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A major challenge in obtaining evaluations of products or services on e-commerce platforms is eliciting

informative responses in the absence of verifiability. This paper proposes the Square Root Agreement Rule

(SRA): a simple reward mechanism that incentivizes truthful responses to objective evaluations on such

platforms. In this mechanism, an agent gets a reward for an evaluation only if her answer matches that of her

peer, where this reward is inversely proportional to a popularity index of the answer. This index is defined to

be the square root of the empirical frequency at which any two agents performing the same evaluation agree

on the particular answer across evaluations of similar entities operating on the platform. Rarely agreed-upon

answers thus earn a higher reward than answers for which agreements are relatively more common.

We show that in the many tasks regime, the truthful equilibrium under SRA is strictly payoff-dominant

across large classes of natural equilibria that could arise in these settings, thus increasing the likelihood of

its adoption. While there exist other mechanisms achieving such guarantees, they either impose additional

assumptions on the response distribution that are not generally satisfied for objective evaluations or they

incentivize truthful behavior only if each agent performs a prohibitively large number of evaluations and

commits to using the same strategy for each evaluation. SRA is the first known incentive mechanism satisfying

such guarantees without imposing any such requirements. Moreover, our empirical findings demonstrate the

robustness of the incentive properties of SRA in the presence of mild subjectivity or observational biases

in the responses. These properties make SRA uniquely attractive for administering reward-based incentive

schemes (e.g., rebates, discounts, reputation scores, etc.) on online platforms.
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1. Introduction

Reputation systems, in which people provide feedback for products or services based on their per-

sonal experiences, are a critical component of online platforms and marketplaces (Resnick et al.

2000, Jøsang et al. 2007, Tadelis 2016, Luca 2017). These systems improve the overall quality of

transactions, increase trust, and thus play a key role in determining the success of these plat-

forms in the long run. A major practical challenge in these systems is that of eliciting truthful and

high-quality responses from the agents. In the absence of appropriate incentives, agents could shirk

investing effort, provide uninformative feedback, or even exploit these systems for selfish motives,

thus undermining their utility. For instance, significant empirical evidence of bias in user ratings

has been found on many online platforms (Hu et al. 2017, Filippas et al. 2018, Nosko and Tadelis

2015). This work describes a simple and intuitive reward mechanism that attempts to address this

concern.

We consider a setting where an online platform is interested in obtaining responses for a large

number of evaluations pertaining to the products or the services being offered on the platform from

a pool of customers, whom we refer to as agents. We focus on objective but unverifiable evaluations,

i.e., evaluations in which the answers can, in principle, be objectively verified, but such verification

is infeasible for the platform. This is the case for evaluations comprising of questions like:

1. What was your waiting time to get a table in the restaurant? (Less than 15 mins/Between

15-30 mins/More than 30 mins)

2. Did the plumber show up within 5 mins of your appointed time? (Yes/No)

3. How long did the moving company take to respond with a quote? (1 day/2 days/3 days/more

than three days)

4. Did the dimensions of the received product exceed the dimensions given by the seller? (Yes/No)

5. How long did it take for the product to arrive after the purchase was made from the seller? (1

week/2 weeks/3 or more weeks)

In each of these questions, the evaluating agent is being asked to truthfully report an observation

about the entity being evaluated. The main property of such evaluations is that each evaluating

agent’s observation is an independent sample from an unknown distribution of behaviors specific to

the entity being evaluated. In other words, the true responses of agents for a fixed evaluation task

are conditionally independent and identically distributed (conditional on the unknown distribution

of responses). For example, in the first situation, we can assume that each customer experiences an

independently sampled waiting time from a common unknown distribution specific to that restau-

rant. In the second situation, the customer’s experience is sampled from the distribution of whether

or not the plumber is punctual. Similarly, in the remaining questions, the customer’s true experience

is a sample of the moving company’s or the seller’s business practices. We will refer to this property
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as the responses being homogeneous for the rest of the paper, informally referring to the fact that

the true responses of any set of agents to a fixed evaluation task are statistically exchangeable.

In such scenarios, we hope to achieve the following informal goals through the design of an

effective incentive mechanism: (a) incentivize agents to participate in the provision of feedback

in online platforms, i.e., improve response rates, and (b) conditional on participation, incentivize

agents to report true observations while overcoming any observation or reporting bias. The second

goal is arguably more critical and challenging since an easy way of achieving the first goal is to give

everyone a fixed reward for participation. As one can imagine, such a naïve reward scheme may not

necessarily lead to a high quality of responses.

If the platform could verify the responses to the evaluations, it can simply reward the agents

based on whether or not they reported their true observations. But such verification is infeasible for

questions such as the ones mentioned above since these evaluations are based on interactions that

take place outside the platform. In these cases, inducing truthful behavior is a challenging problem.

A common approach to this problem, first described in the pioneering work of Miller et al. (2005), is

to reward the agents’ responses based on comparisons with the responses of other agents who have

performed the same evaluation task. Such mechanisms have come to be referred to as peer-prediction

mechanisms in subsequent literature (after the original mechanism called the peer-prediction method

described in Miller et al. (2005)). Informally, such reward mechanisms leverage the property that

the true response of any agent is correlated with the response of some other agent for the same

question.1 The situation is then inherently strategic, in which one hopes to sustain truthful reporting

as an equilibrium of the game that the reward mechanism induces. It is additionally desirable that

such an equilibrium is preferable to the agents over other non-truthful equilibria that may arise in

the game.

Our contribution. In this paper, we propose the Square Root Agreement Rule (SRA): a new peer-

prediction mechanism for online platforms that truthfully elicits objective but unverifiable responses

at equilibrium. In the setting of our interest, i.e., elicitation on online platforms, we show that the

truthful equilibrium under SRA satisfies a key dominance property; namely, it yields the agents the

highest payoff amongst all symmetric equilibrium payoffs in the system limit where there are a large

number of evaluation tasks. In addition, the truthful equilibrium payoff is strictly higher than that

under any symmetric equilibrium strategy profile that incurs any degree of information loss in the

1 With homogeneous responses, the structure of the correlation between an agent’s true response and the true response
of a typical agent in the population is identical across agents. This feature contrasts with the case when the responses
are heterogeneous, i.e., when the agents’ true responses strongly depend on their characteristics that vary widely
across the population. In these cases, designing mechanisms without obtaining requisite fine-grained information
about agent heterogeneity or without making any regularity assumptions on the agent responses, e.g., ‘self-predicting
responses’ (Radanovic et al. 2016) or ‘categorical responses’ (Dasgupta and Ghosh 2013, Shnayder et al. 2016) (these
assumptions are discussed in Section 2), is known to be impossible (Radanovic and Faltings 2015).
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reports. In keeping with the existing terminology in the literature, we refer to this property as SRA

being asymptotically strongly truthful across symmetric equilibria. Such a dominance property is

crucial in these settings since it hinders the emergence of low-effort equilibria with poorly informative

reports – such as everyone reporting the same answer irrespective of their true evaluation – known

to plague many other incentive mechanisms, e.g., the peer-prediction method of Miller et al. (2005).

Moreover, under certain additional assumptions satisfied in applications such as crowdsourcing,2

we show that the truthful equilibrium under SRA gives the highest payoff amongst all equilib-

rium payoffs (and not just symmetric equilibrium payoffs) in the large system limit, i.e., SRA is

asymptotically strongly truthful under these assumptions.

While such strong truthfulness guarantees are satisfied by existing mechanisms, they either impose

conditions on the response distributions that are not satisfied in general for objective evaluations

(Dasgupta and Ghosh 2013, Radanovic et al. 2016) or they require a prohibitively large number

of evaluations from each agent and assume that the agent uses the same reporting strategy for

each evaluation (Kong and Schoenebeck 2019, Kong 2020). SRA is the first known mechanism that

achieves this guarantee for objective evaluations without imposing any such constraints; in partic-

ular, SRA is the first mechanism satisfying strong truthfulness guarantees for objective evaluations

that incentivizes truthful behavior even among agents who perform a single evaluation.

This result is arguably non-trivial. The dominant existing framework for designing strongly truth-

ful peer-prediction mechanisms is due to Kong and Schoenebeck (2019), which incentivizes truthful

behavior only if the agents perform multiple evaluations (at least twice the number of possible

responses to any evaluation; see Kong (2020)) and additionally commit to using the same reporting

strategy for each evaluation. In Section 2 and Section D.4 in the Appendix, we show that even if one

leverages the homogeneous responses property satisfied by objective evaluations, it is not possible

to generically adapt the approach of Kong and Schoenebeck (2019) to incentivize truthfulness in a

single evaluation. By designing SRA, we nevertheless demonstrate that this is indeed possible. In

showing this result, we make novel information-theoretic contributions that are of interest beyond

this work.

The fact that SRA strongly incentivizes even a single response is vital since requiring multiple

evaluations from any agent to incentivize truthfulness is impractical in platforms where customers

interact with the marketplace relatively rarely, e.g., in vacation rental platforms such as Airbnb. In

these settings, requiring a single additional evaluation from each user may prohibitively increase the

evaluation period’s duration. Such delay and resulting changes in market characteristics over time

2 Crowdsourcing on labor platforms such as Amazon Mechanical Turk is an important means for sourcing the large-
scale execution of information-oriented micro-tasks, such as obtaining labeled data for training machine learning
algorithms. Incentivizing truthful, high-quality responses from participants is a key concern in these applications.
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undermine the platform’s ability to procure the most up-to-date feedback information reliably. While

there are mechanisms that incentivize truthfulness in a single evaluation under the homogeneous

responses assumption (see Section 2 for a discussion), none of these mechanisms satisfy the crucial

strong truthfulness guarantees that SRA satisfies.

Background. To appropriately position our contribution, we first present a brief discussion of

the main existing approaches in incentive design for the elicitation of unverifiable responses.

In a pioneering work in this domain, Miller et al. (2005) considered the case of a single evaluation

task and homogeneous responses and described the so-called peer-prediction method that incentivizes

truthful answers. The main requirement is that there is a commonly known prior on the unknown

distribution from which the agents’ true observations are sampled, and this prior is known to the

principal (who, in our case, is the platform). Truthfulness is achieved by rewarding/scoring an

agent’s posterior probability distribution of her peer’s answer conditioned on her own answer, using

a Proper Scoring Rule (PSR). PSRs are a well-known class of payment/scoring rules that incentivize

truthful elicitation of probabilities of events that can be observed at a future date (Brier 1950,

Gneiting and Raftery 2007, Savage 1971). This approach is infeasible in platforms since a prior on

the distribution of evaluations is typically not a priori available, and even if it is, it may not be

common knowledge across all agents and the platform. Moreover, this mechanism is known to induce

uninformative equilibria that yield the agents a higher payoff than the truthful equilibrium payoff

(Jurca and Faltings 2005).

Another influential design in this domain, the Bayesian Truth Serum (BTS) (Prelec 2004), and its

subsequent refinements and generalizations (Witkowski and Parkes 2012, Radanovic and Faltings

2013, Schoenebeck and Yu 2020), preserved the common prior assumption but relaxed the require-

ment that the principal needs to know this prior. These mechanisms instead require the agents to

make extraneous reports about their beliefs in addition to their answers. In particular, they are

asked to report a prediction of the empirical distribution of answers reported by other agents. Again,

requiring customers on platforms to provide such extraneous information about their beliefs is a tall

order given the already low response rates seen for simpler forms of feedback, e.g., ratings. Unfortu-

nately, such extraneous reports of beliefs, although undesirable, are indispensable for incentivizing

a single evaluation; it has been shown that it is impossible to design mechanisms that incentivize

truthfulness without obtaining some information about the prior distribution (Jurca and Faltings

2011) (which is obtained via agents’ reports of their beliefs in BTS).

Mechanisms that do not assume that the principal knows the prior on the distribution of answers

have been referred to as detail-free in the literature and those that do not require any extraneous

reporting from the agents apart from the evaluations are called minimal. Ideally, for reputation sys-

tems, we need incentive mechanisms that are both detail-free and minimal, and that do not rely on
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the assumption of the existence of a commonly known prior across agents. In light of the impossibil-

ity result mentioned above, this seems like a challenging task, if not entirely impossible. The earliest

known minimal and detail-free incentive mechanism for a single evaluation task was designed by

Jurca and Faltings (2008), in which respondents arrive sequentially and the distributional knowl-

edge of responses is obtained and leveraged by the mechanism in an online fashion; however, this

mechanism critically relies on the assumption of binary evaluations.

This is where a key feature of online platforms can be exploited: they typically host a large number

of similar products or services. For instance, there are thousands of similar restaurants listed on

review platforms like Yelp that users rate. Online marketplaces like Amazon or eBay would like to

obtain reviews for many existing sellers on these platforms. Online labor platforms like Thumbtack

and Handy would like to get performance metrics for thousands of workers and service providers

that operate on these platforms.

The presence of multiple similar evaluation tasks hints at an approach for designing detail-free

mechanisms that are also minimal: the missing information about the prior can be obtained from

consistent statistical estimates of the distribution of agent responses derived from the response data

across multiple tasks. Witkowski and Parkes (2013) first explored such a possibility in the context of

crowdsourcing, for eliciting binary (e.g., yes/no) responses. A potential concern with this approach

is that it assumes that the response data is truthfully generated. But it turns out that in these

situations, with careful design, truthfulness can become a self-fulfilling prophecy – truthful behavior

is an equilibrium in the induced game when the mechanism assumes that these reports are truthful.

This is the basic principle underlying the design of Witkowski and Parkes (2013) that forms the

foundation of our design, resulting in the fact that SRA is both minimal and detail-free. Mechanisms

exploiting this principle are commonly referred to as multi-task peer prediction mechanisms in the

literature.

Structure of SRA. SRA is a multi-task peer-prediction mechanism that builds upon the struc-

ture of output agreement mechanisms (Von Ahn and Dabbish 2008, 2004), which are simple and

intuitive mechanisms that have been quite popular in crowdsourcing practice, except they suffer

from a critical drawback of being susceptible to strategic manipulations. In an output agreement

mechanism, two agents answer the same question, and they are both rewarded if their answers

match. There are two critical drawbacks of this scheme: (a) truthful behavior may not necessarily be

an equilibrium (see Section 4.1 for an example) and (b) there is always an undesirable equilibrium

in the game it induces, in which every person reports the same answer irrespective of their true

evaluation. This equilibrium guarantees each person the highest possible payoff rewarded by the

mechanism. Our mechanism overcomes these drawbacks by giving proportionately lower rewards

for answers that turn out to be more popular on other similar evaluation tasks. This is achieved by
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inversely scaling the rewards for agreement by a popularity index for each answer, thus discourag-

ing blind convergence on a single answer. This is not a new idea: such a biased output agreement

scheme, called the Peer Truth Serum (PTS), was first introduced by Jurca and Faltings (2011), and

was further refined by Radanovic et al. (2016) and Faltings et al. (2017).

The key innovation in our design is in the way these popularity indices are defined. All the strong

incentive properties of our mechanism trace their origin to this novel definition. In our mechanism,

these indices are certain second-order population statistics that capture how frequently two people

performing the same task agree on a particular answer on average across all tasks. Formally, the

popularity index of an answer is the square root of the estimate of the probability of agreement

on that answer obtained from response data. Thus rare agreements receive higher rewards than

agreements that are relatively common. As the number of tasks increases, the accuracy of these

indices improves, and truthfulness is obtained as a Bayes-Nash equilibrium when the number of

tasks is large enough. A common prior is not necessary for this result; it should just be common

knowledge amongst agents that the prior satisfies a certain non-degeneracy property.

Strong truthfulness. A crucial concern in any reward mechanism is that the induced game

may possess multiple equilibria. In such cases, there needs to be an adequate rationale for the

truthful equilibrium to be selected. Indeed, the theory of equilibrium selection, i.e., justifying cer-

tain equilibria as more likely to arise than others, occupies an important position in game the-

ory; see Harsanyi et al. (1988) and Van Damme (2002), and references therein. It is known that

elicitation mechanisms for a single evaluation task with no extraneous reporting (which includes

Miller et al. (2005)) possess uninformative equilibria that give a higher expected payoff to each

agent than in the truthful equilibrium (Jurca and Faltings 2005). Moreover, these equilibria involve

simple strategies such as every agent reporting the same answer, due to which these mechanisms

are particularly vulnerable to uninformative feedback. The Bayesian Truth Serum demonstrated

that this issue could be overcome by requiring extraneous reports of beliefs; the truthful equilib-

rium under BTS gives the highest expected payoff to an agent across all equilibria, and in par-

ticular, this payoff is strictly higher than that under any equilibrium strategy profile that is not

fully informative. Mechanisms that satisfy this property are called strongly truthful mechanisms in

the literature. Dasgupta and Ghosh (2013) first showed that such strong truthfulness properties

could be obtained in the multi-task setting without requiring extraneous reports from the agents.

Kong and Schoenebeck (2019) describe a general information-theoretic analysis of incentive mech-

anisms in this space, and show that most mechanisms achieve such properties by (implicitly or

explicitly) connecting the loss in the agents’ expected payoff relative to the truthful equilibrium to

some form of mutual-information loss or correlation loss in the population due to deviation from

truthfulness.
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We show that SRA achieves a vanishing uniform upper bound (in the number of tasks) on the

difference between the expected payoff obtained by the truthful equilibrium and that obtained

under any other symmetric equilibrium (equilibrium in which all players choose the same reporting

strategy). As the number of tasks grows, asymptotically, the expected payoff in the limit under a

truthful strategy profile is higher than that under any other symmetric strategy profile. Moreover,

this payoff is strictly higher than that under any symmetric equilibrium strategy profile that is not

fully informative. A fully informative strategy profile is one where each agent applies a common

permutation map to her observation to generate her report (essentially amounting to relabeling

the set of responses). In other words, SRA is asymptotically strongly truthful across all symmetric

equilibria. As a dual to this property, under a mild assumption on the strategy spaces, we also

show that any symmetric equilibrium that gives the highest expected reward to an agent across

all symmetric equilibria must be close, in a well-defined sense, to being fully informative when the

number of tasks is large. Such properties hinder the rise of potential “obviously attractive” symmetric

equilibria such as all agents reporting the same answer for every evaluation.

The restriction to symmetric equilibrium payoffs in the equilibrium dominance property of SRA

may seem undesirable. However, this restriction stems from a crucial difference in our setting com-

pared to the settings considered by other mechanisms that are mainly motivated by crowdsourcing

applications. In our setting, identifying information for the different entities to be evaluated is avail-

able to the agents (captured by the task number in our formal setup). Moreover, allocations of

evaluation tasks to the agents are exogenously specified. Thus, in our setting, the agents are free

to choose reporting strategies that depend on the identities of the tasks they perform to coordinate

their reports with other agents, in addition to the (desirable) coordination that can be achieved by

reporting their observations truthfully. Due to the possibility of such extraneously achieved coordi-

nation, it is well known that it is impossible to elicit truthful evaluations under a payoff-dominant

truthful equilibrium in general (Gao et al. 2019).3 Other mechanisms get around this difficulty by

making certain assumptions that eliminate the possibility of the agents choosing reporting strategies

that depend on task identity. Although such assumptions may be justifiable in applications such as

crowdsourcing, we do not rely on such assumptions since they are inappropriate in the context of

eliciting feedback on platforms; see Section 5.3 for a discussion. In Section 5.3, we additionally show

that if such assumptions are made, then SRA is indeed asymptotically strongly truthful.

In a similar spirit as the framework of Kong and Schoenebeck (2019), these strong truthfulness

guarantees are obtained by showing that the expected payoff of an agent under a particular strategy

3 The argument for this impossibility is the following: suppose that there is a mechanism that ensures that the payoffs
that agents obtain by truthfully signaling an extraneous feature of an entity being evaluated via their reports are
always lower than those obtained by truthfully reporting the feature that they are supposed to report. Then one
obtains a contradiction by exchanging the role of the extraneous feature and the feature to be reported.
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profile under SRA is proportional to a novel notion of a square root agreement measure (SRAM)

between two independent responses, which we show to be monotonically decreasing in unilateral

information loss in the responses. Both the measure and this monotonicity property are new and of

independent interest. Moreover, in Section 2, we show that a generic adaptation of the framework

of Kong and Schoenebeck (2019) to the homogeneous response setting along the lines of SRA does

not yield truthfulness under any arbitrary mutual information measure. SRAM is thus, arguably,

the “right" notion of an agreement measure for objective evaluations. We discuss this aspect in more

detail in Section 2.

Robustness. We finally perform numerical experiments on synthetic as well as real data to

test SRA’s robustness in incentivizing truthful behavior in finite-data settings featuring deviations

from the homogeneous responses assumption. This is practically important since, despite making

a faithful effort to obtain and report true observations, agents may have residual biases in their

observations and reports. Such biases could also capture mild subjectivity in responding to objective

evaluations. Hence, it is desirable that SRA incentivizes each agent to be truthful even when the

agent accounts for such biases in other agents. We find that SRA exhibits a high degree of robustness

to these practical concerns and generates strong incentives for truthful behavior.

Reward mechanisms in practice. Non-monetary rewards for incentivizing informative feed-

back, e.g., coupons, badges, or some form of a reputation score, are commonly seen in crowdsourced

review forums like Yelp, Tripadvisor, etc. A prominent example of monetary incentives is the “Rebate

for Feedback (RFF)” program that was launched by Taobao.com (one of the world’s largest e-

commerce websites), on March 1, 2012.4 In this program, sellers can set a rebate amount in the

form of cashback or a store coupon for any items they sell, as a reward for a buyer’s feedback after

purchasing that item. If a seller opts for RFF, then Taobao ensures that the rebate is transferred

from the seller’s account to a buyer who leaves high-quality feedback. The feedback quality is deter-

mined by a machine learning algorithm depending on attributes like the length of the feedback,

whether or not certain key features of the item (e.g., longevity, whether or not it is true to size, etc.)

are mentioned, etc. The main contention of the present work is that strategic considerations are

paramount in incentivizing informative feedback. For example, it is easy to give untruthful feedback

that appears to be of high quality to a machine learning algorithm; this is especially a concern for

objective evaluations with a fixed, finite set of answers. SRA can thus be an effective approach to

administer such rebate schemes in a manner that is robust to strategic behavior.

