∑
s=1

1(ik,s = wk)

S
(10)

We collected judgments from five different Amazon Mechanical Turk (MTurk) workers.
We asked each worker to detect the intruder word for each content attribute, that is, a
word intrusion task for each row of K. Since this is a qualitative analysis of the coherence
of the content attributes estimated by our model, we evaluated our model with four
different dimensionalities of the attribute matrix, K = {10, 30, 50, 100}. Mean model
precision will be one if all the five workers can find the correct intruder word and zero if
all of them selected the wrong intruder word. A higher model precision indicates greater
coherence of a content attribute since a higher number of human judges were able to spot
the intruder word easily. The box plot in Figure 7 shows the model precision for our
model for various values of K. As the boxplot suggests, our content attributes generally
exhibit high model precision and hence a high-degree of cohesiveness.
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Figure 7: Crowdsourced Mean Model Precision for different number of attributes.

5.3 Evaluating the Predictive Quality of the Estimated Dynamic
User Interests.

Our model generates trajectories of user interests based on the content they consume. As
we just saw, they are coherent and unravel nuanced user behaviors in content consumption.
Next, we build on those results by showcasing the predictive power of these learned user
representations. The user and content factors estimated by our model together provide
a low dimensional summarization of a user’s content consumption profile. Hence, we use
the d-dimensional reconstruction vector rti(= V >uti) output by our model to assess the
predictive power of the representations learned by our model. In particular, we use rti
estimated till t = τ − a, that is, up till a previous time periods in our observation period
to predict a user’s content consumption in the final τ th time period. The time-period
τ may not be aligned across calendar time for all the users as it is the last time a user
consumed content. Hence, each user has a potentially different value of τ in calendar time.
We chose not to use a subscript τi as that adds further complexity to our notation.

Predicting what a user will read next seems like a cumbersome task from a statistical
modeling perspective as the output is a high-dimensional text vector. There are thousands
of unique news articles that can be read by a user, which makes it a classification problem
with thousands of output classes. Given the nature of news articles, most of these output
classes appear only a few times in the dataset. Hence, we need to simplify this prediction
task into one that can be solved easily.

We construct two empirical tasks to highlight the superior predictive quality of the user
representations learned by our model. At the heart of both these prediction tasks are
the d-dimensional vectors rτ−ai and cτi . Just to recall, rτ−ai is the user factor estimated
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using data from the first τ − a time-periods. Since rτ−ai lies in the same d-dimensional
space as the input, it is also called the reconstruction vector. Whereas, cτi is the object
that we want to predict, that is, the d-dimensional embedding of the content consumed
by the user in the τ th time-period. We generate the embeddings for cτi using the pre-
trained GloVe embeddings via the same procedure as described in Section 4.3.1 for input
embeddings.

The user factor rτ−ai can be represented as a point in a d-dimensional space. If it indeed
captures the subtle patterns in a user’s dynamic interests, then one should expect it to
be proximate to the d-dimensional content embedding cτi . We use this intuition to guide
our evaluation strategy. As part of our first evaluation, we find the nearest neighbor (in
terms of the cosine similarity) of each user’s representation vector rτ−ai from the content
embeddings. The mean precision is computed as the fraction of users for whom the
nearest neighbor was their own content embedding cτi . More precisely, our evaluation
metric is,

Mean Precision =
n∑
i=1

1(NN1(rτ−ai ) = cτi )

n
(11)

where, NN1(·) represents the nearest neighbor function that returns the content embed-
ding that is closest in terms of cosine similarity to the user factor. n is the total number of
users in our evaluation set. This metric is also known as “mean precision at K (MP@K)”
in the information retrieval literature.12 In our case, we only consider one nearest neigh-
bor, so essentially we are calculating “MP@1”. We also evaluated mean precision for
more nearest neighbors, in particular MP@3, MP@5, and MP@10, and the trends in
results were remarkably similar. Though, the actual mean precision was higher as the
retrieval problem becomes easier with an increase in the number of nearest neighbors
considered.

Our second evaluation builds on the first one and captures the proximity of embeddings
on a continuous scale instead of an all-or-nothing nearest neighbor prediction. So, we
compute the real-valued similarity score s(rτ−ai , cτi ) between the d-dimensional user and
content vectors. More precisely, we compute the cosine similarity between the vectors.
Once again, we draw on the ability of high-quality representations to cluster together in
the d-dimensional embedding space.

