
Display Optimization for Vertically Differentiated

Locations under Multinomial Logit Preferences

Ali Aouad∗ Danny Segev†

31/07/2019

Abstract

We introduce a new optimization model, dubbed the display optimization problem, that

captures a common aspect of choice behavior, known as the framing bias. In this setting, the

objective is to optimize how distinct items (corresponding to products, web links, ads, etc.)

are being displayed to a heterogeneous audience, whose choice preferences are influenced by

the relative locations of items. Once items are assigned to vertically differentiated locations,

customers consider a subset of the items displayed in the most favorable locations, before

picking an alternative through Multinomial Logit choice probabilities.

The main contribution of this paper is to derive a polynomial-time approximation scheme

for the display optimization problem. Our algorithm is based on an approximate dynamic

programming formulation that exploits various structural properties to derive a compact

state space representation of provably near-optimal item-to-position assignment decisions.

As a by-product, our results improve on existing constant-factor approximations for closely-

related models, and apply to general distributions over consideration sets. We develop the

notion of “approximate assortments”, that may be of independent interest and applicable

in additional revenue management settings.

Lastly, we conduct extensive numerical studies to validate the proposed modeling ap-

proach and algorithm. Experiments on a public hotel booking data set demonstrate the su-

perior predictive accuracy of our choice model vis-a-vis the Multinomial Logit choice model

with location bias, proposed in earlier literature. In synthetic computational experiments,

our approximation scheme dominates various benchmarks, including natural heuristics –

greedy methods, local-search, priority rules – as well as state-of-the-art algorithms devel-

oped for closely-related models.

Keywords: Choice Models, Display Optimization, Approximation Schemes, Revenue Management.

∗Department of Management Science and Operations, London Business School, Regent’s Park, London, United
Kingdom (NW14SA). Email: aaouad@london.edu.

†Department of Statistics, University of Haifa, Haifa 31905, Israel. Email: segevd@stat.haifa.ac.il

 Electronic copy available at: https://ssrn.com/abstract=2709652 



1 Introduction

A well-known behavioral bias in choice preferences, known as the ‘framing effect’, asserts that

the choice outcomes over precisely the same set of alternatives are highly variable with changes

in framing, perspective, and display (Tversky and Kahneman 1981, 1986). For example, in the

context of retailing, typical customers have limited attention span, and do not thoroughly con-

sider all alternatives available before selecting their preferred item (Payne 1976, Silk and Urban

1978, Bettman et al. 1998); in such settings, the framing bias favors the most prominent product

alternatives on display. Hence, the main computational challenge for the retailer in online and

offline environments is that of designing an effective display configuration, where heterogeneous

and substitutable products are assigned to various display locations, each associated with a

different propensity to be considered by end customers. At the same time, these products differ

by their attractiveness to customers, as well as by the revenue they generate for retailers, and

potentially by other metrics of interest, e.g., price margins, inventory positions, or perishability.

As such, we are facing a typical revenue management tradeoff between demand generation and

price cannibalization. On the one hand, the display allocation of products aims to encourage

customers to buy, through conveniently displaying the best sales products; on the other hand,

retailers wish to highlight the products that are more valuable from their perspective. As a re-

sult, the design of an effective display configuration strikes a delicate balance between satisfying

the customers’ utility and fulfilling the retailer’s objective.

The above-mentioned tradeoff arises in applications that span across many industries, among

which we discuss some of the more notable examples. In the context of in-store merchandising,

retailers have limited display space with highly differentiated quality, such as vertical shelf posi-

tion, which has a significant impact on whether a product is considered by shoppers (Chandon

et al. 2009, Frank and Massy 1970, Dreze et al. 1995). A similar tradeoff appears in online

retailing. Indeed, for each search query, unless end users specify their desired sorting rule,

the retailer chooses a ranking order according to which relevant products are displayed across

multiple web pages. There is strong empirical evidence that the display position on a web page

is a key driver of purchase decisions and conversion (Ghose et al. 2014, Agarwal et al. 2011,

Ghose and Yang 2009, Ursu 2018). In vertical search (e.g, Yelp, Trip Advisor, Trulia), the

links displayed to end users are ranked by the search engine, as demonstrated in Figure 1a.

The monetization of such platforms through sponsored results requires to jointly optimize user

affinity and revenue generation, as both organic and sponsored listings are competing for users’

attention (Yang and Ghose 2010, Jerath et al. 2011). More generally, in online advertising, the

audience has a limited attention span for which multiple ads are competing, and the outcome

of this competition is highly dependent on the ads display hierarchy (Jeziorski and Segal 2015,

Narayanan and Kalyanam 2015).

1.1 Modeling approach

As further elaborated in Section 1.4, the interaction between display location effects and choice

preferences has been overlooked in most computational problems studied in the revenue man-

agement literature thus far, in spite of its substantial impact on the choice outcomes (Chandon

1

 Electronic copy available at: https://ssrn.com/abstract=2709652 



>4000 results 

(a) Display of search results

1"

2"

3"

4"

5"

Consideration setsPositions

�1

�2

�3

�4

�5

(b) Consideration sets arising from location hierarchy

Figure 1: Examples of display configurations on Yelp (a) and Trulia (b), over large sets of
alternatives, combining organic listings and sponsored results (marked by red rectangles).

et al. 2009, Agarwal et al. 2011, Ghose and Yang 2009). In this paper, we introduce a new opti-

mization model, dubbed the display optimization problem, that captures the interplay between

display configuration and choice preferences, and leverages well-established behavioral premises.

For this purpose, we follow one of the prominent approaches to modeling choice in psychology

and marketing, which assumes that customers consider only a subset of the alternatives avail-

able, named the consideration set, prior to picking one particular alternative (Bettman et al.

1998, Hauser 2014, Shocker et al. 1991). Screening procedures of this nature have been proposed

to capture the search and exploration effort that customers are willing to make prior to their

final decision (Hauser and Wernerfelt 1990, Mehta et al. 2003, Wu and Rangaswamy 2003).

The influence of the display locations on choice preferences is captured through the consid-

eration sets structure. Specifically, motivated by concrete applications in retailing and vertical

search (Breugelmans et al. 2007, Ursu 2018), we assume that these sets have a nested structure

over vertically differentiated locations. In other words, the relative quality of locations at which

products are placed creates an inclusion order between the consideration sets, as shown in Fig-

ure 1b. Our modeling approach captures the following natural effects: items placed at higher

quality locations are more likely to appear in the consideration set of a customer in comparison

to those at lower quality locations, which require additional search efforts. It is worth noting

that this nested sequential structure has been validated in the context of vertical search by

a recent empirical study, involving the Expedia Kaggle dataset (Ursu 2018). Specifically, the

latter paper develops a model where consideration sets are formed endogenously by agents who

minimize their search cost.

Once a customer forms his restricted consideration set, we assume that the choice mechanism

through which a given item is picked within this set is described by the Multinomial Logit choice

model (MNL). This model, whose specifics are described below, has extensively been studied

2

 Electronic copy available at: https://ssrn.com/abstract=2709652 



and exploited by operations practitioners and researchers (see Section 1.4). For example, using

data from Alibaba’s online retail platforms, a recent study by Feldman et al. (2018) shows

that assortment decisions made from MNL choice models have the potential to be significantly

more profitable than sophisticated machine-learning based product recommendation algorithms,

thus providing ample evidence that the standard MNL model is practically-relevant in online

applications.

Instance parameters. We are given a collection of n items (corresponding to products, web

links, ads, etc.), where each item i is associated with a revenue ri as well as with a preference

weight wi. The display space for these items is represented by an ordered array comprised of

n positions (or locations), numbered 1, . . . , n. Here, each position k ∈ [n] is associated with a

probability λk, whose precise meaning will be explained shortly. A position-to-item assignment

A : [n] → [n] is a bijective function mapping each position to a distinct item; throughout the

paper, we use the shorthand notation [n] = {1, . . . , n}. It is worth noting that, in practical

applications, the number of items is not necessarily equal to the number of positions. However,

such settings can easily be captured by our model, since by augmenting the original instance

with either dummy items or dummy positions, we may assume without loss of generality that

the number of items matches the number of positions.

The choice model. For a given assignmentA, the probabilistic choice outcomes are described

through a representative customer taking random actions. Initially, this customer picks at

random a subset of positions he is willing to consider, out of the collection of consideration sets

A[1], . . . ,A[n], where A[k] stands for the set of items assigned to the top-k positions 1, . . . , k.

Technically speaking, this choice is represented by the random variable K, which stands for

the endpoint of the array considered, with the convention that Pr [K = k] = λk. This nested

structure of consideration sets implies that top positions, with lower indices, are more likely to be

considered than bottom positions, having higher indices. Unlike closely-related models (Davis

et al. 2015, Gallego et al. 2016) that will be discussed in Section 1.2, we make no assumption

whatsoever on the distribution (λ1, . . . ,λn). For this reason, it is easy to verify that our model

actually subsumes a more general setting, where there are m positions, with arbitrary capacities

c1, . . . , cm, such that each position k may hold either exactly or at most ck items. For example, in

online settings each position could be interpreted as a web page with a predetermined capacity of

precisely ck search results, whereas in offline settings each position could correspond to a display

shelf, with a capacity of at most ck items. Additionally, we can easily capture settings in which

another potential outcome is that the customer’s consideration set is empty, by rescaling the

probabilities (λ1, . . . ,λn).

Finally, conditional on the event {K = k}, where the chosen consideration set is A[k], the

customer picks a specific item out of this selection, based on the MNL choice model, according

to the preference weights {wi : i ∈ A[k]}. For ease of notation, for every subset S ⊆ [n], we

denote the combined weights of all items in S by w(S) =
󰁓

i∈S wi. With this notation, the

conditional probability of picking item i ∈ A[k] is wi
1+w(A[k]) , noting that the customer may

also decide to leave without purchasing any item, which happens with probability 1
1+w(A[k]) .

3

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Consequently, the conditional expected revenue in this case is

Rk(A) =
󰁛

i∈A[k]

riwi

1 + w(A[k])
.

Note that, due to the stochasticity in how the representative customer picks his random con-

sideration set A[K], the expected revenue RK(A) of the assignment A is clearly a random

variable.

Objective. The display optimization problem asks to compute a position-to-item assignment

A : [n] → [n] that maximizes the expected revenue, where the expectation is taken with respect

to K as well as the MNL choice outcomes, which can be written as

R(A) =
󰁛

k∈[n]
λk ·Rk(A) . (1)

1.2 Closely-related models

From a thematic perspective, the display optimization problem constitutes in particular a strict

generalization of two closely-related problems, both aiming to determine a sequencing strat-

egy (or prioritization) over different items, facing customers with heterogeneous preferences.

Specifically, Davis et al. (2015) have recently introduced the assortment over time problem,

where retailers build their assortment incrementally, by prioritizing their product launches over

a discrete planning horizon. For monotone choice models, they derived a 1
2 -approximation

algorithm, assuming uniform arrival rates (i.e., λk = 1
n). Due to the analogy between time

periods and positions, assortment over time under Multinomial Logit preferences is in fact a

highly-structured special case of the display optimization problem. Furthermore, what makes

the former significantly easier to approximate is that retailers are allowed to leave certain posi-

tions vacant, while still garnering an expected revenue from these positions, as well as to avoid

displaying certain items. Subsequent to our work, Gallego et al. (2016) studied the product

framing model, which generalizes the assortment over time problem by allowing products to

be introduced in limited-size batches, and by considering non-uniform customer arrival rates.

Under certain technical conditions, they devised an elegant algorithm attaining an approxima-

tion guarantee of 6/π2 ≈ 0.607. However, this model still operates under the assumption that

positions can be left empty or blank, which could be unrealistic for the display optimization

applications we consider.

In general, enabling retailers to leave certain positions vacant, while still garnering an ex-

pected revenue from these positions, leads to a simpler problem formulation. For example, to

maximize his expected revenue, the retailer may decide to display a very limited selection of

items – potentially with a single high-priced item. In contrast, in our setting, there is a fixed

number of locations that need to be assigned with an item, thereby retailers decide on a sequenc-

ing strategy over the entire collection of items. This feature eliminates numerous well-behaved

properties of the objective function and leads to technical difficulties of greater magnitude.

From a practical point of view, identifying a complete position-to-item assignment is partic-

ularly relevant in vertical search applications, where an online platform is required to display

4

 Electronic copy available at: https://ssrn.com/abstract=2709652 



the full search results, and cannot “hide” certain items. For example, most vertical search

platforms, such as Yelp or Trulia, rank all listings available for a given search query; some

of these listings are sponsored (paid results) and others are organic (non-paid results). Even

though it seems intuitive that the platform should favor sponsored listings, organic ones cannot

be discarded, even if this strategy is revenue-wise beneficial. The objective is thus to allocate

all listings across existing display positions, some of which are more prominent than others.

Similarly, large online retailers are also marketplace channels that display products managed

by third party-providers, such as Amazon, that only manages around 1
10 -th of the assortment

on display. Due to contractual relationships with third-party sellers, Amazon cannot choose

to hide certain items (in particular, those that cannibalize Amazon’s personal revenue), and to

exclusively promote its own products.

By focusing on the Multinomial Logit choice model, our results significantly improve on the

existing approximation factors for both assortment over time and product framing, and avoid

additional assumptions made in previous literature on the distribution over consideration sets.

It is worth mentioning that we are not aware of any way to employ the algorithmic ideas of

Davis et al. (2015) and Gallego et al. (2016) in order to obtain any non-trivial performance

guarantee for the display optimization problem.

1.3 Our results

Performance guarantees. The main contribution of this paper is to introduce a fundamen-

tal optimization model that accounts for display location effects in the face of heterogeneous

customer segments, for which we devise a polynomial-time approximation scheme (PTAS). In

other words, for any desired level of accuracy 󰂃 > 0, we prove that the optimal expected revenue

of any display optimization instance can be efficiently approximated within a factor of 1− 󰂃, as

formally stated in the following theorem.

Theorem 1.1. Under Multinomial Logit preferences, the display optimization problem admits

a polynomial-time approximation scheme. Specifically, for any 󰂃 ∈ (0, 1
75), our dynamic pro-

gramming algorithm approximates the optimal expected revenue within factor 1 − 󰂃 in time

O(|I|O( 1
󰂃2

·log 1
󰂃
)), where |I| denotes the size of the instance.

It is worth mentioning that our performance guarantees are essentially best-possible. As

explained in Section 1.2, under Multinomial Logit preferences, the display optimization problem

captures as a special case the product framing model of Gallego et al. (2016), who proved that

the latter problem is NP-hard. As an interesting side note, simple counter-examples demonstrate

that natural heuristics to address the display optimization problem – such as local-search or

greedy procedures – have arbitrarily large optimality gaps, generating only an O( 1n) fraction

of the optimal expected revenue in the worst case. These findings are formally established in

Appendix A.

Technical outline. From a technical perspective, our algorithmic approach is based on syn-

thesizing methodologies related to approximate dynamic programming, efficient guessing, enu-

meration ideas, and various function relaxations. These methods are brought to fruition through

5

 Electronic copy available at: https://ssrn.com/abstract=2709652 



the derivation of fundamental structural properties, shown to be inherent to near-optimal as-

signments. In Section 2, we perform preliminary transformations of the display optimization

instance, whereby key input parameters are rounded. Relatedly, we develop a notion of “approx-

imate assortments”, which is a crucial ingredient of our algorithm. Consequently, in Section 3,

we devise a value approximation for the display optimization problem, that is, a method that

approximately computes the conditional expected revenues R1(A), . . . , Rn(A) using limited in-

formation about any given assignment A. Building on this value approximation, in Section 4,

we formulate an efficient dynamic program for the display optimization problem, and explain

how its actions are converted into analogous assignment decisions. Finally, the performance

guarantees of our algorithm are formally proven in Section 5. We show that our dynamic pro-

gramming algorithm is an approximation scheme for the display optimization problem, thereby

completing the proof of Theorem 1.1.

Case study. In Section 6, we demonstrate the predictive power of our modeling approach

on real-world choice data, that exhibits significant location effects. Specifically, we utilize a

publicly-available data set that describes search results and bookings for hotel rooms on Ex-

pedia’s online platform. Our consideration set-based approach, described in Section 1.1, is

benchmarked against an MNL choice model with position bias, which stands as the most nat-

ural alternative proposed in related literature (Davis et al. 2013, Abeliuk et al. 2016). In both

cases, users’ relative preferences over hotel listings are described through similar feature-based

MNL models. However, the choice models differentiate themselves through the incorporation

of location effects. While these choice models have precisely the same number of parameters,

we find that our consideration set-based approach leads to superior predictive accuracy, with

up to 2% relative improvements of out-of-sample log-likelihood.

Computational study. Through extensive numerical experiments, we demonstrate in Sec-

tion 7 the practical efficiency of our algorithmic approach. Specifically, our algorithm is thor-

oughly tested against various heuristics, including a local search method, a greedy algorithm,

and common-sense ranking rules, as well as against a suitable adaptation of the constant-factor

approximation of Gallego et al. (2016), originally suggested for the product framing problem.

To this end, we propose and implement a simplified version of our approximation scheme, which

is shown to improve on the best heuristic by up to 3%, and to provide better trade-offs between

performance and speed.

Implications to related models. As an immediate by-product of Theorem 1.1, it follows

that our approach provides a PTAS for the assortment over time model studied by Davis et al.

(2015) as well as for the product framing problem considered by Gallego et al. (2016), when

customers’ preferences are captured by the MNL choice model. To our knowledge, this result

cannot be inferred from the existing analysis presented in these papers, where a constant-factor

loss in optimality is inevitable.

Theorem 1.2. Under Multinomial Logit preferences, both assortment over time and product

framing admit a polynomial-time approximation scheme.

6

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Further comments. From a conceptual perspective, our results generally show that a more

realistic approach to modeling choice, taking into account display location effects, does not

necessarily come at the expense of creating a strongly-inapproximable problem. Specifically, we

prove that near-optimal approximations can still be obtained despite enlarging the dimensional-

ity of the search space in comparison to optimization problems of similar flavor, such as standard

assortment planning formulations (see Section 1.4). In addition, the model we propose deviates

from some of the common ingredients allowing for the tractability of such formulations. In this

regard, we consider a choice model not subject to the Independence of Irrelevant Alternatives

property, which is likely to be violated in practical settings (McFadden et al. 1977, Ben-Akiva

and Lerman 1985). Our choice model can be viewed as a solution-dependent Mixture of Multi-

nomial Logit choice model (MMNL) with a parametric number of customer types (Bront et al.

2009, Rusmevichientong et al. 2014, Méndez-Diaz et al. 2014, Feldman and Topaloglu 2015). It

is worth noting that, under an MMNL choice model with n customer types, even the seemingly-

simple assortment planning problem with a solution-independent choice model is NP-hard to

approximate within factor O(n1−󰂃), for any fixed 󰂃 > 0 (Désir et al. 2014).

1.4 Directly-related work

Online advertising with externalities. A recent line of work in algorithmic mechanism de-

sign has studied the substitution effects between competing ads, named externality effects (Xiong

et al. 2012, Xu et al. 2010, Jerath et al. 2011). Here, instead of being exogenous, the click-

through-rates are expressed as a function of the display configuration. Kempe and Mahdian

(2008) proposed the so-called ‘cascade’ model to describe the inter-dependency of choice over

different ads placed in vertically differentiated locations. In this model, customers sequentially

examine the ads according to the linear order of locations, a structural property that allows the

authors to propose efficient solution methods. The cascade model has several advantages over

standard choice models: for example, this model can be extended to capture multiple clicks

and leverage contextual information, solving its related assortment and pricing optimization

problems is relatively easy, etc. However, this approach for modeling users’ choices is stylized:

the probability of clicking on a given ad does not depend on any of the alternatives placed be-

low. This assumption simplifies the substitution effects, but does not agree with experimental

studies (Breugelmans et al. 2007). It is worth pointing out that this stream of literature focuses

on the design of algorithms allowing for truthful mechanisms, at the expense of more realistic

modeling of the choice behavior.

Assortment optimization. Closer to the present setting are assortment optimization prob-

lems, which have received a great deal of attention in the revenue management literature. Here,

a retailer wishes to select a subset of products to maximize his expected revenue in the face of

heterogeneous customers, given a choice model that provides a fine-grained description of the

substitution effects between competing products. Problems of this nature have recently been

studied in various shapes and forms, depending on the probabilistic structure of choice prefer-

ences, and additional constraints on the set of products offered. Since an inclusive overview of

existing work is beyond the scope of this paper, we refer the reader to directly-related papers (Li

7

 Electronic copy available at: https://ssrn.com/abstract=2709652 



et al. 2015, Davis et al. 2014, Blanchet et al. 2016, Farias et al. 2013, Aouad et al. 2015, Talluri

and Van Ryzin 2004, Rusmevichientong et al. 2010) for a comprehensive literature review.

Quite surprisingly, beyond the work of Davis et al. (2015) and Gallego et al. (2016), which

is discussed in Section 1.2, display configuration effects are largely overlooked in assortment

optimization problems, other than a handful of exceptions. Feldman and Topaloglu (2017)

studied a choice model that combines MNL preferences with nested consideration sets, for

which they devised a fully polynomial-time approximation scheme. However, the structure

of the consideration sets thereof is given a priori, independently of the display configuration.

Generally speaking, our problem formulation contends with searching over position-to-item

assignments, instead of identifying an optimal assortment out of all subsets of items. To our

knowledge, Davis, Gallego, and Topaloglu (2013) were the first to introduce location effects in

an assortment optimization model with MNL choice preferences. Assuming that these effects

are captured by modified product weights, the problem is recast as a linear program with totally

unimodular constraints, rendering it polynomial-time solvable. Similarly, Abeliuk et al. (2016)

devised an efficient solution method for an assortment optimization model where the MNL

preference weights are biased by an exogenous multiplicative factor, based on their location.