Organization of the paper. The remainder of the paper is organized as follows. In Section 2, we

discuss related mechanisms and their comparisons with SRA. Section 3 presents a formal description

4 See https://bit.ly/2GVntzC, and also Li et al. (2020).

https://bit.ly/2GVntzC
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Mechanism Incentivizes truthful homogeneous responses Incentivizes single evaluations Dominance property for truthful equilibrium
SRA ✓ ✓ Strongly truthful across symmetric equilibria
Vanilla output agreement ✗ ✓ None
Witkowski and Parkes (2013) ✗ (needs binary responses) ✓ None
Dasgupta and Ghosh (2013) ✗ (needs categorical responses) ✓ Strongly truthful across symmetric equilibria
Peer Truth Serum for Crowdsourcing (PTSC) ✗ (needs self-predicting responses) ✓ Strongly truthful across symmetric equilibria
Kong and Schoenebeck (2019) ✓ ✗ Strongly truthful* (see Section 3)
Correlated Agreement (CA) ✓ ✗ (≥ 2) Informed truthful across symmetric equilibria
CA-HR (Appendix Section D.1 ) ✓ ✓ Informed truthful across symmetric equilibria
Multi-task Peer Prediction Method ✓ ✓ None
Radanovic and Faltings (2015) ✓ ✓ None

Table 1 Properties of different multi-task peer-prediction mechanisms in the many tasks regime in our setting.

of the model considered in the paper. Section 4 presents the SRA mechanism and its main incen-

tive property. In Section 5 we address the issue of equilibrium selection. In Section 6, we perform

numerical experiments in a practically motivated experimental setup to test the robustness of SRA

in incentivizing truthful behavior to deviations from our main assumptions. We finally summarize

our contributions and conclude in Section 7. The proofs of all of our results can be found in the

Appendix.

2. Related literature

As a minimal, detail-free, multi-task mechanism, the key feature of SRA is that it strongly incen-

tivizes truthful responses in homogeneous response settings, even among agents who have performed

a single evaluation. We now discuss this property in relation to the properties satisfied by other exist-

ing multi-task mechanisms. Table 1 summarizes the differences between SRA and these mechanisms

at a high-level.

2.1. Existing strongly truthful multi-task mechanisms

We first discuss mechanisms that achieve strong truthfulness guarantees, focusing on distinctions

from SRA.

1. Dasgupta and Ghosh (2013). Dasgupta and Ghosh (2013) proposed the first known detail-

free and minimal multi-task peer-prediction mechanism that is also strongly truthful, assuming

that agents do not choose reporting strategies contingent on task identities; in the absence of

this assumption, it is strongly truthful across symmetric equilibria. The original paper restricted

the setting to binary evaluations; however, it was later shown by Shnayder et al. (2016) that the

mechanism is strongly truthful for non-binary responses under the condition that the responses are

“categorical.” This condition says that conditional on an agent’s answer, the posterior probability of

all other agents’ answers must reduce relative to the prior. That is, if Pr(y) is the prior probability

of an answer y and Pr(y|y′) is the conditional probability that some other agent has answer y given

that one agent has answer y′, then Pr(y′|y) ≤ Pr(y′) for all y′ 6= y. Except for the case of binary

evaluations, this condition is not satisfied in general under homogeneous responses (see Remark 3

in Section 6).
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2. Peer Truth Serum for crowdsourcing (PTSC) (Radanovic et al. 2016). PTSC is the

multi-task extension of the PTS mechanism, originally defined by Jurca and Faltings (2011) for the

case where the prior distribution of responses is known to the principal. Both these mechanisms

operate in the homogeneous responses setting. PTS has a biased output agreement structure

requiring only one evaluation per agent, where the popularity index of each answer is the prior

probability of an agent reporting that answer. In PTSC, this prior probability is replaced by

its estimate computed from the response data obtained from a large number of tasks. In order

to obtain truthfulness, PTS/PTSC requires that the agent responses satisfy a “self-prediction”

condition, which says that Pr(y|y)/Pr(y)≥ Pr(y′|y)/Pr(y′) for any y′ 6= y. This is equivalent to

saying that Pr(y|y) ≥ Pr(y|y′) for any y′ 6= y We can show that this condition is weaker than

the categorical responses condition required by the mechanism of Dasgupta and Ghosh (2013) for

incentivizing truthfulness; see Proposition E.1 in the Appendix. However, except for the case of

binary evaluations, this condition is also not satisfied in general under homogeneous responses (see

Remark 3 in our numerical evaluations). If this condition is satisfied, PTSC has been shown to be

asymptotically strongly truthful while restricting to symmetric strategy profiles, or in other words,

it is strongly truthful across symmetric equilibria.

3. Kong and Schoenebeck (2019). The underlying principle leading to the strong truthfulness

property of SRA is closely related to the mechanism design paradigm of Kong and Schoenebeck

(2019) (KS), who provide an information-theoretic framework for designing strongly truthful mech-

anisms for general settings with non-homogeneous responses. Their mechanism operates on a pair

of agents, and the payment to each agent is defined to be a scaling of an unbiased estimate of some

mutual information measure between the two agents’ response distributions, constructed using their

reported responses to a common set of evaluation tasks. A variety of mechanisms can be obtained

by varying the information measure. Strong truthfulness follows from the fact that the mutual infor-

mation measure is monotonically decreasing with respect to loss of informativeness in the agents’

responses. We note that strong truthfulness here rests on the assumption that agents use the same

reporting strategy for all tasks. However, in our setting, since agents are allowed to choose reporting

strategies contingent on task identities, this mechanism is strongly truthful only across equilibria in

which agents choose a common reporting strategy for all tasks that they perform (which includes

symmetric equilibria).

Until recently, all known mutual information measures required an unboundedly large number

of responses per agent (a large fraction of which must be commonly performed by the two agents)
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to construct unbiased estimates.5 Kong (2020) recently proposed a mutual information measure,

of which an unbiased estimator can be constructed using a finite number of per-agent responses.

Nevertheless, this construction still requires a number of per-agent responses at least twice the

number of possible answers (e.g., 4 responses for binary evaluations). In Section D.3 in the Appendix,

we show that there can be no mutual information measure satisfying information monotonicity

whose unbiased estimate can be constructed from two agents’ responses to a single evaluation task,

even in the homogeneous, binary responses setting. Thus, the KS mechanism design framework fails

to incentivize truthful behavior in a single evaluation even in the homogeneous responses setting.

Via the design of SRA, we effectively show that if one leverages distributional information obtained

from multiple tasks in the homogeneous responses setting, then there is a mutual information mea-

sure (the square root agreement measure) and a deviation from the KS mechanism design framework

that utilizes the learned distributional information along with agent responses to compute payments,

such that the mechanism strongly incentivizes truthful behavior in even a single evaluation.

Based on SRA’s design, one may wonder if it is possible to obtain a generic adaptation of the KS

mechanism to the multi-task, homogeneous responses setting, which utilizes distributional informa-

tion (obtained from many tasks) to incentivize truthful single responses under any mutual infor-

mation measure. In Section D.4 in the Appendix, we show that this is not true by considering the

Shannon mutual information (Cover and Thomas 2012): we show that a mechanism along the lines

of SRA that leverages the Shannon mutual information instead of the square root agreement mea-

sure is not truthful in general for homogenous responses. This underscores the importance of the

discovery of SRAM and shows that it is arguably the “right” agreement measure for the purpose of

strongly incentivizing objective evaluations.

2.2. Other prominent multi-task mechanisms

We now discuss multi-task mechanisms that are not known to be strongly truthful in general.

1. Witkowski and Parkes (2013). The mechanism proposed by Witkowski and Parkes (2013) is

minimal and requires each agent to perform only one task; however, it requires that the responses

are binary, and hence it is not uniformly applicable to the homogeneous responses setting.

Additionally, no equilibrium dominance properties are known for this mechanism.

2. Correlated Agreement mechanism (CA) (Shnayder et al. 2016). CA is a multi-task

mechanism that incentivizes truthful behavior in the general heterogeneous responses setting. CA

operates on a pair of agents, and it requires at least two evaluations per agent. As originally

5 Schoenebeck and Yu (2021) recently proposed a sample-efficient approach to directly learn an appropriate scoring-
rule for scoring the agents’ reports that implements the mutual-information mechanism of Kong and Schoenebeck
(2019), rather than learning the joint distribution and then estimating the mutual information.
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described, it assumes that certain information about the joint distribution of the agents’ responses

is known to the principal. However, this knowledge assumption can be relaxed in the multi-task

setting with homogeneous responses, since this distribution can be estimated from the response data

obtained from a large number of tasks (appealing to the self-fulfilling prophecy of truthful behavior).

Additionally, the requirement of two evaluations per agent can also be relaxed: in Section D.1 in

the Appendix, we describe an adaptation of CA to our setting that only requires one evaluation per

agent. We call this mechanism CA for homogenous responses (CA-HR).

In the setting in which CA is originally defined, it is assumed that there is no extraneous iden-

tifying information for the evaluation tasks and the task allocation is randomized across agents, in

effect eliminating the need to consider task-contingent reporting strategies of the kind allowed in

our setting. In this setting, CA satisfies the dominance property of informed truthfulness, which is

weaker than strong truthfulness. Under informed truthfulness, the truthful equilibrium yields the

highest equilibrium payoff to each agent, which is higher than an agent’s payoff in any equilibrium

where her reporting strategy is fully uninformative, i.e., her reports are independent of her observa-

tion. However, in contrast to strong truthfulness, there could be other equilibrium strategy profiles

that are not fully informative, which yield the same payoff as the truthful equilibrium. In particu-

lar, although the informed truthfulness property precludes fully uninformative equilibria where all

observations map to a single response, the CA mechanism remains vulnerable to equilibria where

agents map smaller sets of responses to a single response (e.g. if the responses are {1,2,3,4} then

{1,2} map to 1 and {3,4} map to 4), which a strongly truthful mechanism precludes (i.e., strictly

payoff-dominates). Such types of equilibria are payoff-equivalent to the truthful equilibrium under

CA if the joint distribution of observations of a pair of agents for a fixed evaluation task is “clus-

tered,” as defined in Definition 10 (from Shnayder et al. (2016)) in the Appendix. In our practically

motivated experimental setup in Section 6, we show that instances with clustered observations are

encountered with a very high frequency; see Remark 4.

In our setting, since reporting strategies contingent on task identities are allowed, CA and CA-HR

are not informed truthful; we present an example Section D.2 in the Appendix illustrating this fact.

But they can be shown to be (asymptotically) informed truthful across symmetric equilibria. On

the other hand, in Section 5.3, we show that if strategies contingent on task identities are disallowed

in our setting and tasks are randomly allocated across agents, the SRA is (asymptotically) strongly

truthful across all equilibria. Thus, SRA satisfies a stronger equilibrium dominance property

compared to CA or CA-HR for homogeneous responses.
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3. Multi-task extension of the peer-prediction method (Miller et al. 2005). The peer-

prediction method is a minimal mechanism and incentivizes truthful responses with only one eval-

uation per agent in the homogeneous responses setting. As originally described, it assumes that

the joint distribution of the agents’ responses is commonly known to the principal and the agents.

However, this assumption can be relaxed in the multi-task setting with homogeneous responses since

this distribution can be estimated from the response data obtained from a large number of tasks. As

we discussed in Section 1, this mechanism achieves truthfulness by rewarding an agent’s predicted

probability distribution of her peer’s answer, as implied by her own answer, using a Proper Scoring

Rule (PSR).

This mechanism, however, does not satisfy any equilibrium dominance properties: in particular,

there exist uninformative equilibria that yield the highest possible payoff to each agent, irrespective

of the PSR utilized.6 For example, for any PSR, the highest possible utility under this mechanism

(in the many tasks limit) is achieved when all agents simply report the same answer irrespective

of their observation. To see this, note that under such a symmetric strategy, in the many tasks

limit, the joint distribution of responses estimated by the principal puts a unit probability mass

on the event of the two peer agents reporting the fixed answer. Hence, the conditional distribution

on the peer’s response implied by an agent’s response perfectly predicts the peer’s response and

thus, achieves the highest score. In contrast, we show that such equilibrium leads to a strictly lower

payoff than the truthful equilibrium under SRA when the number of tasks is large enough (see

Remark 2).

4. Radanovic and Faltings (2015). Radanovic and Faltings (2015) describe a mechanism for

the homogeneous responses setting that only utilizes one evaluation per agent. This mechanism is

a multi-task extension of the peer-prediction method that relaxes the common prior assumption:

they show how an unbiased estimate of the payoff under the peer-prediction method utilizing the

quadratic scoring rule (a PSR) can be constructed in the homogeneous responses setting with

response data from a random but almost surely finite number of tasks. However, the mechanism

inherits the chief concern regarding the peer-prediction method that we discuss above, in that the

strategy profile where everyone reports a fixed answer irrespective of their observations results in

the highest possible score and thus a higher payoff than the truthful equilibrium.

6 This observation has already been made for the original non-detail-free version of the peer-prediction method by
(Jurca and Faltings 2005).
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3. Model

We now describe the details of our model.

Operational details. We consider a setting with N evaluation tasks denoted by the set N and

labeled as i = 1, · · · ,N . Let M denote the population of M agents, labeled as j = 1, . . . ,M . Let

Mi ⊆M denote the subset of agents that perform task i, and let Nj be the set of tasks that an

agent j performs. We assume that the sets Mi and Nj are exogenously specified. The set of possible

observations and the set of possible answers in each evaluation task is assumed to be the same finite

set, denoted as Y. A generic element of Y will be denoted as y.

Statistical assumptions. The distribution of observations of agents performing task i is specified

by an unobservable type of the entity being evaluated in task i, denoted as the random variable

Xi, which takes values in the finite set X. A generic element of X will be denoted as x. This set of

possible types X is common across all tasks. The distribution of the observations of the agents for

any task, as a function of the type x ∈X of the entity being evaluated in that task, is denoted as

p(x) = (py(x);y ∈ Y). The observation of an agent j in Mi is denoted as the random variable Y i
j ,

which is independently drawn from p(Xi) for each such agent. This implies that the observations

of different agents for a single task i are independent conditioned on Xi, but may be dependent

otherwise.7 Further, we assume that the types of entities being evaluated in the different tasks are

independently sampled from a common distribution, PX . We refer to this property as the tasks

being statistically similar.

Finally, we assume that from the perspective of any agent j, there are no other observable features

of the evaluation task i except the observation Y i
j . The probability distribution over types, PX , and

the function p together form a probability generating model (henceforth referred to as the generating

model) of the agent observations, denoted as the pair (PX ,p). In particular, this pair fully specifies

a joint distribution on the underlying types of the different entities being evaluated and the different

agents’ observations across tasks. The following example illustrates this model.

Example 1. Consider a situation where a labor platform wants to obtain feedback on punctuality

of plumbers that operate on the platform. Suppose that each plumber could be of 2 possible unob-

servable types X= {Punctual, Not Punctual}, with PX(Punctual) = PX(Not Punctual) = 0.5. Each

plumber’s type is independently sampled from the distribution PX . The question is “Did the plumber

show up within 5 minutes of his/her appointed time?”. The two possible observations/answers are Y=

7 Note that {Y i
j ; j ∈ Mi} is a set of exchangeable random variables by the virtue of the fact that they are i.i.d.

conditioned on the unobservable entity type Xi. Instead of explicitly assuming the existence of such a type, we can
assume that the set of observations made by any and potentially an infinite number of agents for an entity i are
exchangeable random variables, which a property that is expected to hold in practice for objective evaluations. De
Finetti’s theorem (Aldous 1985) would then imply the existence of a type for each entity such that the observations
of the agents are conditionally i.i.d.
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{Yes, No}. And the distributions of true answers as a function of type are p(Punctual) = (0.95,0.05)

and p(Not Punctual) = (0.5,0.5).

We want to remark that the above example is merely illustrative: the type of plumber need not

have any semantic interpretation. It may lie in some abstract space. More importantly, we emphasize

that this type is unobservable, both, to the agents and the principal.

The payment mechanism. Our goal is to design a payment mechanism that elicits observations

from the agents. For any j ∈Mi, let rij denote agent j’s reported answer for task i. We define a

payment mechanism as follows.

Definition 1. A payment (or reward/scoring) mechanism is a set of functions {τj : j ∈M}, one

for each person in the population, that map the reports {rij : j ∈M, i∈Nj} to a real valued payment

(or score).

Agents’ strategies. An agent j’s strategy is a set of mappings {qij : i ∈ Nj} where qij(y) =

(qij
y′(y); y

′ ∈ Y) is the probability distribution over answers for evaluation task i ∈ Nj conditional

on the observation being y. We emphasize that agents are allowed to choose different reporting

strategies for the different tasks, i.e., their reporting strategy can be task-contingent. We however

restrict ourselves to considering task-contingent reporting strategies in which the reported answer of

an evaluation only depends on the observation for that evaluation instead of potentially depending

on the observations for all the other evaluations that the agent performs. This restriction is simply

for the ease of exposition. All the incentive properties continue to hold for our proposed mechanism

even if such strategies are allowed. This is simply because the payment in our mechanism to any

agent is additive over the tasks that she performs. Hence, by the expectation operator’s additivity,

only the marginal distributions of the responses for the different tasks matter in determining the

total expected payoff to an agent. Thus, choosing a reporting strategy for a given task that depends

on the observations for other tasks is equivalent in terms of expected payoff to choosing the reporting

strategy based on the output of some randomization device that produces values that are identically

distributed to the observations for these other tasks. Such a reporting strategy is already included

in the space of strategies for each agent.

Equilibrium notion. We define the following notion of a Bayes-Nash equilibrium (Myerson

2013) in the game induced by a payment mechanism.

Definition 2 (Bayes-Nash Equilibrium). Given a generating model (PX ,p) that is common

knowledge amongst the agents, we say that a strategy profile {qij : j ∈ M, i ∈ Nj} comprises a

Bayes-Nash equilibrium in the game induced by the payment mechanism if for each j ∈M,

E

[

τj
(
{qij′(Y i

j′) : j
′ ∈M, i∈Nj′}

)
]

≥E

[

τj
(
{q̄ij(Y i

j ) : i∈Nj}∪ {qij′ (Y i
j′) : j

′ ∈M, j′ 6= j, i∈Nj′}
)
]

, (1)
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for each {q̄ij : i∈Nj} 6= {qij : i∈Nj}, where the expectation is with respect to the joint distribution

on the responses of the population specified by the generating model (PX ,p). We say that the

strategy profile is a strict Bayes-Nash equilibrium if the above inequality is strict.

In words, this says that assuming all the other agents adhere to the reporting strategy profile

{qij : j ∈M, i∈Nj}, each agent maximizes her expected reward by also adhering to the prescriptions

of the strategy profile. Next, we define Bayes-Nash incentive compatibility, which is the property

that truthful reporting is a Bayes-Nash equilibrium of the game induced by the reward mechanism.

Definition 3 (Bayes-Nash Incentive compatibility). We say that a payment mechanism

is Bayes-Nash incentive-compatible with respect to the generating model (PX ,p) if the truthful

reporting strategy profile, i.e., where qij
y′(y) = 1{y′=y} for all j ∈ M and i ∈ Nj , is a Bayes-Nash

equilibrium in the game induced by the mechanism. If this equilibrium is strict, we say that the

mechanism is strictly Bayes-Nash incentive compatible.

Informational assumptions. We make the following informational assumptions.

1. The principal is not assumed to know PX or p. Hence, (PX ,p) is not an input to the payment

mechanism.

2. We assume that the structure of the underlying generating model, i.e., the existence of some

prior distribution PX from which the type of any evaluated entity is drawn, and the function p

that captures the conditional distribution of observations given the type, that is common across

entities being evaluated, is common-knowledge across all agents. In particular, this means that

all the agents commonly know that all the tasks are statistically similar, and the observations

of agents performing each evaluation are statistically homogeneous. Additionally, we will also

assume that it is commonly known to all the agents that the generating model (PX ,p) satisfies a

certain separation property, which we define in Section 4.2 (Definition 5), where we also discuss

simple interpretations of this property. Finally, we assume that the payment mechanism, once

fixed by the principal, is publicly announced and is commonly known to all agents.

Note that the definitions of Bayes-Nash equilibrium and Bayes-Nash incentive compatibility (Def-

initions 2 and 3) assume that the generating model is commonly known to the agents. However, we

show that SRA is Bayes-Nash incentive-compatible with respect to any commonly known generating

model that satisfies the separation property (discussed in Sections 4.2; Definition 5). Consequently,

it is only necessary for the agents to commonly know that this separation property is satisfied by

the generating model to obtain truthful behavior. Similarly, we show that the other properties we

discuss concerning the Bayes-Nash equilibria in the game induced by SRA hold for any commonly

known generating model that satisfies the separation property. Hence, to obtain these properties,

we only need to assume that it is common knowledge amongst the agents that the generating model

satisfies this property.
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4. The square root agreement rule (SRA)

Our main proposal, the square root agreement rule (SRA), is formally defined in Mechanism 1.