We split our dataset into two parts—training and validation. The data is shuffled ran-
domly, and the training/validation splits are constructed with 90%/10% of users, re-
spectively. We estimate Equation 9 on the training dataset and then tune the model
hyperparameters K, α on the validation dataset. The details of hyperparameter tuning
are described in the next subsection. Since our evaluation involves computing the near-
est neighbors and similarity of embeddings, which do not have any estimable parameters
of their own, we do not need a separate held-out test set. Hence, we use the training
data itself for the nearest neighbor retrieval and similarity tasks. All our models are

12https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
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estimated on the first τ − a time-periods. We only access the content consumption in
τ th time-period while benchmarking the prediction (or retrieval) accuracy of the learned
representations.

We benchmark the predictive quality of the representations learned by our model by
comparing its performance against several alternatives. Three out of the four options
that we consider broadly fall into the class of “topic models.” At a high level, they posit
a data generating process that assumes the text is generated by several underlying latent
factors called topics. The fourth baseline that we compare against is a weighted average
of the content consumed by a user across different newspaper website sections.

1. Latent Dirichlet Allocation (LDA): LDA is a popular hierarchical Bayesian
model of text generation (Blei et al., 2003), which has been used in several marketing
analytics applications (Büschken and Allenby, 2016; Liu and Toubia, 2018). It
describes a data generating process for collections of text data such as documents
where each document contains a set of words. It assumes that a small number of
latent topics generate each document. And, each word is further created by one of
these topics.

LDA was not proposed for modeling dynamic user interests, which is the problem
that interests us. However, it can be adapted to model user interests by assuming
that the total content consumed by each user {xti}t=1:τ is a document. Then, the
topic-word matrix estimated by LDA β is analogous to our matrix V , and the
document-topic matrix θ is comparable to the matrix U t. For an apples-to-apples
comparison with our approach, we need the equivalent of our d-dimensional user
factor rτ−ai . Once we have that, then we can easily compute the nearest neighbor
and the similarity score.

It is rather straightforward to generate the equivalent of rτ−ai for LDA. We use the β
matrix to find the top 50 words which have the highest posterior probability for each
topic and then extract their pretrained GloVe embeddings. Next these embeddings
are averaged over all the words in a given topic, thereby generating a d-dimensional
vector for each of the K topics. Finally, we multiply these embeddings with the
document-topic matrix θ to output a d-dimensional user factor similar to rτ−ai .

We tried K = {30, 50, 100, 200} for the number of LDA topics and chose the value
that gave the best accuracy on the validation dataset. We got the best performance
at K = 50. We train LDA for 100 iterations with a collapsed Gibbs sampler. To
make as close a comparison as possible, LDA is also trained on the content consumed
by each user in the first τ − a periods only.

2. Dynamic Topic Model (DTM): DTM (Blei and Lafferty, 2006) is the dynamic
version of LDA. It assumes that the topic mixtures per document remain the same
over time, but topics themselves evolve. In comparison to our model, it assumes that
a user’s weighting over the content attributes U is static, but the content attributes
V themselves drift over time.
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We adopt a similar procedure as defined above for LDA to generate a d-dimensional
user factor for DTM. We tried K = {30, 50, 100, 200} for the number of DTM topics
and finally chose K = 30 as it gave the best accuracy on the validation dataset.
The rest of the estimation procedure for DTM exactly mirrors that of LDA.

3. LDA-Gaussian Process Dynamic Heterogeneity (LDA-GPDH): Next, we
compare our approach against LDA-GPDH (Dew et al., 2020), which is a flexible
approach for modeling dynamic heterogeneity using Gaussian Processes. It is pro-
posed for modeling the evolution of product reviews but can be easily adapted to
model dynamic user interests.

Unlike DTM, LDA-GPDH assumes that the topics are static, but the mixture of
topics per document changes over time. A Gaussian Process parameterizes the
fluctuation of a topic from its mean prevalence in a document. So, similar to our
model, LDA-GPDH assumes that a user’s weightings over the different topics evolve,
but the topics themselves remain static. The parameters νd and βid(t) as presented in
Dew et al. (2020), where d indexes the topics and i indexes the products, correspond
to our matrices V and U t respectively. Similar to LDA and DTM, we map the topic-
word probability distribution of LDA-GPDH to d-dimensional GloVe embeddings
and generate a user factor corresponding to our rτ−ai .