However, the modeling approaches of these papers assume that customers consider all offered

products, and only the relative weights of products are affected by the display location. Hence,

such models impose a strong structure on choice outcomes, best exemplified by the Independence

of Irrelevant Alternatives property, which limits its practical applicability (McFadden et al. 1977,

Ben-Akiva and Lerman 1985). Namely, the relative choice probabilities of products placed at

fixed locations are invariant to the display configuration of all other products. In contrast, our

model endogenously captures the interplay between location and choice, in the same spirit as

the aforementioned ad-externality models.

The Multinomial Logit model. The MNL choice model is arguably the most widespread

approach for modeling choice among practitioners (McFadden 1980, Guadagni and Little 1983,

Ben-Akiva and Lerman 1985, Grover and Vriens 2006, Chandukala et al. 2008). This model,

independently proposed by Luce (1959) and Plackett (1975), is grounded in the economic the-

ory of utility maximization, as it describes the probabilistic choice outcomes of a representative

agent who maximizes his utility over different alternatives, through a noisy evaluation of the

utility they procure. The far-reaching popularity of this model was notably driven by its efficient

estimation procedures (McFadden 1973, Hausman and McFadden 1984, Talluri and Van Ryzin

2004), even with limited data (Ford 1957, Negahban et al. 2012), as well as by its computational

tractability in numerous decision-making problems. Indeed, in the context of static assortment

planning, MNL choice preferences are well-understood. In particular, exact polynomial-time

algorithms have been devised for the unconstrained assortment optimization problem (Talluri

and Van Ryzin 2004), where any subset of products can be offered, and later on for its capaci-

tated variant (Rusmevichientong et al. 2010), where an upper bound is imposed on the number

of offered products. Recent contributions to this line of work incorporate totally-unimodular

constraints (Davis et al. 2013), random choice parameters (Rusmevichientong et al. 2014), and

robust optimization settings (Rusmevichientong and Topaloglu 2012).

8

 Electronic copy available at: https://ssrn.com/abstract=2709652 



2 Preliminaries

In this section, we present a number of preprocessing operations, that will be instrumental in

deriving our approximation scheme. These operations are motivated by the following basic ob-

servation, referred to as a priority rule: among any two items having identical MNL weights, it

is revenue-wise preferable to display the higher-priced item at a higher-ranked position. At first

glance, this priority rule may not be useful for arbitrary instances, since items generally have

distinct MNL weights. However, broader algorithmic implications can be derived when these

weights are slightly perturbed. More specifically, at a negligible loss of optimality, by round-

ing the original MNL weights, we obtain a more structured instance, where the priority rule

is applicable within each class of items of uniform MNL weights (Section 2.1). Consequently,

this operation will enable us to develop a computationally-efficient notion of approximate as-

sortments (Section 2.2). That is, we construct a polynomially-sized collection of assortments,

such that any assortment that satisfies the priority rules has a suitable approximate counterpart

within this collection.

Additional notation and terminology. Before describing these algorithmic ideas, we

introduce additional notation and terminology that will be used throughout the paper. For

an assortment S ⊆ [n], we denote the expected revenue generated by this assortment under

the MNL model by R(S) =
󰁓

i∈S
riwi

1+w(S) =
󰁓

i∈S
ρi

1+w(S) , where ρi = riwi ; the latter term

is referred to as the ρ-quantity of item i. Noting that the expected revenue R(S) depends on

two quantities, the ρ-quantities appearing at the numerator and the weights appearing at the

denominator, we define the function ρ(S) =
󰁓

i∈S ρi, so that the expected revenue function can

be written as R(S) = ρ(S)
1+w(S) .

As in the objective function representation (1), the expected revenue generated by a position-

to-item assignment A : [n] → [n] can be specified as:

R (A) =

n󰁛

k=1

λk ·R (A[k]) .

We also use the shorthand notation Rk(A) = R(A[k]) to designate the expected revenue condi-

tional on picking position k ∈ [n]. In addition, we use A−1(i) to denote the position occupied

by item i. Finally, A∗ designates a fixed optimal assignment, i.e., one that maximizes R(A)

over all possible assignments.

2.1 Priority rules

Given an error parameter δ > 0, we first describe three structural assumptions on the instance

parameters, which are essential for the development of an efficient approximation scheme. We

show in Appendix B that the conjunction of these assumptions leads to a negligible loss in

optimality.

Assumption 2.1. The preference weight of every item i ∈ [n] is of the form wi =
δ
n · (1 + δ)τ ,

for some integer τ ≥ 0.

9

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Assumption 2.2. The ρ-quantity of every item i ∈ [n] is of the form ρi = ρmin · (1 + δ)τ for

some integer τ ≥ 0, where ρmin = mini∈[n] ρi.

These assumptions are by no means required, and their sole purpose is to simplify the

exposition of our algorithm. Indeed, Assumptions 2.1 and 2.2 can be enforced by “rounding” the

MNL preference weights and prices to their nearest power of (1+ δ). As shown in Appendix B,

these operations result in losing only an O(δ)-fraction of the optimal revenue. Similarly, any

problem instance can be altered to satisfy the next assumption while incurring a negligible loss

in optimality.

Assumption 2.3. λk > 0 for every position k ∈ [n].

It is important to note that, from this point on, we no longer treat (λ1, . . . ,λn) as a proba-

bility distribution, and in particular,
󰁓n

k=1 λk could be different from 1, due to the alterations

required to enforce Assumption 2.3. By a slight abuse of terminology, we will still refer to

λ1, . . . ,λn as the “probability weights” of the positions 1, . . . , n, while R(A) is the “expected

revenue” of a given assignment A.

Priority rules. Now, by taking advantage of Assumptions 2.1, 2.2, and 2.3, we show that

there exists so-called priority rules satisfied by any optimal assignment. More specifically, given

an assignment A, the priority rules refer to the following two properties:

1. For any pair of distinct items i1 ∕= i2, if wi1 = wi2 and ρi1 > ρi2 , then A−1(i1) < A−1(i2).

2. For any pair of distinct items i1 ∕= i2, if ρi1 = ρi2 and wi1 < wi2 , then A−1(i1) < A−1(i2).

The next claim shows that any optimal assignment follows these priority rules. Hereafter, A∗

designates a fixed optimal assignment of the display optimization problem.

Claim 2.4. The optimal assignment A∗ satisfies the priority rules 1 and 2.

Proof. To verify that priority rule 1 is met, we show that, if our original optimal assignment A∗

does not satisfy this property, swapping between the positions of a violated pair (i1, i2) would

strictly improve the objective function, contradicting the optimality of A∗. Indeed, letting 󰂓A
be the assignment obtained from A∗ by swapping the positions of the items i1 and i2, we have:

R (A∗)−R
󰀓
󰂓A
󰀔
=

A∗−1(i1)󰁛

k=A∗−1(i2)

λk·
󰀣

ρ(A∗[k])

1 + w(A∗[k])
− ρ( 󰂓A[k])

1 + w( 󰂓A[k])

󰀤
=

A∗−1(i1)󰁛

k=A∗−1(i2)

λk·
ρi2 − ρi1

1 + w(A∗[k])
< 0 ,

where the inequality follows since ρi1 > ρi2 by hypothesis, and λk > 0 for every k ∈ [n] in light

of Assumption 2.3.

Using a similar proof by contradiction, one can easily verify that priority rule 2 is satisfied

by the optimal assignment A∗. Given a pair of items i1 ∕= i2 having identical ρ-quantities, i.e.,

ρi1 = ρi2 , if wi1 < wi2 , then A∗−1(i1) < A∗−1(i2); otherwise we would strictly increase the

expected revenue by swapping the violated pair.

10

 Electronic copy available at: https://ssrn.com/abstract=2709652 



In an analogous fashion, we say that an assortment U satisfies the priority rules when the

following two properties hold:

1. For every i1 ∕= i2 ∈ [n] with wi1 = wi2 and ρi1 > ρi2 , if i2 ∈ U then i1 ∈ U .

2. For every i1 ∕= i2 ∈ [n] with ρi1 = ρi2 and wi1 < wi2 , if i2 ∈ U then i1 ∈ U .

Consequently, we let P designate the family of assortments that satisfy the priority rules. Based

on the preceding discussion, we have A∗[k] ∈ P for every position k ∈ [n].

2.2 Approximate assortments

In this section, we develop an “approximation” procedure for every assortment U ∈ P, as defined

in Section 2.1. Before formally describing our notion of approximate assortments, we highlight

certain intuitive properties that this approximation method should possess in order to develop

an approximation scheme for the display optimization problem. An assortment Û qualifies as a

“good” approximation of U when the two subsets Û and U share a significant fraction of their

items; in other words, the cardinality of U ∩ Û nearly matches that of U and Û . Moreover, since

an assortment U is evaluated on the basis of its expected revenue R(U) = ρ(U)
1+w(U) , it follows that

U is “well-approximated” by Û when ρ(U) and ρ(Û) are nearly equal, and similarly, w(U) and
w(Û) are nearly equal as well. Lastly, while the family of assortments P is exponential in size,

we would like to ensure that the number of distinct approximate assortments Û is polynomial, so

that an exhaustive enumeration over all approximate assortments can be carried out efficiently.

In what follows, we construct an approximation procedure that achieves the above-mentioned

properties, as stated by the next lemma.

Lemma 2.5. For any accuracy level δ > 0, under Assumptions 2.1-2.3, there exist collections of

assortments S−(δ) and S+(δ), where |S−(δ)| = O(|I|O( 1
δ2

·log 1
δ
)) and |S+(δ)| = O(|I|O( 1

δ2
·log 1

δ
)),

such that for every assortment U ∈ P, there exist approximate assortments U− ∈ S+(δ) and

U+ ∈ S−(δ) satisfying the following properties:

1. U− ⊆ U ⊆ U+.

2. ρ(U−) ≥ (1− δ) · ρ(U) and w(U−) ≥ (1− δ) · w(U).

3. ρ(U+) ≤ (1 + δ) · ρ(U) and w(U+) ≤ (1 + δ) · w(U).

Furthermore, the sets S−(δ) and S+(δ) can be constructed in time O(|I|O( 1
󰂃2

·log 1
󰂃
)).

Due to lengthy technical details, the proof of Lemma 2.5 is deferred to Appendix C.1. In

what follows, given the chain of inclusions stated by Property 1 above, S−(δ) will be referred to

as the collection of sub-assortments, while S+(δ) will be that of super-assortments. In particular,

when δ ∈ (0, 12), Properties 1-3 of Lemma 2.5 imply the following relationships:

ρ
󰀃
U+ \ U−󰀄 = ρ

󰀓
Û+

󰀔
− ρ (U) + ρ (U)− ρ

󰀓
Û−

󰀔
≤ 2δ · ρ (U) ≤ 4δ · ρ

󰀃
U−󰀄 , (2)

Similarly, we obtain:

w
󰀃
U+ \ U−󰀄 ≤ 4δ · w

󰀃
U−󰀄 . (3)

11

 Electronic copy available at: https://ssrn.com/abstract=2709652 



It is worth remarking that, in contrast with Properties 2 and 3, none of inequalities (2) and (3)

involve the underlying assortment U .

Set inclusion properties. Algorithmically-speaking, the notion of approximate assortments

developed by Lemma 2.5 will be utilized to approximate the consideration sets induced by

assignments that satisfy the priority rules. As highlighted in Section 1.1, for any such assignment

A, the sequence of consideration sets (A[1], . . . ,A[n]) is nested, namely, A[1] ⊆ . . . ⊆ A[n].

Hence, it is important to uncover whether our approximation method of Lemma 2.5 preserves

similar set inclusion properties. To this end, given an accuracy level of δ > 0, for every position

k ∈ [n], we denote by (S−
k , S

+
k ) ∈ S−(δ)×S+(δ) the pair of approximate assortments associated

with the assortment A[k]. As shown by the next claim, the sequence of super-assortments

(S+
1 , . . . , S

+
n ) is nested. The proof is presented in Appendix C.2.

Lemma 2.6. For every pair of assortments U1,U2 ∈ P and accuracy level δ > 0, let Û+
1 , Û+

2 ∈
S+(δ) be their respective super-assortments. If U1 ⊆ U2, then Û+

1 ⊆ Û+
2 .

On the other hand, unlike the sequence of super-assortments (S+
1 . . . , S+

n ), the sequence

of sub-assortments (S−
1 , . . . , S

−
n ) is not nested. For example, suppose that n = 2, r1 = 1

3 ,

w1 = 1
2 , r2 = 1

9 and w2 = 100. In this case, it is easy to verify that the optimal assignment

A∗ is characterized by A∗(1) = 1 and A∗(2) = 2. Now, let S−
1 and S−

2 be the sub-assortments

associated with A∗[1] = {1} and A∗[2] = {1, 2}, respectively, with an accuracy level δ = 0.9. By

noting that S−(0.9) = {{1}, {2}}, it follows that S−
1 = {1} ∕⊆ {2} = S−

2 , meaning that the sub-

assortments are not nested. This observation is a first indication of the structural alterations

entailed by the approximation method of Lemma 2.5.

3 Value Approximation

In this section, we construct a value approximation for the display optimization problem. Given

an assignment A, we introduce the revenue function k 󰀁→ Rk(A), that maps each position k ∈ [n]

to the expected revenue conditional on choosing the consideration set A[k]. Our goal is to

approximate the revenue function k 󰀁→ Rk(A) using limited information about the assignment

A. We begin by showing in Section 3.1 that the revenue function k 󰀁→ Rk(A∗) induced by

the optimal assignment A∗ is unimodal. Focusing on assignments that satisfy the priority

rules defined in Section 2.1 and induce a unimodal revenue function, we develop a functional

approximation of the revenue function, incurring an O(󰂃)-error for any accuracy level 󰂃 > 0,

in a sense made precise in Section 3.2. Rather than having access to the assortment A[k]

for all positions k ∈ [n], our approximation method utilizes their approximate counterparts, as

defined by Lemma 2.5, only for a small subset of positions k ∈ [n]. This “loss of information” will

enable the formulation of an efficient approximate dynamic program for the display optimization

problem, presented in Section 4.

3.1 Unimodality of k 󰀁→ Rk(A∗)

Here, we characterize the variations of the revenue function k 󰀁→ Rk(A∗) induced by the optimal

assignment A∗. Specifically, in the next claim, we establish the unimodality of this revenue

12

 Electronic copy available at: https://ssrn.com/abstract=2709652 



function.

Lemma 3.1. The revenue function k 󰀁→ Rk(A∗) is unimodal. That is, there exists kmid ∈ [n]

such that k 󰀁→ Rk(A∗) is non-decreasing over [1, kmid] and non-increasing over [kmid, n].

Proof. To arrive at a contradiction, suppose that for some k ∈ [n] we have Rk(A∗) > Rk+1(A∗)

and Rk+1(A∗) < Rk+2(A∗). In the MNL model, adding a single item i ∈ [n] to an assortment

S ⊆ [n] generates an expected revenue that can be written as a convex combination between

the expected revenue of S and the price of item i. Specifically, it is easy to verify that

R (S ∪ {i}) = R (S) · 1 + w(S)

1 + w(S) + wi
+ ri ·

wi

1 + w(S) + wi
.

Hence, Rk(A∗) > Rk+1(A∗) means that the item i1 = A∗(k+ 1) has a price of ri1 < Rk+1(A∗),

and similarly, Rk+1(A∗) < Rk+2(A∗) implies that the item i2 = A∗(k + 2) has a price of

ri2 > Rk+1(A∗). As a result, ri2 > ri1 . Now consider the assignment Â, obtained from A∗

by swapping between i1 and i2. Observe that Â[1, j] = A∗[1, j] for every j ∈ [n] \ {k + 1},
meaning that Rj(Â) = Rj(A∗) for these positions. However, in light of the above observations,

Rk+1(Â) ≥ min{ri2 , Rk(A∗)} > Rk+1(A∗), where the former inequality holds since Rk+1(Â)

is a strict convex combination between Rk(A∗) and ri2 , while the latter inequality holds since

ri2 > Rk+1(A∗) and also Rk(A∗) > Rk+1(A∗). As a result, we obtain

R
󰀓
Â
󰀔
−R (A∗) = λk+1 ·

󰀓
Rk+1

󰀓
Â
󰀔
−Rk+1 (A∗)

󰀔
> 0 ,

where the strict inequality proceeds from Assumption 2.3, contradicting the optimality of A∗.

3.2 Approximation method

Let P∧ be the collection of assignments that satisfy the priority rules 1 and 2 (see Section 2.1)

and induce a unimodal revenue function. In this section, we fix an arbitrary assignment A ∈ P∧.

The basic idea. Given an accuracy level 󰂃 > 0, our goal is to construct a function fA : [n] →
R+ that approximates the revenue function k 󰀁→ Rk(A) from below up to a factor of 1 +O(󰂃);

specifically, for every position k ∈ [n], we will have fA(k) ≤ Rk(A ≤ (1 + 4󰂃) · fA(k). Our

approach, illustrated by Figure 2, is to define fA(k) as a step function. To this end, we define

a partition of the positions [n] into intervals I1, . . . , Im. Within each interval, the step function

fA is constant and equal to the minimum value of Rk(A) over this interval. Namely, for every

k ∈ Ij , we have

fA(k) = min{Rq(A) : q ∈ Ij} . (4)

Clearly, for any given partition of [n], the resulting function fA constitutes a lower bound on

the revenue function k 󰀁→ Rk(A). However, the main challenge is to devise a sufficiently refined

partition I1, . . . , Im, such that the resulting step function fA provides a good approximation of

the revenue function over all positions k ∈ [n]. Before constructing the partition I1, . . . , Im, we

explain how the right-hand side of equation (4) is approximately computed, by leveraging the

13

 Electronic copy available at: https://ssrn.com/abstract=2709652 



notion of approximate assortments developed in Lemma 2.5 and the unimodality of the revenue

function established in Lemma 3.1.

0

1

2

3

4

5

Expected 
Revenue

Position

Revenue Function Value Approximationk 7! Rk(A)
<latexit sha1_base64="QtydCHtRP/PVMFe/+WOLguZcEyQ=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakShARjgYWxIPqQmihyXKe1YjuR7SBVURZ+hYUBhFj5DDb+BrfNAC1HsnR0zr26PidMGVXacb6tpeWV1bX1ykZ1c2t7Z9fe2++oJJOYtHHCEtkLkSKMCtLWVDPSSyVBPGSkG8Y3E7/7SKSiiXjQ45T4HA0FjShG2kiBfRhDj6NU6QTeB3E99zBi8Ko4Deya03CmgIvELUkNlGgF9pc3SHDGidCYIaX6rpNqP0dSU8xIUfUyRVKEYzQkfUMF4kT5+TRAAU+MMoBRIs0TGk7V3xs54kqNeWgmOdIjNe9NxP+8fqajSz+nIs00EXh2KMoYNHEnbcABlQRrNjYEYUnNXyEeIYmwNp1VTQnufORF0jlruE7DvTuvNa/LOirgCByDOnDBBWiCW9ACbYBBAZ7BK3iznqwX6936mI0uWeXOAfgD6/MHNL6Vfg==</latexit><latexit sha1_base64="QtydCHtRP/PVMFe/+WOLguZcEyQ=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakShARjgYWxIPqQmihyXKe1YjuR7SBVURZ+hYUBhFj5DDb+BrfNAC1HsnR0zr26PidMGVXacb6tpeWV1bX1ykZ1c2t7Z9fe2++oJJOYtHHCEtkLkSKMCtLWVDPSSyVBPGSkG8Y3E7/7SKSiiXjQ45T4HA0FjShG2kiBfRhDj6NU6QTeB3E99zBi8Ko4Deya03CmgIvELUkNlGgF9pc3SHDGidCYIaX6rpNqP0dSU8xIUfUyRVKEYzQkfUMF4kT5+TRAAU+MMoBRIs0TGk7V3xs54kqNeWgmOdIjNe9NxP+8fqajSz+nIs00EXh2KMoYNHEnbcABlQRrNjYEYUnNXyEeIYmwNp1VTQnufORF0jlruE7DvTuvNa/LOirgCByDOnDBBWiCW9ACbYBBAZ7BK3iznqwX6936mI0uWeXOAfgD6/MHNL6Vfg==</latexit><latexit sha1_base64="QtydCHtRP/PVMFe/+WOLguZcEyQ=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakShARjgYWxIPqQmihyXKe1YjuR7SBVURZ+hYUBhFj5DDb+BrfNAC1HsnR0zr26PidMGVXacb6tpeWV1bX1ykZ1c2t7Z9fe2++oJJOYtHHCEtkLkSKMCtLWVDPSSyVBPGSkG8Y3E7/7SKSiiXjQ45T4HA0FjShG2kiBfRhDj6NU6QTeB3E99zBi8Ko4Deya03CmgIvELUkNlGgF9pc3SHDGidCYIaX6rpNqP0dSU8xIUfUyRVKEYzQkfUMF4kT5+TRAAU+MMoBRIs0TGk7V3xs54kqNeWgmOdIjNe9NxP+8fqajSz+nIs00EXh2KMoYNHEnbcABlQRrNjYEYUnNXyEeIYmwNp1VTQnufORF0jlruE7DvTuvNa/LOirgCByDOnDBBWiCW9ACbYBBAZ7BK3iznqwX6936mI0uWeXOAfgD6/MHNL6Vfg==</latexit><latexit sha1_base64="QtydCHtRP/PVMFe/+WOLguZcEyQ=">AAACAHicbVC7TsMwFHV4lvIKMDCwWFRIZakShARjgYWxIPqQmihyXKe1YjuR7SBVURZ+hYUBhFj5DDb+BrfNAC1HsnR0zr26PidMGVXacb6tpeWV1bX1ykZ1c2t7Z9fe2++oJJOYtHHCEtkLkSKMCtLWVDPSSyVBPGSkG8Y3E7/7SKSiiXjQ45T4HA0FjShG2kiBfRhDj6NU6QTeB3E99zBi8Ko4Deya03CmgIvELUkNlGgF9pc3SHDGidCYIaX6rpNqP0dSU8xIUfUyRVKEYzQkfUMF4kT5+TRAAU+MMoBRIs0TGk7V3xs54kqNeWgmOdIjNe9NxP+8fqajSz+nIs00EXh2KMoYNHEnbcABlQRrNjYEYUnNXyEeIYmwNp1VTQnufORF0jlruE7DvTuvNa/LOirgCByDOnDBBWiCW9ACbYBBAZ7BK3iznqwX6936mI0uWeXOAfgD6/MHNL6Vfg==</latexit>