Informally, the mechanism can be described as follows. Consider an agent j who has performed

evaluation task i. Suppose that she submits an answer y ∈ Y. Then, she receives payment for this

answer only if another agent j′, who has performed the same task i, and who is chosen to be her

peer, also reports the same answer y. This payment denoted as ej(y) is inversely proportional to

the square root of the empirical frequency at which arbitrarily chosen agents agree on answer y

across all tasks that j has not performed; see Equation 3. This empirical frequency is denoted by

f̄j(y) and is computed in Equation 2. To ensure that f̄j(y)> 0 and the inverse is well defined, we

use a smoothed version of empirical frequency, i.e., we add 1 to the total number of agreements on

each answer before dividing by the number of tasks j has not performed. The following example

illustrates the mechanism.

Mechanism 1: The square root agreement rule (SRA). Assumes |Mi| ≥ 2 for all
i∈N.

The responses of agents for the different evaluation tasks are solicited. Let these be denoted
by {rij : j ∈M, i∈Nj}. An agent j’s payment is computed as follows:

• For each population Mi such that i /∈Nj, choose any two agents j1(i), j2(i) ∈Mi, and
for each possible evaluation y ∈ Y, compute the quantity

f̄j(y) =
1

N − |Nj |
(1+

∑

i∈N\Nj

1{ri
j1(i)

=y}1{ri
j2(i)

=y}). (2)

• For each answer y, fix a payment ej(y) defined as

ej(y) =
K

√

f̄j(y)
. (3)

where K > 0 is any positive constant.
√

f̄j(y) is the popularity index of answer y.

• For computing agent j’s payment for evaluation task i ∈Nj, choose another agent j′ ∈
Mi, who will be called j’s peer for task i. If their responses match, i.e., if rij = ri

j′ = y,
then j gets a reward of ej(y). If the responses do not match, then j gets 0 payment for
that task.

Example 2 (SRA in action). Consider the labor platform presented in Example 1. During an

evaluation period, the platform solicits answers to the question “Did the plumber arrive within 5

minutes of his/her appointed time?” from all the customers who have hired a plumber from a set

of a priori similar plumbers operating on the platform (e.g., new plumbers who have recently joined
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the platform) during this period. Suppose a customer, Susan, reports an answer “Yes,” meaning that

she reports that the plumber that she hired, Tim, did arrive within 5 minutes of his appointed time.

Then, Susan gets a reward only if a randomly chosen customer who has also hired Tim in the same

period also reports the answer “Yes.” The reward is inversely proportional to a popularity index of

the answer “Yes” across the customer population computed from the response data. SRA defines this

popularity index as the square root of the (smoothed) empirical frequency at which two customers

who hire the same plumber both report the answer “Yes” across all the plumbers that Susan hasn’t

evaluated. The payment procedure is similar if Susan reports “No” instead.

Remark 1. Note that in SRA, a separate set of popularity indices for the different answers is

computed for each agent based on population responses for tasks that this agent hasn’t performed.

In practice, however, these indices are expected to be almost identical across agents when the

total number of tasks is large relative to the number of tasks each agent performs; hence one can

potentially calculate a single set of popularity indices of the answers and use them for all agents with

negligible impact on incentives. Our theoretical results, however, pertain to SRA as it is formally

defined.

4.1. The main ideas behind SRA

SRA is a biased output agreement mechanism, i.e., an agent gets paid for her evaluation only if her

answer matches the answer reported by her peer agent who has made the same evaluation, where

the payment depends on the answer. The simplest description of the core idea of the mechanism is

obtained in the hypothetical scenario where the generating model (PX ,p) is known to the principal

and is commonly known to the agents (this is the setting considered by Miller et al. (2005)). In this

setting, a biased output agreement scheme is defined as follows.

1. Each agent j is paired with another randomly chosen peer agent j′, and their responses are

compared.

2. If their responses don’t match, then j gets no reward.

3. If their responses match and this common response is y ∈ Y, then j gets a positive reward e(y).

The agreement rewards e(y) for y ∈ Y are defined as a function of the generating model of responses.

The main innovation in SRA is how these agreement rewards are defined. To motivate their design,

we first discuss why the naïve output agreement mechanism fails to incentivize truthful behavior.

Failure of naïve output agreement. In the naïve output agreement mechanism, e(y) is defined

to be a constant K > 0 for all y ∈ Y. This mechanism tries to exploit an intuitive property that

one may naïvely expect to hold in many scenarios, which is that the peer agent j′ has the highest

conditional likelihood of observing the same answer as that observed by an agent j. However, this

property is not always true. For instance, it is violated if, irrespective of the observation made by
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an agent, one “popular” answer has an overwhelming conditional likelihood of being observed by

the peer agent. This feature can be observed in Example 1.

Example 3. Consider the setting in Example 1. The question is “Did the plumber show up within

5 minutes of his/her appointed time?” with the possible observations/answers being Y= {Yes, No}.
Suppose an agent observes that the plumber did not arrive within 5 minutes of her appointed time,

i.e., her observation was “No.” Then the conditional probability of the peer agent, assumed to be

truthful, replying “Yes” can be computed to be 0.5409, which is higher than the conditional probability

of her replying “No,” which can be computed to be 0.45909. Hence, replying “Yes,” i.e., lying, results

in a higher expected payoff than being truthful and replying “No.”

In the example above, plumbers are a priori overwhelmingly likely to turn up on time, to the

extent that even if an agent observes that a plumber was late, she will still find it more likely that

the same plumber will be observed to be on time by her peer agent. Thus, assuming that the peer

agent is truthful, it is better to lie and say that the plumber was on time. Summarily, truthful

behavior is not an equilibrium in this case.

To overcome this shortcoming of the naïve output agreement scheme, the key obstacle that one

must tackle is this tendency of regressing to the conditionally most popular answer. Formally, if the

observation of an agent j is Yj = y for some y ∈ Y, her tendency is to report argmaxy′∈YP (Yj′ =

y′ | Yj = y) so as to maximize the probability of agreement. As we saw in the example above, this

optimal answer need not necessarily be y, i.e., the inequality

P (Yj′ = y | Yj = y)≥ P (Yj′ = y′ | Yj = y), (4)

doesn’t necessarily hold for all y, y′ ∈ Y, even in the binary responses setting where |Y|= 2. Biased

output agreement schemes can tackle this issue by scaling the rewards for agreement depending on

the answer, essentially lowering rewards for answers that are expected to be more (conditionally)

likely and increasing rewards for answers that are less (conditionally) likely. The intuition is that if

an agent observes an answer that is less likely to also be observed by her peer, she is still incentivized

to report that answer since the matching reward on that answer is higher. Conversely, if she observes

an answer that is more likely to also be observed by her peer, she prefers to report that answer

despite the low reward for agreement relative to other answers since the probability of agreement is

higher. The challenge is to design the reward scalings for different answers so that these incentives

for truthful reporting for an agent are satisfied for each answer (assuming every other agent is

truthful).

A straightforward way of making an agent indifferent between different reports (and hence weakly

incentivize truthful behavior) is by defining the agreement reward for answer y′ ∈ Y to be propor-

tional to 1/P (Yj′ = y′ | Yj = y), where y is the answer observed by the agent. This approach is
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rendered infeasible by observing that y is not known to the mechanism – indeed, the entire exer-

cise is meant for the purpose of eliciting y. With this observation in perspective, we discuss two

approaches of defining the rewards before we present our approach in SRA.

Approach 1: Peer Truth Serum. The PTS mechanism (Jurca and Faltings 2011,

Faltings et al. 2017) scales the agreement reward for answer y′ ∈ Y by 1/P (Yj′ = y′), i.e., reward for

agreement on an answer is inversely proportional to the probability that an evaluating agent makes

that observation. We thus obtain truthful behavior from agent j under PTS if for all y ∈ Y and

y′ 6= y,

P (Yj′ = y | Yj = y)

P (Yj′ = y)
≥ P (Yj′ = y′ | Yj = y)

P (Yj′ = y′)
, i.e., if, (5)

P (Yj′ = y | Yj = y)≥P (Yj′ = y | Yj = y′). (6)

In the literature, this is referred to as the ‘self-predicting responses’ condition (that we discussed ear-

lier in Section 2), which is not satisfied in general for homogeneous responses, except when |Y|=2.

Intuitively, defining the popularity index of an answer to be equal to the marginal probability of a

single agent making that observation does not capture the fact that the agent evaluates the condi-

tional probabilities of agreement for the different answers, which depend on the joint probabilities

of a pair of agents making various observations.

Approach 2: A “conditional” peer truth serum (CPTS). With the goal of incorporating

the conditional distribution of the observations in the definition of the agreement rewards, another

proxy for the ideal scaling can be defined to be 1/P (Yj′ = y′ | Yj = y′), i.e., e(y′) is defined to be

proportional to 1/P (Yj′ = y′ | Yj = y′). In this case, we obtain truthful behavior from agent j if for

all y ∈ Y and y′ 6= y,

P (Yj′ = y | Yj = y)

P (Yj′ = y | Yj = y)
= 1≥ P (Yj′ = y′ | Yj = y)

P (Yj′ = y′ | Yj = y′)
, i.e., if, (7)

P (Yj′ = y′ | Yj = y′)≥P (Yj′ = y′ | Yj = y). (8)

This condition is exactly the self-prediction condition from Equation 6. Thus, the conditions that

are necessary for the PTS and CPTS mechanisms to induce truthful behavior are the same. This

shows that a naïve incorporation of conditional probabilities in the reward scalings need not provide

any advantage over PTS, at least in terms of the conditions required for truthfulness.

SRA’s approach. SRA defines the rewards for agreement as e(y′) =K/
√

P (Yj = Yj′ = y′) for

each y′ ∈ Y, for some K > 0. To put it simply, the reward for an agreement is inversely proportional

to the square root of the probability of that agreement. Thus a more probable agreement earns a



Kamble et. al.: The Square Root Agreement Rule for Incentivizing Truthful Feedback on Online Platforms
22

lower reward than an agreement that is relatively less probable. To see the relation to PTS and

CPTS, observe that SRA simply replaces the scaling 1/P (Yj′ = y′) of PTS and the scaling 1/P (Yj′ =

y′ | Yj = y′) of CPTS by the product of the square root of the two scalings 1/
√

P (Yj′ = y′) ×
1/
√

P (Yj′ = y′ | Yj = y′) = 1/
√

P (Yj = Yj′ = y′). By making this change, SRA explicitly incorporates

the joint probabilities of agreements in the rewards.

It turns out that the scaling under SRA successfully overcomes the shortcoming of the naïve

output agreement scheme in homogeneous responses settings. In particular, truthful behavior is a

Bayes-Nash equilibrium in this mechanism. To see this, consider an agent j, and suppose that all

other agents are truthful. Then if j’s true response is y, her expected reward for a truthful report

is,

K
P (Yj′ = y | Yj = y)
√

P (Yj = Yj′ = y)
=K

√

P (Yj′ = Yj = y)

P (Yj = y)
. (9)

Similarly, her reward for any other report y′ is,

K
P (Yj′ = y′ | Yj = y)
√

P (Yj = Yj′ = y′)
=K

P (Yj′ = y′, Yj = y)

P (Yj = y)
√

P (Yj = Yj′ = y′)
. (10)

Thus being truthful gives a higher reward if the quantity in Equation 9 is larger than the quantity

in Equation 10, which is, if,

√

P (Yj′ = Yj = y)
√

P (Yj = Yj′ = y′)≥P (Yj′ = y′, Yj = y). (11)

This inequality resembles the well-known Cauchy-Schwarz inequality that relates second-order

moments of two random variables X and Y as, E[XY ] ≤
√

E(X2)E(Y 2). Hence, if the joint dis-

tribution of responses of the two agents satisfies this inequality for each y, y′ ∈ Y, we say that the

distribution satisfies the “Cauchy-Schwarz” (CS) property. And in this case, truthful equilibrium is

a Bayes-Nash equilibrium under SRA.

Now the key interesting fact is that this property is always satisfied for homogeneous responses,

i.e., for objective evaluations. To see this, the inequality in Equation 11 can be expressed as follows

in the homogeneous responses setting.
√
∑

x∈X

PX(x)py(x)2
√
∑

x∈X

PX(x)py′(x)2 ≥
∑

x∈X

PX(x)py(x)py′(x). (12)

But this is precisely the Cauchy-Schwarz inequality that always holds. Hence, truthful behavior is

incentivized as a Bayes-Nash equilibrium under SRA. For truthful behavior to be a strict Bayes-Nash

equilibrium, we need the above inequality to be strict. We show that this requirement is satisfied if

the generating model is ‘separated’: a condition we discuss in Section 4.2.

Now implementing the mechanism above in our setting is infeasible since the principal does not

know the generating model (PX ,p). Moreover, the generating model is not assumed to be commonly
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known to the agents. SRA addresses these issues by replacing the required agreement probabilities

with consistent statistical estimates computed from reports obtained across multiple tasks. Observe

that if everyone except agent j is truthful, then in the definition of SRA, E[f̄j(y)] = P (Y i
j1(i)

= Y i
j2(i)

=

y) + 1/(N − |Nj |). In fact, as N grows large, assuming |Nj| remains bounded, f̄j(y) almost surely

converges to P (Y i
j1(i)

= Y i
j2(i)

= y) by the strong law of large numbers, i.e., f̄j(y) is an asymptotically

consistent estimate of P (Y i
j1(i)

= Y i
j2(i)

= y). For a large enough N , we can show that the estimate’s

quality is sufficiently high to ensure that truthfulness is recovered as a strict Bayes-Nash equilibrium

for any ‘separated’ generating model (see our main result in Section 4.3). Thus, the agents only

need to commonly know the generating model’s structure and that it is separated to obtain truthful

behavior.

4.2. Obtaining strictness

An important goal for any reward mechanism is to strictly incentivize truthfulness, i.e., in the

truthful equilibrium, each agent gets a strictly higher reward by being truthful than by adopting any

other strategy. Without this property, trivial mechanisms like the one that gives a fixed payment

to each agent regardless of her report, in principle, weakly incentivize truthfulness. For truthfulness

to be a strict equilibrium under SRA, we need the Cauchy-Schwarz inequality in Equation 12 to be

strict for every pair y, y′ ∈ Y. It will be useful to define the following notion of the “inequality gap.”

Definition 4 (Cauchy-Schwarz inequality gap). For a generating model (PX ,p) defined

on X and Y, define

δ(PX ,p) = min
y, y′∈Y, y 6=y′

√

(
∑

x∈X

PX(x)py(x)2)(
∑

x∈X

PX(x)py′(x)2)−
∑

x∈X

PX(x)py(x)py′(x).

By the Cauchy-Schwarz inequality, δ(PX ,p) ≥ 0. If δ(PX ,p) > 0 for some generating model

(PX ,p), then truthfulness is a strict Nash equilibrium in the game induced by the mechanism we

described earlier for the case where the principal knows this generating model. Consider the following

definition, which will be useful for our forthcoming discussion.

Definition 5 (Separation). We say that a generating model (PX ,p) is separated if δ(PX ,p)>

0. We say that it is α-separated for any α> 0 if δ(PX ,p)≥α.

To understand whether separation is a reasonable assumption on the generating model, a little

demystification of this condition is in order. For any answer y ∈ Y, define the vector

v(y),
(√

PX(x)py(x); x∈X
)
. (13)

Then the Cauchy-Schwarz inequality says that for any two answers y and y′, the magnitude (in the

Euclidean norm) of the projection of the vector v(y) on the unit vector in the direction v(y′) is less

than the magnitude of the vector v(y) itself (one can reverse the roles of y and y′), i.e.,

|v(y).v(y′)|
‖v(y)‖ ≤ ‖v(y′)‖,
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or

|v(y).v(y′)| ≤ ‖v(y)‖‖v(y′)‖. (14)

Let θ(u,v) denote the angle in radians between two vectors u and v, defined as

θ(u,v), arccos
u.v

‖u‖‖v‖ , (15)

when both u and v are non-zero and as 0 when either of them is a zero vector. We can then show

that the inequality in Equation 14 is strict if and only if the angle between the vectors v(y) and

v(y′) is positive. The following proposition gives a precise statement.

Proposition 4.1 For a generating model (PX ,p) defined on X and Y, the following two conditions

are equivalent.

1. There is some α> 0 such that (PX ,p) is α-separated.

2. There is some γ > 0 such that θ(v(y),v(y′))≥ γ for all y, y′ ∈ Y such that y 6= y′.

Thus, separation is equivalent to assuming that the angle between v(y) and v(y′) is positive for

any y 6= y′. If this is not true for some y and y′, then there is a C ∈R such that py(x) =Cpy′(x) for

each x∈X such that PX(x)> 0. But in this case, the responses y and y′ need not be distinguished

at all, since they contain the same information about X, and hence about the rest of the random

quantities. In particular, P (Xi = x|Y i
j = y) = P (Xi = x|Y i

j = y′) for each x∈X. Hence, the principal

can simply ask the agents to map both these responses to a single response.

In the context of our model, separation is also equivalent to the stochastic relevance condition

that is imposed to obtain strictness in several works in this domain, starting from Miller et al.

(2005). An agent’s answer to a question is a stochastically relevant random variable if no two

answers induce the same conditional distribution on the answers of some other agent who has

answered the same question. Clearly, if θ(v(y),v(y′)) = 0, then stochastic relevance is violated,

and thus stochastic relevance implies that θ(v(y),v(y′))> 0, which is equivalent to separation by

Proposition 4.1. Showing that separation implies stochastic relevance is less straightforward and we

show it in Proposition E.2 in the Appendix.

4.3. Main result

The following result presents the main incentive property satisfied by SRA.

Theorem 1. Consider an α-separated generating model (PX ,p) that is commonly known to the

agents. Further, suppose that Nj ≤ n for all j ∈M and |Mi| ≥ 2 for all i ∈ N. Then for any ω ∈
(0, αK(|Y| − 1)), there exists a positive integer N0 that depends only on ω, α, |Y|, n, and K such

that if the number of evaluation tasks N >N0, then
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• SRA is strictly Bayes-Nash incentive compatible with respect to (PX ,p), and,

• At the truthful Bayes-Nash equilibrium, the expected payoff to an agent under the truthful

strategy is at least ω higher than the expected payoff under any reporting strategy where the

agent’s reported response is independent of her true response.

Note that the bounds we derive in the proof of this result can be used to explicitly calculate an

N0 as a function of ω, α, |Y|, n, and K. Also note that, although the theorem assumes that the

generating model is commonly known to the agents, the mentioned properties hold for any α-

separated generating model. In particular, the dependence of N0 on the generating model is only

through α. Hence, this result implies that even if only the fact that (PX ,p) is α-separated is common

knowledge amongst agents, then irrespective of their individual beliefs about the specifics of the

generating model, truthful reporting is strictly incentivized in the game induced by the mechanism

for a large enough N .

The second claim in the theorem is crucial too: it says that in the truthful equilibrium, the

difference in the payoffs to an agent under the truthful strategy and under any strategy in which

an agent’s reported response is independent of her true response, is bounded away from zero. Such

strict incentives allow the principal to account for any costs that the agents may incur for their

evaluation effort by appropriately scaling the mechanism’s rewards. Note that it is not possible

to ensure that the difference between the expected payoff under truthful behavior and that under

any other strategy is bounded away from zero, since one can choose a randomized strategy that

chooses a non-truthful response with an arbitrarily small probability. However, our goal here is to

deter agents who report an arbitrary answer without investing effort into making an observation.

Our result ensures that any perceived cost for such effort can be absorbed in the difference in the

payoff under truthful reporting and under any reporting strategy that ignores the observation, by

appropriately scaling the rewards.8

Finally, we note that although the common knowledge assumption above is necessary to obtain

the theoretical properties of our mechanism, our numerical experiments in Section 6 test SRA under

more practical considerations.

5. Equilibrium selection

In this section, we address the issue of multiplicity of equilibria in the game induced by SRA. First,

observe that if truthful behavior is an equilibrium, then so is any symmetric fully informative strategy

profile in which all agents apply a common permutation map to the responses they receive. And

all such equilibria are payoff-equivalent. But the significantly higher degree of coordination needed

8 Liu and Chen (2016) show how to learn such a scaling when there is heterogeneity in the cost for effort in classical
output agreement mechanisms. We believe a similar approach can be adopted in our case.
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for the agents to play a fully informative equilibrium other than truthful behavior makes it unlikely

that such equilibria will emerge in practice. Thus full informativeness shall be our benchmark as we

focus on other equilibria that may emerge.

The equilibria that give high expected payoffs are arguably the most attractive for the agents

and thus can be assumed to have an increased likelihood of being chosen. In what follows, we show

that for a large N , the truthful equilibrium is approximately payoff-optimal across all symmetric

equilibria, with an approximation error that vanishes in N . In the limit, any symmetric fully infor-

mative strategy profile gives a strictly higher expected payoff to any agent than any other symmetric

strategy profile. We also show a weak dual to this result: under a certain assumption on the strategy

spaces, any symmetric equilibrium that results in the highest expected payoff to an agent across all

symmetric equilibria cannot be too “uninformative” when N is large, where “uninformativeness” is

a precise notion that we define.

5.1. Truthfulness vs. symmetric equilibria as N →∞
Before we discuss the result for a large but finite N , let us first discuss the result in the limiting

case as N →∞, which is easier to obtain, and sheds light on the core idea. Consider a symmetric

strategy profile in which every agent adopts a reporting strategy q, where q(y) = (qy′(y); y
′ ∈ Y)

is the distribution over the reported response conditional on the true response. Let us denote the

reported responses under this strategy by the random variables {Zi
j ; i= 1, · · · ,N, j ∈Mi}. Under

the truthful strategy profile (or equivalently, any symmetric fully informative strategy profile), in the

limit as N →∞, the expected reward of each agent performing task i converges to (see Equation 9),

∑

y∈Y

P (Y i
j = y)K

√

P (Y i
j′ = Y i

j = y)

P (Y i
j = y)

=K
∑

y∈Y

√

P (Y i
j′ = Y i

j = y) =K
∑

y∈Y

√
∑

x∈X

PX(x)py(x)2. (16)

Whereas, under any other symmetric strategy profile, the expected reward of each agent converges

to,

K
∑

y∈Y

√

P (Zi
j′ =Zi

j = y) =K
∑

y∈Y

√
∑

x∈X

PX(x)(
∑

y′∈Y

py′(x)qy(y′))2. (17)

It turns out that the quantity in Equation 17 is, in general, lower than the quantity in Equation

16. How much lower depends on the ‘uninformativeness’ of the strategy q: the more uninformative

the strategy q, the higher is the difference. We will describe this phenomenon more generally since

we believe it has applications beyond this work (see Appendix B.1 for a discussion). We first define

the following notion of a square root agreement measure.