The rest of the estimation and evaluation procedure is similar to that of LDA and
DTM. We tried K={15, 30, 50, 100} number of topics and got the best validation
accuracy for K = 15.13

4. Weighted Average of Topical Content: Globe categorizes content on its web-
site into sections, e.g., politics, sports, metro, opinion, business, etc. These content
categorizations are generated manually by the editorial team. So, a natural baseline
for predicting a user’s future content consumption is the weighted average of content
consumed by them in the past. To be more precise, we compute the average GloVe
embeddings of the 50 most frequent words that a user consumed from various sec-
tions and then weight those embeddings by the overall share of content consumed
by the user from each of those sections. We compute these weighted content embed-
dings using content from the first τ − a time periods to generate the equivalent of
rτ−ai . The rest of the estimation and evaluation procedure is the same as for LDA,
DTM, and LDA-GPDH.

Tables 2 and 3 benchmark the performance of various models. The results show the
superior performance of our approach with striking consistency across different time-
horizons of prediction (a=1, 2, 3) for both the nearest neighbor retrieval precision and
cosine similarity evaluation metrics.

A bit unsurprisingly, the baseline model, which uses a weighted average of the existing sec-
tions on the Globe website, performed the worst. It suggests the benefits of a data-driven
categorization of news stories in being predictive of latent user interests. The two dynamic

13LDA-GPDH was estimated using the code provided by Dew et al. (2020) in personal communication.
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models DTM and LDA-GPDH, were the most competitive baselines, though they still per-
formed significantly worse than our model. The two critical dimensions along which our
model differs from these baselines are in modeling nonlinearities via a neural network and
in performing exponential smoothing of the user trajectories. The strong performance
of our model corroborates similar findings by the deep learning community (Goodfel-
low et al., 2016) of the superiority of neural networks in extracting nonlinear patterns
from large datasets. Also, since most users’ trajectories are relatively short (Figure 1),
exponential smoothing improves predictive accuracy by acting as a regularizer.

a = 1 a = 2 a = 3
Method Mean Precision Mean Precision Mean Precision

Weighted Average of Sections 3.8 2.2 1.4
LDA 10.4 7.8 6.4
LDA-GPDH 12.2 10.7 8.7
DTM 14.9 12.6 10.9
Our approach 17.1 15.6 13.2

Table 2: Results on the task of retrieving the nearest neighbor, i.e., MP@1. The models
are estimated on data up till a previous time periods. The prediction is always made on
content consumption in the final τ th period. Note: 1) Mean Precision represents the
fraction of users whose nearest neighbor was retrieved correctly. Please refer to Equa-
tion 11, 2) Precision numbers are multiplied by 100 to standardize them, 3) Table shows
training set accuracy, 4) Model hyperparameters were tuned on the validation dataset.

a = 1 a = 2 a = 3
Method Similarity (µ± σ) Similarity (µ± σ) Similarity (µ± σ)

Weighted Average of Sections 42.9 ± 10.6 40.1 ± 9.4 38.7 ± 9.2
LDA 55.4 ± 5.1 52.9 ± 4.6 50.1 ± 5.4
DTM 64.6 ± 2.1 61.2 ± 2.9 58.6 ± 4.3
LDA-GPDH 62.8 ± 3.0 61.0 ± 2.4 59.9 ± 4.0
Our approach 71.3 ± 3.3 69.4 ± 3.9 67.0 ± 3.6

Table 3: Resuls showing cosine similarity between embeddings of users and the content
they consumed. The models are estimated on data up till a previous time periods. The
prediction is always made on content consumption in the final τ th period. Note: 1)
Similarity represents the cosine similarity a·b

‖a‖‖b‖ , 2) Similarity numbers are multiplied by

100 to standardize them, 3) Table shows training set accuracy, 4) Model hyperparameters
were tuned on the validation dataset.

