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Abstract

Operating under both supply-side and demand-side uncertainties, a mobile-promotion platform
conducts advertising campaigns for individual advertisers. Campaigns arrive dynamically over time,
which is divided into seasons; each campaign requires the platform to deliver a target number of
mobile impressions from a desired set of locations over a desired time interval. The platform fulfills
these campaigns by procuring impressions from publishers, who supply advertising space on apps,
via real-time bidding on ad exchanges. Each location is characterized by its win curve, i.e., the
relationship between the bid price and the probability of winning an impression at that bid. The win
curves at the various locations of interest are initially unknown to the platform, and it learns them
on the fly based on the bids it places to win impressions and the realized outcomes. Each acquired
impression is allocated to one of the ongoing campaigns. The platform’s objective is to minimize its
total cost (the amount spent in procuring impressions and the penalty incurred due to unmet targets
of the campaigns) over the time horizon of interest. Our main result is a bidding and allocation
policy for this problem. We show that our policy is the best possible (asymptotically tight) for
the problem using the notion of regret under a policy, namely the difference between the expected
total cost under that policy and the optimal cost for the clairvoyant problem (i.e., one in which the
platform has full information about the win curves at all the locations in advance): The regret under
any policy is Ω(

√
I), where I is the number of seasons, and that under our policy is O(

√
I). We

demonstrate the performance of our policy through numerical experiments on a test bed of instances
whose input parameters are based on our observations at a real-world mobile-promotion platform.

Keywords: online advertising, learning, regret minimization, stochastic dynamic programming

1 Introduction

Mobile advertising, i.e., advertising on mobile devices such as smart phones or tablets, has now emerged

as the dominant form of online advertising, with consumers spending increasingly more time on these

devices (eMarketer 2019). The mobile ad market in the U.S. is predicted to increase from $76 billion

in 2018 to $113.21 billion in 2020, surpassing the combined advertising expenditure on all traditional

media, including TV and radio (eMarketer 2018). Not surprisingly, the sizable business opportunities

in the mobile ad industry have led to the emergence of a variety of providers who help advertisers

display their ads on mobile devices. One such player is a mobile-promotion platform – prominent ex-

amples include Centro (http://www.centro.net/), Cidewalk (http://www.cidewalk.com/), ExactDrive
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(http://www.exactdrive.com/) – that accepts advertising campaigns from individual advertisers and

procures mobile impressions via ad exchanges from locations of their interest over their chosen time

durations to fulfill these campaigns. The problem we study in this paper emerged from our interactions

with Cidewalk, Inc. We begin by introducing the primary features of the problem.

The Demand Side: An impression refers to an advertising opportunity that arises on a mobile

application (app) when an end-user interacts with the app. Each season, e.g., two weeks or a month,

mobile-promotion platforms such as Cidewalk contract with individual advertisers to deliver a certain

number of impressions from their desired set of locations (cities, zip codes, or even smaller customized

regions) over their desired time intervals within that season. We refer to each such contract with an

individual advertiser as a campaign.

The Supply Side: To deliver the required number of impressions for the accepted campaigns, the

platform procures impressions from publishers (content owners), who supply advertising space on apps,

via real-time bidding on ad exchanges such as DoubleClick and OpenX. At each location of interest,

the arrival of impressions is uncertain and is characterized by a location-specific arrival probability.

The outcomes of the platform’s bids to acquire impressions are also uncertain; at each location, we

refer to the relation between the bid price and the probability of winning an impression at that bid as

the win curve at that location. If the platform fails to meet the total requirement of impressions for a

campaign, then it incurs a penalty cost for each unmet impression. This penalty cost could represent

a monetary payment from the platform to the advertiser, or correspond to a loss of goodwill. For each

impression that becomes available from a desired location, the platform determines the bid price in

real time and, if it wins that impression, allocates it to an ongoing campaign. The platform’s objective

is to minimize its total cost (i.e., the amount spent in procuring impressions and the penalty cost)

over the time horizon of interest.

The Learning Component: The probability of winning an impression increases in the bid the

platform places to acquire that impression. The platform does not know the win curves at the various

locations of interest in advance and thus needs to learn them on the fly based on the bids it places to win

impressions and the realized outcomes. At each location, we consider a general parametric win curve

characterized by a vector of location-specific parameters that are initially unknown to the platform.

Thus, our problem involves the platform’s (1) dynamic bidding for impressions, (2) allocation of the

acquired impressions to ongoing campaigns, and (3) learning, i.e., estimating the parameters of the

win curves at the locations of interest.