Definition 6 (Square root agreement measure (SRAM)). Consider a generating model

(PX ,p) defined over X and Y, and consider two random responses Y1 and Y2 drawn from this model.

Then the square root agreement measure between Y1 and Y2 is defined as

Γ(Y1, Y2) =
∑

y∈Y

√

P (Y1 = Y2 = y) =
∑

y∈Y

√
∑

x∈X

PX(x)py(x)2
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From the definition of SRAM, it is clear that under any symmetric strategy profile in which every

agent adopts a reporting strategy q, the expected payoff to each agent in the limit as N →∞ is K

times the SRAM between the reported responses (see Equation 17). Some important properties of

the SRAM are presented in Appendix B.

Next, we define a new notion of uninformativeness of a reporting strategy. Informally, a reporting

strategy is more uninformative if it frequently maps multiple true responses to a single reported

response, the extreme case being when a report is chosen independently of the true response. The

following definition formalizes this notion.

Definition 7 (An uninformativeness measure). The uninformativeness of a reporting

strategy q is defined as

Ω(q) =
1

|Y|(|Y| − 1)

∑

y∈Y

∑

y′∈Y, y′′∈Y;y′ 6=y′′

√

qy(y′)qy(y′′). (18)

We say that a strategy q is ω−uninformative if Ω(q)≥ ω.

Certain important properties of the uninformativeness measure are presented in Appendix C. In

particular, Ω(q) = 0 if and only if (q(y); y ∈ Y) have disjoint supports across all y ∈ Y, i.e., if and

only if q is fully informative, and Ω(q) attains its highest value of 1, if and only if q(y) = q(y′) for

any y 6= y′, i.e., if the report is chosen independently of the true answer.

We finally present the following information monotonicity property, which is key to our results.

Proposition 5.1 (A monotonicity property) Consider a generating model (PX ,p) defined over

X and Y, and consider two random responses Y1 and Y2 drawn from this model. Also, consider two

random responses Z1 and Z2 obtained by applying a reporting strategy q independently to Y1 and Y2

respectively. Then,

Γ(Z1,Z2)≤ Γ(Y1, Y2)−
δ(PX ,p)Ω(q)

2(|Y| − 1)

2
√

|Y|
. (19)

To see how this property helps us, recall from Equations 16 and 17 that the expected payoff under

any symmetric fully informative strategy profile is KΓ(Y1, Y2), and that under any other symmetric

strategy profile q is KΓ(Z1,Z2), where Z1 and Z2 is obtained by applying a reporting strategy q

independently to Y1 and Y2. The proposition implies that if δ(PX ,p)> 0, then Γ(Y1, Y2) = Γ(Z1,Z2)

only if Ω(q) = 0, i.e., only if q is fully informative. Thus we conclude that if δ(PX ,p)> 0, then in

the limit as N →∞, any fully informative strategy profile gives a strictly higher payoff than any

other symmetric strategy profile that is not fully informative. In other words, SRA is asymptotically

strongly truthful across symmetric equilibria. In the next section, we use Proposition 5.1 to address

the case where N is large but finite.
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5.2. Equilibrium selection in the finite N regime

Now we turn to the finite N setting. In this case, the expected payoffs under the fully informative

strategy and any other symmetric strategy will not have converged to Γ(Y1, Y2) and Γ(Z1,Z2)

respectively. But for any fixed N , one can obtain concentration bounds on how far the expected

payoffs will be from these target values. This, in turn, gives us vanishing bounds on how much lower

the payoff under the truthful equilibrium could be compared to any other symmetric equilibrium.

Theorem 2. Consider an α-separated generating model (PX ,p) that is commonly known to the

agents. Further, suppose that Nj ≤ n for all j ∈M and |Mi| ≥ 2 for all i ∈N. Then for any ω > 0,

there is a positive integer N0 that depends on α, ω, n, K, and |Y|, such that for any N >N0, under

SRA,

1. Any symmetric fully informative strategy profile is a strict Bayes-Nash equilibrium, and,

2. Any other symmetric Bayes-Nash equilibrium strategy profile gives an expected payoff at most

ω higher than any symmetric fully informative strategy profile.

Note once again that the bounds we derive in the proof of this result can be used to explicitly

calculate an N0 as a function of α, ω, n, K, and |Y|. Also, note that similar to Theorem 1, although

Theorem 2 assumes that the generating model is commonly known to the agents, the result holds

for any α-separated generating model (since the dependence of N0 on (PX ,p) is only through α).

Hence, we conclude that these properties presented in Theorem 2 hold even in the game where it is

only commonly known to the agents that the generating model is α-separated.

Finally, note that in the statement of Theorem 2, N > N0 suffices to ensure that the truthful

equilibrium gives a payoff at most ω lower than that under any symmetric equilibrium strategy

profile. This is significant since, for a large but fixed N , it is not possible to obtain uniformly van-

ishing concentration bounds on E(ej(y)) (which involves an inverse) across all symmetric reporting

strategies. This is because there could be a symmetric strategy profile for which the probability

of agreement for an answer y ∈ Y gets arbitrarily close to 0. To overcome this issue, we utilize the

fact that under a mixed equilibrium, since the problem of computing the best response is a linear

optimization problem, a fixed agent is indifferent between multiple deterministic reporting strate-

gies. This allows us to choose a best-response strategy for a single agent in a way that ensures that

the probability of agreement on any answer y is bounded away from zero while ensuring that the

expected payoff is same as that under the given symmetric equilibrium.

Can we say anything about the informativeness of the symmetric equilibrium profile that gives

the highest expected payoff across all symmetric equilibria? Intuitively, bounds on E(ej(y)) for a

large N , coupled with the “inequality gap” characterized in Proposition 5.1 should result in an upper

bound on the uninformativeness of any symmetric reporting strategy that gives a higher expected
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payoff than a fully informative strategy. It turns out that in doing so, the same difficulty that

we described earlier arises in obtaining the requisite concentration bounds, where the symmetric

strategy profile could lead to probabilities of agreement arbitrarily close to 0. In this case, we cannot

use the trick we used earlier, and instead, we show the following result.

Theorem 3. Consider an α-separated generating model (PX ,p). Further, suppose that Nj ≤ n for

all j ∈M and |Mi| ≥ 2 for all i ∈N. Then for any ω > 0 and η > 0, there is a positive integer N0 that

depends on ω, α, η, n, K, and |Y|, such that for any N >N0, under SRA, any symmetric strategy

profile in which the probability of reporting any answer y ∈ Y is either 0 or at least η, and that gives

a higher expected payoff to an agent than the truthful strategy profile, is at most ω−uninformative.

Remark 2. Theorem 3 implies that for a large enough N , the truthful equilibrium yields a

strictly higher payoff to each agent than any equilibrium where all agents report a fixed answer

irrespective of the observation. To see this, note that the latter strategy profile is 1-uninformative

(see properties of the uninformativeness measure presented in Appendix C); hence, we can choose

ω ∈ (0,1). Moreover, η can be chosen to be any number in (0,1) since mapping all observations to a

single response implies that the probability of any response is either 0 or 1. Choosing such η and ω,

we see that the above property will hold for any N larger than the corresponding N0. This property

is in contrast to the multi-task extension of the peer-prediction method (Miller et al. 2005) and the

mechanism of Radanovic and Faltings (2015), in which each agent reporting a fixed answer is an

equilibrium that yields the highest possible payoff. A similar argument shows that for a large enough

N , the truthful equilibrium yields a strictly higher payoff to each agent than any equilibrium where

all agents map smaller sets of responses to a single response, e.g., if the responses are {a, b, c, d}
then {a, b} map to b and {c, d} map to d. This contrasts with the informed truthfulness property

of CA, under which the truthful equilibrium doesn’t necessarily strictly payoff-dominate equilibria

of this type (particularly in scenarios where the observations are clustered; see Definition 10 in the

Appendix).

5.3. Strong truthfulness vs. Strong truthfulness across symmetric equilibria

In this section, we show that the property of strong truthfulness across symmetric equilibria of

SRA can be strengthened to strong truthfulness (across all equilibria) under certain assumptions

commonly made in the peer-prediction literature. To do so, we first discuss what kind of asym-

metric equilibria may arise under SRA that yield a higher reward to the agents than the truthful

equilibrium.

Example 4. Consider the labor platform setting considered in Example 1. In this example, the

observation that is expected to be least frequently agreed upon is “No” (i.e., the plumber did not arrive

within 5 mins of his/her appointed time). Let John be a plumber operating on this platform, and
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consider the strategy profile where the customers who evaluate John always report “No” for him,

while all customers report truthfully for every other plumber. This is an asymmetric strategy profile:

the agents who evaluate John follow a different reporting strategy from those who don’t. In the limit

where the number of plumbers on the platform is large, under the assumptions of Theorem 1, we

claim that this strategy profile constitutes an equilibrium. The key idea is that the popularity indices

are not expected to be impacted by John’s reports in this limit. Hence, assuming everyone else adheres

to this strategy profile, being truthful is optimal on all tasks other than evaluating John. Moreover,

for John’s evaluation, reporting “No” is optimal since it is the only way to obtain a positive payment.

Thus this strategy profile constitutes an equilibrium. Moreover, this equilibrium gives a strictly higher

reward to agents who have evaluated John than the truthful equilibrium, since the answer “No” is

expected to have the lowest popularity index and hence the highest reward for agreement.

The ability to construct such equilibria relies on agents coordinating their behavior on a task or a

small subset of tasks. Our model assumes that task-identifying information is available and the task

allocation is exogenously specified, so we cannot preclude this possibility. However, when tasks are

randomly allocated to the agents and agents do not make their reporting strategy contingent on the

task identity, such equilibria are not expected to arise. Formally, consider the following assumptions.

Assumption 1 (Randomized Task Allocation). Suppose that there are N tasks and M

agents. Each task is to be performed by m agents, where we assume that m≥ 2. Also, suppose that

no agent should perform more than n tasks on average. To ensure that this is feasible, we consider

a system regime in which N and M simultaneously grow such that M >mN/n. For each task, m

distinct agents are uniformly sampled and assigned to that task. Note that each agent gets picked for

a task with probability m/M and thus performs mN/M tasks on average, which is less than n.

Note that the average number of tasks performed by an agent, n, can be chosen to be as small as

required (at the cost of requiring a large M) to ensure that each agent doesn’t perform more than

one evaluation with a high probability.

Assumption 2 (Task-independent strategies). Assume that each agent j picks a reporting

strategy qj before the allocation of evaluation tasks, with the assumption that the same reporting

strategy will be applied to every task that the agent performs.

Such assumptions are often justifiable in crowdsourcing applications and hence are commonly

made in the multi-task peer-prediction literature as we discussed in Section 2. We can argue that

under such assumptions, the fact that SRA is asymptotically strongly truthful across symmetric

equilibria implies that it is, in fact, asymptotically strongly truthful. To state our result, we need

the notion of the population average reporting strategy given a strategy profile, defined as q̄(y) =

1
M

∑

j∈M
qj(y) for all y ∈ Y. We have the following result.
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Theorem 4. Consider an α-separated generating model (PX ,p) that is commonly known to the

agents. Suppose that Assumptions 1 and 2 are satisfied. Then for any ω > 0 and η > 0, there is a

positive integer N0 that depends on α, η, ω, m, n, K, and |Y|, such that for any N > N0, under

SRA, the following holds.

1. Any symmetric fully informative strategy profile is a strict Bayes-Nash equilibrium.

2. For any Bayes-Nash equilibrium strategy profile such that probability of reporting any answer

y ∈ Y is either 0 or at least η under the population average reporting strategy, the expected

payoff of any agent is at most ω higher than that under any symmetric fully informative strategy

profile.

3. Consider any Bayes-Nash equilibrium strategy profile such that probability of reporting any

answer y ∈ Y is either 0 or at least η under the population average reporting strategy, and

that yields a weakly higher expected payoff to any agent than that under any symmetric fully

informative strategy profile. Then the population average reporting strategy under this strategy

profile is at most ω-uninformative.

Note that for any ω > 0, we are not able to achieve ω-domination of the fully informative equilib-

rium over all equilibria for some finite but large enough N , but only those equilibria in which the

population average reporting probabilities are either 0 or bounded away from 0. This is because

if the average reporting probability for an answer across the population becomes arbitrarily small

in the number of tasks N as N grows, then it is not possible to obtain decaying concentration

bounds on the agreement rewards; refer to the similar discussion in the context of Theorem 3 above.

However, for any fixed ω > 0, in the limit as N →∞, all equilibria are ω-dominated by the truthful

equilibrium. Moreover, for any fixed ω > 0, in the limit as N →∞, any equilibrium that yields a

weakly higher payoff than the truthful equilibrium is at most ω-uninformative. Since ω is arbitrary,

this shows that the mechanism is asymptotically strongly truthful.9

Informally, the idea of the proof of Theorem 4 is the following. The random allocation of tasks, as

well as non-contingency of reporting strategies on task identities, imply that from the perspective

of each agent, no task is special, i.e., they are expected to be paired with a generic peer from the

population of agents irrespective of the identity of the task. The assumption that the number of

tasks performed by each agent is bounded on average implies that one agent’s reports are expected

to have a vanishing impact on the population indices. Because of these assumptions, from the

perspective of each agent, the remainder of the population with an asymmetric strategy profile can

be replaced by a population where each agent utilizes the population average reporting strategy q̄,

9 We remark that agents are expected to use simple strategies in practice, and thus strategies in which the reporting
probabilities of the answers become arbitrarily close to zero are unlikely to arise in finite but large N settings under
an α-separated generating model.
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while (approximately) preserving the payoff structure of the game. Additionally, the fact that each of

the different strategies utilized by the agents is near-optimal against this average reporting strategy

of the population implies that the average strategy q̄ is also near-optimal against q̄, because the

payoff of an agent is linear in her reporting strategy. Hence, the agents’ payoff is approximately the

same as one in the strategy profile where everyone follows q̄, which constitutes a symmetric strategy

profile (with the approximation error in each of the above arguments vanishing in the large tasks

limit). The result then essentially follows from the fact that SRA is asymptotically strongly truthful

across symmetric equilibria.

We argue that Assumptions 1 and 2 are generally not appropriate in the context of feedback

elicitation on online platforms. In this context, tasks are not randomly allocated but are chosen

by the agents themselves. Also, entities being evaluated have a multitude of extraneous identifying

features, e.g., the name of a plumber, the race or ethnicity of the Airbnb property owner, etc. Given

this information, one cannot preclude the possibility of the agents choosing their reporting strategy

based on such extraneous features and achieving coordination in their reports, potentially achieving

higher payoffs compared to truthful reporting of their observations.

However, such extraneous coordination could be more or less likely depending on the context. For

instance, in the example above, the possibility that agents coordinate their behavior with respect

to this one plumber, John, out of potentially hundreds seems unlikely. However, such coordination

may not be unreasonable in reviewing a popular neighborhood restaurant amongst people residing

in that neighborhood.

To ensure that practitioners concerned with our target applications are not misled by SRA’s

properties reported in our work, we choose not to make restricting assumptions that disallow such

coordination and content ourselves with the weaker property of strong truthfulness across symmetric

equilibria. As we argued in Section 2, in the absence of such assumptions, the dominance properties

of other mechanisms are also restricted.

6. Numerical Evaluation

In this section, we numerically evaluate the performance of SRA, both, in the case of objective

evaluations using synthetic data (Section 6.1) and in the case of subjective evaluations using real

data from online platforms (Section 6.2). In the latter case, we also compare SRA’s performance to

other related mechanisms.

6.1. Performance on objective evaluations

In this section, we test SRA’s robustness in inducing truthful behavior in the finite N regime, in

settings where population homogeneity may not necessarily hold exactly for objective evaluations

due to observation or reporting biases. To do so, we assume the perspective of a single agent
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operating in a platform environment where SRA is deployed, and examine her incentives for truthful

reporting given her beliefs about the other agents’ generating model of the observations and their

reporting behavior. This exercise also serves as a practical alternative to arguing about whether the

common knowledge assumptions that are required for our results hold in practice; we demonstrate

numerically that each agent has strong practical incentives to be truthful under SRA if she believes

that agents are largely unbiased and they report their observations faithfully. We begin by defining

our experimental setup and the performance measures that we consider.

Setting. We consider the setting of an online service platform such as Thumbtack,10 on which

a large number of moving companies offer local moving services. The platform seeks to collect

information about how punctual the different moving companies are in adhering to the committed

time to start the move. Poor scheduling and information collection practices can result in large

variability in the start and finish times of different moves in a day, potentially leading to disgruntled

customers.

In our simulation setup, we assume that a moving company’s delay in showing up is an exponen-

tially distributed random variable with a certain mean. We assume that there are |X|= 5 types of

moving companies, where

X= {1 (Mostly Punctual), 2 (Somewhat Punctual), 3 (Mostly Tardy), 4 (Tardy), 5 (Very Tardy)} .

Each of these types is associated with a mean for the distribution of delay. We denote these means

as µ= {µ1, µ2, µ3, µ4, µ5} , where we assume that µ1 < µ2 <µ3 <µ4 <µ5. The distribution of these

five types across the population is denoted as PX . The platform asks the customers the following

question: “How long (in minutes) after the scheduled time of appointment did the movers show up?”

We consider two settings that differ in the possible answers to this question.

1. The number of answers is |Y|= 3 where, Y= {0 to 30, 30 to 60, 60 to ∞}.
2. The number of answers is |Y|= 5 where, Y= {0 to 15, 15 to 30, 30 to 45, 45 to 60, 60 to ∞}.

Given the type of a mover x ∈X, the delay is exponentially distributed with mean µx, and hence

the conditional probability of making an observation y= l to u is given by:

py(x) = exp(− l

µx

)− exp(− u

µx

). (20)

Instances. An instance is specified by the probability distribution of the types PX , and the mean

delays associated with the types µ. We generate 10000 instances. In each instance, PX is determined

by sampling 5 numbers independently and uniformly in [0,1] and dividing them by their total to

10 Thumbtack is an online service platform that matches customers with local professionals; see
https://www.thumbtack.com/

https://www.thumbtack.com/
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obtain a probability distribution. µ is obtained by sampling 5 numbers independently and uniformly

in [0,60] (hence the mean delay of a moving company can be at most 60 min) and sorting them in

an increasing order to satisfy the requirement that that µ1 <µ2 <µ3 <µ4 <µ5. Once PX and µ are

thus specified, the conditional distributions over observations, p(x) for each x∈X, get specified as

well according to Equation 20, for both the settings of |Y|= 3 and |Y|= 5.

Remark 3. We note that for |Y| = 3, 9787 out of the 10000 instances thus generated failed to

satisfy the self-predicting responses condition (see item 2 in Section 2.1) and 9995 instances failed to

satisfy the categorical responses condition (see item 1 in Section 2.1). For |Y|= 5, none of the 10000

instances satisfied either of the two conditions. Hence, the PTSC mechanism (Radanovic et al. 2016)

and the mechanism of Dasgupta and Ghosh (2013) are inapplicable with a high frequency in this

setting. This finding continues to hold if PX is chosen to be more “regular.” We sampled 10000

instances in two additional settings when |Y|= 5: (a) one where PX(x) is decreasing in x, i.e., types

with higher mean delay are more rare, and (b) PX(x) is decreasing in x, i.e., types with higher mean

delay are more frequent. In both these settings, none of the instances satisfied the self-predicting

responses or categorical responses conditions.

Remark 4. The CA-HR mechanism described in Section D.1 in the Appendix is informed truth-

ful across symmetric equilibria in general. However, if the instance is such that the joint distribution

of observations of a pair of agents for a common evaluation task is not “clustered,” as defined in

Definition 10 in the Appendix, then the mechanism is strongly truthful across symmetric equilibria

for that instance. We find that for |Y|=3, 9995 out of the 10000 instances thus generated had clus-

tered observations. For |Y|= 5, 9940 out of the 10000 instances had clustered observations. Thus, in

this setting, with a very high frequency, SRA is the only applicable mechanism requiring one task

per agent that is also strongly truthful across symmetric equilibria.

Agent beliefs. We focus on a single agent (a customer on the platform), whom we refer to as

agent j, and examine her incentives for being truthful under SRA. Each instance that we define

above represents a belief that agent j has about the generating model for the movers’ true delays.

Additionally, we allow the agent to account for potential biases in the observation-making process

of other agents. In particular, agent j believes that, while she can make perfect observations, other

agents do not observe the delay perfectly, but rather observe a biased version. Owing to this, she

believes that given a mover type x, the conditional distribution of observations made by a generic

agent in the population is not p(x), but p′(x), which is (slightly) different. We assume that

p′(x) = (1− ǫ)p(x)+ ǫq′(x), (21)

where q′ represents agent j’s belief of the bias in the population, and ǫ represents the magnitude

of the bias. In each of the 10000 instances, for both the settings of |Y|= 3 and |Y|= 5 answers, we
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independently sample an associated bias q′(x) for each x ∈X, again by generating 3 and 5 values

uniformly in [0,1] and dividing each by their sum to obtain a distribution. In our analysis, we will

independently consider different values of ǫ ∈ {0,0.1,0.2}, where ǫ = 0 is the case where agent j

believes that everyone else makes perfect observations.