Our model unpacks users’ complex content consumption patterns by estimating an inter-
pretable dynamic probabilistic weighting over a set of key underlying interests. Further,
the user representations learned by our model embed closer to their future content con-
sumption embedding and hence wield predictive power. Thus, a firm can use our results
to recommend specific news articles or broad content topics to the users. In its simplest
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form, such a recommendation can be made by computing the cosine similarity between the
reconstruction vector rτ−ai and the candidate news stories published on a given day cτi and
then recommending the top few items. Alternatively, one can choose items to recommend
based on the nearest neighbors of the user representations rτ−ai . Such conceptualizations
formed the basis of some of the earliest deployed recommender systems (Sarwar et al.,
2002; Koren et al., 2009). This was partly the reason that we designed our predictive
evaluation based on these metrics.

5.4 Other Important Analyses: Robustness Tests, Ablation Anal-
yses, and Real-World Deployment Challenges

Our model makes several design choices, including the selection of tunable hyperparame-
ters. Further, several essential modeling details are crucial to get right for the successful
deployment of our model. So, as a next step, we test the sensitivity of the model perfor-
mance to these design choices and explain the key engineering details to aid the scalable
deployment of our model. We divide our analysis into three parts.

5.4.1 Robustness Tests

We check the robustness of our model to two different hyperparameter choices. We con-
sider several choices for the number of content attributes K = {10, 30, 50, 100} and the
amount of exponential smoothing α = {0.10, 0.25, 0.50, 0.75, 0.90}. We train our model
on 90% of the data and compute the nearest neighbor accuracy on the validation data
(10%). Finally, the best performing hyperparameters were chosen. The results are shown
in Table 4. As can be seen, averaging over different values of α, the best value of K
was 30, and the best value of α was 0.5 while averaging over different values of K. These
hyperparameter values also provided the best held-out accuracy when used together.

Mean Nearest Neighbor Precision
Hyperparameters α = 0.10 α = 0.25 α = 0.50 α = 0.75 α = 0.90

K=10 12.9 14.1 15.2 15.0 13.6
K=30 12.1 15.8 18.4 16.6 14.4
K=50 11.2 15.3 17.7 15.2 14.1
K=100 13.4 16.2 17.5 16.8 14.5

Table 4: Table showing the impact of hyperparameter choice on the validation set accu-
racy. Note: 1) Mean Precision represents the fraction of users whose nearest neighbor
was predicted correctly. Please refer to Equation 11, 2) Precision numbers are multiplied
by 100 to standardize them.

5.4.2 Ablation Analysis

Next, we perform several ablation analyses by unraveling various components of our
model. Essentially, we “turn off” certain parts of our model and evaluate the predic-
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tive ability of the rest of the model. These ablation studies allow us to quantify the
relative contribution of the multiple design choices in our model.

• The contribution of nonlinearities: Our model incorporates nonlinearities that
are parameterized by a neural network. So, it is natural to benchmark our model’s
performance against a model that does not contain any nonlinearities. Hence, we
take our model as described in Figure 3 and remove all nonlinearities such as the
activation functions σ1, σ2 and the associated parameters {W`, Wu, and Wr}. We
keep everything else the same, including the loss function and gradient-based model
training via the Adam optimizer. This modified model is then used to estimate
the predictive quality of our dynamic user representations via the nearest neighbor
prediction task. Results shown in Table 5 illustrate the contribution of nonlinearities
towards the model performance. As can be seen, a model with no nonlinearities
significantly underperforms the full model.

• The impact of modeling time dynamics: Modeling the time dynamics of users’
content consumption is central to our model. So, an interesting counterfactual to
consider is the case when there is no time dimension in our model. This scenario
can be simulated by assuming that the variable xti (Figure 3) contains the content
consumed by each user over the entire observation period. In our actual model,
however, the variable xti contains only the content consumed during the time-period
t. All other details of our model remain the same as earlier.

Again, we use this model with no time dimension to make nearest neighbor predic-
tion. The resulting accuracy of the model is shown in Table 5. The results show a
significant decrease in accuracy in the absence of modeling time dynamics, thereby
underscoring the importance of modeling the time dimension and the drift of users’
content consumption tastes.