I1
<latexit sha1_base64="m69bjnv8+xFYPBbd5Gj914P/RUw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBi94q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOd9O6W19Y3NrfJ2ZWd3b//APTxqmSTTjDdZIhPdCanhUijeRIGSd1LNaRxK3g7HNzO//cS1EYl6xEnKg5gOlYgEo2ilh7u+33erXs2bg6wSvyBVKNDou1+9QcKymCtkkhrT9b0Ug5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwl19eJa2Lmu/V/PvLat0r4ijDCZzCOfhwBXW4hQY0gcEQnuEV3hzpvDjvzseiteQUM8fwB87nD76djV8=</latexit><latexit sha1_base64="m69bjnv8+xFYPBbd5Gj914P/RUw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBi94q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOd9O6W19Y3NrfJ2ZWd3b//APTxqmSTTjDdZIhPdCanhUijeRIGSd1LNaRxK3g7HNzO//cS1EYl6xEnKg5gOlYgEo2ilh7u+33erXs2bg6wSvyBVKNDou1+9QcKymCtkkhrT9b0Ug5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwl19eJa2Lmu/V/PvLat0r4ijDCZzCOfhwBXW4hQY0gcEQnuEV3hzpvDjvzseiteQUM8fwB87nD76djV8=</latexit><latexit sha1_base64="m69bjnv8+xFYPBbd5Gj914P/RUw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBi94q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOd9O6W19Y3NrfJ2ZWd3b//APTxqmSTTjDdZIhPdCanhUijeRIGSd1LNaRxK3g7HNzO//cS1EYl6xEnKg5gOlYgEo2ilh7u+33erXs2bg6wSvyBVKNDou1+9QcKymCtkkhrT9b0Ug5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwl19eJa2Lmu/V/PvLat0r4ijDCZzCOfhwBXW4hQY0gcEQnuEV3hzpvDjvzseiteQUM8fwB87nD76djV8=</latexit><latexit sha1_base64="m69bjnv8+xFYPBbd5Gj914P/RUw=">AAAB6nicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPBi94q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8MJXCoOd9O6W19Y3NrfJ2ZWd3b//APTxqmSTTjDdZIhPdCanhUijeRIGSd1LNaRxK3g7HNzO//cS1EYl6xEnKg5gOlYgEo2ilh7u+33erXs2bg6wSvyBVKNDou1+9QcKymCtkkhrT9b0Ug5xqFEzyaaWXGZ5SNqZD3rVU0ZibIJ+fOiVnVhmQKNG2FJK5+nsip7Exkzi0nTHFkVn2ZuJ/XjfD6DrIhUoz5IotFkWZJJiQ2d9kIDRnKCeWUKaFvZWwEdWUoU2nYkPwl19eJa2Lmu/V/PvLat0r4ijDCZzCOfhwBXW4hQY0gcEQnuEV3hzpvDjvzseiteQUM8fwB87nD76djV8=</latexit>

I2
<latexit sha1_base64="izP6LbX7i9Ix7jpkpyDn/rNbaao=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10m7VvXcqnd/VWm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDAIY1g</latexit><latexit sha1_base64="izP6LbX7i9Ix7jpkpyDn/rNbaao=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10m7VvXcqnd/VWm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDAIY1g</latexit><latexit sha1_base64="izP6LbX7i9Ix7jpkpyDn/rNbaao=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10m7VvXcqnd/VWm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDAIY1g</latexit><latexit sha1_base64="izP6LbX7i9Ix7jpkpyDn/rNbaao=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10m7VvXcqnd/VWm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDAIY1g</latexit>

I3
<latexit sha1_base64="Tf0I9gwpKbHRHZxA+r+33W2SIvk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76l/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nrouq5Ve++Vqm7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHBpY1h</latexit><latexit sha1_base64="Tf0I9gwpKbHRHZxA+r+33W2SIvk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76l/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nrouq5Ve++Vqm7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHBpY1h</latexit><latexit sha1_base64="Tf0I9gwpKbHRHZxA+r+33W2SIvk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76l/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nrouq5Ve++Vqm7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHBpY1h</latexit><latexit sha1_base64="Tf0I9gwpKbHRHZxA+r+33W2SIvk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0oMeCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76l/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0nrouq5Ve++Vqm7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHBpY1h</latexit>

I4
<latexit sha1_base64="W+JQGb1EMMHxvwmEzBTzJ8xNeoY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10n7quq5Ve++Vmm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDDKY1i</latexit><latexit sha1_base64="W+JQGb1EMMHxvwmEzBTzJ8xNeoY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10n7quq5Ve++Vmm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDDKY1i</latexit><latexit sha1_base64="W+JQGb1EMMHxvwmEzBTzJ8xNeoY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10n7quq5Ve++Vmm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDDKY1i</latexit><latexit sha1_base64="W+JQGb1EMMHxvwmEzBTzJ8xNeoY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FL3qraD+gDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ylsbG5t7xR3S3v7B4dH5eOTto5TxbDFYhGrbkA1Ci6xZbgR2E0U0igQ2AkmN3O/84RK81g+mmmCfkRHkoecUWOlh7tBbVCuuFV3AbJOvJxUIEdzUP7qD2OWRigNE1Trnucmxs+oMpwJnJX6qcaEsgkdYc9SSSPUfrY4dUYurDIkYaxsSUMW6u+JjEZaT6PAdkbUjPWqNxf/83qpCa/9jMskNSjZclGYCmJiMv+bDLlCZsTUEsoUt7cSNqaKMmPTKdkQvNWX10n7quq5Ve++Vmm4eRxFOINzuAQP6tCAW2hCCxiM4Ble4c0Rzovz7nwsWwtOPnMKf+B8/gDDKY1i</latexit>

I5
<latexit sha1_base64="C7j2Ex7tVE+1i7e4V+NS8B/FSw8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHErY1j</latexit><latexit sha1_base64="C7j2Ex7tVE+1i7e4V+NS8B/FSw8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHErY1j</latexit><latexit sha1_base64="C7j2Ex7tVE+1i7e4V+NS8B/FSw8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHErY1j</latexit><latexit sha1_base64="C7j2Ex7tVE+1i7e4V+NS8B/FSw8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHErY1j</latexit>

I6
<latexit sha1_base64="kg5QPd8o76nq8Ks6i9FZ4VXfdEI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHGMY1k</latexit><latexit sha1_base64="kg5QPd8o76nq8Ks6i9FZ4VXfdEI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHGMY1k</latexit><latexit sha1_base64="kg5QPd8o76nq8Ks6i9FZ4VXfdEI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHGMY1k</latexit><latexit sha1_base64="kg5QPd8o76nq8Ks6i9FZ4VXfdEI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF71VtB/QhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1J6CGS6F4EwVK3kk0p1EgeTsY38z89hPXRsTqEScJ9yM6VCIUjKKVHu76tX654lbdOcgq8XJSgRyNfvmrN4hZGnGFTFJjup6boJ9RjYJJPi31UsMTysZ0yLuWKhpx42fzU6fkzCoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mVBJilyxxaIwlQRjMvubDITmDOXEEsq0sLcSNqKaMrTplGwI3vLLq6R1UfXcqnd/Wam7eRxFOIFTOAcPrqAOt9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHGMY1k</latexit>

fA
<latexit sha1_base64="z+inKegSbn2hKcUHtYXWex0NGoM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8VLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FjpMRxkfUYFuZkNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFhfPyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhtZ9xmaQGJVsuClNBTEzm75MhV8iMmFpCmeL2VsLGVFFmbEglG4K3+vI6adeqnlv17q8qjVoeRxHO4BwuwYM6NOAOmtACBhKe4RXeHO28OO/Ox7K14OQzp/AHzucPFzGQeA==</latexit><latexit sha1_base64="z+inKegSbn2hKcUHtYXWex0NGoM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8VLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FjpMRxkfUYFuZkNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFhfPyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhtZ9xmaQGJVsuClNBTEzm75MhV8iMmFpCmeL2VsLGVFFmbEglG4K3+vI6adeqnlv17q8qjVoeRxHO4BwuwYM6NOAOmtACBhKe4RXeHO28OO/Ox7K14OQzp/AHzucPFzGQeA==</latexit><latexit sha1_base64="z+inKegSbn2hKcUHtYXWex0NGoM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8VLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FjpMRxkfUYFuZkNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFhfPyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhtZ9xmaQGJVsuClNBTEzm75MhV8iMmFpCmeL2VsLGVFFmbEglG4K3+vI6adeqnlv17q8qjVoeRxHO4BwuwYM6NOAOmtACBhKe4RXeHO28OO/Ox7K14OQzp/AHzucPFzGQeA==</latexit><latexit sha1_base64="z+inKegSbn2hKcUHtYXWex0NGoM=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUI8VLx4r2A9sQ9lsJ+3SzSbsboQS+i+8eFDEq//Gm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1FjpMRxkfUYFuZkNyhW36i5A1omXkwrkaA7KX/1hzNIIpWGCat3z3MT4GVWGM4GzUj/VmFA2oSPsWSpphNrPFhfPyIVVhiSMlS1pyEL9PZHRSOtpFNjOiJqxXvXm4n9eLzXhtZ9xmaQGJVsuClNBTEzm75MhV8iMmFpCmeL2VsLGVFFmbEglG4K3+vI6adeqnlv17q8qjVoeRxHO4BwuwYM6NOAOmtACBhKe4RXeHO28OO/Ox7K14OQzp/AHzucPFzGQeA==</latexit>

Figure 2: Illustration of the approximation method with 󰂃 = 1.

How do we leverage the unimodality of the revenue function? One important ob-

servation is that, since the revenue function k 󰀁→ Rk(A) is unimodal, the minimum value

of (4) is necessarily attained at one of the endpoints of Ij . Suppose that our partition de-

composes into two sub-sequences, I1, . . . , Ijmid
and Ijmid+1, . . . , Im such that

󰁖jmid
j=1 Ij = [1, kmid]

and
󰁖m

j=jmid+1 Ij = [kmid + 1, n]. Furthermore, we define ej = min Ij for every j ∈ [jmid], and

ej = max Ij for every j ∈ [jmid + 1, n]. With this definition at hand, given the unimodality

of k 󰀁→ Rk(A), we obtain fA(k) = Rej (A) for every position k ∈ Ij . This simplification has

a notable computational implication: fA(k) can be computed with the mere knowledge of the

assortments A[e1], . . . ,A[em]. In the sequel, the positions e1, . . . , em will be referred to as the

events of the array of positions.

How do we utilize approximate assortments? Rather than utilizing the assortments

A[e1], . . . ,A[em] corresponding to these events, we utilize the families of sub-assortments S−(󰂃2)

and super-assortments S+(󰂃2), constructed in Lemma 2.5. More specifically, for every j ∈ [m],

let S−
j ∈ S−(󰂃2) and S+

j ∈ S+(󰂃2) be the approximate assortments achieving the Properties 1-3

of Lemma 2.5 with respect to A[ej ]. Consequently, we define a modified approximation f̂A as

follows:

f̂A(k) =
ρ(S−

j )

1 + w(S+
j )

.

This definition is motivated by the design of a lower bound on fA(k) =
ρ(A[ej ])

1+w(A[ej ])
. Indeed, we

utilize the sub-assortment S−
j to compute an under-estimate ρ(S−

j ) ≤ ρ(A[ej ]), and the super-

assortment S+
j to derive an over-estimate w(S+

j ) ≥ w(A[ej ]). Consequently, by combining

14

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Properties 2 and 3 of Lemma 2.5, it immediately follows that

f̂A(k) =
ρ(S−

j )

1 + w(S+
j )

≥ (1− 󰂃2) · ρ(A[ej ])

1 + (1 + 󰂃2) · w(A[ej ])
≥

󰀃
1− 2󰂃2

󰀄
· ρ(A[ej ])

1 + w(A[ej ])
=

󰀃
1− 2󰂃2

󰀄
· fA(k) .

(5)

Hence, our final value approximation f̂A constitutes a lower bound on k 󰀁→ fA(k), up to a

multiplicative error of 1− 2󰂃2.

Partition of the positions. To complete our definition of f̂A, it remains to specify the

sequence of events e1, . . . , em, which in turn generates the partition I1, . . . , Im. To provide

intuition, these events are defined so that the revenue function does not vary by a factor greater

than 1 + 󰂃 between two successive events. Starting with the interval [1, kmid], the events are

defined iteratively as follows:

• Initially, e1 = 1.

• Next, e2 = min{k ∈ [e1 + 1, kmid] : Rk(A) ≥ (1 + 󰂃) ·Re1(A)}.

• In general, ej+1 = min{k ∈ [ej + 1, kmid] : Rk(A) ≥ (1 + 󰂃) ·Rej (A)}.

• So on and so forth, until the set {k ∈ [ej + 1, kmid] : Rk(A) ≥ (1 + 󰂃) ·Rej (A)} is empty.

Next, we let jmid be the index of the last event in [1, kmid], and turn our attention to the interval

[kmid + 1, n]:

• Initially, ejmid+1 = max{k ∈ [kmid + 1, n] : Rk(A) ≥ 1
1+󰂃 ·Rejmid

(A)}.

• Next, ejmid+2 = max{k ∈ [ejmid+1 + 1, n] : Rk(A) ≥ 1
1+󰂃 ·Rejmid+1(A)}.

• In general, ej+1 = max{k ∈ [ej + 1, n] : Rk(A) ≥ 1
1+󰂃 ·Rej (A)}.

• So on and so forth, until we reach the last event em = n.

As a result, we construct the corresponding partition into intervals I1, . . . , Im. To this end, let

Ij = [ej , ej+1 − 1] ∩ [1, kmid] for every j ∈ [jmid], and Ij = [ej−1 + 1, ej ] ∩ [kmid + 1, n] for every

j ∈ [jmid + 1,m]. Clearly, [1, kmid] =
󰁖jmid

j=1 Ij and [kmid + 1, n] =
󰁖m

j=jmid+1 Ij . It is easy to

verify that our definitions are consistent with our preceding discussion, in the sense that the

minimal value of the revenue function within each interval Ij is attained at its corresponding

event ej . Indeed, for every j ∈ [jmid], the revenue function is non-decreasing over Ij , and the

event ej is the left endpoint of Ij . Similarly, for every j ∈ [jmid + 1,m], the revenue function is

non-increasing over Ij , and the event ej is the right endpoint of Ij .

The next claim bounds the error of our approximation method, by showing that f̂A(k) is a

tight under-estimate of Rk(A) for every k ∈ [n]. The proof is deferred to Appendix C.3. .

Lemma 3.2. For every assignment A ∈ P∧, we have (1− 4󰂃) ·Rk(A) ≤ f̂A(k) ≤ Rk(A).

To help unclutter notation, we do not indicate the dependency of ej , S
−
j and S+

j on the

assignment A from this point on, unless specified otherwise.

15

 Electronic copy available at: https://ssrn.com/abstract=2709652 



4 Dynamic Programming Formulation

In this section, we devise an approximation scheme for the display optimization problem. We

formulate a dynamic program, on the basis of the value approximation developed in Section 3.

Despite the approximate nature of this formulation, the optimal sequence of dynamic program-

ming actions can be efficiently converted into analogous assignment decisions. Below, we provide

a more detailed outline of our algorithmic approach.

4.1 Outline

Value approximation. Based on the discussion in Section 3.2, Lemma 3.2 immediately im-

plies that, in order to compute an assignment whose expected revenue is within factor 1−O(󰂃)

of the optimal revenue R(A∗), it suffices to maximize the value approximation R̂(·) defined over

the collection of assignments A ∈ P∧ as follows:

R̂(A) =
󰁛

k∈[n]
λk · f̂A(k) =

m󰁛

j=1

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 ·
ρ(S−

j )

1 + w(S+
j )

, (6)

where we utilize the same notation as in Section 3.2. This value approximation has noticeable

computational properties. As shown by the right-hand side of equation (6), R̂(A) can be

computed with the mere knowledge of the events ej along with the approximate assortments

S−
j ∈ S−(󰂃2) and S+

j ∈ S+(󰂃2), of which there are polynomially-many combinations for any

fixed j ∈ [m] by Lemma 2.5. Consequently, this value approximation motivates a natural

dynamic programming formulation of the display optimization problem, where the events ej

are processed sequentially over j ∈ [m], and the corresponding approximation assortments

(S−
j , S

+
j ) ∈ S−(󰂃2) × S+(󰂃2) are determined through exhaustive enumeration at each step j ∈

[m]. The remainder of this section is devoted to developing this dynamic programming approach.

Initial guess. We remind the reader that the revenue function k 󰀁→ Rk(A∗) induced by the op-

timal assignment A∗ was shown to be unimodal by Lemma 3.1. Consequently, we initially guess

kmid ∈ [n], the position separating the two monotone parts of the revenue function k 󰀁→ Rk(A∗).

Computationally-speaking, this guess can be obtained through exhaustive enumeration. Our

algorithm will explicitly make use of the guess kmid in order to guarantee that the revenue

function of the constructed assignment is non-decreasing over [1, kmid] and non-increasing over

[kmid, n].

Roadmap. Given the initial guess of kmid, our algorithmic approach is described through

the following ingredients. In Section 4.2, we present a dynamic programming formulation for

R̂(·). Next, in Section 4.3, we describe the corresponding constraints on the set of possible

transitions at each state. Lastly, in Section 5.2, we explain how the optimal sequence of dynamic

programming actions is efficiently converted into an analogous assignment Ã, returned by our

algorithm.

16

 Electronic copy available at: https://ssrn.com/abstract=2709652 



4.2 Dynamic program: Recursive equations

To formalize the dynamic programming approach outlined in Section 4.1, each state of our

recursion is described by four parameters:

• The current event ej ∈ [n].

• The next event ej+1 ∈ [n].

• The approximate assortments (S−
j , S

+
j ) ∈ S−(󰂃2)× S+(󰂃2) corresponding to the event ej .

• The approximate assortments (S−
j+1, S

+
j+1) ∈ S−(󰂃2)× S+(󰂃2) corresponding to the event

ej+1.

In vector form, letting 󰂓Sj = (S−
j , S

+
j ), each state of the recursion can be represented by

(ej , ej+1, 󰂓Sj , 󰂓Sj+1). In addition, it is convenient to denote by Ij the interval of positions be-

tween two successive events in which the revenue function has monotone variations; namely,

Ij = [ej , ej+1 − 1] ∩ [1, kmid] if ej ≤ kmid, and Ij = [ej−1 + 1, ej ] ∩ [kmid, n] otherwise.

Consequently, we introduce the value function F (·), defined through the following recursive

equation:

F
󰀓
ej , ej+1, 󰂓Sj , 󰂓Sj+1

󰀔
= max

ej−1,󰂓Sj−1

F
󰀓
ej−1, ej , 󰂓Sj−1, 󰂓Sj

󰀔
+

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 ·
ρ(S−

j )

1 + w(S+
j )

s.t. (ej−1, 󰂓Sj−1) ∈ T
󰀓
ej , ej+1, 󰂓Sj , 󰂓Sj+1

󰀔
, (7)

where T (ej , ej+1, 󰂓Sj , 󰂓Sj+1) imposes a number of restrictions on the feasible state transitions,

which are fully described in Section 4.3. In the above equation, F (ej , ej+1, 󰂓Sj , 󰂓Sj+1) should

be interpreted as a partial computation of our value approximation (6), corresponding to the

cumulative expected revenue starting at the event e1 = 1 and ending at the current event

ej . This recursive equation involves two terms: the “reward-to-go”, corresponding to the earlier

state (ej−1, ej , 󰂓Sj−1, 󰂓Sj), and the “immediate reward” that approximates the combined expected

revenue contributions over the interval Ij . In the latter reward, the quantity
ρ(S−

j )

1+w(S+
j )

serves

as a proxy for the revenue function evaluated at the event ej , according to our approximation

method of Section 3.2.

Boundary case. To fully specify the value function F (·), it remains to handle the boundary

case of the recursion, corresponding to the first event e1 = 1, for which the approximate as-

sortments take the form of a singleton, i.e., S−
1 = S+

1 = {i1} for some i1 ∈ [n]. Here, our value

approximation is computed explicitly by the equation

F
󰀓
e1, e2, 󰂓S1, 󰂓S2

󰀔
=

󰀳

󰁃
󰁛

k∈I1

λk

󰀴

󰁄 · ρi1
1 + wi1

,

where I1 designates the interval of positions [e1, e2 − 1] ∩ [1, kmid].