Performance measures. We define two performance measures that capture the relative attrac-

tiveness of non-truthful behavior compared to being truthful from the perspective of agent j, assum-

ing every other agent truthfully reports her (potentially biased) observation. Before we define these

measures, we first compute the expected reward for agreement on each answer y ∈ Y under the

mechanism from the perspective of agent j, i.e., compute E(ej(y)). For each instance, assuming

K = 1 and denoting N − |Nj | = N ′, we denote r(y,N ′, ǫ) , E(ej(y)) to be the expected payment

that agent j receives if she and her peer both give a matching response y, for each y ∈ Y. We con-

sider values of N ′ in the set {200,400,600,800,1000} and ǫ∈ {0,0.1,0.2}. Note that r(y,N ′, ǫ) can

be computed exactly given the generating model.11 Also note that under SRA, ej(y) is computed

based on answers of agents other than j; hence, from the perspective of agent j, ej(y) incorporates

the bias of the agents in making their observations. This bias is reflected in the computation of

E(ej(y)) = r(y,N ′, ǫ).

Based on our calculation of r(y,N ′, ǫ), we next define three quantities that will be utilized to

define our performance measures. In defining all of these quantities, we assume that all agents other

than j truthfully report their (potentially biased) observations.

1. Truthful reward. First, for each instance, we define the expected reward of agent j under

truthful behavior:

truthful-reward(N ′, ǫ),
∑

y∈Y

P (Yj = Yj′ = y)r(y,N ′, ǫ). (22)

Note that in defining this reward, we account for the fact that agent j believes that she makes

perfect observations while her peer j′ is potentially biased. In particular, we have,

P (Yj′ = Yj = y) =
∑

x∈X

PX(x)py(x)p
′
y(x),

where p(x) is defined in Equation 20 and p′(x) is defined in Equation 21 (capturing the fact

that the peer agent is biased).

11 In SRA, f̄j(y) is a discrete random variable taking N ′+1 possible values in the set {1/N ′,2/N ′, · · · , (N ′+1)/N ′}. In
particular, f̄j(y) = 1/N ′+Z(y)/N ′, where Z(y) is a binomial random variable arising from N ′ trials, with probability
of success equalling the probability of agreement on y (between two (potentially) biased agents). Thus the expectation
of ej(y), which is also a discrete random variable and a function of f̄j(y), can be exactly computed.
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2. Optimal Reward. Next, we define the expected reward of agent j from the optimal reporting

strategy that maximizes her expected reward (which could potentially entail lying). In doing

so, we address an important consideration. Although the question simply asks for the interval

in which the true delay of the mover lies, agent j can actually observe the true delay. Thus

the optimal report must be determined conditioned not on the true answer, but the true delay

(from which the true answer can be determined). We assume that agent j can accurately

observe the delay to within a minute and she stops observing if the delay is larger than 180

min (i.e., 3 hours).12 Formally, we assume that the observations of the delay lie in the finite set

Y= {a to a+1; for a ∈ {0,1, · · · ,179}} ∪ {180 to ∞}. We denote the observed delay of agent

j by the random element Y j ∈ Y. As before, since the delay is exponentially distributed with

mean µx given the type x∈X, the conditional probability of observing the delay y= l to u∈ Y

is given by:

p̄y(x) = exp(− l

µx

)− exp(− u

µx

). (23)

Accounting for this consideration, we finally define the expected reward from the optimal

reporting strategy as:

optimal-reward(N ′, ǫ),
∑

y∈Y

P (Y j = y)max
y′∈Y

P (Yj′ = y′|Y j = y)r(y′,N ′, ǫ) (24)

=
∑

y∈Y

max
y′∈Y

P (Yj′ = y′, Y j = y)r(y′,N ′, ǫ). (25)

Here we have,

P (Yj′ = y′, Y j = y) =
∑

x∈X

PX(x)p̄y(x)p
′
y′(x),

where p′(x) is defined in Equation 21 (capturing the fact that the peer agent is biased) and

p̄(x) is defined in Equation 23 (capturing the fact that the agent observes the true delay in

the set Y ).

3. Effortless reward. Finally, as a baseline, we define the reward obtained by agent j by choosing

an answer y ∈ Y uniformly at random without making any observation:

effortless-reward(N ′, ǫ),
∑

y∈Y

1

|Y|P (Yj′ = y)r(y,N ′, ǫ), (26)

where we have,

P (Yj′ = y) =
∑

x∈X

PX(x)p
′
y(x),

where p′(x) is defined in Equation 21.

12 This assumption is for simplicity of computation of the optimal reporting strategy as a function of the observed
delay. Our findings are not expected to change significantly if the optimal reports are computed conditioned on finer
feedback information.
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We finally define our two main performance measures.

1. Lying gain. The first measure we define captures the percentage gain in expected reward of

agent j by reporting optimally rather than simply being truthful. It is defined as,

lying-gain(N ′, ǫ),
optimal-reward(N ′, ǫ)− truthful-reward(N ′, ǫ)

truthful-reward(N ′, ǫ)
× 100%. (27)

Ideally, we would like this gain to be small.

2. Truthful coverage. Although the measure that we define above is a natural one to consider,

it provides at best a partial picture of the incentives generated by the mechanism. In particular,

one way of ensuring a small lying-gain is to simply add a very large fixed reward to the reward

under the mechanism so that the denominator in Equation 27 becomes large. By scaling this

fixed reward, one can ensure that the lying-gain is as small as one desires without changing

the incentive properties of the mechanism. By doing so, even mechanisms with poor incentives

for truthful behavior can result in small lying-gain. In other words, although the lying-gain

is invariant to multiplicative scaling of the rewards under the mechanism, it is not invariant

to additive shifts of the rewards. To address this concern, we define the following relative

performance measure, which is invariant to both additive shifts as well as multiplicative scaling

of the rewards.

truthful-coverage(N ′, ǫ),
truthful-reward(N ′, ǫ)− effortless-reward(N ′, ǫ)

optimal-reward(N ′, ǫ)− effortless-reward(N ′, ǫ)
× 100%.

(28)

This quantity measures the fraction of the incremental gain resulting from optimal reporting

as compared to reporting randomly, that can be attained by truthful reporting. This quantity

should ideally be large.

We note that due to the bias in the population, and given that agent j evaluates the incentives

for lying conditioned on the observed delay as opposed to the true answer, being truthful is not

guaranteed to be optimal for agent j′ under SRA even in the N ′ →∞ limit. Hence, it is expected

that lying-gain(N ′, ǫ)> 0% and truthful-coverage(N ′, ǫ)< 100%.

We define avg-lying-gain(N ′, ǫ) to be the average across 10000 instances of the

lying-gain(N ′, ǫ). Similarly, we define avg-truthful-coverage(N ′, ǫ) to be the average across

10000 instances of the truthful-coverage(N ′, ǫ). When the context is clear, for notational con-

venience, we will refer to these aggregate quantities as avg-lying-gain and avg-truthful-coverage

respectively.

Results. The aggregate performance measures and standard errors13 for the different values of

N ′ and ǫ are presented for the |Y|=3 setting in Figure 1 and for the |Y|= 5 setting in Figure 2. We

note two main observations.

13 The standard errors of the avg-lying-gain and avg-truthful-coverage are the standard errors of these mean quantities,
defined as 1.96 times the empirical standard deviation of the lying-gains or truthful-coverages divided by the square
root of the sample size (10000).
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Figure 1 The avg-lying-gains along with standard errors under SRA for N ′ ∈ {100,200,300,400,500} (X-axis) for

different values of ǫ and for the |Y|= 3 setting.
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(a) avg-lying-gain (|Y|= 5)
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Figure 2 The avg-lying-gains (Y-axis) along with standard errors under SRA for N ′ ∈ {100,200,300,400,500}

(X-axis) for different values of ǫ, for the |Y|= 5 setting.

First, SRA displays reasonably good performance in incentivizing truthful behavior despite the

limited number of tasks, even when agent j believes that the rest of the population is biased. For

instance, for |Y|= 3 and N ′ = 1000, the avg-lying-gain is at most about 2.5% across all settings of

biases. Correspondingly, for |Y|= 5 and N ′ = 1000, the avg-lying-gain is at most about 2.7%. Addi-

tionally, SRA displays reasonably good truthful-coverage, e.g., for |Y|= 3 and N ′ = 1000, truthful

behavior attains about 86% of the maximal potential gain over random reporting on average. For

|Y| = 5 and N ′ = 1000, truthful behavior attains about 84% of the maximal potential gain over

random reporting on average.

Second, we note an interesting phenomenon in the |Y| = 5 setting: when agent j’s belief about

the bias in the population increases, i.e., ǫ increases from 0 to 0.2, her incentive to lie seems to

decrease under almost all performance measures, especially for N ′ ∈ {600,800,1000}. In particular,

the lying-gain is smaller and truthful-coverage is larger in aggregate for ǫ= 0.1 as compared to ǫ=0.
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This is quite unlike the |Y|= 3 setting, in which the incentive to lie increases with ǫ, as expected,

under all measures.

This observation is surprising, given that population homogeneity is crucial to the properties of

SRA. It can be explained in light of the fact that adding a small random bias typically increases the

probability of rare answers in the population. Informally, adding a small observation noise makes

the distribution of answers “better mixed,” since the reporting probability of answers with a low

probability of occurrence improves simply because of the noise. This results in a higher inequality

gap in the Cauchy-Schwarz inequality, as shown in Proposition 4.1. In other words, the biased

generating model is better separated on average than the unbiased model. In turn, this fact results

in faster convergence of the popularity indices of the answers to their stable values. In Figure 3, we

show the average across the 10000 instances of the smallest probability of observation (in Y) made

by a generic biased agent in the population, where we observe that this average indeed increases

with ǫ when ǫ is small, before decreasing (the mixing effect is highest around ǫ ≈ 0.4). Thus, in

finite N ′ settings, the incentive to lie can potentially be higher when the population is assumed to

be unbiased since the population indices are expected to be farther from their asymptotic stable

values, as compared to the case where the population is expected to be mildly biased.
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Figure 3 For the |Y|=5 setting, the average across 10000 instances of miny∈YP (Yj′ = y) (Y axis) for some generic

agent j′ in the population as ǫ (X axis), i.e., the magnitude of the bias in the population, increases.

However, as the bias in the population becomes large, i.e., ǫ increases, this effect is overpowered

by the increased incentive to lie, since the generating model of the peer agent’s observations starts

to look starkly different from agent j’s model, i.e., the response homogeneity assumption is violated

to a higher degree. We indeed verify this to be the case. In Figure 4, we plot the various aggregate

measures in the |Y|= 5 setting for ǫ= 1, i.e., when the distributions of observations conditioned on

the type are completely uncorrelated for agent j and her randomly chosen peer agent. As expected,

the incentive to lie is significantly higher across all values of N ′ in this case compared to settings

with smaller values of ǫ.



Kamble et. al.: The Square Root Agreement Rule for Incentivizing Truthful Feedback on Online Platforms
40

200 400 600 800 1000

N ′

9

10

11

12

13

14

15

16
avg-lying-gain
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Figure 4 For |Y|= 5, the different aggregate measures (Y-axis) along with standard errors under SRA for

N ′ ∈ {100,200,300,400,500} (X-axis) in the fully biased setting, i.e., ǫ=1 (the distributions of observations of agent j

and her randomly chosen peer are independent).

Overall, these observations suggest that the belief that there exists a mild observation bias in the

population may in fact improve incentives for truthful behavior in finite N ′ settings, as long as this

bias is small enough.

6.2. Performance on subjective evaluations

As we have discussed in Section 2, strongly truthful or informed truthful mechanisms for eliciting

subjective evaluations from heterogeneous agents require multiple evaluations from each agent.

Moreover, these mechanisms require that each agent uses the same strategy for each evaluation.

These constraints may hinder the practical applicability of these mechanisms in many platform

environments. In the face of these drawbacks, mechanisms tailored to homogeneous response settings

that require a single task per agent could be a practical alternative. In this section, we hence evaluate

the performance of SRA, PTSC, and CA-HR for incentivizing truthful responses to subjective

evaluations in real settings.

Datasets. We test these mechanisms using publicly available rating datasets from different online

platforms. In particular, we consider the following three datasets.

1. Goodreads. We consider book rating data from Goodreads, which is a popular book review

platform.14 We restrict our attention to books belonging to two largest and similarly-sized

categories: (a) romance and (b) fantasy and paranormal. We assume books in each of these

categories to be a priori statistically similar and we test the performance of different mechanisms

for these two categories independently.

14 The data is publicly available at https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home . The source
requires us to cite Wan and McAuley (2018) and Wan et al. (2019).

https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
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2. Amazon. We next consider product rating data from the e-commerce platform, Amazon.15

We restrict ourselves to the “Clothing, Shoes, and Jewelery” (CSJ) category, which is by far

the largest product category other than books.16

3. Netflix. We finally consider movie rating data from the streaming platform, Netflix, that was

released as part of the Netflix Prize challenge.17

In all of the above cases, the ratings are integers on a scale from 1 to 5. Moreover, the ratings

are expected to have a strongly subjective influence, especially so in the case of books and movies.

Table 2 provides some basic information about these datasets.

Table 2 Properties of datasets. The rating strength represents the highest lower bound on the number of ratings

given by the top 1000 high-contributing users.

No. of entities No. of users No. of ratings Rating strength

Goodreads: romance 334957 books 198141 3565378 472
Goodreads: fantasy/paranormal 258212 books 256088 3424641 278
Amazon: CSJ 2681297 products 12483678 32292099 104
Netflix 17770 movies 480189 100480507 2087

Testing procedure. In each of the above cases, we focus on the top 1000 users who have rated

the most number of entities (books, movies, or products). Assuming that all ratings in the dataset

are truthful, we estimate the reporting behavior of these users and investigate their incentives for

lying under the various mechanisms. Formally, let H denote the set of high-contributing users and

consider a user i ∈ H. Based on i’s ratings across the books they have rated and the ratings of

randomly chosen peers for these books, we estimate the joint distribution of the rating of i and that

of a randomly chosen peer agent for a random book that they rate. Let us denote this estimate

as (Qi(y, y
′))

y,y′∈Y
. Similarly, we estimate the joint distribution of the ratings of two randomly

chosen agents for a random book by sampling two agents at random for each book in the data set

and computing the empirical distribution of the resulting answers. Let us denote this estimate as
(
Q(y, y′)

)

y,y′∈Y
. The estimates Qi and Q are expected to be different, in line with the expectation

that agent i’s responses are statistically different from a randomly chosen agent in the population

due to the subjectivity of responses.

Based on the estimates Qi and Q, we can estimate the truthful-coverage of each mechanism for

each agent i ∈H, assuming that (a) i’s belief about the joint distribution of her rating and that of

15 The data is publicly available at https://nijianmo.github.io/amazon/index.html. The source requires us to cite
Ni et al. (2019).

16 The Goodreads data is richer than Amazon’s rating data for books.

17 The data is publicly available at https://www.kaggle.com/netflix-inc/netflix-prize-data . Information about
the Netflix prize is available at https://en.wikipedia.org/wiki/Netflix_prize.

https://nijianmo.github.io/amazon/index.html
https://www.kaggle.com/netflix-inc/netflix-prize-data
https://en.wikipedia.org/wiki/Netflix_prize
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a random peer for a random book is identical to Qi, and (b) her belief about the joint distribution

of the ratings of two randomly chosen agents for a random book is identical to Q. Note that we

focus on truthful-coverage since, as we discussed earlier, the lying-gain is not invariant to additive

shifts in the rewards.

Results. The results are shown in Figure 5. First, we observe that SRA achieves an average

truthful-coverage of at least 50% across all settings except for Amazon. In this latter case, the

performance of all mechanisms is relatively poor. The reason for this may be that the definition of

the CSJ category is quite broad, and significant diversity is expected across the products in this

category; hence, the assumption of the products being a priori statistically similar likely doesn’t

hold.

Next, we observe that SRA outperforms PTSC in all settings except for the case of Netflix, where

their performance is statistically similar. SRA outperforms CA-HR in the Goodreads setting for the

romance category and in the case of Amazon, while their performance is statistically similar in the

other two cases. To investigate the difference in SRA and PTSC, we consider the estimate Q of the

joint distribution of two agents’ responses to a common evaluation. The incentive to lie for an agent

i stems from two sources: (a) Qi may be different from Q, and (b) Q may not satisfy the conditions

necessary for inducing truthful behavior even when all agents are identical. We find that in all

settings, Q satisfies the Cauchy-Schwarz property required for SRA to be truthful (Equation 11),

while the self-prediction property that is needed for PTSC to be truthful (see item 2 in Section 2.1)

is not satisfied in any of the settings; see Table 3.

Moreover, we find that the response distribution Q is ‘clustered’ in all settings, as defined in

Definition 10 (from Shnayder et al. (2016)) in the Appendix. This implies that under the CA-

HR mechanism, the agents can achieve the same payoff by merging their responses. For example,

considering the Q from the Netflix setting, we find that agents need not distinguish between the

ratings 4 and 5 under the CA-HR mechanism (see Table 3). This points to the importance of the

distinction between strong and informed truthfulness in these settings.

Table 3 Properties of population average joint distribution of responses Q.

Satisfies CS property Satisfies self-prediction Clustered ratings

Goodreads: romance Yes No (1, 2)
Goodreads: fantasy/paranormal Yes No (1, 2, 3)
Amazon: CSJ Yes No (2, 3)
Netflix Yes No (4, 5)



Kamble et. al.: The Square Root Agreement Rule for Incentivizing Truthful Feedback on Online Platforms
43

SRA PTSC CA-HR
0

20

40

60

80
av

g-
tru

th
fu
l-c

ov
er
ag

e

(a) Goodreads: romance

SRA PTSC CA-HR
0

20

40

60

80

av
g-
tru

th
fu
l-c

ov
er
ag

e

(b) Goodreads: fantasy/paranormal

SRA PTSC CA-HR
0

20

40

60

80

av
g-
tru

th
fu
l-c

ov
er
ag

e

(c) Amazon: CSJ

SRA PTSC CA-HR
0

20

40

60

80

av
g-
tru

th
fu
l-c

ov
er
ag

e

(d) Netflix

Figure 5 The avg-truthful-coverages along with standard errors under the different mechanisms in different settings.

7. Discussion and Conclusion

In the paper, we focus on the practical setting of reputation systems in online platforms where

objective evaluations must be strongly incentivized; ideally, without imposing any constraints on the

number of evaluations performed by each agent. Our results show that SRA is the first mechanism

that achieves this goal.

While there are other mechanisms, such as those of Kong and Schoenebeck (2019), Kong (2020),

or CA (Shnayder et al. 2016), that incentivize truthful behavior despite response heterogeneity

across agents, these mechanisms incur a high operational cost of requiring multiple evaluations from

each agent, which could be prohibitive in many scenarios, including in online platforms. On the

other hand, our numerical evaluations show that the truthfulness property of SRA is robust to mild

degrees of heterogeneity and subjectivity in the population. This observation overall suggests that

SRA can be a simpler alternative to these more complex mechanisms in settings where response

homogeneity is a reasonable approximation to the mild degree of heterogeneity and subjectivity

expected in the evaluations. Eliciting objective evaluations in online platforms is one such setting

that we focused on in the paper. Additionally, our tests on real data show that SRA generates strong

incentives for truthful behavior even when evaluations are expected to be highly subjective.

At the same time, we acknowledge that there are settings where other mechanisms could be

preferable over SRA. Moreover, metrics such as lying-gain or truthful-coverage may not adequately
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inform the practical utility of mechanisms in these settings and other operational considerations

may take precedence. For example, in applications such as crowdsourcing and peer-grading,18 agents

typically perform several evaluations in a short span of time. Moreover, subjectivity in evaluations

could be a major concern in settings like peer-grading for courses in the arts and the humanities. In

this case, Kong (2020)’s mechanism would provide strong truthfulness guarantees without requiring

the homogeneity assumption and hence could be preferable over SRA, even if, hypothetically, it

turns out to be the case that SRA achieves better truthful-coverage or lying-gain than Kong’s

mechanism in homogeneous settings with comparable data. As another example, if the responses can

be validated to be self-predicting, then PTSC may be preferable owing to the simpler description

of the agreement rewards.

Effective feedback and reputation systems are fundamental to the efficient functioning of online

platforms. The impact of user feedback and peer-reviews on customer decisions is evident in the

success of independent reputation systems like Yelp and TripAdvisor, which are used by millions

of people across the world. But as has been recently shown, these systems are currently fraught

with several operational, behavioral, and strategic concerns (Hu et al. 2017, Filippas et al. 2018,

Nosko and Tadelis 2015). We believe that appropriate incentive mechanisms that are simple and

intuitive can go a long way in addressing some of these concerns, and hence our mechanism has

strong practical significance. We emphasize here that rather than thinking of our mechanism as a

fully specified solution in any setting, it is more useful to think of it as a framework that provides

conceptual guidelines for platform designers as they undertake their design decisions.

Our work presents many avenues for future exploration. For instance, in our model, we assume that

the task allocations are exogenously specified. But for a platform that is interested in learning the

underlying distributions of responses for each task, some of these distributions may be more difficult

to learn than others, and thus may need more evaluations. Moreover, the agents may be willing

to strategically respond to differences in potential rewards across tasks by choosing which tasks to

evaluate. It is important to understand the fundamental tradeoffs faced by dynamic mechanisms that

balance incentives with different statistical accuracy objectives in such situations. We are optimistic

that our framework and insights can be used as building blocks in this pursuit.
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Appendix

A. Proofs

Proof of Proposition 4.1 Let m=miny∈Y ‖v(y)‖. To see that 2 implies 1, note that θ(v(y),v(y′))≥ γ for

all y, y′ ∈ Y such that y 6= y′, implies that m> 0 and that

v(y).v(y′)

‖v(y)‖‖v(y′)‖ ≤ cosγ,

Multiplying throughout by ‖v(y)‖‖v(y′)‖, we have:

‖v(y)‖‖v(y′)‖−v(y).v(y′)≥ (1− cosγ)‖v(y)‖‖v(y′)‖ ≥ (1− cosγ)m2 > 0.