• The impact of exponential smoothing: Finally, we quantify the impact of
exponential smoothing in our model. As described earlier, we perform exponential
smoothing to ensure that the trajectories of users’ interests evolve smoothly over
time. In other words, exponential smoothing can be seen as providing valuable
regularization to our model, which improves its generalization performance. We
remove the exponential smoothing from our model by setting α = 1 in Equation 7.
The accuracy of the resulting model dropped substantially once again, as can be
seen in Table 5.

The various ablation studies paint a coherent picture of the importance of modeling non-
linearities, time dynamics, and performing exponential smoothing on model performance.
Excluding any of these components leads to a substantial decrease in model accuracy.
Among the various model parts, nonlinearities and time dynamics seem to be the most
crucial elements in terms of providing superior model performance.
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Mean Nearest Neighbor Precision
Ablation a=1 a=2 a=3

No nonlinearities 11.7 8.6 6.5
No Time Dynamics 13.1 10.3 8.1
No Exponential Smoothing 15.7 12.9 10.8
Full Model (Table 2) 17.1 15.6 13.2

Table 5: Table showing the relative contribution of various components of our model.
Training set accuracy is reported. The models are estimated on data up till a previous
time periods. Note: 1) Mean Precision represents the fraction of users whose nearest
neighbor was predicted correctly. Please refer to Equation 11, 2) Precision numbers are
multiplied by 100 to standardize them.

5.4.3 Real-World Deployment Challenges: Scalability, Transferrability, and
Cold-Starting New Users

There are several related challenges involved in the real-world deployment of our model.
The key underlying issue is regarding dealing with the arrival of new users. More precisely,
how can we use our estimated model to generate the consumption trajectories uti for new
users? This can be further divided into two parts. Do we have consumption traces xti for
these users, or are they first-time visitors?

• Use Transfer Learning to learn representations for users with consump-
tion traces xti: This challenge arises in two real-world scenarios faced by any digital
marketing analytics firm. First, the model has been estimated on a fixed set of users,
and new users arrive. The firm has access to the content they consumed xti; how-
ever, estimating the model every time there is an influx of new users is impractical.
Can we use an already estimated model to induce the representations for these new
users? The second challenge arises due to computational concerns. The firm has
estimated our model on a small but representative subpopulation of users, so can we
transfer the representations learned by this model to the full population of users?
This scenario is also encountered while estimating the model for generating the re-
sults described in this paper. There are recurrent components in our Neural Net,
which makes it hard to parallelize. Hence, we estimated our model on a random
subsample of 500,000 users, and we would like to scale it to our full user-base.

It turns out that there is a simple and efficient solution to this Transfer Learning
problem. Recall that the key parameters estimated by our model are {U}t=1:τ and
V , as also shown in Equation 9. Of these parameters, the content factors V are
shared by all the users and can be thought of as learning a common “basis” to
represent the content. Hence, as long as the initial user subpopulation used to
estimate the model is representative, we can use the estimated V for new users. So,
for a new user s, we only need to estimate their dynamic weighting over the content
factors, that is, uts. This can be done easily by freezing all the estimated parameters
{W`, Wu, Wr, V , Ex} of our model as shown in Figure 3, except Ea (initialized
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randomly) and then feeding it the consumption traces xts, and a user identifier as.
Once again, we estimate this model using Adam via backpropagation, with the
only estimable parameters being the d-dimensional user embeddings contained in
the matrix Ea. Once the model estimation has finished, we have an estimate of
the new user’s dynamic weighting uts as desired. This trivial estimation can be
performed very fast, unlike the full model training, since we estimate only one set
of parameters while fixing all others. It has the effect of making the optimization
landscape less non-convex than learning all the parameters at once. Hence, we can
transfer the representations learned by our model to new users by incurring only a
small computational cost.

• Cold-starting new users with no consumption traces: Any successful real-
world deployment of the model would also need to cold-start the new users, that is,
learn representations for whom we have no observed content consumption traces. In
this realistic but even more challenging scenario, we can not use Transfer Learning
as described above to estimate new user representations. Instead, the only recourse
in this scenario is to use the observable user demographics, such as zip code, desk-
top/mobile, age, etc., to find the nearest neighbors of the new users from among
the users for whom we have already estimated the model. Finally, the estimated
dynamic weighting for the new users can be a simple average of their neighbors’
weightings, which can be used to generate an initial set of item recommendations.
Note that throughout this paper, we have never used the observable user demo-
graphics before, but any digital marketing company has access to them. And, they
will come in handy in generating cold-start recommendations.