Overview of the Analysis: For convenience of exposition, we first analyze a “static” setting of

the platform’s problem, where the information about all the campaigns, namely their respective time

durations and the desired number of impressions, in each season is available to the platform at the start
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of that season. Aside from notational simplicity, the static version shares many of the core features of

the problem with the “dynamic” version, where campaigns arrive dynamically over time. Therefore, it

is convenient to first present our analysis of the static setting and then use it to investigate the dynamic

version. For both settings, we present a bidding and allocation policy and analyze its performance.

The performance of a policy is measured using its regret, i.e., the difference between the expected total

cost under that policy and the optimal cost of the clairvoyant problem (i.e., one in which the platform

has full information in advance about the win curves at all the locations). In both scenarios, we derive

a lower bound on the regret under any policy in terms of the number of seasons and also establish

a matching upper bound on the regret under our policy. We also illustrate the performance of our

policy numerically.

We now summarize our main results and first explain our contributions relative to three papers

that are the closest to our work. Later, in Section 1.2, we review other related literature.

1.1 Our Contributions

To our knowledge, our work is the first to study a mobile-promotion platform’s impression acquisition

and allocation problem that involves dynamic bidding, allocation, and learning. The main outcomes

of our analysis are bidding and allocation policies for both static and dynamic arrival of campaigns.

We show that the regret under each of the two policies is O(
√
I), where I is the number of seasons. To

establish a lower bound on the regret, we construct an instance for which the regret is Ω(
√
I) under

any policy. Thus, we obtain an asymptotically tight bound, namely Θ(
√
I), on the regret. In addition,

we analyze the special case where all impressions arrive from a single location and the win curve at

that location satisfies the so-called “well-separated” condition defined in Broder and Rusmevichientong

(2012), and propose a policy that achieves a Θ(log I) regret. We also establish nuanced results with

respect to other problem parameters such as the number of locations and the number of periods in

each season. We demonstrate the performance of our policies through numerical experiments on a test

bed of instances whose input parameters are inspired from our observations at Cidewalk.

As far as the advertising application is concerned, the problem studied in Aseri et al. (2017) is

similar to ours, with the major difference being that they only analyze the clairvoyant problem, i.e.,

one in which full information about the win curves is available to the platform in advance. In contrast,

our focus is on the platform’s learning of the win curves at the various locations of interest. There are

other relatively less-significant differences; e.g., in their model, the platform does not incur a penalty

cost if it does not meet the requirement of a campaign. Instead, they impose a constraint that the

requirement of each campaign be met with a high probability. The authors offer attractive policies

with performance guarantees for both static and dynamic arrival of campaigns.
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In terms of methodology, our work is closely related to two papers that incorporate learning of the

demand distribution (i.e., the relationship between demand and price) – Broder and Rusmevichientong

(2012) and den Boer and Zwart (2015). Since a detailed comparison of our setting and analysis with

respect to these two papers would be appropriate only after our model and technical results have been

presented, we relegate it to Appendix K.

We briefly mention some of the highlights of our technical analysis. While the platform needs

to execute both the bidding for impressions and their allocation decisions on the fly, we leverage the

characteristics of the advertising campaigns to quickly isolate the allocation decision and obtain an

optimal allocation policy, and also simplify the platform’s objective to a more-tractable one for the

subsequent analysis of the dynamic bidding and learning decisions. The two types of uncertainties on

the supply-side (namely, the uncertain arrival of impressions and the uncertain winning of impressions)

and demand-side uncertainty (namely, the uncertain arrival of campaigns) result in a DP and a cost-

to-go recursion that need to be analyzed to evaluate the performance of our bidding policy: the DP

obtains the expected cost under the optimal bidding policy for the clairvoyant problem and the cost-

to-go recursion computes the expected cost under an arbitrary bidding policy. We use the DP to derive

an upper bound on the difference between the optimal bids under two arbitrary parameters of the

win-curves. The cost-to-go recursion is used to obtain an upper bound on the regret under an arbitrary

bidding policy; in turn, this upper bound helps us obtain an upper bound on the regret under our

specific policy. Finally, under our bidding policy, the length of each exploration (exploitation) phase

and the number of bids placed in each exploration phase are both random due to the uncertain arrival

of impressions. We show that the regret under our policy essentially depends on the number of bids

placed in each exploration (exploitation) phase instead of the length of each phase. In addition, we

derive a uniform upper bound on the expected number of bids placed in each exploration phase.