To show that 1 implies 2 is less straightforward and this is where we need to use the fact that ‖v(y)‖ ≤ 1 for

all y ∈ Y. First of all

|v(y).v(y′)| ≤ ‖v(y)‖‖v(y′)‖−α,

implies that both ‖v(y)‖ and ‖v(y′)‖ are non-zero. Then dividing on both sides, we get:

|v(y).v(y′)|
‖v(y′)‖‖v(y)‖ ≤ 1− α

‖v(y′)‖‖v(y)‖
≤ 1−α

where the last inequality holds since ‖v(y)‖ ≤ 1 for all y ∈ Y. In other words:

cosθ(v(y),v(y′))≤ 1−α,

This implies that θ(v(y),v(y′)))≥ arccos(1−α). Note that α> 0 so that arccos(1−α)> 0. �

Proof of Theorem 1 First, note that the payments ej(y) for the different y ∈ Y are independent of the

reports of agent j for any reporting strategy. This is because {ej(y) : y ∈ Y} are computed only based on

evaluation tasks that j does not perform. Next, suppose that everyone but agent j is truthful. Recalling the

definition of v(y),
(√

PX(x)py(x); x ∈X
)
, we have,

E(f̄j(y)−
1

N − |Nj |
) =E

[
1

N − |Nj|
∑

i∈N\Nj

1{ri
j1(i′)

=y}1{ri
j2(i′)

=y}

]

=
∑

x∈X

PX(x)py(x)
2 = ‖v(y)‖2 , g(y).

In the proof of Proposition 4.1, we have seen that δ(PX ,p)>α implies that ‖v(y)‖>α, and thus we have

g(y)>α2 > 0 for all y ∈ Y. Next, recall that

ej(y) =
K

√

f̄j(y)
.

Let N ′ =N − |Nj |. Then we have for any ǫ∈ (0,1):

E(ej(y))≥ P (f̄j(y)− 1/N ′ ∈ [g(y)(1− ǫ), g(y)(1+ ǫ)])
K

√

g(y)(1+ ǫ)+ 1/N ′

(a)

≥ (1− 2 exp(−ǫ2g(y)2N ′))
K

√

g(y)(1+ ǫ)+ 1/N ′

≥ (1− 2 exp(−ǫ2α4N ′))
K

√

g(y)(1+ ǫ)+ 1/N ′
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≥ K
√

g(y)(1+ ǫ)+ 1/N ′
− 2 exp(−ǫ2α4N ′)

K

α
√

(1+ ǫ)

≥ K
√

g(y)(1+ ǫ+1/(g(y)N ′)
− 2 exp(−ǫ2α4N ′)

K

α
√

(1+ ǫ)

≥ K
√

g(y)(1+ ǫ+1/(α2N ′)
− 2 exp(−ǫ2α4N ′)

K

α
√

(1+ ǫ)
(b)

≥ K
√

g(y)
(1− ǫ− 1/(α2N ′))− 2 exp(−ǫ2α4N ′)

K

α
(for large enough N ′)

≥ K
√

g(y)
(1− ǫ− 1/(α2(N −n)))− 2 exp(−ǫ2α4(N −n))

K

α
(for large enough N). (29)

Here (a) follows from Hoeffding’s inequality, and (b) is because 1√
1+a

≥ 1− a for every a ∈ (0,1). The other

inequalities result from the fact that g(s)≥ α2 and |Nj | ≤ n. Taking ǫ= (N −n)−1/4, we obtain:

E(ej(y))≥
K

√

g(s)
− o(N).

Next, we also have,

E(ej(y))≤ P (f̄j(y)− 1/N ′ ∈ [g(y)(1− ǫ), g(y)(1+ ǫ)])
K

√

g(y)(1− ǫ)

+E

(

1{f̄j(y)−1/N′ /∈[g(y)(1−ǫ),g(y)(1+ǫ)]}
K

√

f̄j(y)

)

(a)

≤ K
√

g(y)(1− ǫ)
+P

(
1f̄j(y)−1/N′ /∈[g(y)(1−ǫ),g(y)(1+ǫ)]

)
K
√
N ′

(b)

≤ K
√

g(y)(1− ǫ)
+ 2K

√
N ′ exp(−ǫ2g(y)2N ′)

≤ K
√

g(y)(1− ǫ)
+ 2K

√
N ′ exp(−ǫ2α4N ′)

(c)

≤ K
√

g(y)
(1+

ǫ

2
+w(ǫ))+ 2K

√
N ′ exp(−ǫ2α4N ′)

≤ K
√

g(y)
+

ǫK

2α
+

|w(ǫ)|K
α

+2K
√
N ′ exp(−ǫ2α4N ′)

≤ K
√

g(y)
+

ǫK

2α
+

|w(ǫ)|K
α

+2K
√
N exp(−ǫ2α4(N −n)). (30)

Here, (a) results from the fact that f̄j(y)≥ 1/N ′ (because of the smoothing). (b) follows from Hoeffding’s

inequality, and (c) follows from the Taylor approximation of the function 1/
√
1− ǫ, where w(ǫ) = o(ǫ). Now

choosing ǫ= (N −n)−1/4, we get:

E(ej(y))≤
K

√

g(y)
+ o(N).

Thus, we finally have |E(ej(y))− K√
g(y)

| ≤ σ(N) = o(N), where σ(N)≥ 0 is a function of N that depends

only on α, n and K and not on y (note that our bounds explicitly define this function: we have w(ǫ)< ǫ/2

for ǫ < 1/2 and thus w(ǫ) can be replaced by ǫ/2 for N −n≥ 24 = 16)).

Assuming everyone else is truthful, the expected reward of person j for evaluating object i if she chooses

a reporting strategy qij is,

R(qij),
∑

y∈Y

P (Y i
j′ = y, Y i

j = y)E(rj(y)) =
∑

y∈Y

E(rj(y))
∑

x∈X

PX(x)py(x)
∑

y′∈Y

py′(x)qijy (y′). (31)
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Thus the agent solves maxqij R(qij). The objective is linear in qij , and further, qij(y) lies on a unit simplex

for each y ∈ Y. Thus the optimal reporting strategy chooses qij(y) to be one of the extreme points of the

simplex for each y ∈ Y, i.e., the optimal reporting strategy is deterministic. Now let t be the truthful strategy,

i.e., ty′(y) = 1{y=y′}. Then for any deterministic reporting strategy qij , we have,

R(qij) =
∑

y∈Y

E(ej(y))
∑

y′∈Y

qijy (y
′)
∑

x∈X

PX(x)py(x)py′(x)

(a)

≤
∑

y∈Y

E(ej(y))
∑

y′∈Y

qijy (y
′)

(√
∑

x∈X

PX(x)py(x)2
√
∑

x∈X

PX(x)py′(x)2 −α1{y 6=y′}

)

≤
∑

y∈Y

(
K

√

g(y)
+ σ(N))

∑

y′∈Y

qijy (y
′)

(
√

g(y)g(y′)−α1{y 6=y′}

)

≤K
∑

y′∈Y

√

g(y′)−αK
∑

y′∈Y

∑

y∈Y

1{y 6=y′}q
ij
y (y

′)+ σ(N)
∑

y∈Y

∑

y′∈Y

qijy (y
′)
√

g(y)g(y′) (32)

(b)

≤ K
∑

y′∈Y

√

g(y′)−αK1{qij 6=t} + |Y|σ(N). (33)

Here, (a) follows from the Cauchy-Schwarz inequality, from the definition of δ(Px,p), and the fact that

δ(Px,p)>α. (b) follows from the fact that qij is deterministic and so is t. While we have,

R(t) =
∑

y∈Y

E(ej(y))
∑

x∈X

PX(x)py(x)
2

≥
∑

y∈Y

(
K

√

g(y)
− σ(N))g(y)

≥
∑

y∈Y

√

g(y)− |Y|σ(N).

Thus we have,

R(qij)≤R(t)−αK1{qij 6=t} +2|Y|σ(N)

Since σ(N) depends only on δ and K and σ(N) = o(1), there is an N1 that depends only on α, K, n and

|Y| such that for all N > N1, 2|Y|σ(N) < Kα, which means that truthful behavior is a strict Bayes-Nash

equilibrium. To prove the second statement, suppose that qij is a strategy in which reports are chosen

independently of the true answers. Denote qijy , qijy (y
′) since qijy (y

′) = qijy (y
′′) for all y, y′, y′′ ∈ Y. Then in

(32),

αK
∑

y′∈Y

∑

y∈Y

1{y 6=y′}q
ij
y (y

′) = αK
∑

y′∈Y

∑

y∈Y

1{y 6=y′}q
ij
y

= αK(|Y| − 1).

And thus,

R(qij)≤R(t)−αK(|Y| − 1)+ 2|Y|σ(N).

Thus for any ω ∈ (0, αK(|Y| − 1)), there is a positive integer N2 depending on ω, α, K, n and |Y| such that

for any N >N2, R(qij)≤R(t)−ω. Choosing N0 =max(N1,N2) proves the result.
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Proof of Proposition 5.1 We have,

Γ(Z1, Z2) =
∑

y∈Y

√
∑

x∈X,y1∈Y,y2∈Y

PX(x)py1(x)py2(x)qy(y1)qy(y2)

=
∑

y∈Y

√
∑

y1∈Y,y2∈Y

qy(y1)qy(y2)
∑

x∈X

PX(x)py1(x)py2(x)

(a)

≤
∑

y∈Y

√
√
√
√
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y1∈Y,y2∈Y

qy(y1)qy(y2)

(√
∑

x∈X

PX(x)py1(x)
2

√
∑

x∈X

PX(x)py2(x)
2 − δ(PX ,p)1{y1 6=y2}

)

=
∑

y∈Y

√
√
√
√

(
∑

y1∈Y

qy(y1)

√
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x∈X

PX(x)py1(x)
2

)2

− δ(PX ,p)
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qy(y1)qy(y2)1{y1 6=y2}

(b)

≤
∑

y∈Y,y1∈Y

qy(y1)

√
∑

x∈X

PX(x)py1(x)
2 − δ(PX ,p)

2

∑

y∈Y

(
∑

y′∈Y,y′′∈Y
qy(y

′)qy(y
′′)1{y′ 6=y′′}

)

∑

y1∈Y
qy(y1)

√∑

x∈X
PX(x)py1(x)

2

(c)

≤ Γ(Y1, Y2)−
δ(PX ,p)

2

∑

y∈Y

(
∑

y′∈Y,y′′∈Y
qy(y

′)qy(y
′′)1{y′ 6=y′′}

)

Γ(Y1, Y2)

(d)

≤ Γ(Y1, Y2)−
δ(PX ,p)

2
√

|Y|
∑

y∈Y

∑

y′∈Y,y′′∈Y

qy(y
′)qy(y

′′)1{y′ 6=y′′}

(e)

≤ Γ(Y1, Y2)−
δ(PX ,p)Ω(q)2(|Y| − 1)

2
√

|Y|
.

Here, (a) follows from the Cauchy-Schwarz inequality and the definition of δ(PX ,p). (b) follows from the fact

that for a, b > 0 and a > b,
√
a− b≤√

a− b/(2
√
a). (c) follows from the fact that qy(y1)≤ 1 and from the

definition of Γ(Y1, Y2). (d) follows from the fact that Γ(Y1, Y2)≤ |Y|. (e) holds since, by Jensen’s inequality,

Ω(q)2 =

( |Y|
|Y|2(|Y| − 1)

∑

y∈Y

∑

y′∈Y,y′′∈Y

√

qy(y′)qy(y′′)1{y′ 6=y′′}

)2

≤ 1

|Y| − 1

∑

y∈Y

∑

y′∈Y,y′′∈Y

qy(y
′)qy(y

′′)1{y′ 6=y′′}

�

Proof of Theorem 2 The first statement follows from Theorem 1: there is an N1 such that for all N ≥N1,

the truthful strategy profile is a Bayes-Nash equilibrium. We focus on the second claim. With some abuse of

notation, we denote etj(y) to be the agreement scores for an agent j under the truthful equilibrium, and esj(y)

to be the scores under a fixed symmetric equilibrium strategy profile where each agent follows the reporting

strategy q.

We have shown in the proof of Theorem 1 that if everyone is truthful, then |E(etj(y))− K√
g(y)

| ≤ σ(N) = o(1),

where σ(N)≥ 0 is some function of N that depends only on α, n and K and not on y.

Let us denote
∑

x∈X
PX(x)(

∑

y′∈Y
py′(x)qy(y

′))2 , s(y) and denote
∑

x∈X
PX(x)

∑

y′∈Y
py′(x)qy(y

′), b(y).

By Jensen’s inequality, we have s(y)≥ b(y)2. Then using arguments similar to the ones leading up to (30)
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in the proof of Theorem 1, we can show that for all y ∈ Y such that b(y) ≥ δ(PX ,p)2/|Y| (and hence,

s(y)≥ δ(PX ,p)4/|Y|2), and for any ǫ∈ (0,1),
∣
∣
∣
∣
E(esj(y))−

K
√

s(y)

∣
∣
∣
∣
≤ σ′(N),

where |σ′(N)| = o(1), and it depends on α, K, n and |Y|. Consider the strategy q and consider a y ∈ Y,

such that b(y)> 0 but b(y)< δ(PX ,p)
2/|Y|. Then one can construct another strategy q′ such that a) a fixed

agent j is indifferent between choosing q and q′ assuming everyone else is playing q, and, 2) for all y such

that b(y)< δ(PX ,p)
2/|Y|, q′y(y′) = 0 for all y′ ∈ Y. To show this, observe that for each y′, q(y′) cannot have

support only on those y for which b(y) < δ(PX ,p)2/|Y|. This is because if that is the case then P (Y i
j =

y′) = P (Y i
j = y′)

∑

y∈Y;b(y)<δ(PX,p)2/|Y| qy(y
′) ≤∑

y∈Y;b(y)<δ(PX,p)2/|Y| b(y) < δ(PX ,p)
2, which contradicts the

fact that P (Y i
j = y′) ≥ δ(PX ,p)

2 as we have seen in the proof of Proposition 4.1. So then define q′(y′) to

have support only on the y ∈ Y for which b(y)≥ δ(PX ,p)
2/|Y| by transferring the probability masses. If we

define G(q) to be the expected payment to a fixed agent j for a fixed task i under the symmetric equilibrium

under strategy q, and define G(q′,q−j) to be the expected payment to j if she plays q′ while others play q,

then we have G(q) =G(q′,q−j). Let us define
∑

x∈X
PX(x)(

∑

y′∈Y
py′(x)q′y(y

′))2 , s′(y). Then we have,

G(q) =G(q′,q−j)

≤
∑

y∈Y; b(y)≥δ(PX,p)2/|Y|

E(esj(y))
∑

x∈X

PX(x)[
∑

y1∈Y

py1(x)q
′
y(y1)][

∑

y2∈Y

py2(x)qy(y2)]

(a)

≤
∑

y∈Y; b(y)≥δ(PX,p)2/|Y|

E(esj(y))
√

s(y)s′(y)

≤
∑

y∈Y; b(y)≥δ(PX,p)2/|Y|

(
K

√

s(y)
+ σ′(N))

√

s(y)s′(y)

≤
∑

y∈Y; b(y)≥δ(PX,p)2/|Y|

K
√

s′(y)+ |Y|σ′(N)

(b)
= K

∑

y∈Y

√

s′(y)+ |Y|σ′(N). (34)

Here (a) follows from the Cauchy-Schwarz inequality and (b) follows from the fact that s′(y) = 0 for all y

such that b(y)< δ(PX ,p)2/|Y| by construction of the strategy q′. Let G(t) be the expected payment to agent

j for task i under the truthful equilibrium. Let j′ be j’s peer for task i. Then we have,

G(t) =
∑

y∈Y

E(etj(y))g(y)

≥
∑

y∈Y

K
√

g(y)−
∑

y∈Y

σ(N)g(y)

≥KΓ(Y i
j , Y

i
j′)− |Y|σ(N)

(a)

≥ K
∑

y∈Y

√

s′(y)− |Y|σ(N). (35)

Here, (a) follows from Proposition 5.1. Finally, (35) and (34) together imply that, for a large enough N ,

G(t)≥G(q)− |Y|(σ(N)+ σ′(N)).
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Thus for any ω > 0, there exists some N2 such that for any N ≥N2, the payoff under the truthful equilibrium

is less than that under any other symmetric strategy profile by at most ω. Taking N0 =max(N1,N2) proves

our claim. �

Proof of Theorem 3 As before, we denote etj(y) to be the agreement scores for an agent j under a

fully informative equilibrium, and esj(y) to be the scores under a fixed symmetric strategy profile where

each agent follows the reporting strategy q. We denote
∑

x∈X
PX(x)(

∑

y′∈Y
py′(x)qy(y

′))2 , s(y) and denote
∑

x∈X
PX(x)

∑

y′∈Y
py′(x)qy(y

′) , b(y). By our assumption, b(y) ≥ η if b(y) 6= 0, and since s(y) ≥ b(y)2, we

have s(y) ≥ η2 if b(y) 6= 0. Then using arguments similar to the ones leading up to (30) in the proof of

Theorem 1, we can show that for all y ∈ Y, |E(etj(y))− K√
g(y)

| ≤ σ(N) = o(1), and for all y ∈ Y such that

b(y) 6= 0, |E(esj(y))− K√
s(y)

| ≤ σ′(N) = o(1), where σ(N)≥ 0 is some function of N that depends only on α, n

and K, and σ′(N)≥ 0 is some function of N that depends only on α, η, n and K. Neither of these functions

depend on y. Let G(t) and G(q) be the expected payments to agent j for task i under the truthful strategy

profile and the symmetric profile q, respectively. Let j′ be j’s peer for task i. Let Zi
j and Zi

j′ be the reported

answers of j and j′ for task i under q. Then we have,

G(q) =
∑

y∈Y

E(esj(y))s(y)

(a)

≤
∑

y∈Y

K
√

s(y)+
∑

y∈Y

s(y)σ′(N))

≤KΓ(Zi
j, Z

i
j′)+ |Y|σ′(N). (36)

Here, (a) follows from the fact that if b(y) = 0, then s(y) = 0 and moreover, for any y such that b(y) 6= 0, we

have |E(esj(y))− K√
s(y)

| ≤ σ′(N) from above. Similarly, we can show that

G(t) =
∑

y∈Y

E(est(y))g(y)

≥
∑

y∈Y

K
√

g(y)−
∑

y∈Y

g(y)σ(N)

≥KΓ(Y i
j , Y

i
j′)− |Y|σ(N)

≥KΓ(Zi
j, Z

i
j′)+

Kδ(PX ,p)Ω(q)
2(|Y| − 1)

2
√

|Y|
− |Y|σ(N). (37)

Thus if G(q)≥G(t) for any strategy q, then this implies that,

KΓ(Zi
j, Z

i
j′)+

Kδ(PX ,p)Ω(q)
2(|Y| − 1)

2
√

|Y|
− |Y|σ(N)≤KΓ(Zi

j, Z
i
j′)+ |Y|σ′(N),

which implies that
Kδ(PX ,p)Ω(q)

2(|Y| − 1)

2
√

|Y|
≤ |Y|(σ(N)+ σ′(N)),

or that,

Ω(q)≤
√

2|Y|3/2(σ(N)+ σ′(N))

Kδ(PX ,p)(|Y| − 1)
<

√

2|Y|3/2(σ(N)+ σ′(N))

Kα(|Y| − 1)
. (38)

Now the quantity on the right is o(1) (depending only on α, η, n, |Y|, and K). Thus for any ω > 0 and η > 0,

there exists some N0 such that for any N ≥N0, any symmetric strategy profile in which the probability of
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reporting any answer y ∈ Y is either 0 or at least η, and that gives a higher expected payoff to each agent

than the truthful strategy profile, is at most ω−uninformative. Since truthful reporting is a Bayes-Nash

equilibrium for a large enough N , this implies the result. �

Proof of Theorem 4. We will use the following notion for the proof.

Definition 8. For any strategy profile (qj)j∈M across agents, the average reporting strategy excluding

the set of agents J is defined as

q̄−J(y) =
1

M − |J|
∑

j′∈M\J

qj′(y).

Manipulating this definition, we have,

q̄−J(y) =
M

M − |J|

(

q̄(y)− 1

M

∑

j′∈J

qj(y)

)

. (39)

We then directly have that

q̄−J(y)≥ q̄(y)− |J|
M

.