17

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Hereafter, we denote by (eT , eT+1, 󰂓ST , 󰂓ST+1) the root of the recursion, describing the last

event eT+1 = eT = n, for which 󰂓ST+1 = 󰂓ST = ([n], [n]). It is easy to verify that (eT , eT+1, 󰂓ST , 󰂓ST+1)

is the state that maximizes the value function F (·).

4.3 Dynamic program: Feasible transitions

In this section, we specify the collection of pairs (ej−1, 󰂓Sj−1) ∈ T (ej , ej+1, 󰂓Sj , 󰂓Sj+1) by imposing

a number of constraints over which the recursive equation (7) is maximized, thereby defining the

set of feasible state transitions. This ensemble of constraints plays a pivotal role for our analysis

in Section 5. Indeed, we will verify in Section 5.1 that the constraints come without incurring any

loss with respect to R̂(A∗), by showing that all state transitions associated with the optimal

assignment A∗ are feasible. Furthermore, these restrictions will be crucial to guarantee in

Section 5.2 that the loss of information incurred by our approximation method is “reversible”,

in the sense that any sequence of dynamic programming actions can be approximately matched

with analogous assignments of positions to items.

Our first constraint is related to the set inclusion properties between the approximate as-

sortments:

S−
j−1 ⊆ S+

j−1 ⊆ S+
j . (8)

To provide intuition about this constraint, the relationship S−
j−1 ⊆ S+

j−1 is motivated by Prop-

erty 1 of Lemma 2.5. Moreover, we require that the super-assortments are nested S+
j−1 ⊆ S+

j ,

in light of Lemma 2.6. Note that a similar set inclusion is not enforced for the sub-assortments

S−
j−1 and S−

j , in line with the observation made in Section 2.2.

Our next ensemble of constraints pertains to the accuracy of the approximate assortments:

ρ
󰀓
S+
j−1 \ S

−
j−1

󰀔
≤ 4󰂃2 · ρ

󰀓
S−
j−1

󰀔
, (9)

and

w
󰀓
S+
j−1 \ S

−
j−1

󰀔
≤ 4󰂃2 · w

󰀓
S−
j−1

󰀔
. (10)

Here, inequalities (2) and (3) are transcribed as constraints of the dynamic program.

Moreover, we relate the cardinality of the approximate assortments to the events through

the following constraint:

ej−1 ≤ min
󰁱󰀏󰀏󰀏S+

j−1

󰀏󰀏󰀏 , ej −
󰀏󰀏󰀏S−

j \ S+
j−1

󰀏󰀏󰀏
󰁲

. (11)

To provide intuition about the latter inequality, by Property 1 of Lemma 2.5, the cardinality of

the super-assortment should greater or equal to the corresponding event, meaning that ej−1 ≤
|S+

j−1|. In addition, we ensure that there are sufficiently-many positions between the successive

events ej−1 and ej to assign all items in S−
j \ S+

j−1, meaning that |S−
j \ S+

j−1| ≤ ej − ej−1.

Lastly, we guarantee that the revenue function, in approximate form, has unimodal varia-

18

 Electronic copy available at: https://ssrn.com/abstract=2709652 



tions, through the following constraints:

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

ρ(S−
j )

1 + w(S+
j )

≥
󰀓
1 +

󰂃

2

󰀔
·

ρ(S−
j−1)

1 + w(S+
j−1)

if kmid ≥ ej , (12)

ρ(S−
j+1)

1 + w(S+
j+1)

≤ min

󰀫󰀓
1− 󰂃

2

󰀔
·

ρ(S−
j−1)

1 + w(S+
j−1)

,
󰀓
1 +

󰂃

2

󰀔
·

ρ(S−
j )

1 + w(S+
j )

󰀬
if ej ≥ ej−1 ≥ kmid ,(13)

ρ(S−
j )

1 + w(S+
j )

≥
󰀕
1− 3󰂃

2

󰀖
·

ρ(S−
j−1)

1 + w(S+
j−1)

if ej ≥ kmid ≥ ej−1 .(14)

Consequently, T (ej , ej+1, 󰂓Sj , 󰂓Sj+1) is defined as the collection of pairs (ej−1, 󰂓Sj−1) that satisfy

the structural relationships (8)-(14).

4.4 Assignment decisions

Having fully specified our dynamic programming formulation (7), it remains to explain how the

dynamic programming actions are converted into analogous assignment decisions. More specif-

ically, in what follows, we efficiently construct the assignment Ã, returned by our algorithm,

based on the optimal sequence dynamic programming actions. The revenue performance of Ã
will be analyzed in Section 5.2.

By the computation of the optimal dynamic programming value F (eT , eT+1, 󰂓ST , 󰂓ST+1),

we are given the optimal sequence of dynamic programming actions, described by the events

e1, . . . , eT , and the corresponding sub-assortments S−
1 , . . . , S

−
T and super-assortments S+

1 , . . . , S
+
T .

Our goal is to convert these dynamic programming actions into a feasible assignment Ã : [n] →
[n].

Step 1: Partial ordering over items. First, we construct a sequence of subsets (∆1, . . . ,∆T ),

forming a partition of the collection of items [n]. Intuitively, the role of the sequence (∆1, . . . ,∆T )

is to provide a partial ordering over items for the construction of the assignment Ã, in the sense

that any item i1 ∈ ∆1 will be assigned by Ã to a higher-ranked position than any item i2 ∈ ∆2,

so on and so forth. Letting jmid = max{j ∈ [T ] : ej ≤ kmid} be the index of the last event in

[1, kmid], the subsets ∆1, . . . ,∆T are constructed as follows:

1. We let ∆1 = S−
1 , ∆2 = S−

2 \ (S+
1 ∪∆1), ∆3 = S−

3 \ (S+
2 ∪∆1 ∪∆2), so on and so forth,

until forming the subset ∆jmid
= S−

jmid
\ (S+

jmid−1 ∪ (
󰁖jmid−1

j=1 ∆j)).

2. Next, we let ∆jmid+1 = S+
jmid+1 \ (

󰁖jmid
j=1 ∆j), ∆jmid+2 = S+

jmid+2 \ (
󰁖jmid+1

j=1 ∆j), so on and

so forth, until obtaining the last subset ∆T = S+
T \ (

󰁖T−1
j=1 ∆j).

Step 2: Construction of Ã. The assignment Ã first assigns the items in ∆1 to the positions

[1, |∆1|] by order of decreasing price, then the items in ∆2 to the positions [|∆1|+1, |∆1|+ |∆2|]
again by decreasing price, so on and so forth. Formally, let ẽj = |∆1 ∪ · · · ∪ ∆j | for every

j ∈ [1, T ], and let ẽ0 = 0. With this notation at hand, for every j ∈ [1, T ] and t ∈ [1, |∆j |], we
define Ã(ẽj−1 + t) as the t-th item of ∆j by order of decreasing price.

Note that, since ST = [n], we have
󰁖T

j=1∆j = [n], and thus, the position-to-item assignment

Ã is fully specified over all positions in [n]. To provide a concrete example, suppose that T = 3,

19

 Electronic copy available at: https://ssrn.com/abstract=2709652 



∆1 = {1}, ∆2 = {3}, ∆3 = {2, 4, 5}, and ri = i. Here, we obtain the assignments Ã(1) = 1,

Ã(2) = 3, Ã(3) = 5, Ã(4) = 4, and Ã(5) = 2.

5 Performance analysis

This section is devoted to proving Theorem 1.1 by analyzing the dynamic programming algo-

rithm developed in Section 4. First, we show in Section 5.1 that the optimal dynamic program-

ming value is at least R̂(A∗), where A∗ is the optimal assignment. Next, in Section 5.2, we

argue that the expected revenue generated by the assignment Ã, returned by our algorithm,

nearly matches the optimal dynamic programming value, and thereby, the optimality gap is of

O(󰂃).

Additional notation. Going forward, we let e∗1, . . . , e
∗
m be the events generated by the

approximation method of Section 3.2 with respect to the assignment A∗. Further, we let

S∗−
1 , . . . , S∗−

m and S∗+
1 , . . . , S∗+

m be the sub-assortments and super-assortments corresponding

to these events, respectively. In addition, we designate by I∗1 , . . . , I
∗
m the intervals forming the

partition of [n] induced by the sequence of events. Namely, I∗j = [e∗j , ej∗+1 − 1] ∩ [1, kmid] if

e∗j ≤ kmid, and I∗j = [e∗j−1 + 1, e∗j ] ∩ [kmid, n] otherwise. It is worth emphasizing that, unlike

kmid, these parameters are not utilized by our algorithm; in what follows, they only appear for

purposes of analysis. Lastly, throughout this section, we assume that our algorithm is executed

with an error parameter 󰂃 ∈ (0, 15).

5.1 Analyzing the optimal dynamic programming value

In the next claim, we relate the optimal value of our dynamic program to the value approxima-

tion R̂(·), evaluated at the optimal assignment A∗.

Lemma 5.1. F (eT , eT+1, 󰂓ST , 󰂓ST+1) ≥ R̂(A∗).

Proof. The proof proceeds by analyzing the dynamic programming states (e∗1, e
∗
2,
󰂓S∗
1 ,

󰂓S∗
2), . . . , (e

∗
m, e∗m+1,

󰂓S∗
m, 󰂓S∗

m+1)

induced by the optimal assignment A∗, where, for completeness, we define e∗m+1 = e∗m and

󰂓S∗
m+1 = 󰂓S∗

m. Suppose that these state transitions are feasible in the dynamic program (7),

meaning that we indeed have (e∗j−1,
󰂓S∗
j−1) ∈ T (e∗j , e

∗
j+1,

󰂓S∗
j ,

󰂓S∗
j+1) for every j ∈ [2,m]. It follows

that

F (eT , eT+1, 󰂓ST , 󰂓ST+1) ≥
m󰁛

j=1

󰀳

󰁃
󰁛

k∈I∗j

λk

󰀴

󰁄 ·
ρ(S∗−

j )

1 + w(S∗+
j )

= R̂(A∗)

where the inequality is derived by iteratively plugging the recursive equation (7) over the se-

quence of dynamic programming states induced by A∗, and the equality immediately follows

from our definition of the value approximation R̂(·) in equation (6).

Consequently, it remains to verify that (e∗j−1,
󰂓S∗
j−1) ∈ T (e∗j , e

∗
j+1,

󰂓S∗
j ,

󰂓S∗
j+1) for every j ∈

[2,m]. Specifically, we show that the dynamic programming constraints (8)-(14) are satisfied at

each state transition.

20

 Electronic copy available at: https://ssrn.com/abstract=2709652 



• Inequality (8): By Lemma 2.6, we infer that S∗+
j−1 ⊆ S∗+

j for every j ∈ [2,m]. In addition,

the set inclusion S∗−
j−1 ⊆ S∗+

j−1 immediately proceeds from Property 1 of Lemma 2.5,

instantiated with U = A∗[e∗j−1] and δ = 󰂃2.

• Inequalities (9) and (10): These relationships immediately follow from (2) and (3), in-

stantiated with U = A∗[e∗j−1] and δ = 󰂃2.

• Inequality (11): On the one hand, we have e∗j−1 = |A∗[e∗j−1]| ≤ |S∗+
j−1| by Property 1 of

Lemma 2.5, with respect to the assortment U = A∗[e∗j−1]. On the other hand, we have

e∗j−1 = e∗j −
󰀃
e∗j − e∗j−1

󰀄
= e∗j −

󰀏󰀏A∗[e∗j ] \ A∗[e∗j−1]
󰀏󰀏 ≤ e∗j −

󰀏󰀏󰀏S∗−
j \ S∗+

j−1

󰀏󰀏󰀏 ,

where the latter inequality holds since (S∗−
j \ S∗+

j−1) ⊆ (A∗[e∗j ] \ A∗[e∗j−1]) by Property 1

of Lemma 2.5, with respect to the assortments A∗[e∗j−1] and A∗[e∗j ].

• Inequality (12)-(14): In the case where kmid ≥ e∗j , observe that

ρ(S∗−
j )

1 + w(S∗+
j )

≥
(1− 󰂃2) · ρ(A∗[e∗j ])

1 + (1 + 󰂃2) · w(A∗[e∗j ])

≥
󰀃
1− 2󰂃2

󰀄
·

ρ(A∗[e∗j ])

1 + w(A∗[e∗j ])

=
󰀃
1− 2󰂃2

󰀄
·Rej (A∗)

≥ (1 + 󰂃− 2󰂃2) ·Rej−1 (A∗)

≥
󰀓
1 +

󰂃

2

󰀔
·

ρ(A∗[e∗j−1])

1 + w(A∗[e∗j−1])

≥
󰀓
1 +

󰂃

2

󰀔
·

ρ(S∗−
j−1)

1 + w(S∗+
j−1)

.

Here, the first inequality proceeds from Properties 2 and 3 of Lemma 2.5, instantiated

with U = A∗[e∗j ] and δ = 󰂃2. The third inequality follows from the definition of the event

e∗j = min{k ∈ [e∗j−1 + 1, kmid] : Rk(A∗) ≥ (1 + 󰂃) · Re∗j−1
(A∗)} in Section 3.2 over the

monotone non-decreasing part of the revenue function. The next inequality holds since

󰂃 ∈ (0, 15). The last inequality proceeds from Property 1 of Lemma 2.5, with respect to the

assortment U = A∗[e∗j−1]. The other case inequalities (13) and (14) proceed from nearly

identical arguments; for concision, the proofs are deferred to Appendix C.4.

5.2 Analyzing the assignment Ã

In what follows, we show that the expected revenue generated by the assignment Ã, constructed

in Section 4.4 nearly matches the value approximation guaranteed by these decisions, as stated

by Lemma 5.1. In particular, we exploit the structural properties enforced by the dynamic

programming constraints specified in Section 4.3.

21

 Electronic copy available at: https://ssrn.com/abstract=2709652 



In the next two claims, we begin by analyzing how the ρ-quantities and weights mutually

evolve along the sequence of positions ẽ1, . . . , ẽm in the assignment Ã. Recall from Section 4.4

that, for every j ∈ [T ], ẽj = |∆1 ∪ · · · ∪∆j |.

Lemma 5.2. For every j ∈ [T ], ρ(Ã[ẽj ]) ≥ (1− 8󰂃) · ρ(S−
j ).

Lemma 5.3. For every j ∈ [T ], w(Ã[ẽj ]) ≤ w(S+
j ).

The proofs of these lemmas are presented in Appendices C.5 and C.6, respectively. Based

on these claims, we proceed with our main result, providing a lower bound on R(Ã) relative

to the optimal expected revenue R(A∗). Consequently, our dynamic program (7) yields an

approximation scheme for the display optimization problem, thereby completing the proof of

Theorem 1.1.

Lemma 5.4. R(Ã) ≥ (1− 15󰂃) · R(A∗).

Proof. In order to create an explicit connection with our value approximation (6), we define

the intervals Ĩj = [ẽj , ẽj+1 − 1] ∩ [1, kmid] if j ≤ jmid, and Ĩj = [ẽj−1 + 1, ẽj ] ∩ [kmid + 1, n] if

j ≥ jmid + 1. We show, through the next claim, that the revenue function is unimodal within

the interval [ẽj , ẽj+1], for every j ∈ [T − 1]. The proof is deferred to Appendix C.7.

Claim 5.5. For every j ∈ [T − 1], the function k 󰀁→ Rk(Ã) is unimodal over the interval

[ẽj , ẽj+1].

Consequently, we obtain

R
󰀓
Ã
󰀔

=

n󰁛

k=1

λk ·Rk

󰀓
Ã
󰀔

≥
jmid󰁛

j=1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 ·min
󰁱
Rẽj

󰀓
Ã
󰀔
, Rẽj+1

󰀓
Ã
󰀔󰁲

󰁿 󰁾󰁽 󰂀
Aj

+

T󰁛

j=jmid+1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 ·min
󰁱
Rẽj−1

󰀓
Ã
󰀔
, Rẽj

󰀓
Ã
󰀔󰁲

󰁿 󰁾󰁽 󰂀
Bj

. (15)

where inequality (15) follows from Claim 5.5.

Now, in order to bound the terms Aj and Bj, note that

min
󰁱
Rẽj

󰀓
Ã
󰀔
, Rẽj+1

󰀓
Ã
󰀔󰁲

= min

󰀫
ρ(Ã[ẽj ])

1 + w(Ã[ẽj ])
,

ρ(Ã[ẽj+1])

1 + w(Ã[ẽj+1])

󰀬

≥ (1− 8󰂃) ·min

󰀫
ρ(S−

j )

1 + w(S+
j )

,
ρ(S−

j+1)

1 + w(S+
j+1)

󰀬
, (16)

where the inequality follows from Lemmas 5.2 and 5.3. Therefore, by combining (16) with

constraint (12), we obtain for every j ≤ jmid − 1:

Aj ≥ (1− 8󰂃) ·min

󰀫
ρ(S−

j )

1 + w(S+
j )

,
ρ(S−

j+1)

1 + w(S+
j+1)

󰀬
= (1− 8󰂃) ·

ρ(S−
j )

1 + w(S+
j )

.

22

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Similarly, by combining (16) with constraint (14), we obtain:

Ajmid
≥ (1− 8󰂃) ·min

󰀫
ρ(S−

j )

1 + w(S+
j )

,
ρ(S−

j+1)

1 + w(S+
j+1)

󰀬
≥ (1− 9󰂃) ·

ρ(S−
j )

1 + w(S+
j )

.

Lastly, by combining (16) with constraint (13), we obtain for every j ≥ jmid + 1:

Bj ≥ (1− 8󰂃) ·min

󰀫
ρ(S−

j−1)

1 + w(S+
j−1)

,
ρ(S−

j )

1 + w(S+
j )

󰀬
≥ (1− 10󰂃) ·

ρ(S−
j )

1 + w(S+
j )

.

By plugging these inequalities into (15), we obtain

R
󰀓
Ã
󰀔

≥ (1− 10󰂃) ·
T󰁛

j=1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 ·
ρ(S−

j )

1 + w(S+
j )

≥ (1− 11󰂃) ·
T󰁛

j=1

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 ·
ρ(S−

j )

1 + w(S+
j )

(17)

= (1− 11󰂃) · F
󰀓
eT , eT+1, 󰂓ST , 󰂓ST+1

󰀔

≥ (1− 11󰂃) · R̂ (A∗) (18)

= (1− 11󰂃) ·
n󰁛

k=1

λk · f̂A∗(k)

≥ (1− 15󰂃) · R (A∗) , (19)

where inequality (17) is established in Appendix C.8, based on a comparison of the positions ej

and ẽj for every j ∈ [T ]. Inequality (18) holds due to Lemma 5.1. Inequality (19) follows from

the definition of our value approximation in equation (6) and Lemma 3.2.

6 Case Study

In this section, we demonstrate the predictive power of our modeling approach using a publicly-

available data set, formed by search results and hotel bookings on Expedia’s online platform.

In Section 6.1, we describe our empirical set-up. In Section 6.2, we provide a detailed account

of the explanatory features generated from the Expedia data set. Next, in Section 6.3, we

specify the tested choice models. Subsequently, we explain in Section 6.4 how the choice models

are fitted to data, using maximum-likelihood estimation methods (MLE). Lastly, the numerical

results are discussed in Section 6.5.

6.1 Empirical set-up

We consider a publicly-available data set that describes search results and bookings for hotel

rooms on the Expedia platform. This data was released by Expedia in 2013 on the platform

Kaggle, as part of a data science competition to improve their ranking engine1. Given a search

query, the relevant hotel listings are ranked and displayed to the users, across multiple web-

1See url: https://www.kaggle.com/c/expedia-hotel-recommendations.

23

 Electronic copy available at: https://ssrn.com/abstract=2709652 



pages; due to the analogy between rankings and positions, this setting is a canonical application

of choice models with location effects. Consequently, our goal is to compare the consideration

set-based approach, introduced in Section 1.1, against a utility-based choice model with loca-

tion bias, which stands as the most natural alternative proposed in related literature (Davis

et al. 2013, Abeliuk et al. 2016). In both cases, users’ relative preferences over hotel listings

are prescribed by similar feature-based MNL models, and the choice models have precisely the

same number of parameters. However, these choice models differentiate themselves through

the incorporation of location effects. In our model, location effects are captured by the nested

structure of the consideration sets. In contrast, in the benchmark model, location effects are

specified through an augmented utility function, with additional explanatory variables describ-

ing the position assigned to each item. As such, our experiments will enable us to evaluate the

benefits of utilizing a consideration set-based modeling approach in order to capture location

effects.

6.2 Data description

Features. Each observation in the Expedia data set corresponds to a unique hotel search;

notation-wise, an observation is indexed by t ∈ T , where T is the collection of all observations.

For each observation t ∈ T , the data set provides a rich set of contextual features. First, various

parameters of the search query are recorded, such as length of stay, number of rooms, number

of adults, etc. The features generated from search data are summarized in Table 1.

Tript: Number of days before the beginning of the trip.
Stayt: Trip length (i.e., number of hotel nights).

# Roomst : Number of rooms.
# Adultst : Number of adults.

# Childrent : Number of children.
Occupancyt : Ratio between the number of travelers and the number of rooms.
Is Weekendt : Indicates whether the trip includes a weekend.

Occupancyt × Tript : Interaction term between the occupancy and number of days before the trip.

Table 1: Search features.

Next, we have access to the set of hotel listings St displayed to the user, formed by up to 38

alternatives. For each hotel listing j ∈ St, there are several descriptive features, including gross

booking price, display ranking, average review score, etc. The complete list of features generated

from hotel information is presented in Table 2. It is worth noting that the display ranking feature

is encoded through the binary variables Display Rankingjt(k), indicating whether the ranking

of hotel listing j is within [5(k − 1) + 1, 5k], for every k ∈ [8]. In other words, rankings are

bucketed into intervals formed by 5 consecutive positions.