6 Discussion

This paper proposed a neural matrix factorization method to extract nonlinear patterns
from high-dimensional text data. We used it to model the dynamics of users’ content
consumption interests. Our results highlight the superior ability of our model in cap-
turing nuances in dynamic consumption patterns. Each user’s estimated interests open
a window into their evolving tastes and can be used to create data-driven user personas
that are predictive of their future content engagement. These personas or the embeddings
themselves rti can be used, for instance, to build user profiles, to recommend news articles,
or to create personalized news categorizations with a few caveats. In addition to neatly
summarizing user interests, the estimated low-dimensional user profiles also have high
predictive power. Our approach significantly outperforms a host of competitive baseline
methods in predicting future user engagement.

Methodologically our model represents significant advances over existing approaches. The
dynamic matrix factorization formulation of our method allows us to decompose a user’s
news consumption into a set of latent content attributes coupled with that user’s dynamic
weighting over those attributes. Such a natural decomposition of a customer’s journey aids
with the interpretability of our findings. Further, our neural net model combines with this
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simple matrix decomposition to help us model flexible nonlinear dependence between the
high-dimensional textual content and users’ latent interests. Hence, our method provides
the best of both worlds. It combines the benefits of flexible nonlinear neural net modeling
and the simplistic interpretation of matrix factorization. Our approach permits this while
also seamlessly incorporating temporal dependence between user interests. Finally, the
ability to incorporate empirical data-driven priors into our model in the form of pretrained
word embeddings estimated on external data sources provides a significant comparative
advantage to our model.

To the best of our knowledge, this is the first paper to propose a novel neural net ar-
chitecture for a relevant marketing problem. Extracting patterns from high-dimensional
text data is a common problem faced by digital marketers these days. Our paper is also
the first paper to apply matrix factorization style methods to a digital marketing problem
while also highlighting the simplicity of such methods.

6.1 Managerial Implications

Our model provides an end-to-end customer analytics framework that can be used by
marketing managers to profile the users, track the health of their customer-base, and
design suitable interventions for retaining them. To that end, our results have important
managerial implications.

Generating User Profiles: The trajectories of latent user interests estimated by our
model provide a concise summary of their often fluctuating and evolving underlying con-
tent preferences. Since these trajectories provide a dynamic weighting over a set of un-
derlying content attributes, they are also easy to interpret. Further, these user represen-
tations are estimated from fine-granular user interactions with the news content. These
considerations make these representations a perfect candidate for building user profiles. A
user profile summarizes a user’s interests revealed via their behavioral patterns online and
has numerous digital marketing applications, including the targeting of advertisements.
The computational efficiency and ease of estimation of our model, coupled with its ability
to harness highly predictive subtle dynamic cues from large datasets, would make it an
excellent choice for industrial deployment.

Above and beyond the utility of user-profiles in digital marketing applications, marketing
managers can also use the trajectories generated by our model for an initial sniff test to
detect anomalous patterns in individual-level consumption behavior. Any idiosyncratic
deviations could be used to trigger a personalized intervention, for instance.

Content Categorization & Recommendation: Our model estimates two key out-
puts: the evolving user interests {U}t=1:τ , and the underlying content attributes V . Both
of them can be leveraged by digital media firms to improve their content offerings in
a data-driven fashion. The content factor matrix V , which captures the latent content
attributes, can be, for instance, used to categorize content on a news publisher’s website.
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Typically, this categorization of news articles into a set of pre-defined categories or topics,
e.g., sports, politics, business, is done manually by editors. This process could be auto-
mated in a data-driven fashion by using the V matrix to classify news stories into existing
categories and generate new categories, such as the content on social issues or content
high in emotional valence. A firm can also adopt a hybrid approach to news categoriza-
tions and refine the editorial classifications based on our model estimates. Similarly, the
temporally smoothed user factor U t can be used to generate personalized content recom-
mendations. The most straightforward such system can be constructed by finding the
news article embeddings closest in the d-dimensional space to the user embeddings rti and
recommending such stories to the user.