Next, since 1/(1− |J|
M
) is 1+ |J|

M
+ o( |J|

M
) as M →∞ (from the Taylor series expansion), we can conclude that

there exists some κ> 1 such that for any M large enough, we have

q̄−J(y)≤ q̄(y)+
κ|J|
M

. (40)

To summarize, for some κ> 1 and any M large enough, we thus have

q̄(y)− κ|J|
M

≤ q̄−J(y)≤ q̄(y)+
κ|J|
M

. (41)

We now present the proof of Theorem 4. Let j be a fixed agent evaluating a fixed task i. Let J be her

(random) peer on task i. Now upon observing y, her expected reward on reporting any y′ such that the

probability of reporting y′ is 0 under the population average strategy is 0 (since there is no hope of matching

y′ with any peer). We thus focus on only those y′ ∈ Y such that their reporting probability is at least η. For

any such y′, j’s expected reward on reporting y′ when she observed y is given by,

Gj
i (y, y

′) =E




1ri

J
=y′

K
√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′

| Y i
j = y



 (42)

(a)
= E




K
√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′





︸ ︷︷ ︸

A (expected reward from matching y′)

E
[

1ri
J
=y′ | Y i

j = y
]

︸ ︷︷ ︸

B (probability of matching y′)

. (43)

Here, J1(i
′) and J2(i

′) are the (random) agents who have evaluated task i′, chosen to compute the agreement

rewards for j. (a) results from the fact that the agreement rewards are independent of Y i
j and Y i

J : the former

because of the fact that the agreement rewards only depend on the tasks that j does not perform, and the

latter because of the random task allocation policy (Y i
J may contain information about J , but that doesn’t

give any information about agents who will be utilized in computing the agreement rewards since the agent

allocation to each task is i.i.d.).
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We first focus on term A in Equation 43, which is the expected reward for matching on the answer y′.

Note that the random variables 1ri
′

J1(i′)
=y′1ri

′

J2(i′)
=y′ across i′ are i.i.d. owing to our random task allocation

policy with E(1ri
′

j1(i′)
=y′1ri

′

j2(i′)
=y′) defined as follows (for notational simplicity we drop the dependence on

i′).

E(1rJ1
=y′

1rJ2
=y′) =E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1)q

J2
y′ (y2)

]

. (44)

Here, the latter expectation is over the random choice of J1 and J2. Now we have for a large enough M ,

E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1)q

J2
y′ (y2)

]

(a)
= E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1)q̄

−{J1,j}
y′ (y2)

]

(b)

≤ E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1) (q̄y′(y2)+ 2κ/M)

]

(c)

≤ E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1)q̄y′(y2)

]

+2κ/M

(d)

≤
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q̄
−j
y′ (y1)q̄y′(y2)+ 2κ/M

(e)

≤
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)(q̄y′(y1)+ κ/M)q̄y′(y2)+ 2κ/M

≤
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q̄y′(y1)q̄y′(y2)+ 3κ/M. (45)

Here, (a) follows from the fact that, J2 is equally likely to be any of the remaining agents other than J1 and

j, again by the random task allocation policy. (b) follows from Equation 41. (c) follows from the fact that

the coefficient of 2κ/M after the expansion is at most 1. (d) follows from taking expectation over J1, who is

equally likely to be any agent other than j. Finally, (e) again follows from Equation 41. Similarly, we have

E

[
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q
J1
y′ (y1)q

J2
y′ (y2)

]

≥
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q̄y′(y1)q̄y′(y2)− 3κ/M (46)

for any large enough M . Let E(1ri
′

J1(i′)
=y1ri

′

J2(i′)
=y) be denoted as h(y), and define

s(y) =
∑

x∈X,y1,y2∈Y

PX(x)py1(x)py2(x)q̄y(y1)q̄y(y2).

We have then concluded that |h(y′) − s(y′)| ≤ 3κ/M for each y′ ∈ Y. We also have that s(y)
(a)

≥
(
∑

x∈X,y′∈Y
PX(x)py′(x)q̄y

)2

≥ η2, where (a) follows from Jensen’s inequality applied to the function f(x) =

x2. Now by the multiplicative Hoeffding’s inequality, for any ǫ > 0, we have,

P




∑

i′∈N\Wj

1ri
′

J1(i′)
=y′1ri

′

J2(i′)
=y′ ≥ (N − |Wj|)h(y′)(1+ ǫ)



≤ exp(−ǫ2h(y′)/3), and, (47)

P




∑

i′∈N\Wj

1ri
′

J1(i′)
=y′1ri

′

J2(i′)
=y′ ≤ (N − |Wj|)h(y′)(1− ǫ)



≤ exp(−ǫ2h(y′)/3). (48)
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Thus, for any ǫ > 0, and N large enough, we have,

E





√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′





(a)

≤ E

( √

N − |Wj|
√

1+ (N − |Wj|)h(y′)(1− ǫ)
+ exp(−ǫ2h(y′)(N − |Wj|)/3)

√

N − |Wj|
)

(b)

≤ E





√

N − |Wj|
√

1+ (N − |Wj|)(s(y′)− 3κ
M
)(1− ǫ)

+ exp(− ǫ2(s(y′)− 3κ/M)(N − |Wj|)
3

)
√

N − |Wj|





(c)

≤ E





√

N − |Wj|
√

1+ (N − |Wj|)(s(y′)− 3κn
mN

)(1− ǫ)



+E

(

exp(− ǫ2(η2 − 3κn
mN

)(N − |Wj|)
3

)
√

N − |Wj|
)

(d)

≤ 1
√

(s(y′)− 3κn
mN

)(1− ǫ)
+E

(

exp(− ǫ2(η2 − 3κn
mN

)(N − |Wj|)
3

)

)√
N

=
1

√

(s(y′)− 3κn
mN

)(1− ǫ)
+
√
N exp(− ǫ2(η2 − 3κn

mN
)N

3
)E

(

exp(
ǫ2(η2 − 3κn

mN
)|Wj |

3
)

)

. (49)

Here, (a) results from Equation 48 and the fact that in the worst case, the left hand side is at most
√

N − |Wj|.
(b) results from the fact that |h(y′) − s(y′)| ≤ 3κ/M , and (c) results from the fact that s(y) ≥ η2 and

M >mN/n. All the expectations are with respect to the randomness in |Wj|. (d) follows from (i) noting

that s(y′)≥ η2 > 3κn
mN

for N large enough, (ii) ignoring the constant 1 in the denominator of the first term,

and (iii) ignoring |Wj | ≥ 0 in the second term.

Now, due to the randomized task allocation policy, |Wj | is distributed as Binomial(N,m/N). Since

the moment generating function of a Binomially distributed random variable X with parameters (n, p) is

E(exp(Xt)) = (1− p+ pet)n, we have that

E

(

exp(
ǫ2(η2 − 3κn

mN
)|Wj |

3
)

)

=

(

1− m

N
+

m

N
exp(

ǫ2(η2 − 3κn
mN

)

3
)

)N

. (50)

Choosing ǫ=N−1/4, we have that

lim
N→∞

(

1− m

N
+

m

N
exp(

(η2 − 3κn
mN

)

3
√
N

)

)N

= lim
N→∞

(

1+
m

N
(exp(

(η2 − 3κn
mN

)

3
√
N

)− 1)

)N

≤ lim
N→∞

(

1+
m

N

)N

= exp(m).

(51)

Thus, choosing ǫ=N−1/4 in Equation 49, and combining Equation 51 with the fact that

lim
N→∞

√
N exp(− (η2 − 3κn

mN
)
√
N

3
) = 0,

we have that

lim
N→∞

E





√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′



≤ 1
√

s(y′)
. (52)

Next, we also have that, for a large enough N ,

E





√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′




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(a)

≥ E

( √

N − |Wj|
√

1+ (N − |Wj|)h(y′)(1+ ǫ)
(1− exp(−ǫ2h(y′)(N − |Wj |)/3))

)

(b)

≥ E





√

N − |Wj|
√

1+N(s(y′)+ 3κ
M
)(1+ ǫ)

− exp(− ǫ2(s(y′)− 3κ/M)(N − |Wj|)
3

)

√

N − |Wj|
√

1+N(s(y′)− 3κ
M
)(1+ ǫ)





(c)

≥ E





√

N − |Wj|
√

1+N(s(y′)+ 3κn
mN

)(1+ ǫ)



−E



exp(− ǫ2(η2 − 3κn
mN

)(N − |Wj|)
3

)

√

N − |Wj|
√

1+N(η2− 3κn
mN

)(1+ ǫ)





≥
E

(√

1− |Wj |
N

)

√

1/N +(s(y′)+ 3κn
mN

)(1+ ǫ)
−E

(

exp(
ǫ2(η2 − 3κn

mN
)(|Wj |)

3
)

)

exp(− ǫ2(η2 − 3κn
mN

)N

3
)

√
N

√

1+N(η2− 3κn
mN

)(1+ ǫ)

(d)

≥
E

(√

1− |Wj|
N

)

√

1/N +(s(y′)+ 3κn
mN

)(1+ ǫ)
−
(

1− m

N
+

m

N
exp(

ǫ2(η2 − 3κn
mN

)

3
)

)N

exp(− ǫ2(η2 − 3κn
mN

)N

3
)

√
N

√

1+N(η2− 3κn
mN

)(1+ ǫ)
.

(53)

Here, (a) follows from Equation 47, and the fact that the agreement rewards are always positive. (b) results

from the fact that |h(y′)− s(y′)| ≤ 3κ/M and by ignoring the |Wj | term in the denominator, and (c) results

from the fact that s(y)≥ η2 and M >mN/n. (d) follows from Equation 50. We once again choose ǫ=N−1/4.

Then, by Equation 51, the second term in Equation 53 converges to 0 as N →∞. We now focus on the first

term. The denominator of this term clearly converges to
√

s(y′). It is now easy to show that the numerator

converges to 1. This is because |Wj | is distributed as Binomial(N,m/N), and thus |Wj|/N converges in

distribution to the constant 0. Since f(x) =
√
1− x is a bounded, continuous function on the domain [0,1], it

follows (by the Portmanteau’s theorem on the equivalence of definitions of convergence in distribution) that

E
(√

1− |Wj|/N
)

converges to 1 as N →∞. Thus, we finally have,

lim
N→∞

E





√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′



≥ 1
√

s(y′)
. (54)

Thus, from Equations 52 and 54, we finally have,
∣
∣
∣
∣
∣
∣

E




K
√

N − |Wj|
√

1+
∑

i′∈N\Wj
1ri

′

J1(i′)
=y′1ri

′

J2(i′)
=y′



− K
√

s(y′)

∣
∣
∣
∣
∣
∣

≤ σ(N). (55)

where σ(N) = o(1). Now before we proceed, note that the convergence of the expected matching reward for

answer y to K/
√

s(y) for each y ∈ Y is all that is required for strict truthfulness to follow for a large enough

N , as we show in the proof of Theorem 1. For the truthful strategy profile, by the α-separation assumption,

we have that s(y)≥ α2 for all y ∈ Y. Thus, by replacing η with α in the arguments leading up to Equation 55,

we can conclude the convergence of the matching rewards to K/
√

s(y) for each y ∈ Y. Thus, there exists

N1 such that for N ≥N1, the truthful strategy profile is a Bayes-Nash equilibrium. We will not repeat the

proof here for conciseness. The first statement of the theorem thus follows and we hence focus on proving

the second and third statement.
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To that effect, we now proceed to focus on term B in Equation 43. We have

P (riJ = y′, Y i
j = y)

(a)
=

∑

x∈X,y2∈Y

PX(x)py(x)py2(x)q̄
−{j}
y′ (y2)

(b)

≤
∑

x∈X,y2∈Y

PX(x)py(x)py2(x)(q̄y′(y2)+ κ/M)

≤
∑

x∈X,y2∈Y

PX(x)py(x)py2(x)q̄y′ (y2)+ κ/M. (56)

Here, (a) follows from the fact that J is equally likely to be any agent other than j, by the random task

allocation policy. (b) again follows from Equation 41. Similarly, we have

P (riJ = y′, Y i
j = y)≥

∑

x∈X,y2∈Y

PX(x)py(x)py2(x)q̄y′(y2)− κ/M. (57)

Thus, we have, for all y′ such that the population average probability of reporting is at least η, we have

P (Y i
j = y)Gj

i (y, y
′) = (

K
√

s(y′)
+ o(1))(

∑

x∈X,y2∈Y

PX(x)py(x)py2(x)q̄y′(y2)+ o(1))

=
K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
+ o(1). (58)

Here, we use the fact that s(y) ≥ η2. For every other y′ such that the population average probability of

reporting is 0, we have

P (Y i
j = y)Gj

i (y, y
′) = 0. (59)

Let Y′ denote the set of responses such that the population average probability of reporting the response is

at least η. Then the expected payoff of agent j on task i under policy qj (fixing everyone else’s policy) is:

G
j
i (q

j) =
∑

y,y′∈Y

P (Y i
j = y)Gj

i (y, y
′)qjy′(y) (60)

(a)
=

∑

y∈Y,y′∈Y′

K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
qjy′(y)+ o(1) (61)

(b)
= max

q

∑

y,y′∈Y

P (Y i
j = y)Gj

i (y, y
′)qjy′(y) (62)

(c)
= max

q

∑

y∈Y, y′∈Y′

K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
qy′(y)+ o(1). (63)

Here, (a) follows from Equation 58, (b) follows from the fact that qj is a best-response strategy, and (c)

again follows from Equation 58. Note that the final right hand side neither depends on the identity of agent

j nor does it depend on the identity of task i. It only depends on the population average strategy q̄. Since,

each policy qj′ optimizes G
j′

i (q), we have that

G
j
i (q̄) =

∑

y,y′∈Y

P (Y i
j = y)Gj

i (y, y
′)q̄y′(y) (64)

(a)
=

∑

y∈Y,y′∈Y′

K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
q̄y′(y)+ o(1) (65)

(b)
= max

q

∑

y∈Y, y′∈Y′

K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
qy′(y)+ o(1) (66)

=G
j
i (q

j)+ o(1). (67)
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Here, (a) results from Equation 58. (b) results from averaging the expression in Equation 61 and the expres-

sion in Equation 63 across all agents and realizing that the expression in Equation 63 is identical across the

agents. Hence, we have that |Gj
i (q

j)−G
j
i (q̄)|= o(1). Hence, we finally have,

G
j
i (q

j) =G
j
i (q̄)+ o(1) (68)

=
∑

y∈Y,y′∈Y′

K(
∑

x∈X,y2∈Y
PX(x)py(x)py2(x)q̄y′(y2))
√

s(y′)
q̄y′(y)+ o(1) (69)

=
∑

y′∈Y′

K
∑

x∈X,y2∈Y,y∈Y
PX(x)py(x)py2(x)q̄y′(y2)q̄y′(y)
√

s(y′)
+ o(1) (70)

=
∑

y′∈Y′

Ks(y′)
√

s(y′)
+ o(1) (71)

(a)
=
∑

y′∈Y

K
√

s(y′) + o(1) (72)

(b)

≤ KΓ(Y i
j , Y

i
j′)−

Kδ(PX ,p)Ω(q̄)
2(|Y| − 1)

2
√

|Y|
+ o(1) (73)

(c)
= G(t)− Kδ(PX ,p)Ω(q̄)

2(|Y| − 1)

2
√

|Y|
+ o(1) (74)

where G(t) is the expected reward to each agent for an evaluation task under the truthful strategy profile.

Here, (a) follows from the fact that s(y) = 0 for all y ∈ Y\Y′. (b) follows from Proposition 5.1, and (c) follows

from the fact that G(t) =KΓ(Y i
j , Y

i
J ) + o(1). This latter conclusion results from the fact that under the

truthful strategy profile, because of α-separation of the generating model, the probability of reporting any

answer y ∈ Y is at least α2 (see proof of Proposition 4.1). We can thus use the same arguments as that used

for deriving the expression in Equation 72 as the expected payoff of each agent, while replacing η with α.

Now the second statement of the theorem immediately follows, since for any ω > 0, there is an N2 such

that for any N > N2 we have that G
j
i (q

j) ≤ G(t) + ω. Moreover, we have that if G
j
i (q

j) > G(t), then,

Equation 74 allows us to conclude that

Kδ(PX ,p)Ω(q̄)
2(|Y| − 1)

2
√

|Y|
≤ o(1), or, (75)

Ω(q̄)≤

√

2
√

|Y|o(1)
Kδ(PX ,p)(|Y| − 1)

≤

√

2
√

|Y|o(1)
Kα(|Y| − 1)

. (76)

Thus for any ω > 0, there is an N3 such that for any N >N3, we have that Ω(q̄) ≤ ω for any population

strategy profile where (a) the average probability of reporting any answer y is either 0 or at least η, and (b)

there exists an agent whose expected payoff is larger than the expected payoff under the truthful strategy

profile. Thus, all the statements of the theorem hold for any N larger than N0 =max(N1,N2,N3). �

B. Properties of the square-root agreement measure

The SRAM has the following properties.
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1. Γ(Y1, Y2)≥ 1. To see this, note that Jensen’s inequality implies that

∑

y∈Y

√
∑

x∈X

PX(x)py(x)2 ≥
∑

y∈Y

∑

x∈X

PX(x)py(x) = 1.

In fact Γ(Y1, Y2) = 1 only when Y1 and Y2 are independent.

2. Γ(Y1, Y2)≤
√

|Y|. To see this, note that Jensen’s inequality implies that

∑

y∈Y

√
∑

x∈X

PX(x)py(x)2 ≤ |Y|
√

1

|Y|
∑

y∈Y

∑

x∈X

PX(x)py(x)2

≤ |Y|
√

1

|Y|
∑

y∈Y

∑

x∈X

PX(x)py(x) =
√

|Y|.

In fact Γ(Y1, Y2) =
√

|Y| only when Y1 and Y2 are identical and they are distributed uniformly, i.e.,

Y1 = Y2 and P (Y1 = y) = 1/|Y| for all y ∈ Y.

We also prove the following inequality satisfied by the SRAM, which generalizes Proposition 5.1 without

the characterizing the inequality gap.

Proposition B.1 (A general monotonicity property) Consider a generating model (PX ,p) defined

over X and Y, and consider two random responses Y1 and Y2 drawn from this model. Also, consider two

random responses Z1 and Z2 obtained by applying a reporting strategies q and q′ independently to Y1 and

Y2 respectively. Then,
∑

y∈Y

√

P (Z1 =Z2 = y)≤Γ(Y1, Y2). (77)

Moreover, if δ(PX ,p)> 0, then the above inequality is an equality if and only if q= q′ and Ω(q) = 0, i.e., if

and only if the two reporting strategies are identical and fully informative.

Proof of Proposition B.1 We have,

∑

y∈Y

√

P (Z1 =Z2 = y) =
∑

y∈Y

√
∑

x∈X,y1∈Y,y2∈Y

PX(x)py1(x)py2(x)qy(y1)q
′
y(y2)

=
∑

y∈Y

√
∑

y1∈Y,y2∈Y

qy(y1)q′y(y2)
∑

x∈X

PX(x)py1(x)py2(x)

(a)

≤
∑

y∈Y

√
√
√
√

∑

y1∈Y,y2∈Y

qy(y1)q′y(y2)

(√
∑

x∈X

PX(x)py1(x)
2

√
∑

x∈X

PX(x)py2(x)
2

)

=
∑

y∈Y

√
√
√
√

(
∑

y1∈Y

qy(y1)

√
∑

x∈X

PX(x)py1(x)
2

)(
∑

y2∈Y

q′y(y2)

√
∑

x∈X

PX(x)py2(x)
2

)

(b)

≤ 1

2

∑

y∈Y,y1∈Y

qy(y1)

√
∑

x∈X

PX(x)py1(x)
2 +

1

2

∑

y∈Y,y2∈Y

q′y(y2)

√
∑

x∈X

PX(x)py2(x)
2

=
1

2

∑

y1∈Y

√
∑

x∈X

PX(x)py1(x)
2 +

1

2

∑

y2∈Y

√
∑

x∈X

PX(x)py2(x)
2

=
Γ(Y1, Y2)

2
+

Γ(Y1, Y2)

2

= Γ(Y1, Y2)
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Here, (a) follows from the Cauchy-Schwarz inequality, and (b) results from the fact that the arithmetic mean

of two numbers is no less than the geometric mean.

Now suppose that δ(PX ,p) > 0. Then (a) is an equality if and only if qy(y1)q
′
y(y2) = 0 for every y and

every y1 6= y2. Further, (b) is an equality, i.e., arithmetic mean equals geometric mean, if and only if all the

terms are equal. This means for all y ∈ Y,

∑

y1∈Y

qy(y1)

√
∑

x∈X

PX(x)py1(x)
2 =

∑

y2∈Y

q′y(y2)

√
∑

x∈X

PX(x)py2(x)
2,

i.e., if

∑

y′∈Y

(qy(y
′)− q′y(y

′))

√
∑

x∈X

PX(x)py′(x)2 = 0. (78)

Squaring both sides, we obtain, for all y ∈ Y,

∑

y′∈Y

(qy(y
′)− q′y(y

′))2(
∑

x∈X

PX(x)py′(x)2)

+
∑

y′ 6=y′′

(qy(y
′)− q′y(y

′))(qy(y
′′)− q′y(y

′′))

√
∑

x∈X

PX(x)py′(x)2
√
∑

x∈X

PX(x)py′′(x)2 = 0. (79)

Substituting qy(y
′)q′y(y

′′) = 0 for all y′ 6= y′′, we obtain,

∑

y′∈Y

(qy(y
′)− q′y(y

′))2(
∑

x∈X

PX(x)py′(x)2)

+
∑

y′ 6=y′′

(qy(y
′)qy(y

′′)+ q′y(y
′)q′y(y

′′))

√
∑

x∈X

PX(x)py′(x)2
√
∑

x∈X

PX(x)py′′(x)2 = 0. (80)

But if δ(PX ,p)> 0, then we know from Proposition 4.1 that
√∑

x∈X
PX(x)py′(x)2 ≥∑

x∈X
PX(x)py′(x)> 0

for all y′ ∈ Y. Hence, we conclude that if δ(PX ,p)> 0, then
∑

y∈Y

√

P (Z1 =Z2 = y) = Γ(Y1, Y2) holds, if and

only if all the terms in Equation 80 are 0, i.e., if and only if

1. qy(y
′) = q′y(y

′) for all y, y′ ∈ Y, i.e., q and q′ are identical, and,

2. qy(y
′)qy(y

′′) = 0 for all y ∈ Y and y′ 6= y′′, i.e., Ω(q) = 0.