Lastly, we have access to the hotel listing that was ultimately booked, if any. In the sequel,

this choice outcome is described by the binary variables zj,t ∈ {0, 1} for every j ∈ St. Note that
󰁓

j∈St
zj,t is potentially equal to 0, in case none of the hotel options is booked.

Data pre-processing. Estimating the effects of location on user choice behavior from his-

torical data is generally challenging since display rankings are endogenous: Expedia’s ranking

24

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Pricejt: Nightly hotel rate for option j ∈ St.
Display Rankingjt(k): Indicates whether the rank of hotel j is within [5(k − 1) + 1, 5k], for each

k ∈ [8].
Avg Review Ratingsjt : Average rating for the hotel in client reviews.

Location Scorejt : Location score determined by Expedia.
Avg Hotel Pricej : Average historical price of the hotel on a period preceding the experiment.

Is Promotionjt : Indicator of whether the hotel listing is under promotion.

Table 2: Hotel listing features.

engine uses the contextual information at hand to rank the hotel listings, potentially in a per-

sonalized way. Interestingly, a fraction of the data released by Expedia was generated though

an experiment, where display rankings were fully randomized. As such, this data enables an

almost ideal experimental setting to study the effects of location on users’ choice behavior, as

noted by Ursu (2018). Consequently, in our experimental study, we restrict attention to the

data observations generated under these randomized rankings. The empirical analysis of Ursu

(2018) further shows that price endogeneity is not a concern in this setting, since the control

variables explain nearly 80% of price variability, and thus, conditional on the search parameters,

price is unlikely to be correlated with the utility error term. As such, we perform minimal pre-

processing of the data, only dropping observations where at least one of the features of interest

is missing. In addition, we discovered that for a small number of observations, the booking

prices seem abnormally high and might correspond to corrupted entries. Consequently, we filter

out any observation where the nightly room price is greater than $5000. Finally, we partition

the Expedia searches by country websites, and restrict our attention to the 5 most popular ones

by number of searches. These preprocessing steps yield 5 data sets of varying sizes.

6.3 Model specification

We proceed with a description of the two tested choice models. Hereafter, L-MNL designates

the MNL model with location bias, which serves as a benchmark, while D-MNL is an instance

of our choice model, introduced in Section 1.1 as part of the display optimization problem.

L-MNL model. The deterministic component of the utility generated by each choice alter-

native j ∈ St is expressed as a linear combination of all features appearing in Tables 1 and 2:

uL-MNL
jt (󰂓α) = α0 + α1 · Tript + · · ·+ α8 ·Occupancyt × Tript + α9 · Pricejt (20)

+α10 ·Display Rankingjt(0) + . . .+ α21 · Is Promotionjt ,

where 󰂓α = (α0, . . . ,α21) is a real-valued vector, describing the L-MNL choice model parameters.

Having specified the utility function uL-MNL
jt (󰂓α), the choice probability p󰂓α(t, j) of hotel listing

j ∈ St is given by:

p󰂓α (t, j) =
eu

L-MNL
jt (󰂓α)

1 +
󰁓

i∈St
eu

L-MNL
it (󰂓α)

.

D-MNL model. As further elaborated in Section 1.1, our choice model is fully specified by

a distribution over consideration sets (λ1, . . . ,λn) along with item weights {wi : i ∈ [n]}. In the

25

 Electronic copy available at: https://ssrn.com/abstract=2709652 



D-MNL model, these weights are defined through a utility function similar to (20), using the

search and hotel listing features generated in Section 6.2. More specifically, the utility function

is expressed as a linear combination of all features appearing in Tables 1 and 2, at the exception

of the binary variables {Display Rankingjt(k)}k∈[8] encoding the location effects, namely

uD-MNL
jt

󰀓
󰂓β
󰀔

= β0 + β1 · Tript + · · ·+ β8 ·Occupancyt × Tript + β9 · Pricejt
+β10 ·Avg Review Ratingsjt + . . .+ β13 · Is Promotionjt ,

where 󰂓β = (β0, . . . ,β13) is a parameter vector of the D-MNL model corresponding to the inter-

cept and the coefficients of the features in the utility function. On the other hand, for simplicity,

the probabilities (λ1, . . . ,λn) are treated as exogenous quantities, not related to search and hotel

features. That said, in order to mirror the structure of the L-MNL model specified by equa-

tion (20), we require that λi = 0 for every position i ∈ [n] \ {5, 10, . . . , 40}. Consequently, by

restricting attention to non-zero entries and re-indexing the consideration sets, our model can be

described by a collapsed probability vector 󰂓λ = (λ1, . . . ,λ8). Clearly, this structural restriction

implies that L-MNL and D-MNL have precisely the same number of parameters, since D-MNL

is uniquely specified by the pair (󰂓β,󰂓λ) ∈ R14 × Λ, where Λ = {󰂓λ ∈ R8
+ :

󰁓8
k=1 λk ≤ 1}. With

these parameters at hand, the choice probability p󰂓β,󰂓λ(t, j) of hotel listing j ∈ St is given by:

p󰂓β,󰂓λ (t, j) =

8󰁛

k=1

λk ·
eu

D-MNL
jt (󰂓β)

1 +
󰁓

i∈Sk
t
eu

D-MNL
it (󰂓β)

,

where each consideration set Sk
t is formed by the hotel listings of St displayed in the 5k highest-

ranked positions.

6.4 Parameter estimation

Here, we present the estimation methods utilized to fit the choice models introduced in Sec-

tion 6.3, based on the maximum-likelihood estimation (MLE) principle.

L-MNL model. The L-MNL choice model is fitted to data through standard MLE techniques,

which possess desirable statistical properties (McFadden 1973). That is, the MLE estimator is

computed by solving the following problem:

max
󰂓α∈R22

󰁛

t∈T
zj,t · log (p󰂓α(t, j)) . (21)

It is well-known that the latter can be formulated as a convex optimization problem (McFadden

1973), and thereby, the MLE estimator can be computed efficiently. To this end, we implement

a stochastic gradient-descent algorithm, using the Tensorflow package (Abadi et al. 2016). By

executing our gradient-descent method with 30 random initializations, we pick the parameter

estimate that maximizes the in-sample log-likelihood out of all those computed.

26

 Electronic copy available at: https://ssrn.com/abstract=2709652 



D-MNL model. The D-MNL choice model is fitted to data using MLE-based estimation as

well. The MLE estimator is defined through the following optimization problem:

max
(󰂓β,󰂓λ)∈R14×Λ

󰁛

t∈T
zj,t · log

󰀓
p󰂓β,󰂓λ (t, j)

󰀔
. (22)

Unfortunately, in contrast to (21), this MLE problem is not necessarily convex. In fact, the

D-MNL choice model can be viewed as a special case of a mixture of MNLs, for which the

log-likelihood function generally exhibits multiple local minima. As such, we employ the stan-

dard expectation-maximization (EM) algorithm that computes approximate MLE estimates for

mixtures of MNLs. We refer the reader to the book by Train (2009, Chap. 14.2), where this

EM algorithm is presented in full generality. Starting with initial parameters 󰂓λ(0) and 󰂓β(0), as

well as a prior on the realizations of the consideration sets 󰂓π
(0)
t for each observation t ∈ T , our

EM algorithm iteratively computes parameters of the D-MNL model though posterior updates,

using a convex surrogate of the log-likelihood function. The iterations of the EM algorithm are

formally described in Appendix D. Consequently, for every ℓ ≥ 1, the parameters computed at

the ℓ-th step of the EM algorithm are denoted by (󰂓β(ℓ), 󰂓λ(ℓ)). After computing 30 iterations

of the EM algorithm, we pick the parameter estimate (󰂓β(ℓ),󰂓λ(ℓ)) that maximizes the in-sample

log-likelihood over all ℓ ∈ [30]. This number of iterations was chosen so that the running times

allotted to the estimation of the L-MNL and D-MNL models are nearly equivalent. Indeed, the

main computational bottleneck of the EM-algorithm is a convex optimization problem having

the same structure as (21).

6.5 Numerical results

The results of our experiments on each Expedia site are summarized in Table 3. Specifically,

we report the normalized log-likelihood computed on hold-out data sets, measuring the out-of-

sample predictive ability of the fitted L-MNL and D-MNL models. The first column identifies

the Expedia site. Columns two and three specify the maximum cardinality of the assortment

and the number of observations within each data set. Column four corresponds to the out-of-

sample normalized log-likelihood LL of the fitted L-MNL model. Column five corresponds to

the out-of-sample normalized log-likelihood LD of the fitted D-MNL model. The last column

describes the percentage improvement of the D-MNL model over the L-MNL model, defined

as LD−LL

LL . Each reported entry is the average normalized log-likelihood over 10 trials of our

experiment. Namely, in each trial on a given Expedia site, we perform a 75/25 train/test split,

where the hold-out data set is formed by the last 25% historical observations; next, we estimate

the choice models using the MLE-based methods of Section 6.4, and compute the out-of-sample

normalized log-likelihood of the fitted L-MNL and D-MNL models.

From Table 3, we infer that the D-MNL fits are more accurate than the L-MNL fits on

all Expedia sites. The magnitude of improvement ranges from 0.50% to 1.95%. Moreover, all

measured improvements are statistically significant (p = 0.05). It is worth highlighting that

L-MNL and D-MNL only differentiate themselves through the incorporation of location effects,

based on hotel rankings, which is one out of 15 features explaining the users’ choice preferences.

Further, as explained in Section 6.3, the two choice models have the same number of parameters.

27

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Data set Max. |St| |T | L-MNL D-MNL % Improvement

Expedia Site 1 38 87818 0.808 0.804 0.50%
Expedia Site 2 36 14811 0.731 0.721 1.40%
Expedia Site 3 36 9751 0.730 0.725 0.69%
Expedia Site 4 32 7303 0.693 0.688 0.73%
Expedia Site 5 36 5956 0.573 0.562 1.95%

Table 3: Out-of-sample normalized log-likelihood of fitted L-MNLs and D-MNLs.

In light of these structural similarities, our results provide empirical evidence about the practical

relevance of a consideration set-based choice model, and its fitting potential in online search

applications.

7 Computational Experiments

In this section, we study the practical performance of our algorithm through computational

experiments on randomly generated instances. These include a comparison to a suitable adap-

tation of the product framing algorithm of Gallego et al. (2016) and to several natural heuristic

approaches proposed in previous literature. It is worth pointing out that the worst-case perfor-

mance of these heuristics can be arbitrarily bad, as shown in Appendix A.

7.1 Generative model

Our simulations are run when the number of items n takes one of the values 30 and 300. Next,

the additional instance parameters are randomly generated as follows:

• The MNL preference weights are set as wi = θ · ui, where the ui values are uniformly

sampled in the interval [0, 1], and θ is a scaling parameter. Specifically, we wish to

test different regimes of preference weights, where customers are likely to make purchase

decisions (i.e., the outside option is not extremely strong). By picking θ = 2/n, θ = 8/n,

or θ = 18/n we generate settings where the most patient customer type (with largest

consideration set) makes a purchase with an expected probability of 50%, 80%, and 90%.

• The revenue parameters ri are generated by independent samples of a standard log-normal

distribution, with µ = 0 and σ ∈ {0.3, 1.0}.

• We generate the position capacities c1, . . . , ck by randomly partitioning the array of n po-

sitions into kα = α ·n parts, where α ∈ {1
3 ,

2
3}. Next, the sequence of position probabilities

λ1, . . . ,λk is generated by k independent samples of the [0, 1]-uniform distribution, which

are then normalized to sum up to 1.

As one can empirically observe later on, the scaling parameter θ is the most important

determinant for the practical performance of the different algorithms tested. To build intuition,

when the preference weights have very small values, the MNL expected revenue function S 󰀁→
R(S) is close to being linear in the elements of the assortment S. In particular, the monotone

non-increasing part of the revenue function is expected to be of limited size and significance.

In such settings, simple heuristics typically work well. On the contrary, when the preference

28

 Electronic copy available at: https://ssrn.com/abstract=2709652 



weights get larger, the non-linearity of the expected revenue and the unimodal behavior of the

revenue function prevail, and in turn, the performance of simple heuristics generally degrades.

7.2 Tested heuristics

The empirical performance of our algorithm is compared against four natural benchmarks: a

local search procedure, a discrete-greedy algorithm, a heuristic based on simple priority rules,

and an adaptation of the constant-factor approximation NEST+ for the product framing prob-

lem, devised by Gallego et al. (2016). Given the experiments conducted in their paper, NEST+

can be viewed as being state-of-the-art from a practical perspective. We proceed by explaining

how each of these procedures is defined, with additional implementation details.

Local search (LS). This algorithm consists in sequentially improving the expected revenue,

where at each step the current positions of two items are swapped, until reaching a local max-

imum. We start with an initial positions-to-items assignment, and iteratively implement the

best pairwise swap between items, i.e., one that generates the largest incremental increase in

the expected revenue.

Specifically, we define S as the collection of all pairs of distinct positions, i.e., S = {(i, j) :
1 ≤ i < j ≤ n}. Letting A(k) be the assignment reached at the end of step k, a feasible

swap represents a pair of positions (i, j) ∈ S that are exchanged to produce the assignment

A(k)
i↔j , where A(k)

i↔j(i) = A(k)(j) and A(k)
i↔j(j) = A(k)(i), while all other positions remain un-

changed. With this definition, we proceed to step k + 1 with the assignment that maximizes

R(A(k)
i↔j). In order to balance between performance and running time, the algorithm termi-

nates when the incremental increase in the expected revenue falls below a factor of 0.1%, i.e.,

R(A(k+1))/R(A(k)) ≤ 1.001. Finally, the initial positions-to-items assignment A(0) is generated

by picking a random permutation over the items.

Discrete-greedy (DG). The second approach we implement is a greedy heuristic where items

are assigned iteratively over the positions 1, . . . , n, by selecting at each step k an unassigned

item that maximizes the expected revenue due to the assortment A[k]. That is, A[k] is formed

by assigning position k to the item i ∈ [n] \ A[k − 1] that maximizes R(A[k − 1] ∪ {i}).

Priority-based heuristics. We examine two heuristics based on common-sense priority rules:

• PH1: The items are ranked by decreasing ρi = riwi quantities.

• PH2: The items are ranked by decreasing ri quantities.

As argued by Gallego et al. (2016), these heuristics can be viewed as a reasonable proxy for the

priority rules commonly used in the industry to sort search content.

The NEST+ algorithm. Finally, we adapt the approximation algorithm devised by Gallego

et al. (2016) for the product framing problem, where positions can be left vacant. Specifically, we

implement their improved algorithm, NEST+, where the basic 6/π2-approximation is coupled

with a greedy procedure that fills vacant positions. Due to the latter feature, this algorithm

29

 Electronic copy available at: https://ssrn.com/abstract=2709652 



naturally extends to our setting, where all positions have to be filled. Consequently, the resulting

algorithm proceeds as follows: Initially, for every k ∈ [n], we solve the capacitated assortment

optimization problem with capacity k to compute the assortment S∗
k using the parametric

search approach of Rusmevichientong et al. (2010). Next, we partially construct the assignment

Ak : [k] 󰀁→ S∗
k , where items in S∗

k are ranked by their contribution to the expected revenue

R(S∗
k). The remaining positions [n] \ [k] are greedily filled with items in [n] \ S∗

k , such that the

next item to be picked maximizes the expected revenue of the resulting assortment. Finally, to

arrive at a single assignment, we choose the one that maximizes R(Ak) over all k ∈ [0, n]. It is

worth noting that the performance of NEST+ can only be better than that of the discrete-greedy

heuristic, as the latter corresponds to the special case of choosing k = 0.

Relative optimality gap. Due to the large-scale instances we consider (up to n = 300), an

optimal solution cannot be computed in practice through exhaustive enumeration, where all n!

possible assignments are examined. In fact, this approach results in exorbitant running times,

which exceed one hour even for n = 30. Therefore, it is not possible to directly compute the

optimal expected revenue for each of the instances tested. To compare our algorithm against

the above-mentioned heuristics, we make use of the best solution available across all heuristics

to compute their relative optimality gaps. For example, suppose that the local search heuristic

returns an assignment whose expected revenue is 2, our algorithm returns an assignment with

revenue 2.5, while all other heuristics generate an expected revenue of 1.8. Then, we report

an optimality gap of 20% for the local search heuristic, 0% for our algorithm, and 28% for the

remaining heuristics.

7.3 Implementation of our approximation scheme

Modified algorithm. In order to achieve better computational performance, our dynamic

programming formulation (see Section 4) is implemented in slightly modified form. In light

of Theorem 1.1, the performance of our algorithm is governed by the error parameter 󰂃 > 0.

Small values of 󰂃 reduce the error incurred by initially rounding the weights and ρ-quantities,

following the instance alterations of Section 2.1. At the same time, the parameter 󰂃 governs the

number of distinct approximate assortments that describe the states of the dynamic program.

As explained in Appendix C.1, these assortments are constructed through efficient enumeration,

by considering items in K consecutive weight classes and ρ-classes, where K = ⌈log(1+󰂃2)(
n
󰂃2
)⌉.

However, for 󰂃 = 0.5, we have K ≈ 21 when n = 30, and K ≈ 31 when n = 300. As such, for

small values of 󰂃, an enumeration over all approximate assortments is not feasible in practice,

as we target a running time in the order of a few minutes.

Consequently, we modify our algorithm by decoupling the parameters K and 󰂃. That is,

in the modified algorithm, the relationship K = ⌈log(1+󰂃2)(
n
󰂃2
)⌉ is no longer satisfied. Specif-

ically, we pick 󰂃 = 0.4, while K = 5 for small-scale instances (n = 30), and K = 2 for

large-scale instances (n = 300); the choice of these specific numerical values will be justified

in the sequel. Intuitively, this decoupled design allows us to combine a compact enumera-

tion over all approximate assortments, governed by the parameter K, with fine-grained initial

rounding procedures, controlled by the parameter 󰂃. The performance guarantee established by

30

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Theorem 1.1 no longer holds for the modified algorithm, since our analysis critically relies on

having K = ⌈log(1+󰂃2)(
n
󰂃2
)⌉. That said, this modification will enable excellent trade-offs between

performance and speed.

Parameter tuning. The specific values for K and 󰂃 were tuned as follows. On small-scale in-

stances, we have evaluated the loss in optimality incurred by the transformations of Section 2.2,

through exhaustive enumeration over all possible position-to-item assignments. Empirically, we

found that 󰂃 = 0.4 is the largest value of 󰂃 for which the optimality gap is consistently smaller

than 1% across all generative settings used in our experiments. Next, having specified 󰂃 = 0.4,

the choice of K was solely governed by running time considerations. Specifically, the precise

value of K was picked so that the running time is in the order of a few seconds. It is worth

remarking that a similar tuning procedure can be adopted in other empirical settings.

7.4 Results

The experiments described above were conducted on a standard desktop with 2.8GHz Intel

Core i5 processor and 32GB of RAM. The algorithms were implemented using the Python

programming language. It is worth mentioning that improved computational performance can

be achieved using low-level programming languages, such as C/C++. In Tables 4 and 5, ADP

is our approximate dynamic program, LS designates the local search procedure, NEST+ is the

approximation algorithm of Gallego et al. (2016), DG refers to the discrete-greedy algorithm,

PH1 is the ρ-based priority priority heuristic, and PH2 is the price-based priority heuristic.

Table 4 provides statistics regarding relative optimality ratios, while Table 5 presents those

related to the computational aspects and running times associated with our implementations.

Overall, the approximate dynamic program and the local search heuristic emerge as the

strongest algorithms revenue-wise. Interestingly, the practical performance of the local search

approach is somewhat surprising, given the Ω(n)-bound on its approximation ratio, established

in Appendix A. On average, our algorithm outperforms the local search heuristic by 1.5%, and

by up to 3.3%, over the instances tested.

While NEST+ exhibits near-optimal performance for small θ values, its incurred gap in-

creases with θ, reaching 12% when θ = 18/n. The latter regime corresponds to the case where

the largest consideration sets entail a purchase decision with an expected probability of 90%.

This observation relates to the differences between the display optimization problem and the

product framing model. When θ is small, the outside option is influential, thus the monotone

non-decreasing part occupies almost all array positions. In this case, only the tail items have

to be filled greedily. On the contrary, when the outside option is weak, a large number of

empty positions have to be filled. Similarly, the discrete-greedy approach, whose performance

is always dominated by that of NEST+, turns out to be less effective in this regime. Moreover,

we observe that a larger variability of prices (σ = 1.0) is detrimental to the algorithms NEST+,

DG and PH1.