However, there is a caveat that any manager implementing our suggestions needs to con-
sider. There is no random variation in the consumption data, so it is hard to assess users’
responsiveness to any recommendation or categorization performed using our model. The
empirical evaluations in this paper only assess the predictiveness of the representations
learned by our model. Though, in general, predictive power is correlated with the metrics
determining the success of such recommendation or categorization systems.

6.2 External Validity

In this paper, we proposed a neural matrix factorization modeling approach to extract
nonlinear patterns from text data to infer customers’ evolving interests. We apply our
method to model news consumption data from the Boston Globe’s website. As we saw
in Figure 2, Globe’s news coverage does slant towards the geographical area it serves.
However, our model did not make any modeling assumptions specifically tuned to Globe
or news consumption more generally. So, without making any changes, our approach can
be used to model other types of textual data, for instance, various types of user-generated
content, e.g., online reviews, chats, or searches.

Building on this rationale, our method can also be used to model other types of high-
dimensional consumption data. By making a few changes, our approach can be used to
extract nonlinear patterns from image or video data, for instance. The crucial difference
in inferring dynamics user interests from visual data would be in the type of input em-
beddings Ex used. Input embeddings for image or video data would need to exploit the
spatial proximity14 of the input data. Once we have visual embeddings, then, the rest of
the modeling can proceed as currently. One could also imagine using our model to infer
consumers’ dynamic interests based on their purchases of supermarket items—a common
modeling context in marketing. However, it is unclear if modeling nonlinearities in such
contexts will give significant improvements over existing methods such as logit models
since the input data already sits in a low-dimensional space.

This paper models changes in customers’ consumption behavior in online news. In many
other marketing contexts such as retailing or supermarket purchases, this is often equiv-
alent or at least assumed equal to modeling changes in demand-side consumer interests.

14It has been shown that good visual features exhibit spatial proximity (Goodfellow et al., 2016).
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However, in our context, a potent supply-side mechanism exists that is consistent with
observed behavior. It is represented by external factors that change the supply of various
kinds of news stories. In reality, online news consumption behavior is probably driven by
both supply-side and demand-side factors. We do not model the supply-side in this paper
and instead take the news content as exogenously determined each period. The question
of disentangling supply and demand is an important one, but it is beyond the scope of this
paper. The main focus and hence the contribution of this paper is in extracting nonlinear
patterns from high-dimensional text data and modeling the associated habit formation
in content consumption. If indeed a marketing application arises that requires modeling
both supply and demand-side of news consumption, then our model can be used as a
small module to extract nonlinear patterns from high-dimensional data inside a larger
economic model. Modeling user behavior itself is sufficient for many predictive customer
analytics applications.

6.3 Conclusion & Limitations

We are living in the age of an information deluge. Firms are overwhelming customers
with highly intrusive advertisements, emails & coupons since they lack reliable estimates
of customer interests. It is partly due to the companies not being able to efficiently harvest
economically significant signals from the copious swathes of clickstream data and partly
due to their inability to collect relevant data in the first place (Mela and Moorman,
2018). Analytics approaches like ours can help firms efficiently unravel managerially
relevant customer insights from high-dimensional text data. And, hence they possess
the potential to move the firms towards their goal of tapping into customers’ minds and
increasing the relevance of their messages and content offerings.

That said, our framework is not without limitations. First, we model only one kind of
customer digital footprints —news consumption. Future work should model other kinds of
data, e.g., online search history, comments, reviews, and different types of UGC. Further,
it is also a fruitful direction to propose new neural net models for these data to answer
important marketing and customer analytics questions. To the best of our knowledge, the
use of deep learning and neural net models in marketing research is still an under-explored
area of study. The significant breakthroughs made in the last decade in the estimation and
scalability of these families of models make a compelling case to employ them for modeling
customer and firm outcomes from large datasets. Second, future work could go beyond
the bag-of-words assumption we made while modeling the textual content. It could, for
instance, use convolutional neural networks (CNN) or attention mechanisms to model the
relative importance of different words in the consumed content. The magnitude of the
economic impact of these methodological choices is an empirical question and is tough to
predict. Third, we only model the demand-side and assume that consumers’ consumption
patterns are driven only by their consumption in previous periods. It is an exciting
avenue of future research to model the interaction of content availability with readers’
consumption interests. We hope our work will inspire future research to overcome these
limitations in pushing the limits of our understanding of the dynamics of online content
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consumption.
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