This finishes the proof. �

B.1. Utility of the square-root agreement measure beyond our work

Definition 6 essentially defines an agreement measure between any two random variables that are independent

and identically distributed conditioned on some latent random variable. But we could just as well define an

agreement measure between any two random variables that take values in some common finite set.

Definition 9. Consider two random variables X and X ′, which take values in a finite set S. Then the

square-root agreement measure between X and X ′ is defined as

Γ(X,X ′) =
∑

s∈S

√

P (X =X ′ = s).

Proposition B.1 implies that if X →X ′ → Y form a Markov chain, i.e., X is conditionally independent of

Y given X ′, and if, conditioned on some latent random variable U , X and X ′ are independent and identically

distributed random variables, then,

Γ(X,Y )≤Γ(X,X ′).
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Inequalities of this form are called data processing inequalities and they have several applications in infor-

mation theory, statistics, causal inference, and related fields. For example, such inequalities provide testable

hypotheses to determine the validity of conditional independence assumptions across variables from data.

Several mutual information measures between two random variables are known to satisfy such inequality.

These measures are typically constructed from two classes of divergences or distance notions between

probability distributions, called f-divergences and Bregman divergences; see Kong and Schoenebeck (2019)

and references therein. It is interesting to note that our SRAM does not result from such a construction,

and to the best of our knowledge, the resulting data-processing inequality was not known in the literature.

Moreover, typical mutual information measures depend on the entire joint distribution of two variables,

i.e., to estimate these measures from data, one typically needs to learn |S|2 probability values where S is

the support set of each variable. On the other hand, the SRAM only depends on the diagonal values of

the joint probability distribution, i.e., only the probabilities of agreement matter. Hence, to estimate the

SRAM from data, one only needs to learn |S| probability values. It is important to note that for the data

processing inequality to hold for the SRAM, X and X ′ need to be conditionally independent and identically

distributed (conditioned on some latent random variable). There is typically no such requirement for other

measures. To show that this condition is necessary, consider the following counterexample. Suppose that

X is uniformly distributed on the discrete set {−1,+1}, and X ′ = −X . Thus Γ(X,X ′) = 0. Whereas if

Y = −X ′, then it is true that X →X ′ → Y forms a Markov chain, and Γ(X,Y ) = Γ(X,X) =
√
2. Hence,

Γ(X,X ′)<Γ(X,Y ).

C. Properties of the uninformativeness measure

The uninformativeness measure has the following properties.

1. Clearly, Ω(q) = 0 if and only if (q(y); y ∈ Y) have disjoint supports across all y ∈ Y, i.e., if and only if

q is fully informative.

2. Ω(q) attains its highest value of 1, if and only if q(y) = q(y′) for any y 6= y′, i.e., if the report is chosen

independently of the true answer. To see this, observe that,

1

|Y|(|Y| − 1)

∑

y∈Y

∑

y′∈Y,y′′∈Y

√

qy(y′)qy(y′′)1{y′ 6=y′′}

(a)

≤ 1

|Y|(|Y| − 1)

∑

y∈Y

√
√
√
√

(
∑

y′∈Y,y′′∈Y

qy(y′)1{y′ 6=y′′}

)(
∑

y′∈Y,y′′∈Y

qy(y′′)1{y′ 6=y′′}

)

=
1

|Y|(|Y| − 1)

∑

y∈Y

√
√
√
√(|Y| − 1)2

(
∑

y′∈Y

qy(y′)

)2

=
1

|Y|
∑

y∈Y

∑

y′∈Y

qy(y
′)

= 1. (81)

Here, (a) follows from the Cauchy-Schwarz inequality.
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D. Miscellaneous remarks on existing mechanisms

D.1. An adaptation of the Correlated Agreement (CA) mechanism to the homogeneous

responses setting

In this section, we present an adaptation of CA to the homogeneous responses setting, which induces truthful

behavior while only requiring one evaluation per agent. In order to define this mechanism, we first present

the original CA mechanism.

Original CA mechanism. CA operates on a pair of agents. Both agents perform a common “bonus”

evaluation task, say A, and individually perform one independent “penalty” evaluation task that the other

agent doesn’t perform; say agent 1 performs B, and agent 2 performs C. In keeping with our notation, let rij

for j = 1,2, and i∈ {A,B,C}, be the response of agent j in task i, where the responses are taken to be the

null φ if an agent doesn’t perform the corresponding task (hence rC1 = rB2 = φ). CA defines an intermediate

scoring function that maps two responses to a real number, which, informally, is monotonically increasing

in the expected correlation between the responses, i.e., S is higher if the two responses are expected to

frequently occur together. Formally, denoting ∆ab = P (Y i
j = a,Y i

j′ = b)− P (Y i
j = a)P (Y i

j′ = b), for any two

responses a, b (where it is assumed that agents j and j′ have both performed task i), the intermediate score

for these responses is defined to be:

S(a, b) = sgn(∆ab),

where sgn is the sign function. In the multi-task, homogeneous responses setting, this scoring function can

be estimated from the response data obtained from the large number of other participants (i.e., excluding

the two agents under consideration) operating on the platform, and relying on the “self-fulfilling prophecy

of truthfulness” to assume truthful behavior.19 The final score/payment to an agent i is then defined to be

S(rA1 , r
A
2 )−S(rB1 , r

C
2 ),

i.e., the final score/payment is the difference between the bonus score and the penalty score. The intuition

is that the payment scheme rewards incremental correlation in the responses to the bonus task over what is

expected anyway from the responses to two independent evaluation tasks.

An adaptation of CA for homogeneous responses requiring one evaluation per agent. Consider

the following adaptation of CA. Consider an agent, say 1, who has performed evaluation task A, and whose

payment needs to be determined. Let 2 be another agent who has performed task A. Let 3 be a third agent

who has performed some task B that 1 hasn’t performed. Then the payment to agent 1 is defined to be:

S(rA1 , r
A
2 )−S(rA1 , r

B
3 ).

Here, it is assumed that these scoring functions are calculated as in the original CA mechanism based on the

responses data from all tasks other than A and B. In a natural practical implementation of this mechanism,

to calculate the payment of an agent j, the platform would randomly pick a peer agent who has performed the

19 In the general setting with non-homogeneous responses, this function can be estimated by having the two agents
perform a large number of overlapping and disjoint tasks.
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same evaluation to calculate the bonus score and similarly, randomly pick another agent who has performed

some task that the agent j hasn’t performed to calculate the penalty score. These scoring functions are

calculated from the response data of all tasks that j hasn’t performed. We call this mechanism CA for

homogeneous responses (CA-HR).

It is clear that this mechanism only requires each agent to perform one evaluation as long as (a) each task

is performed by at least two agents, and (b) there is a large number of tasks while each agent performs only

a small number (so that the scores can be estimated accurately, independently of the agent’s reports). These

assumptions are almost the same as that required by SRA for its properties, and they are easily satisfied on

most platforms.

It is easy to argue that truthful behavior is an equilibrium under CA-HR (in the large tasks regime

where the scoring function estimates are reasonably accurate) in the homogeneous responses setting. This is

because, due to the statistical indistinguishability of agent 2 and 3’s responses to an arbitrary task assuming

that they are truthful, replacing agent 2 with agent 3 in the calculation of the penalty score is inconsequential

from the perspective of agent 1. All that matters from the perspective of agent 1 (in terms of aligning with

the incentives generated by the original CA mechanism) is that this penalty score is computed on the basis

of some agent’s response to a task that 1 hasn’t performed. Thus, the fact that truthful behavior is a best

response under the original CA mechanism implies that it is a best response under this modification as well.

D.2. Remarks on the properties of CA/CA-HR in our setting.

Although CA is informed truthful in the setting in which it is originally defined, neither CA nor CA-HR are

informed truthful in our setting. This is because in our setting, task allocations are exogenously specified

and agents can choose task-contingent reporting strategies based on task identities. We present an example

below that shows this for CA-HR.

Example 5. Consider the setting in Example 1 again. For the sake of the present discussion, suppose that

the plumbers are numbered i=1, · · · ,N (just as the tasks are numbered in our formal model). If everyone is

truthful, the accurate scoring function is S(a, b) = 1{a=b} − 1{a 6=b}. Suppose that j has evaluated plumber A.

j′ is her randomly chosen peer who also has also evaluated A. Let j′′ be another randomly chosen peer who

has evaluated plumber B, whom j hasn’t evaluated. Then the (random) payment of agent j under CA-HR is

1{Y A
j

=Y A
j′

} − 1{Y A
j

6=Y A
j′

} − 1{Y A
j

=Y B
j′′

} + 1{Y A
j

6=Y B
j′′

}.

Thus, the expected payment of agent j can be determined to be

2
(
P (Y A

j = Y A
j′ )−P (Y A

j = Y B
j′′ )
)

This can be computed to be 0.2025, given the generating model. On the other hand, consider the following

strategy profile. For all even tasks, agents report ‘Yes,’ and for all odd tasks, agents report ‘No.’ We first

argue that this strategy profile is an equilibrium in the many tasks regime. Note that under this strategy

profile, the scoring function that will be estimated by the platform is S̄(a, b) = 1{a=b} − 1{a 6=b}, same as that

under truthful behavior. Thus, the expected payment of an agent for reporting ‘No’ on an even task (or

reporting ‘Yes’ on an odd task) is −1, whereas the expected payment from following the prescribed strategy
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is 1. This argument shows both, that (a) this strategy profile constitutes an equilibrium and (b) the expected

payoff to any agent under this strategy profile (which is 1) is strictly higher than the expected payment under

the truthful equilibrium (which is 0.2025). Thus CA-HR is not informed truthful.

The same construction of a non-truthful strategy profile also shows that CA is also not informed truthful in

our setting.

Moreover, unlike the mechanism of Kong and Schoenebeck (2019) (see Section 3), in our setting, neither

CA nor CA-HR are informed truthful across all equilibria where agents choose the same reporting strategy

for each task they perform. This is because task allocations are exogenously specified: in the example above,

it could very well be the case that every agent performs exactly one task under CA-HR. In this case, the

non-truthful equilibrium strategy profile constructed above respects the constraint that each agent chooses

the same reporting strategy for each task they perform, simply because each agent performs only one task.

A similar argument shows this for CA by considering a situation in which each agent performs either even

tasks only or odd tasks only.

Although CA and CA-HR are not informed truthful in our setting, Lemma 5.12 in Shnayder et al. (2016)

implies that these mechanisms are informed truthful across symmetric equilibria, i.e., they are informed

truthful when restricted to symmetric equilibria, in the many tasks limit.

Next, we discuss why CA and CA-HR are not (asymptotically) strongly truthful across symmetric equilibria

in general for homogeneous responses, i.e., there could be symmetric strategy profiles that are not fully

informative, that asymptotically yield the same payoff as the truthful equilibrium. The existence of such

strategy profiles is related to the following notion of “clustered observations” as defined in Shnayder et al.

(2016).

Definition 10. (Shnayder et al. 2016) A distribution of two agents’ observations for a common evaluation

is said to be clustered if there exist at least two identical rows in the matrix [sgn(∆yy′)]y∈Y, y′∈Y. (Note that

[sgn(∆yy′)]y∈Y, y′∈Y is a symmetric matrix under homogeneous responses)

In the presence of clustered observations, there are symmetric equilibrium strategy profiles that are not

fully informative, that yield the same payoff asymptotically as the truthful equilibrium under CA/CA-

HR. To see this for CA-HR, suppose that y and ȳ are two observations for which the corresponding rows

(sgn(∆yy′);y′ ∈ Y) and (sgn(∆ȳy′);y′ ∈ Y) are identical. Then, if all agents report a fixed observation, e.g., y,

irrespective of whether they observe y or ȳ, the scoring function estimated by the platform under CA-HR is

the same as that under truthful behavior, except with the answer ȳ eliminated as a possible report. However,

if everyone else was truthful, the bonus and penalty scores obtained by an agent would have anyway been

identical irrespective of whether any of the three agents involved in computing a payment report y or ȳ. Thus

the payments to all agents remain the same if everyone reports y irrespective of whether they observe y or

ȳ. It thus follows that this strategy profile is an equilibrium under CA-HR, which yields the same expected

payoff to any agent as the truthful equilibrium. This strategy profile is not a fully informative strategy profile,

and hence, CA-HR is not asymptotically strongly truthful across symmetric equilibria. The mechanism is

essentially incapable of identifying the difference between y and y′ since it depends only on the sign structure

of the ∆ matrix and not the values themselves.
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If an instance does not possess clustered observations, CA and CA-HR are strongly truthful across symmet-

ric equilibria. In our practically motivated experimental setup, however, we find that clustered observations

are encountered with a high frequency; see Remark 4.

D.3. Insufficiency of a single evaluation per agent with homogenous responses in the

Kong and Schoenebeck (2019) (KS) mechanism design framework

In this section, we show that it is impossible to design a mechanism within the KS mechanism design

framework in the homogeneous responses setting, that incentivizes truthfulness with one evaluation per agent.

The KS framework operates on a pair of agents and the payment of each agent is defined to be some scaling

of an unbiased estimate of some mutual information measure constructed from their responses to a common

set of tasks. The sufficiently of a single response per agent within this framework implies that the payment

must be decided based only on the pair of agents’ responses to a single task. We argue that such a payment

scheme cannot strictly incentivize truthful behavior even in the homogenous, binary response setting. This

result is not new; it has been shown in the general homogeneous responses setting in Jurca and Faltings

(2011) (Theorem 1). We present a proof of the simpler binary responses case below for completeness. This

result implies that there cannot be any mutual information measure satisfying information monotonicity,

whose unbiased estimate can be constructed based on two agents’ responses to a single evaluation task.

Proposition D.1 (Jurca and Faltings 2011) In any truthful mechanism in the homogenous, binary

responses setting that calculates the payment of an agent only as a function of the responses of the agent and

her peer to a single evaluation task, the payment to the agent does not depend on her own responses.

Proof. Consider an evaluation task with only two responses: Y= {Yes, No}. The payment scheme that

depends on the responses of an agent and her peer to a common task is a specification of payment to the

agent for every possible pair of responses. One of these payments can be 0 without loss of generality since

additive shifts of payments across all possibilities do not change the incentive structure of the game. Let us

suppose that the payments are as shown in Table 4, where it is assumed that the agent is the row player.

Yes No
Yes a b
No c 0

Table 4 The payments to the row agent corresponding to the pair of responses for the common evaluation task.

Let the generating model have two possible types X = {A,B}, with PX = (1/2,1/2), p(A) = (p,1− p),

and p(B) = (q,1− q). The expected payment of the agent if she reports ‘Yes’ on observing ‘Yes’ can be

determined to be:

a(p2/2+ q2/2)+ b(p(1− p)/2+ q(1− q)/2)

p/2+ q/2
. (82)

The expected payment of the agent if she reports ‘No’ on observing ‘Yes’ can be determined to be:

c(p2/2+ q2/2)

p/2+ q/2
. (83)
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Thus reporting ‘Yes’ on observing ‘Yes’ yields a higher expected payment if

(c− a)(p2 + q2)≤ b(p(1− p)+ q(1− q)). (84)

The expected payment of the agent if she reports ‘No’ on observing ‘No’ can be determined to be:

c(p(1− p)/2+ q(1− q)/2)

(1− p)/2+ (1− q)/2
. (85)

The expected payment of the agent if she reports ‘Yes’ on observing ‘No’ can be determined to be:

a(p(1− p)/2+ q(1− q)/2)+ b((1− p)2/2+ (1− q)2/2)

(1− p)/2+ (1− q)/2
. (86)

Thus reporting ‘No’ on observing ‘No’ yields a higher expected payment if

b((1− p)2+(1− q)2)≤ (c− a)(p(1− p)+ q(1− q)). (87)

If we set p and q such that p2+ q2 = p(1− p)+ q(1− q) (e.g., p= q= 0.5), then from Equation 84 we obtain

b ≥ c − a on the other hand, if we set p and q such that (1 − p)2 + (1 − q)2 = p(1 − p) + q(1 − q) (e.g.,

p= q= 0.5), then from Equation 91 we obtain b≤ c− a. Thus, we have b= c− a.

Next, if b= c− a> 0, then Equations 84 and 91, reduce to:

p2 + q2 ≤ p(1− p)+ q(1− q), (88)

(1− p)2+(1− q)2 ≤ p(1− p)+ q(1− q). (89)

In this case, setting p= q = 0.25 violates the second inequality. If b= c− a < 0, then Equations 84 and 91,

reduce to:

p2 + q2 ≥ p(1− p)+ q(1− q), (90)

(1− p)2+(1− q)2 ≥ p(1− p)+ q(1− q). (91)

In this case, setting p = q = 0.25 violates the first inequality. Hence, we have that b = c− a = 0, i.e., the

mechanism’s payments are independent of the reports of the agent. �

D.4. Infeasibility of a generic adaptation of the KS framework to multi-task, homogeneous

responses settings and the special role of the square-root agreement measure (SRAM)

The design of SRA suggests that perhaps a generic adaptation of the KS mechanism to homogeneous

responses setting that incentivizes single evaluations is possible under any mutual information measure. We

argue that this is not true via the example of Shannon mutual information (Cover and Thomas 2012). For

two random variables Y1 and Y2 taking values in finite sets Y1 and Y2 respectively, the Shannon mutual

information is defined to be,

I(Y1;Y2) =
∑

y∈Y1, y′∈Y2

P (Y1 = y, Y2 = y′) log
P (Y1 = y, Y2 = y′)

P (Y1 = y)P (Y2 = y′)
. (92)

Suppose that the distribution of two agents’ responses to a common evaluation task is available to the

platform (estimated from a large number of evaluation tasks). Then, along the lines of SRA, the mutual

information measure above suggests the following mechanism.
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1. Each agent j is paired with another randomly chosen agent j′, and their responses are compared.

2. If the response of agent j is y and that of agent j′ is y′, then j gets a reward K log
(

P (Yj=y,Yj′=y′)

P (Yj=y)P (Yj′=y′)

)

,

where K is some positive constant.

Under this mechanism, if j’s true response is y and j′ is truthful, her expected reward for a truthful report

is,

K
∑

y′∈Y

P (Yj′ = y′ | Yj = y) log
P (Yj = y, Yj′ = y′)

P (Yj = y)P (Yj′ = y′)
=K

∑

y′∈Y

P (Yj′ = y′, Yj = y)

P (Yj = y)
log

P (Yj = y, Yj′ = y′)

P (Yj = y)P (Yj′ = y′)
.

(93)

Similarly, her reward for any other report ȳ is,

K
∑

y′∈Y

P (Yj′ = y′, Yj = y)

P (Yj = y)
log

P (Yj = ȳ, Yj′ = y′)

P (Yj = ȳ)P (Yj′ = y′)
. (94)

Thus being truthful yields a higher reward if for any ȳ 6= y, expression in Equation 93 is higher than the one

in Equation 94, which simplifies to the condition,

K
∑

y′∈Y

P (Yj = y, Yj′ = y′) log
P (Yj = y, Yj′ = y′)

P (Yj = ȳ, Yj′ = y′)
−KP (Yj = y) log

P (Yj = y)

P (Yj = ȳ)
≥ 0. (95)

This inequality is not satisfied in general for homogeneous responses. We tested this condition in our

experimental setup of Section 6. Assuming that there are |Y|= 5 responses as defined in that section, and

two types of moving companies with delays exponentially distributed and mean delays drawn uniformly

in [0,60] (in minutes), we found that 629 of 10000 instances we generated violated the inequality in

Equation 95.

E. Auxillary results

Proposition E.1 If responses are categorical then they are self-predicting.

Proof. For any two responses y and y′, the categorical responses condition says that,

P (Yj′ = y′ | Yj = y)≤ P (Yj′ = y′). (96)

However, this implies that P (Yj′ = y′)≤ P (Yj′ = y′ | Yj = y′). This means that for any two responses y and

y′,

P (Yj′ = y′ | Yj = y)≤ P (Yj′ = y′ | Yj = y′). (97)

But this is exactly the self-prediction condition. �

Proposition E.2 Consider two exchangeable random variables, Y1 and Y2, taking values in a finite set Y.

If their distribution satisfies the strict Cauchy-Schwarz property:

√

P (Y1 = Y2 = y)
√

P (Y1 = Y2 = y′)>P (Y1 = y, Y2 = y′), (98)

for each y, y′ ∈ Y, then Y1 and Y2 are stochastically relevant random variables.
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Proof. We will show that stochastic irrelevance for two values y and y′ implies that the CS property is

satisfied for these values with an equality. Stochastic irrelevance for y and y′ implies that the conditional

distributions of Y2 given Y1 = y and Y1 = y′ are identical. This implies that there is some constant C > 0

such that (P (Y1 = y′, Y2 = a);a∈ Y) =C × (P (Y1 = y, Y2 = a);a∈ Y). In particular we have that:

P (Y1 = Y2 = y′) =C ×P (Y1 = y, Y2 = y′) and (99)

P (Y1 = y′, Y2 = y) =C ×P (Y1 = Y2 = y). (100)

We thus have,

√

P (Y1 = Y2 = y)
√

P (Y1 = Y2 = y′) =
√

P (Y1 = Y2 = y)
√

C ×P (Y1 = y, Y2 = y′) (101)

=
√

P (Y1 = Y2 = y)

√

P (Y1 = y′, Y2 = y)

P (Y1 = Y2 = y)
×P (Y1 = y, Y2 = y′) (102)

=
√

P (Y1 = y′, Y2 = y)P (Y1 = y, Y2 = y′) (103)

(a)
= P (Y1 = y, Y2 = y′). (104)

Here (a) follows from exchangeability of Y1 and Y2. Thus the CS property is satisfied with an equality for y

and y′. �
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