On average, the priority heuristics PH1 and PH2 have optimality gaps of about 8.5%

and 11.5%, respectively. These results suggest that there is significant headroom when using

common-sense practices, and that overlooking choice substitution and consideration set effects

31

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Parameters Average optimality gaps (%)

n K σ θ k # ADP LS NEST+ DG PH1 PH2

30 5 0.3 2/n 0.33 50 < 10−2 0.16 0.18 3.10 0.97 26.76
30 5 0.3 2/n 0.66 50 < 10−2 0.27 0.10 2.05 1.07 22.80
30 5 1.0 2/n 0.33 50 < 10−2 0.15 1.03 26.81 2.14 7.95
30 5 1.0 2/n 0.66 50 < 10−2 0.24 0.89 15.71 2.44 6.30
30 5 0.3 8/n 0.33 50 0.01 0.15 1.05 8.89 7.51 15.41
30 5 0.3 8/n 0.66 50 0.02 0.20 0.78 7.34 7.83 13.86
30 5 1.0 8/n 0.33 50 0.02 0.01 4.71 39.43 10.12 6.58
30 5 1.0 8/n 0.66 50 0.02 0.21 2.79 28.85 9.55 4.08
30 5 0.3 18/n 0.33 50 0.02 0.12 1.23 13.16 11.94 11.90
30 5 0.3 18/n 0.66 50 0.02 0.20 1.02 10.69 11.69 13.60
30 5 1.0 18/n 0.33 50 < 10−2 0.09 5.91 44.99 16.06 4.85
30 5 1.0 18/n 0.66 50 < 10−2 0.20 4.96 33.67 16.31 4.87

300 2 0.3 2/n 0.33 20 < 10−2 2.80 0.35 2.45 0.99 25.77
300 2 0.3 2/n 0.66 20 < 10−2 2.84 0.29 1.92 0.94 26.28
300 2 1.0 2/n 0.33 20 < 10−2 2.59 2.34 29.36 2.77 6.57
300 2 1.0 2/n 0.66 20 < 10−2 2.70 1.94 19.43 2.93 7.46
300 2 0.3 8/n 0.33 20 < 10−2 3.19 1.21 9.93 7.81 15.72
300 2 0.3 8/n 0.66 20 < 10−2 3.03 0.91 8.83 7.93 16.30
300 2 1.0 8/n 0.33 20 < 10−2 2.38 8.84 44.98 11.95 4.46
300 2 1.0 8/n 0.66 20 < 10−2 2.38 6.34 32.07 11.14 4.03
300 2 0.3 18/n 0.33 20 < 10−2 3.16 2.05 15.00 12.32 11.88
300 2 0.3 18/n 0.66 20 < 10−2 3.32 1.51 12.35 12.66 11.40
300 2 1.0 18/n 0.33 20 < 10−2 2.41 12.51 52.87 16.52 3.54
300 2 1.0 18/n 0.66 20 < 10−2 2.46 9.06 37.89 17.55 4.34

Table 4: Revenue performance of the algorithms tested

32

 Electronic copy available at: https://ssrn.com/abstract=2709652 



can be detrimental to revenue in realistic regimes of parameters. Interestingly, the two priority

rules have a complementary performance that is highly correlated with the scaling factor θ.

When preference weights are small, the function that maps any assortment to its expected rev-

enue, S 󰀁→ R(S), becomes approximately additive, in which case it is well-approximated by the

sum of ρ-quantities. In this regime, the monotone decreasing part is expected to be of limited

length, making the ρ-based priority rule close to optimal. On the contrary, when preference

weights are large, the non-linearity effects and the monotone non-decreasing part are prevalent.

In such settings, ranking by price is a more effective priority rule.

Parameters Average running time (sec.)

n K σ θ k # ADP LS NEST+ DG PH1 PH2

30 5 0.3 2/n 0.33 50 6.83 0.06 0.13 0.00 0.00 0.00
30 5 0.3 2/n 0.66 50 6.87 0.06 0.12 0.00 0.00 0.00
30 5 0.3 8/n 0.33 50 6.09 0.06 0.20 0.00 0.00 0.00
30 5 0.3 8/n 0.66 50 6.65 0.06 0.19 0.00 0.00 0.00
30 5 0.3 18/n 0.33 50 6.49 0.06 0.22 0.00 0.00 0.00
30 5 0.3 18/n 0.66 50 7.23 0.07 0.23 0.00 0.00 0.00

300 2 0.3 2/n 0.33 20 5.05 27.71 158.04 0.50 0.00 0.00
300 2 0.3 2/n 0.66 20 5.02 28.22 153.85 0.51 0.00 0.00
300 2 0.3 8/n 0.33 20 4.99 22.52 372.26 0.50 0.00 0.00
300 2 0.3 8/n 0.66 20 5.02 24.85 362.24 0.50 0.00 0.00
300 2 0.3 18/n 0.33 20 4.99 28.22 449.43 0.50 0.00 0.00
300 2 0.3 18/n 0.66 20 5.00 26.92 459.77 0.50 0.00 0.00

Table 5: Running times

We conclude by turning our attention to running times, which are reported in Table 5 for

σ = 0.3. To avoid redundancy, we omit the figures for σ = 1.0, which are nearly identical. These

results support the practicality of the two configurations proposed for executing our modified

algorithm, ADP. When the number of items is small (n = 30), we achieve near-optimal revenue

performance with a computationally intensive state space description, requiring K = 5 weight

classes. In this context, our approximation scheme is more computationally intensive than all

other algorithms. In contrast, when the number of items is large (n = 300), our algorithm

provides an excellent revenue vs. speed tradeoff, with only K = 2 item classes. The reported

running times, in the order of a few seconds, suggest that our implemented algorithm can

be readily utilized in offline applications, such as shelf-space allocation for brick-and-mortar

retailing. Implementation by online platforms, where assortments are computed and displayed

to users within milliseconds, requires further engineering and algorithmic enhancements, which

are left for future research.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M,

et al. (2016) Tensorflow: A system for large-scale machine learning. 12th Symposium on Operating

Systems Design and Implementation, 265–283.

Abeliuk A, Berbeglia G, Cebrian M, Van Hentenryck P (2016) Assortment optimization under a multi-

nomial logit model with position bias and social influence. 4OR 14(1):57–75.

33

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Agarwal A, Hosanagar K, Smith MD (2011) Location, location, location: An analysis of profitability of

position in online advertising markets. Journal of Marketing Research 48(6):1057–1073.

Aouad A, Farias V, Levi R (2015) Assortment optimization under consider-then-rank choice models,

working paper, available as SSRN report #2618823.

Ben-Akiva ME, Lerman SR (1985) Discrete choice analysis: Theory and application to travel demand

(MIT press).

Bettman JR, Luce MF, Payne JW (1998) Constructive consumer choice processes. Journal of Consumer

Research 25(3):187–217.

Blanchet JH, Gallego G, Goyal V (2016) A markov chain approximation to choice modeling. Operations

Research 64(4):886–905.

Breugelmans E, Campo K, Gijsbrechts E (2007) Shelf sequence and proximity effects on online grocery

choices. Marketing Letters 18(1-2):117–133.

Bront JJM, Méndez-Diaz I, Vulcano G (2009) A column generation algorithm for choice-based network

revenue management. Operations Research 57(3):769–784.

Chandon P, Hutchinson JW, Bradlow ET, Young SH (2009) Does in-store marketing work? Effects of

the number and position of shelf facings on brand attention and evaluation at the point of purchase.

Journal of Marketing 73(6):1–17.

Chandukala SR, Kim J, Allenby GM, Otter T (2008) Choice models in marketing: Economic Assump-

tions, Challenges and Trends (Now Publishers Inc).

Davis JM, Gallego G, Topaloglu H (2013) Assortment planning under the multinomial logit model with

totally unimodular constraint structures. Working paper.

Davis JM, Gallego G, Topaloglu H (2014) Assortment optimization under variants of the nested logit

model. Operations Research 62(2):250–273.

Davis JM, Topaloglu H, Williamson DP (2015) Assortment optimization over time. Operations Research

Letters 43:608–611.

Désir A, Goyal V, Zhang J (2014) Near-optimal algorithms for capacity constrained assortment opti-

mization. Working paper. Available online as SSRN report #2543309.

Dreze X, Hoch SJ, Purk ME (1995) Shelf management and space elasticity. Journal of Retailing

70(4):301–326.

Farias V, Jagabathula S, Shah D (2013) A non-parametric approach to modeling choice with limited

data. Management Science 59(2):305–322.

Feldman J, Topaloglu H (2017) Capacitated assortment optimization under the multinomial logit model

with nested consideration sets. Operations Research 66(2):380–391.

Feldman J, Zhang D, Liu X, Zhang N (2018) Taking assortment optimization from theory to practice:

Evidence from large field experiments on Alibaba. Working paper. Available online as SSRN report

#3232059.

Feldman JB, Topaloglu H (2015) Bounding optimal expected revenues for assortment optimization under

mixtures of multinomial logits. Production and Operations Management 24(10):1598–1620.

Ford LR (1957) Solution of a ranking problem from binary comparisons. American Mathematical Monthly

64(8):28–33.

Frank RE, Massy WF (1970) Shelf position and space effects on sales. Journal of Marketing Research

7(1):59–66.

Gallego G, Li A, Truong VA, Wang X (2016) Approximation algorithms for product framing and pricing.

Operations Research Forthcoming.

34

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Ghose A, Ipeirotis PG, Li B (2014) Examining the impact of ranking on consumer behavior and search

engine revenue. Management Science 60(7):1632–1654.

Ghose A, Yang S (2009) An empirical analysis of search engine advertising: Sponsored search in electronic

markets. Management Science 55(10):1605–1622.

Grover R, Vriens M (2006) The Handbook of Marketing Research: Uses, Misuses, and Future Advances

(Sage Publications).

Guadagni PM, Little JD (1983) A logit model of brand choice calibrated on scanner data. Marketing

Science 2(3):203–238.

Hauser JR (2014) Consideration-set heuristics. Journal of Business Research 67(8):1688–1699.

Hauser JR, Wernerfelt B (1990) An evaluation cost model of consideration sets. Journal of Consumer

Research 16(4):393–408.

Hausman J, McFadden D (1984) Specification tests for the multinomial logit model. Econometrica:

Journal of the Econometric Society 52(5):1219–1240.

Jerath K, Ma L, Park YH, Srinivasan K (2011) A “position paradox” in sponsored search auctions.

Marketing Science 30(4):612–627.

Jeziorski P, Segal I (2015) What makes them click: Empirical analysis of consumer demand for search

advertising. American Economic Journal: Microeconomics 7(3):24–53.

Kempe D, Mahdian M (2008) A cascade model for externalities in sponsored search. Proceedings of the

4th International Conference on Web and Internet Economics, 585–596.

Li G, Rusmevichientong P, Topaloglu H (2015) The d-level nested logit model: Assortment and price

optimization problems. Operations Research 63(2):325–342.

Luce RD (1959) Individual Choice Behavior a Theoretical Analysis (John Wiley & Sons).

McFadden D (1973) Conditional logit analysis of qualitative choice behavior. Frontiers in Econometrics

105–142.

McFadden D (1980) Econometric models for probabilistic choice among products. Journal of Business

53(3):S13–S29.

McFadden D, Tye WB, Train K (1977) An application of diagnostic tests for the independence from

irrelevant alternatives property of the multinomial logit model, Institute of Transportation Studies,

University of California.

Mehta N, Rajiv S, Srinivasan K (2003) Price uncertainty and consumer search: A structural model of

consideration set formation. Marketing Science 22(1):58–84.

Méndez-Diaz I, Bront JJM, Vulcano G, Zabala P (2014) A branch-and-cut algorithm for the latent-class

logit assortment problem. Discrete Applied Mathematics 164(1):246–263.

Narayanan S, Kalyanam K (2015) Position effects in search advertising and their moderators: A regres-

sion discontinuity approach. Marketing Science 34(3):388–407.

Negahban S, Oh S, Shah D (2012) Iterative ranking from pair-wise comparisons. Advances in Neural

Information Processing Systems, 2474–2482.

Payne JW (1976) Task complexity and contingent processing in decision making: An information search

and protocol analysis. Organizational Behavior and Human Performance 16(2):366–387.

Plackett RL (1975) The analysis of permutations. Applied Statistics 24(2):193–202.

Rusmevichientong P, Shen ZJM, Shmoys DB (2010) Dynamic assortment optimization with a multino-

mial logit choice model and capacity constraint. Operations Research 58(6):1666–1680.

Rusmevichientong P, Shmoys D, Tong C, Topaloglu H (2014) Assortment optimization under the

multinomial logit model with random choice parameters. Production and Operations Management

23(11):2023–2039.

35

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Rusmevichientong P, Topaloglu H (2012) Robust assortment optimization in revenue management under

the multinomial logit choice model. Operations Research 60(4):865–882.

Shocker AD, Ben-Akiva M, Boccara B, Nedungadi P (1991) Consideration set influences on consumer

decision-making and choice: Issues, models, and suggestions. Marketing Letters 2(3):181–197.

Silk AJ, Urban GL (1978) Pre-test-market evaluation of new packaged goods: A model and measurement

methodology. Journal of Marketing Research 15(2):171–191.

Talluri K, Van Ryzin G (2004) Revenue management under a general discrete choice model of consumer

behavior. Management Science 50(1):15–33.

Train KE (2009) Discrete choice methods with simulation (Cambridge University Press).

Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice. Science

211(4481):453–458.

Tversky A, Kahneman D (1986) Rational choice and the framing of decisions. Journal of Business

59(4.2):S251–S278.

Ursu RM (2018) The power of rankings: Quantifying the effect of rankings on online consumer search

and purchase decisions. Marketing Science 37(4):530–552.

Wu J, Rangaswamy A (2003) A fuzzy set model of search and consideration with an application to an

online market. Marketing Science 22(3):411–434.

Xiong C, Wang T, Ding W, Shen Y, Liu TY (2012) Relational click prediction for sponsored search.

Proceedings of the 5th ACM International Conference on Web Search and Data Mining, 493–502.

Xu W, Manavoglu E, Cantu-Paz E (2010) Temporal click model for sponsored search. Proceedings of the

33rd International ACM SIGIR Conference on Research and Development in Information Retrieval,

106–113.

Yang S, Ghose A (2010) Analyzing the relationship between organic and sponsored search advertising:

Positive, negative, or zero interdependence? Marketing Science 29(4):602–623.

A Counter-Examples

A.1 The greedy algorithm

A natural greedy heuristic to potentially obtain near-optimal solutions for the display optimiza-

tion problem consists in assigning items iteratively over the positions 1, . . . , n, by selecting at

each step k an unassigned item that maximizes the expected revenue Rk(A) due to the assort-

ment A[k]. As the next claim shows, the performance guarantee of this algorithm could be

arbitrarily bad. For ease of presentation, we make use of the simplified notation introduced in

Section 2.

Lemma A.1. There are instances of the display optimization problem for which the greedy

algorithm returns an assignment Agr such that R(Agr) = O( 1n) · R(A∗).

Proof. Consider an instance where item 1 has revenue r1 =
1
n and preference weight w1 = n2,

while any other item i ∈ [2, n] has ri = 1 and wi =
1
n . In addition, the position probabilities

are uniform, i.e., λ1 = · · · = λn = 1
n . By observing that

r1w1

1 + w1
=

n

1 + n2
>

1

1 + n
=

r2w2

1 + w2
,

36

 Electronic copy available at: https://ssrn.com/abstract=2709652 



it follows that Agr assigns item 1 to the first position, and then items 2, . . . , n to the remaining

positions in subsequent steps. Therefore, for every position k ∈ [n],

Rk (Agr) =
󰁛

i∈Agr[k]

riwi

1 + w(Agr[k])
=

n+ (k − 1)/n

1 + n2 + (k − 1)/n
≤ 2

n
,

implying that R(Agr) ≤ 2/n. On the other hand, consider the assignment A, where item 1 is

assigned to position n, while all other items are placed in 1, . . . , n − 1. In this case, for every

position k ∈ [⌈n/2⌉, n− 1],

Rk (A) =
󰁛

i∈A[k]

riwi

1 + w(A[k])
=

k/n

1 + k/n
≥ 1

4
,

meaning that R(A∗) ≥ R(A) = Ω(1).

A.2 Local search

We now consider a single-swap heuristic, that consists in exchanging the positions of two items

in a given assignment. Starting from an arbitrary initial assignment, this algorithm swaps

between the positions of two items as long as this operation improves the expected revenue,

until hitting a prespecified halting condition. In order to attain a polynomial running time, a

typical halting condition terminates when any single-swap improves the expected revenue by a

factor of at most 1 + 1
nα , for some fixed α > 0, in which case the current assignment is called

α-locally-optimal. The next lemma asserts that assignments of this nature can be arbitrarily

bad in comparison to the optimal ones.

Lemma A.2. For any fixed α > 0, there is an instance of the display optimization problem and

an α-locally-optimal assignment Ass(α) such that R(Ass(α)) = O( 1n) · R(A∗).

Proof. Consider an instance formed by two heavy items and n − 2 light items. Each heavy

item i ∈ {1, 2} has revenue ri = 1
n and preference weight wi = n2α+1, while the remaining

light items i ∈ [3, n] have ri = 1 and wi = 1
n . The position probabilities are uniform, i.e.,

λ1 = · · · = λn = 1
n .

Now, let us focus on the assignment Ass(α) in which Ass(α)(k) = k for every position k ∈ [n].

In order to conclude the proof, we establish the next two claims.

Claim A.3. R(Ass(α)) = O( 1n) · R(A∗).

Claim A.4. The assignment Ass(α) is α-locally-optimal.

Proof of Claim A.3.. Due to placing the heavy items at positions 1 and 2, for every k ∈ [2, n],

Rk

󰀃
Ass(α)

󰀄
=

󰁛

i∈Ass(α)[k]

riwi

1 + w(Ass(α)[k])
=

2n2α + (k − 2)/n

1 + 2n2α+1 + (k − 2)/n
≤ 3

2n
,

37

 Electronic copy available at: https://ssrn.com/abstract=2709652 



while R1(Ass(α)) ≤ 1
n , and therefore, R(Ass(α)) = O( 1n). However, with respect to the reverse

assignment
←−A ss(α), where

←−A ss(α)(k) = n− k, for every position k ∈ [⌈n/2⌉, n− 2],

Rk

󰀓←−A ss(α)

󰀔
=

󰁛

i∈←−Ass(α)[k]

riwi

1 + w(
←−A ss(α)[k])

=
k/n

1 + k/n
≥ 1

4
,

implying that R(A∗) ≥ R(
←−A ss(α)) = Ω(1).

Proof of Claim A.4.. We argue that any improving single-swap with respect to the assign-

ment Ass(α) increases the expected revenue by a factor of 1 +O( 1
n2α−1 ). For this purpose, note

that an improving single-swap necessarily involves a position k0 ∈ {1, 2}, occupied by a heavy

item, and a position k1 ∈ [3, n], which holds a light item; for any other single-swap, the expected

revenue clearly remains unchanged. Let A denote the assignment resulting from swapping po-

sitions k0 and k1, as described earlier. For any position k ≥ k1, we have Rk(A) = Rk(Ass(α)),

since A[k] = Ass(α)[k]. In addition,

r1w1

1 + w1
=

n2α

1 + n2α+1
>

1

1 + n
=

rk1wk1

1 + wk1

,

which immediately implies that R1(Ass(α)) ≥ R1(A). Finally, for every remaining position

k ∈ [2, k1 − 1],

Rk(A)−Rk(Ass(α)) =
n2α + (k − 1)/n

1 + n2α+1 + (k − 1)/n
− 2n2α + (k − 2)/n

1 + 2n2α+1 + (k − 2)/n
≤ 3

n2α+1
.

By combining the above observations, we have

R(A)−R(Ass(α)) ≤
k1 − 2

n
· 3

n2α+1
≤ 3

n2α+1
,

meaning that the ratio between the expected revenues of A and Ass(α) is bounded by

R(A)

R(Ass(α))
≤ 1 +

3/n2α+1

R1(Ass(α))/n
= 1 +O

󰀕
1

n2α−1

󰀖
.

B Instance Transformations

In what follows, we show that any instance of the display optimization problem can be modified

to satisfy Assumptions 2.1, 2.2, and 2.3, with negligible effects on optimality. Our approach

proceeds in three steps: We will first modify the preference weights, then the item prices, and

finally the distribution over consideration sets.

B.1 Structural alterations

Step 1: Modified weights. As a preliminary step, we transform the item weights to obtain

more structured instances. Specifically, for items with wi ≥ δ
n , we round up wi to the nearest

38

 Electronic copy available at: https://ssrn.com/abstract=2709652 



power of 1+ δ multiplied by δ
n , i.e., wi is rounded to δ

n · (1+ δ)τ , where τ is the minimal integer

satisfying δ
n · (1+ δ)τ ≥ wi. For items with wi <

δ
n , we simply round up wi to

δ
n . In both cases,

the rounded weight of item i is denoted by w̃i.

Step 2: Modified ρ-quantities and revenues. Furthermore, we would like the resulting

ρ-quantities to approximate the initial quantities within a factor of 1+ δ, i.e., to make sure that

ρ̃i satisfies ρ̃i ≤ ρi ≤ ρ̃i · (1+δ), where ρ̃i = r̃iw̃i for a modified revenue quantity r̃i. To this end,

we first determine ρ̃i by rounding down ρi to the nearest power of 1+ δ multiplied by ρmin, i.e.,

ρi is rounded to ρmin · (1 + δ)τ , where τ is the maximum integer satisfying ρi ≥ ρmin · (1 + δ)τ .

Next, in order to be compatible with the new weights and ρ-quantities, we redefine the item

revenues accordingly, by picking r̃i = ρ̃i/w̃i. Consequently, for every assortment S ⊆ [n], the

expected revenue R̃(S) is defined with respect to the modified weights w̃1, . . . , w̃n and prices

r̃1, . . . , r̃n, that is, R̃(S) =
󰁓

i∈S
r̃iw̃i

1+w̃(S) .

Step 3: Modified distribution. Finally, we modify the probability distribution over po-

sitions by defining λ̃k = λk + δ
n · rmin·wmin

(
󰁓n

i=1 ri)·(1+w([n]))
for every position k ∈ [n], where rmin =

mini∈[n] ri and wmin = mini∈[n]wi. Observe that, following this transformation, (λ̃1, . . . , λ̃n) is

not longer a probability distribution, since
󰁓

k∈[n] λ̃k > 1. These parameters come into play as

positive weights in the modified objective R̃(A) =
󰁓n

k=1 λ̃k · R̃(A[1, k]).

B.2 Analysis

All together, we have just defined a modified instance that satisfies Assumptions 2.1-2.3, where

the new objective is that of maximizing R̃(A). The next claim shows that this transformation

incurs a negligible loss in optimality.

Lemma B.1. Let Ã be an α-approximate assignment for the modified instance. Then, R(Ã) ≥
(1− 3δ) · α · R(A∗).

Proof. To prove this claim, it suffices to show that, for any assignment A,

(1− 2δ) · R(A) ≤ R̃(A) ≤ (1 + δ) · R(A) . (23)

To establish the first inequality, observe that:

R̃(A) =

n󰁛

k=1

λ̃k · R̃ (A[1, k])

≥
n󰁛

k=1

λk · R̃ (A[1, k])

=

n󰁛

k=1

λk ·
ρ̃(A[1, k])

1 + w̃(A[1, k])

≥ 1− δ

1 + δ
·

n󰁛

k=1

λk ·
ρ(A[1, k])

1 + w(A[1, k])

≥ (1− δ)2 · R(A) ,

39

 Electronic copy available at: https://ssrn.com/abstract=2709652 



where the first inequality holds since λ̃k ≥ λk and the second inequality is due to having

w̃(A[1, k]) =
󰁛

i∈A[1,k]∩I
w̃i+

󰁛

i∈A[1,k]∩Ī

w̃i ≤ |A[1, k] ∩ I|· δ
n
+(1+δ)·

󰁛

i∈A[1,k]∩Ī

wi ≤ δ+(1+δ)·w (A[1, k]) ,

where I = {i ∈ [n] : wi ≤ δ
n}, as well as

ρ̃(A[1, k]) =
󰁛

i∈A[1,k]∩I
ρ̃i +

󰁛

i∈A[1,k]∩Ī

ρ̃i ≥ (1− δ) ·
󰁛

i∈A[1,k]∩Ī

ρi ≥ (1− δ) · ρ (A[1, k]) ,

where the second inequality proceeds from our definition of ρ̃i in Step 2 of Section B.1. To

establish the second inequality in (23), observe that:

R̃(A) =

n󰁛

k=1

λ̃k · R̃ (A[1, k])

=

n󰁛

k=1

λk · R̃ (A[1, k]) +
rminwmin

1 + w([n])
·

n󰁛

k=1

δ

n
· R̃ (A[1, k])󰁓n

i=1 ri

≤
n󰁛

k=1

λk ·R (A[1, k]) + δ · rminwmin

1 + w([n])

≤ (1 + δ) · R(A) ,

where the first inequality holds since R̃(A[1, k]) ≤ R(A[1, k]), as w̃i ≥ wi and ρi ≥ ρ̃i for every

item i ∈ [n], and the second inequality holds since
󰁓n

i=1 ri is an upper bound on the expected

revenue of any assortment, in particular,
󰁓n

i=1 ri ≥ R(A[1, k]) for every k ∈ [n]. The third

inequality proceeds is obtained by noting that

R(A) =

n󰁛

k=1

λk ·R(A[1, k]) ≥ min
k

R(A[1, k]) ≥ rminwmin

1 + w([n])
.

C Additional Proofs

C.1 Proof of Lemma 2.5

In what follows, we explicitly construct the approximate assortments U− and U+ through a

combination of rounding procedures. Next, we argue that there exist O(|I|O( 1
δ2

·log 1
δ
)) distinct

approximate assortments that are generated through such procedures.

Additional notation. For an integer ℓ ≥ 0, we designate by Wℓ the set of items with a

preference weight of δ
n · (1 + δ)ℓ; the collection Wℓ will be referred to as weight class ℓ. By

Assumption 2.1, the sequence of weight classes W0,W1, . . . forms a partition of the collection

of items [n]. We denote by Wℓ,m the union of all items over the weight classes ℓ, ℓ + 1, . . . ,m.

Additionally, for every integer ℓ ≥ 0 and k ∈ [0, |Wℓ|], we let Wℓ[k] be the subset of Wℓ formed

by the k items having the largest ρ-quantities. Similarly, for every integer ℓ ≥ 0, we define the

ρ-class Qℓ as the set of items with a ρ-quantity of ρmin ·(1+δ)ℓ. We denote by Qℓ,m the union of

40

 Electronic copy available at: https://ssrn.com/abstract=2709652 



all items over ρ-classes ℓ, ℓ+ 1, . . . ,m. Finally, for every pair of integers ℓ ≥ 0 and k ∈ [0, |Qℓ|],
we let Qℓ[k] be the subset of Qℓ formed by the k items having the smallest weights.

With these new notation at hand, we revisit the priority rules defined in Section 2.1. Specif-

ically, an assortment U ⊆ [n] satisfies the priority rules 1 and 2 if and only if, for every ℓ ≥ 0,

we have U ∩ Wℓ = Wℓ[nℓ] and U ∩ Qℓ = Qℓ[mℓ], where nℓ = |U ∩ Wℓ| and mℓ = |U ∩ Qℓ|.
In other words, within each weight class, the assortment U picks the top items by decreasing

ρ-quantities. Within each ρ-class, the assortment U picks the top items by increasing weights.

Outline. At a high-level, our approach for approximating U is to construct assortments U+

and U− that select nearly the same number of top items in each weight class and ρ-class, namely,

|U+∩Wℓ| and |U−∩Wℓ| are nearly equal to nℓ, and similarly, |U+∩Qℓ| and |U−∩Qℓ| are nearly
equal to mℓ. However, imposing these requirements for all ℓ ≥ 0 is impractical for generating

a polynomially-sized collection of approximate assortments. Hence, a crucial ingredient of our

procedure is to restrict the range of classes considered. Specifically, we will show below that

it is sufficient to consider only K = ⌈log1+δ(
n
δ )⌉ distinct weight classes Wℓ and ρ-classes Qℓ,

allowing us to generate only polynomially-many approximate assortments.

In what follows, from a terminology perspective, a “guess” refers to a certain value, related

to the assortment U , which is assumed to be available in order to execute our approximation

procedure. Computationally-speaking, these values are obtained through an exhaustive enumer-

ation, where our approximation procedure is executed with each possible guess. Ultimately, we

pick the assortments U+ and U− that satisfy all desired properties. By bounding the number of

possible distinct guesses, we will argue that this guessing procedure indeed runs in polynomial

time.

C.1.1 Construction of U+.

In order to construct U+, we separately define two supersets of U , respectively denoted by

S1(δ,U) and S2(δ,U). The first superset S1(δ,U) is defined in order to approximate U in ρ-

quantity terms; namely, it will satisfy ρ(S1(δ,U)) ≤ (1+δ) ·ρ(U). The latter superset S2(δ,U) is
defined in order to approximate U in terms of weight, meaning that w(S2(δ,U)) ≤ (1+δ) ·w(U).
Ultimately, the super-assortment U+ is defined as U+ = S1(δ,U) ∩ S2(δ,U), which clearly

guarantees that Property 3 is met. In what follows, it will be convenient for the reader to refer

to Figure 3, where the construction of S1(δ,U) is illustrated though a simple example. It is

worth noting that S1(δ,U) and S2(δ,U) are constructed using symmetrical procedures, where

the notions of ρ-quantity and weight are fully interchangeable.

Construction of S1(δ,U). Let η̄(U) be the largest index of a ρ-class that contains at least

one item of U , and let η(U) = max{0, η̄(U) − K + 1}. We first guess an under-estimate ρ̃ for

ρ(U) that satisfies ρ(U)
2 ≤ ρ̃ ≤ ρ(U); this estimate is of the form ρ̃ = ρmin ·2τ where τ ∈ N. Next,

we let θ̃ be the result of rounding the quantity δ · ρ̃
K down to the nearest power of 2, namely

θ̃ = 2⌈log δ·
ρ̃
K
⌉. In addition, we guess for every ρ-class ℓ ∈ [η(U), η̄(U)] an over-estimate ρ+ℓ of

ρ(Qℓ∩U), picked as the unique integer multiple of θ̃ that satisfies ρ(Qℓ∩U) ≤ ρ+ℓ ≤ ρ(Qℓ∩U)+θ̃.

Next, for each ρ-class ℓ ∈ [η(U), η̄(U)], let m̂+
ℓ (U) be the maximal number of items in class Qℓ,

41

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Figure 3: Illustration of the notion of approximate assortments in an example, with three
ρ-classes. In the ρ-class Q0, m0 = 5 items are picked by U , while m̂+

0 (U) = 6 items are
picked by the approximate assortment S1(δ,U). In the ρ-class Q2, the same number of items
m2(U) = 2 = m̂+

2 (U) are picked by U and S1(δ,U).

chosen by increasing weights, whose total ρ-quantity satisfies ρ(Qℓ[m̂+
ℓ (U)]) ≤ ρ+ℓ . By selecting

all items of Q0,η(U)−1, as well as the top m̂+
ℓ (U) items in Qℓ by increasing weight quantities,

over all ρ-classes ℓ ∈ [η(U), η̄(U)], we obtain the assortment

S1(δ,U) = Q0,η(U)−1 ∪

󰀳

󰁃
η̄(U)󰁞

ℓ=η(U)

Qℓ
󰀅
m̂+

ℓ (U)
󰀆
󰀴

󰁄 , (24)

where by convention Q0,η(U)−1 = ∅ if η(U) ≤ 0. Since ρ+ℓ is an over-estimate of ρ(Qℓ ∩ U), it
follows that (U ∩ Qℓ) ⊆ (S1(δ,U) ∩ Qℓ) by definition of m̂+

ℓ (U). In addition, we clearly have

(U ∩ Q0,η(U)−1) ⊆ (S1(δ,U) ∩ Q0,η(U)−1). Consequently, we have just shown that S1(δ,U) is a

superset of U . Furthermore, we can upper-bound the total ρ-quantity of S1(δ,U) as follows:

ρ (S1 (δ,U)) = ρ
󰀓
Q0,η(U)−1

󰀔
+

η̄(U)󰁛

ℓ=η(U)

ρ
󰀓
Qℓ

󰀅
m̂+

ℓ (U)
󰀆󰀔

≤ δ · ρ (U) +
η̄(U)󰁛

ℓ=η(U)

ρ
󰀓
Qℓ

󰀅
m̂+

ℓ (U)
󰀆󰀔

(25)

≤ δ · ρ (U) +
η̄(U)󰁛

ℓ=η(U)

ρ+ℓ (26)

≤ δ · ρ (U) +
η̄(U)󰁛

ℓ=η(U)

󰀕
ρ
󰀓
Qℓ ∩ U

󰀔
+ δ · ρ̃

K

󰀖
(27)

42

 Electronic copy available at: https://ssrn.com/abstract=2709652 



≤ (1 + δ) · ρ (U) + δ · ρ̃

≤ (1 + 2δ) · ρ (U) , (28)

where inequality (25) is explained below. Inequality (26) follows from our definition of m̂+
ℓ (U),

whereby ρ(Qℓ[m̂+
ℓ (U)]) ≤ ρ+ℓ . Inequality (27) holds since ρ+ℓ ≤ ρ(Qℓ ∩ U) + θ̃, by construction.

The last inequality (28) holds since ρ̃ is an under-estimate for ρ(U), meaning that ρ̃ ≤ ρ(U).
In order to establish inequality (25), observe that, when η(U) ≥ 1:

ρ
󰀓
Q0,η(U)−1

󰀔
≤

󰀏󰀏󰀏Q0,η(U)−1
󰀏󰀏󰀏 ·ρmin ·(1 + δ)i(U)−1 ≤ n ·ρ

󰀓
Qη̄(U) ∩ U

󰀔
·(1+δ)−K ≤ δ ·ρ (U) , (29)

where the second inequality holds since η̄(U) = η(U) + K − 1 when η(U) ≥ 1, and the last

inequality proceeds by noting that (1 + δ)−K ≤ δ
n since K = ⌈log1+δ(

n
δ )⌉.

Construction of S2(δ,U). Now, let ζ̄(U) be the largest index of a weight class that contains

at least one item of U , and let ζ(U) = max{0, ζ̄(U)−K + 1}. We begin by guessing an under-

estimate w̃ for w(U) that satisfies w(U)
2 ≤ w̃ ≤ w(U); this estimate is of the form w̃ = δ

n · 2τ

where τ ∈ N. Next, we let ω̃ be the result of rounding the quantity δ · w̃
K down to the nearest

power of 2, namely ω̃ = 2⌈log δ·
w̃
K
⌉. In addition, we guess for every weight class ℓ ∈ [ζ(U), ζ̄(U)]

an over-estimate w+
ℓ of w(Wℓ ∩ U), picked as the unique integer multiple of ω̃ that satisfies

w(Wℓ ∩ U) ≤ w+
ℓ ≤ w(Wℓ ∩ U) + ω̃. Next, for each weight class ℓ ∈ [ζ(U), ζ̄(U)], let n̂+

ℓ (U) be
the maximal number of items in the class Wℓ, chosen by increasing weights, whose total weight

quantity satisfies w(Wℓ[n̂+
ℓ (U)]) ≤ w+

ℓ . By selecting the items of W0,ζ(U)−1 as well as the top

n̂+
ℓ (U) items in Wℓ by decreasing ρ-quantities, over all weight classes ℓ ∈ [ζ(U), ζ̄(U)], we obtain

the assortment

S2(δ,U) = W0,ζ(U)−1 ∪

󰀳

󰁃
ζ̄(U)󰁞

ℓ=ζ(U)

Wℓ
󰀅
n̂+
ℓ (U)

󰀆
󰀴

󰁄 . (30)

By definition of w+
ℓ and n̂+

ℓ , note that (U ∩Wℓ) ⊆ (S2(δ,U) ∩Wℓ) for every ℓ ∈ [ζ(U), ζ̄(U)],
and consequently, we have that U ⊆ S2(δ,U). Using a sequence of inequalities nearly identical

to (28), it is easy to verify that w(S2(δ,U)) ≤ (1+2δ) ·w(U). Hence, we may conclude that the

assortment U+ = S1(δ,U) ∪ S2(δ,U) satisfies all the desired inequalities of Properties 1 and 3,

with an accuracy level of 2δ.

Bounding the number of guesses. Here, we argue that U+ = S1(δ,U) ∪ S2(δ,U) can

be constructed in polynomial time, by bounding the overall number of distinct guesses. As a

by-product, we bound the number of distinct super-assortments that can be generated through

our rounding procedures. For this purpose, the key observation is that the assortments S1(δ,U)
and S2(δ,U) are uniquely defined by the following parameters:

• The integers η̄(U), ζ̄(U), τ1 and τ2 where ρ̃ = ρmin · 2τ1 and w̃ = δ
n · 2τ2 .

• The integral vector (k1t )t∈[K], where ρ+η(U)+t = k1t · θ̃ for every t ∈ [K].

• The integral vector (k2t )t∈[K], where w+
ζ(U)+t = k2t · ω̃ for every t ∈ [K].

43

 Electronic copy available at: https://ssrn.com/abstract=2709652 



It immediately follows that τ1 = O(|I|) and τ2 = O(log 1
δ ) + O(|I|) . In addition, it is easy

to verify that η̄(U) = O(1δ · |I|), since η̄(U) is the index of a non-empty ρ-class, and similarly,

ζ̄(U) = O(1δ · |I|). Lastly, in order to bound the vector (k1t )t∈[K], observe that

K󰁛

t=1

k1t =

η̄(U)󰁛

ℓ=η(U)

󰀛
ρ(Qℓ ∩ U)

θ̃

󰀜
≤

η̄(U)󰁛

ℓ=η(U)

󰀕
2K · ρ(Q

ℓ ∩ U)
δρ̃

+ 1

󰀖
≤ K ·

󰀕
2 · ρ(U)

δρ̃
+ 1

󰀖
≤ 5K

δ
,

Using nearly identical inequalities, we may verify that
󰁓K

t=1 k
2
t ≤ 5K

δ . Therefore, given that

K = ⌈log1+δ(
n
δ )⌉, standard counting arguments imply that the number of possible vectors

(k1t )t∈[K] and (k2t )t∈[K] is O(2O(K
δ
)) = O(nO( 1

δ2
·log 1

δ
)). It follows that |S+(δ)| = O(|I|O( 1

δ2
·log 1

δ
)).

C.1.2 Construction of U−.

In order to construct U−, we separately define two subsets of U , respectively denoted by s1(δ,U)
and s2(δ,U). The first subset s1(δ,U) is defined in order to approximate U in ρ-quantity terms;

namely, it will satisfy ρ(s1(δ,U)) ≥ (1−δ) ·ρ(U). The latter subset s2(δ,U) is defined in order to

approximate U in terms of weight, meaning that w(s2(δ,U)) ≥ (1−δ)·w(U). Ultimately, the sub-

assortment U− is defined as U− = s1(δ,U) ∪ s2(δ,U), which clearly guarantees that Property 2

is met. We refer the reader to Figure 3, where the construction of s1(δ,U) is illustrated through

a simple example.

Construction of s1(δ,U). Having defined the quantities η(U), η̄(U) and θ̃ in our construction

of S1(δ,U), we guess an under-estimate ρ−ℓ of ρ(Qℓ ∩ U) for every ρ-class ℓ ∈ [η(U), η̄(U)].
Specifically, ρ−ℓ is defined as the unique integer multiple of θ̃ that satisfies ρ(Qℓ∩U)− θ̃ ≤ ρ−ℓ ≤
ρ(Qℓ ∩ U). Next, for each ρ-class ℓ ∈ [η(U), η̄(U)], let m̂−

ℓ (U) be the minimal number of items

in class Qℓ, chosen by increasing weights, whose total ρ-quantity satisfies ρ(Qℓ[m̂−
ℓ (U)]) ≥ ρ−ℓ .

By selecting the top m̂−
ℓ (U) items in Qℓ by increasing weight quantities, over all ρ-classes

ℓ ∈ [η(U), η̄(U)], we obtain the assortment

s1(δ,U) =
η̄(U)󰁞

ℓ=η(U)

Qℓ
󰀅
m̂−

ℓ (U)
󰀆
. (31)

Since ρ−ℓ is an under-estimate of ρ(Qℓ∩U), it follows that (s1(δ,U)∩Qℓ) ⊆ (U∩Qℓ) by definition

of m̂−
ℓ (U). Consequently, we have just shown that s1(δ,U) is a subset of U . Furthermore, we

can lower-bound the total ρ-quantity of s1(δ,U) as follows:

ρ (s1 (δ,U)) =

η̄(U)󰁛

ℓ=η(U)

ρ
󰀓
Qℓ

󰀅
m̂−

ℓ (U)
󰀆󰀔

≥
η̄(U)󰁛

ℓ=η(U)

ρ−ℓ (32)

≥
η̄(U)󰁛

ℓ=η(U)

󰀕
ρ
󰀓
Qℓ ∩ U

󰀔
− δ · ρ̃

K

󰀖
(33)

44

 Electronic copy available at: https://ssrn.com/abstract=2709652 



≥ ρ (U)− ρ
󰀓
Q0,η(U)−1

󰀔
− δ · ρ̃

≥ (1− 2δ) · ρ (U) , (34)

where inequality (32) follows from our definition of m̂−
ℓ (U), whereby ρ(Qℓ[m̂−

ℓ (U)]) ≥ ρ−ℓ . In-

equality (33) holds since ρ−ℓ ≥ ρ(Qℓ ∩ U) − θ̃, by construction. The last inequality (34) holds

since ρ(Q0,η(U)−1) ≤ δ · ρ(U), as shown by inequality (29).

Construction of s2(δ,U). Having defined the quantities ζ(U), ζ̄(U) and ω̃ in our construction

of S2(δ,U), we guess an under-estimate w−
ℓ of w(Wℓ∩U) for every weight class ℓ ∈ [ζ(U), ζ̄(U)].

Specifically, w−
ℓ is defined as the unique integer multiple of ω̃ that satisfies w(Wℓ ∩ U) − ω̃ ≤

w−
ℓ ≤ w(Wℓ∩U). Next, for each weight class ℓ ∈ [ζ(U), ζ̄(U)], let n̂−

ℓ (U) be the minimal number

of items in the class Wℓ, chosen by increasing weights, whose total weight quantity satisfies

w(Wℓ[n̂−
ℓ (U)]) ≥ w−

ℓ . By selecting the top n̂−
ℓ (U) items in Wℓ by decreasing ρ-quantities, over

all weight classes ℓ ∈ [ζ(U), ζ̄(U)], we obtain the assortment

s2(δ,U) =
ζ̄(U)󰁞

ℓ=ζ(U)

Wℓ
󰀅
n̂−
ℓ (U)

󰀆
. (35)

By definition of w−
ℓ and n̂−

ℓ , note that (s2(δ,U) ∩ Wℓ) ⊆ (U ∩ Wℓ) for every ℓ ∈ [ζ(U), ζ̄(U)],
and consequently, we have that s2(δ,U) ⊆ U . Using a sequence of inequalities nearly identical

to (34), it is easy to verify that w(s2(δ,U)) ≥ (1− 2δ) ·w(U). Hence, we may conclude that the

assortment U− = s1(δ,U) ∪ s2(δ,U) satisfies all the desired inequalities of Properties 1 and 2,

with an accuracy level of 2δ.

Using counting arguments similar to Section C.1.1, it is not difficult to show that the assort-

ment U− = s1(δ,U)∪ s2(δ,U) can be constructed in polynomial time, by bounding the number

of distinct guesses. The proof is omitted for concision.

C.2 Proof of Lemma 2.6

Recall that U+
1 = S1(U1, δ) ∩ S2(U1, δ) and U+

2 = S1(U2, δ) ∩ S2(U2, δ), as defined in the proof

of Lemma 2.5. Consequently, in order to derive the desired claim, it is sufficient to show that

S1(U1, δ) ⊆ S1(U2, δ) and S2(U1, δ) ⊆ S2(U2, δ). In what follows, we establish the former set

inclusion; the latter one proceeds from identical arguments, where the ρ-quantities and weight

quantities are interchanged.

To this end, by equation (24), it suffices to show that m̂+
ℓ (U1) ≤ m̂+

ℓ (U2) for every ℓ ∈
[η(U2), η̄(U1)], given that η(U2) ≥ η(U1) and η̄(U2) ≥ η̄(U1). Now, let ρ̃1 and ρ̃2 be the ρ-quantity

guesses for ρ(U1) and ρ(U2), respectively. Further, let θ̃1 = 2⌈log δ·
ρ̃1
K

⌉ and θ̃2 = 2⌈log δ·
ρ̃2
K

⌉. Since

U1 ⊆ U2, we infer that ρ̃1 ≤ ρ̃2, and thus, θ̃2
θ̃1

= 2κ for some κ ∈ N. Observe that m̂+
ℓ (U1) is

the maximal number of items in class Qℓ, chosen in order of increasing weights, whose total

ρ-quantity is at most ρℓ1, where ρℓ1 is the smallest multiple of θ̃1 which is greater or equal to

ρ(U1 ∩Qℓ). Similarly, m̂+
ℓ (U2) is the maximal number of items in class Qℓ, chosen in order of

increasing weights, whose total ρ-quantity is at most ρℓ2, where ρℓ2 is the smallest multiple of θ̃2

which is greater or equal to ρ(U2 ∩Qℓ). Consequently, it suffices to show that ρℓ2 ≥ ρℓ1. To this

45

 Electronic copy available at: https://ssrn.com/abstract=2709652 



end, note that

ρℓ2 = θ̃2 ·
󰀛
ρ(U2 ∩Qℓ)

θ̃2

󰀜
≥ θ̃1 ·

󰀛
ρ(U2 ∩Qℓ)

θ̃1

󰀜
≥ θ̃1 ·

󰀛
ρ(U1 ∩Qℓ)

θ̃1

󰀜
= ρℓ1 .

C.3 Proof of Lemma 3.2

By inequality (5), it suffices to show that, for every k ∈ [n],

(1− 2󰂃) ·Rk(A) ≤ fA(k) ≤ Rk (A) , (36)

where we remind the reader that fA(k) = min{Rq(A) : q ∈ Ij} for every position k ∈ [n].

Indeed, by combining (36) with (5), we obtain:

(1− 4󰂃) ·Rk(A) ≤
󰀃
1− 2󰂃− 2󰂃2

󰀄
·Rk(A) ≤ f̂A(k) ≤ Rk (A) ,

Now, to establish inequality (36), we separately consider the cases k ∈ [1, kmid] and k ∈ [kmid +

1, n]:

• Non-decreasing part (k ∈ [1, kmid]): Let j ∈ [jmid] be the unique index for which k ∈ Ij .

Since the revenue function k 󰀁→ Rk(A) is non-decreasing over Ij and ej is the left endpoint

of this interval, we obtain fA(k) = Rej (A) ≤ Rk (A). On the other hand, by definition of

ej and Ij , we have Rk(A) < (1+󰂃)·Rej (A), and therefore fA(k) = Rej (A) ≥ (1−󰂃)·Rk(A).

• Non-increasing part (k ∈ [kmid+1, n]): Let j ∈ [jmid+1,m] be the unique index for which

k ∈ Ij . Since the revenue function is non-increasing over Ij and ej is the right endpoint

of this interval, we have fA(k) = Rej (A) ≤ Rk (A). In addition, the definition of ej and

Ij implies that fA(k) = Rej (A) ≥ (1 − 󰂃) · Rk(A) for every k ∈ Ij and j ∈ [jmid + 2,m].

In the remaining cases, where k ∈ Ijmid+1,

fA(k) = Rejmid+1(A) ≥ (1− 󰂃) ·Rejmid
(A) ≥ (1− 2󰂃) ·Rkmid

(A) ≥ (1− 2󰂃) ·Rk(A) ,

where the first and second inequalities proceed from our definition of the events ejmid+1

and ejmid
, respectively. The last inequality holds since Rk(A) is maximized at the position

kmid.

C.4 Proof of Lemma 5.1

• Inequality (13): In the case where e∗j ≥ e∗j−1 ≥ kmid, observe that

ρ(S∗−
j+1)

1 + w(S∗+
j+1)

≤
ρ(A∗[e∗j+1])

1 + w(A∗[e∗j+1])

= Re∗j+1
(A∗)

≤ 1

1 + 󰂃
·Re∗j−1

(A∗)

=
1

1 + 󰂃
·

ρ(A∗[e∗j−1])

1 + w(A∗[e∗j−1])

46

 Electronic copy available at: https://ssrn.com/abstract=2709652 



≤ 1

1 + 󰂃
·

ρ(S∗−
j−1)/(1− 󰂃2)

1 + w(S∗+
j−1)/(1 + 󰂃2)

≤
󰀓
1− 󰂃

2

󰀔
·

ρ(S∗−
j−1)

1 + w(S∗+
j−1)

.

Here, the first inequality proceeds proceeds from Property 1 of Lemma 2.5, with respect

to the assortment U = A∗[e∗j+1]. The second inequality follows from the definition of

the events e∗j = max{k ∈ [e∗j−1 + 1, n] : Rk(A∗) ≥ 1
1+󰂃 · Re∗j−1

(A∗)} in Section 3.2 over

the monotone non-increasing part of the revenue function, implying that Re∗j+1
(A∗) ≤

Re∗j+1(A∗) ≤ 1
1+󰂃 · Rej−1(A∗). The next inequality proceeds from Properties 2 and 3 of

Lemma 2.5, instantiated with U = A∗[e∗j−1] and δ = 󰂃2. The last inequality holds since

󰂃 ∈ (0, 15).

We derive the other upper-bound in (13) using a similar sequence of inequalities:

ρ(S∗−
j+1)

1 + w(S∗+
j+1)

≤
ρ(A∗[e∗j+1])

1 + w(A∗[e∗j+1])

= Re∗j+1
(A∗)

≤ Re∗j
(A∗)

=
ρ(A∗[e∗j ])

1 + w(A∗[e∗j ])

≤
ρ(S∗−

j )/(1− 󰂃2)

1 + w(S∗+
j )/(1 + 󰂃2)

≤
󰀓
1 +

󰂃

2

󰀔
·

ρ(S∗−
j )

1 + w(S∗+
j )

,

where the second inequality holds since the revenue function k 󰀁→ Rk(A∗) is non-increasing

over the interval of positions [kmid + 1, n].

• Inequality (14): In the case where e∗j ≥ kmid ≥ e∗j−1, observe that

ρ(S∗−
j )

1 + w(S∗+
j )

≤
ρ(A∗[e∗j ])

1 + w(A∗[e∗j ])

= Re∗j
(A∗)

≤ Rkmid
(A∗)

≤ (1 + 󰂃) ·Rej−1 (A∗)

= (1 + 󰂃) ·
ρ(A∗[e∗j−1])

1 + w(A∗[e∗j−1])

≤ (1 + 󰂃) ·
ρ(S∗−

j−1)/(1− 󰂃2)

1 + w(S∗+
j−1)/(1 + 󰂃2)

≤
󰀕
1 +

3󰂃

2

󰀖
·

ρ(S∗−
j−1)

1 + w(S∗+
j−1)

,

Here, the first inequality proceeds proceeds from Property 1 of Lemma 2.5, with respect

47

 Electronic copy available at: https://ssrn.com/abstract=2709652 



to the assortment U = A∗[e∗j+1]. The second inequality holds since the revenue function

k 󰀁→ Rk(A∗) is maximized at the position kmid. The third inequality holds since e∗j−1 is

the last event in the non-decreasing part of the revenue function, meaning that the set

{k ∈ [e∗j−1+1, n] : Rk(A∗) ≥ (1+ 󰂃) ·Re∗j−1
(A∗)} is empty, and in particular, Rkmid

(A∗) ≤
(1 + 󰂃) ·Re∗j−1

(A∗). The next inequality proceeds from Properties 2 and 3 of Lemma 2.5,

instantiated with U = A∗[e∗j−1] and δ = 󰂃2. The last inequality holds since 󰂃 ∈ (0, 15).

C.5 Proof of Lemma 5.2

Fix j ∈ [T ], and let (ej−1, ej , 󰂓Sj−1, 󰂓Sj) be the corresponding dynamic programming state. We

first consider the case where j ≥ jmid+1. Clearly, by our construction of the subsets ∆1, . . . ,∆m

in Section 5.2, we have S+
j ⊆

󰁖j
t=1∆t = Ã[ẽj ]. It immediately follows that ρ(Ã[ẽj ]) ≥ ρ(S+

j ) ≥
ρ(S−

j ), where the last inequality holds by constraint (8).

In the opposite case, j ≤ jmid, and by construction, we have
󰁖j

t=1(S
−
t \ S+

t−1) =
󰁖j

t=1∆t =

Ã[ẽj ], where we define S+
0 = ∅ for completeness. On the other hand, for every t1 ≤ j, the set

inclusion constraint (8) implies that S−
t2
⊆ S+

t2
⊆ S+

t1
for every t2 ≤ t1. Consequently, the subsets

of items S−
1 \ S+

0 , . . . , S
−
j \ S+

j−1 are pairwise disjoint. Based on the preceding observations, we

have:

ρ
󰀓
Ã [ẽj ]

󰀔
= ρ

󰀣
j󰁞

t=1

(S−
t \ S+

t−1)

󰀤
(37)

=

j󰁛

t=1

ρ
󰀃
S−
t \ S+

t−1

󰀄

≥
j󰁛

t=1

󰀃
ρ
󰀃
S−
t \ S−

t−1

󰀄
− 4󰂃2 · ρ

󰀃
S−
t−1

󰀄󰀄
(38)

≥
j󰁛

t=1

󰀕
ρ
󰀃
S−
t \ S−

t−1

󰀄
− 4󰂃2

󰂃/2
·
󰀃
ρ
󰀃
S−
t

󰀄
− ρ

󰀃
S−
t−1

󰀄󰀄󰀖
(39)

≥ (1− 8󰂃) ·
j󰁛

t=1

󰀃
ρ
󰀃
S−
t

󰀄
− ρ

󰀃
S−
t−1

󰀄󰀄

= (1− 8󰂃) · ρ
󰀓
S−
j

󰀔
.

Here, inequality (38) immediately follows from constraint (9). Inequality (39) proceeds by

remarking that constraint (12) implies in particular that ρ(S−
t ) ≥ ρ(S−

t−1)+
󰂃
2 ·ρ(S

−
t−1) for every

t ≤ j.

C.6 Proof of Lemma 5.3

We prove by induction that Ã[ẽj ] ⊆ S+
j for every j ∈ [T ]. The latter set inclusion immediately

implies the desired claim w(Ã[ẽj ]) ≤ w(S+
j ), for every j ∈ [T ].

The base case of j = 1 follows immediately by observing that Ã[ẽ1] = Ã[|∆1|] = S−
1 ⊆ S+

1

by the dynamic programming constraint (8). For the induction step, we separately consider two

cases, depending on the value of j ∈ [2, T ].

48

 Electronic copy available at: https://ssrn.com/abstract=2709652 



• Case 1: j ∈ [2, jmid]. In this case, we have:

Ã[ẽj ] =
󰀓
Ã[ẽj−1] ∪∆j

󰀔
⊆

󰀓
S+
j−1 ∪

󰀓
S−
j \ S+

j−1

󰀔󰀔
⊆ S+

j ,

where the first set inclusion proceeds from the induction hypothesis and the definition of

∆j . The last set inclusion holds since S+
j−1 ⊆ S+

j and S−
j ⊆ S+

j due to constraint (8).

• Case 2: j ∈ [jmid + 1,m]. Here, we observe that

Ã[ẽj ] =
󰀓
Ã[ẽj−1] ∪∆j

󰀔
⊆

󰀓
S+
j−1 ∪ S+

j

󰀔
= S+

j ,

where the first set inclusion proceeds from the induction hypothesis and the definition of

∆j . The last set inclusion holds since S+
j−1 ⊆ S+

j due to constraint (8).

C.7 Proof of Claim 5.5

In what follows, we fix j ∈ [T − 1]. Clearly, when k 󰀁→ Rk(A) is non-decreasing over the entire

interval [ẽj , ẽj+1], this function is in particular unimodal. Otherwise, let k ∈ [ẽj+1, ẽj+1] be the

smallest index for which Rk(A) < Rk−1(A). Then, observe that the expected revenue Rk(A)

can be decomposed as follows:

Rk (A) =
wA(k)

1 + wA(k) + w(A[k − 1])
· rA(k) +

1 + w(A[k − 1])

1 + wA(k) + w(A[k − 1])
·Rk−1 (A) .

Consequently, Rk(A) is a strict convex combination between rA(k) and Rk−1(A) since Assump-

tion 2.1 implies in particular that wA(k) > 0. It immediately follows that rA(k) ≤ Rk(A). Based

on this observation, we show by induction that rA(t) ≤ Rt(A) ≤ Rt−1(A) for every t ≥ k. In-

deed, note that rA(t+1) ≤ rA(t) ≤ Rt(A), where the former inequality holds since A introduces

items by non-increasing prices over the interval of positions [ẽj + 1, ẽj+1] and the latter follows

from the induction hypothesis. Using a similar reasoning as above, it is easy to verify that

Rt+1(A) is a strict convex combination between rA(t+1) and Rt(A). Hence, we conclude that

rA(t+1) ≤ Rt+1(A) ≤ Rt(A).

C.8 Proof of Inequality (17)

We begin by highlighting a basic property of the assignment Ã, allowing us to compare the

positions ej and ẽj . The proof of Claim C.1 is deferred to the end of this section.

Claim C.1. ẽj ≤ ej for every j ∈ [jmid], and ej ≤ ẽj for every j ∈ [jmid + 1, T ].

Now, in order to establish (17), we separately bound the expressions
󰁓jmid

j=1 (
󰁓

k∈Ĩj λk) · αj

and
󰁓T

j=jmid+1(
󰁓

k∈Ĩj λk) · αj , where we use the shorthand notation αj =
ρ(S−

j )

1+w(S+
j )

.

Letting α0 = 0 for simplicity of notation, the former expression is lower-bounded by

jmid󰁛

j=1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 · αj =

jmid󰁛

j=1

󰀳

󰁃
kmid󰁛

k=ẽj

λk

󰀴

󰁄 · (αj − αj−1)

49

 Electronic copy available at: https://ssrn.com/abstract=2709652 



≥
jmid󰁛

j=1

󰀳

󰁃
kmid󰁛

k=ej

λk

󰀴

󰁄 · (αj − αj−1)

=

jmid󰁛

j=1

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 · αj , (40)

where the inequality follows from Claim C.1, implying in particular that ej ≥ ẽj for every

j ∈ [1, jmid], along with constraint (12), by which we derive that αj ≥ αj−1.

Now, in order to lower-bound the latter expression, for every j ∈ [jmid + 1, T ], we define

ᾱj = min{αt : t ∈ [jmid + 1, j]}. By constraint (13), we have

󰀓
1− 󰂃

2

󰀔
· αj ≤ ᾱj ≤ αj . (41)

This inequality is established by observing that, for every integer t ∈ [jmid + 1, j − 1] such that

j − t is even:

αt ≥
󰀓
1− 󰂃

2

󰀔 t−j
2 · αj ≥ αj ,

where the first inequality proceeds by iteratively utilizing constraint (13). Similarly, for every

integer t ∈ [jmid + 1, j − 1] such that j − t is odd, we have

αt ≥
󰀓
1− 󰂃

2

󰀔 t−j+1
2 · αj−1 ≥ αj−1 ≥

1

1 + 󰂃/2
· αj ≥

󰀓
1− 󰂃

2

󰀔
· αj .

By combining the latter two inequalities, we obtain that ᾱj ≥ (1 − 󰂃
2) · αj . Consequently, we

have

T󰁛

j=jmid+1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 · αj ≥
T󰁛

j=jmid+1

󰀳

󰁃
󰁛

k∈Ĩj

λk

󰀴

󰁄 · ᾱj

=

󰀳

󰁃
n󰁛

k=kmid+1

λk

󰀴

󰁄 · ᾱT +

T−1󰁛

j=jmid+1

󰀳

󰁃
ẽj󰁛

k=kmid

λk

󰀴

󰁄 · (ᾱj − ᾱj+1)

≥

󰀳

󰁃
n󰁛

k=kmid+1

λk

󰀴

󰁄 · ᾱT +

T−1󰁛

j=jmid+1

󰀳

󰁃
ej󰁛

k=kmid

λk

󰀴

󰁄 · (ᾱj − ᾱj+1)

=

T󰁛

j=jmid+1

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 · ᾱj

≥ (1− 󰂃

2
) ·

T󰁛

j=jmid+1

󰀳

󰁃
󰁛

k∈Ij

λk

󰀴

󰁄 · αj , (42)

where the first and third inequalities follow from (41). The second inequality proceeds from

Claim C.1, implying in particular that ẽj ≥ ej for every j ∈ [jmid + 1, T ], and the fact that

ᾱj ≥ ᾱj+1 by definition of these terms.

To conclude, we observe that inequality (17) immediately follows from (40) and (42).

50

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Proof of Claim C.1. For every j ∈ [jmid +1,m], we have S+
j ⊆

󰁖j
t=1∆t by definition of ∆j .

Therefore, ẽj = |
󰁖j

t=1∆t| ≥ |S+
j | ≥ ej , where the last inequality proceeds from constraint (11).

On the other hand, for every j ∈ [1, jmid], we show that ẽj ≤ ej by induction over j.

• Base case (j = 1): We have

ẽj = |∆1| =
󰀏󰀏S−

1

󰀏󰀏 ≤
󰀏󰀏S+

1

󰀏󰀏 ≤ e1 ,

where the last inequality here immediately follows from constraint (11).

• Induction step (j ∈ [2, jmid]): Here, we argue that

ẽj = ẽj−1 + |∆j | = ẽj−1 +

󰀏󰀏󰀏󰀏󰀏S
−
j \

󰀣
S+
j−1 ∪

󰀣
j−1󰁞

t=1

∆t

󰀤󰀤󰀏󰀏󰀏󰀏󰀏 ≤ ej−1 +
󰀏󰀏󰀏S−

j \ S+
j−1

󰀏󰀏󰀏 ≤ ej ,

where the first equality is due to the fact that ẽj =
󰁓j

t=1 |∆t| since the subsets ∆1, . . . ,∆j

are mutually disjoint. The first inequality proceeds from the induction hypothesis. The

last inequality immediately follows from constraint (11).

D EM Algorithm

Starting with initial parameters 󰂓λ(0) = (18)k∈[8] and
󰂓β(0) = (0)k∈[8], as well as a uniform prior

on the realizations of the consideration sets 󰂓π
(0)
t = (18)k∈[8] for each observation t ∈ T , our

EM algorithm iteratively computes parameters of the D-MNL model though posterior updates,

using a convex surrogate of the log-likelihood function. Specifically, for every ℓ ≥ 1, we compute
󰂓β(ℓ), 󰂓λ(ℓ), and (󰂓π

(ℓ)
t )t∈T as follows:

1. E-step: We begin by computing the expected value of the log-likelihood function with

respect to the realizations of the consideration sets:

L
󰀓
󰂓β
󰀏󰀏󰀏󰂓λ(ℓ−1)

󰀔
=

󰁛

t∈T
zj,t ·

8󰁛

k=1

π
(ℓ−1)
t,k log

󰀓
p󰂓β,󰂓ek

(t, j)
󰀔

,

where, for every k ∈ [8], we denote by 󰂓ek the distribution over consideration sets such

that the consideration set indexed by k occurs with probability 1. It is worth noting

that, in contrast to the original log-likelihood function in (22), the expected log-likelihood

L(󰂓β|󰂓λ(ℓ−1)) is a concave function of the parameter 󰂓β.

2. M-step: We update the parameters of the D-MNL model. To this end, we define 󰂓β(ℓ)

as the vector 󰂓β ∈ R14 that maximizes the expected log-likelihood function L(󰂓β|󰂓λ(ℓ−1))

defined in the E-step. Next, 󰂓λ(ℓ) is computed by solving the convex optimization problem

derived from our original MLE problem (22) by fixing β = 󰂓β(ℓ), namely

󰂓λ(ℓ) = argmax󰂓λ∈Λ

󰁛

t∈T
zj,t · log

󰀓
p󰂓β(ℓ),󰂓λ

󰀔
.

51

 Electronic copy available at: https://ssrn.com/abstract=2709652 



Lastly, for each observation t ∈ T , the probability 󰂓π
(ℓ)
t,k that the consideration set k ∈ [8]

occurs is updated according to the posterior rule:

󰂓π
(ℓ)
t,k =

󰁓
j∈St

λ
(ℓ)
k · zt,j · p󰂓β(ℓ),󰂓ek

(t, j)

(1−
󰁓8

q=1 λ
(ℓ)
q ) · (1−

󰁓
j∈St

zt,j) +
󰁓8

q=1

󰁓
j∈St

λ
(ℓ)
q · zt,j · p󰂓β(ℓ),󰂓eq

(t, j)
.

It is worth noting that the maximization of the expected log-likelihood function β 󰀁→ L(󰂓β|󰂓λ(ℓ−1))

is the main computational bottleneck of the EM-algorithm.

52

 Electronic copy available at: https://ssrn.com/abstract=2709652 