In another highlight of our technical analysis, we establish two lower bounds on the regret under any

policy in two settings. First, for the general problem, we show an Ω(
√
I) lower bound on the regret

under any policy. Similar to Broder and Rusmevichientong (2012), we apply the Kullback-Leibler

(KL) divergence as a measure of the difference between two distributions to establish the lower bound.

However, under two different values of the underlying parameters, Broder and Rusmevichientong

(2012) compute the KL divergence of the distributions of the demands, while we use the KL divergence

of the joint distributions of the outcomes of impression arrivals and the winning of impressions. Second,

if we restrict our attention to the case where the total number of required impressions by the campaigns

in each season is strictly less than the number of periods in a season, then we establish an Ω(I2/7)

lower bound on the regret under any policy. In this case, we face an active capacity constraint, namely

that the number of impressions assigned to each campaign cannot exceed its requirement, and need
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to analyze the regret under this constraint.

Apart from the three papers discussed above, we now briefly review other related work.

1.2 Other Related Work

Being situated in the operations of a mobile-promotion platform, our work is naturally related to the

literature on online display advertising. We refer the reader to Korula et al. (2015), Chen (2017),

Agrawal et al. (2018), and Choi et al. (2019) for a comprehensive review of this literature. For brevity,

here we focus on recent studies that address the learning of win curves or of the value of impressions

by individual advertisers. Iyer et al. (2014) study bidding strategies of advertisers in repeated second-

price auctions in which they learn, in a Bayesian fashion, their own distribution of the reward from

winning an auction. The objective of each advertiser is to maximize the total expected payoff (rewards

from winning auctions minus the bidding costs). They show that a mean field equilibrium exists in

which it is optimal for each advertiser to bid truthfully. Zhang et al. (2014) propose a bidding strategy

for an advertiser who first estimates the win curve (resp., the value of an impression) using least-square

estimation (resp., Logistic regression) based on a training data set, and then bids to maximize the total

expected value of winning impressions under a budget constraint. The effectiveness of the proposed

bidding strategy is verified numerically. Balseiro and Gur (2019) consider the problem of advertisers

bidding in repeated second-price auctions to maximize their respective total expected payoffs under

budget constraints, without prior knowledge of the distributions of their own valuation of impressions

or the distributions of the highest bids among their competitors. The authors propose an adaptive

pacing bidding strategy, which dynamically adjusts the pace at which an advertiser depletes her

budget using the realized expenditure in each period. They show that the strategy is asymptotically

optimal and the regret under the strategy is O(
√
N) if the advertiser’s valuation and competitor’s

bids are independent and identically distributed, where N is the number of auctions. When all the

advertisers adopt such strategies, they characterize a regime under which these strategies constitute

an approximate Nash equilibrium. Baardman et al. (2019) consider a multi-armed bandit problem

of an advertiser deciding the portfolio of types (e.g., locations) of impressions to bid on in each of

T periods while learning the unknown revenue and cost of each type. In each period, the advertiser

maximizes the expected total revenue subject to the budget of that period. The authors propose an

optimistic-robust learning algorithm that achieves a regret of O(log T ).

There has been extensive work in recent years on demand learning in the Operations Management

literature. For brevity, we avoid presenting an extensive review and limit ourselves to a few recent

studies that develop results of the kind we obtain. Keskin and Zeevi (2014) consider a retailer selling

multiple products over a time horizon of T periods with unlimited inventory and assume a linear
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demand function with unknown parameters. They develop a pricing policy, which is a variant of

the well-known greedy iterated least squares policy, and show that the regret under their policy is

Θ(
√
T ). Wang et al. (2014) consider a retailer selling a single product with finite inventory over a

finite selling season, where the demand function is nonparametric and unknown to the retailer. For

the problem where the demand function and initial inventory are scaled by k > 0, they propose a

learning-while-doing pricing policy whose regret is O(
√
k log4.5 k). Besbes and Zeevi (2012) consider a

general network revenue management problem with multiple products and multiple limited resources.

They consider an unknown and nonparametric demand function and show that the regret under their

proposed policy is O(k(d+2)/(d+3)
√
log k), where d is the number of products. If the demand function

is s-times differentiable, they propose another policy that reduces the regret to O(k(
d
s
+2)/( d

s
+3)√log k).

Chen et al. (2019b) improve this upper bound by developing a nonparametric self-adjusting control

that achieves a regret of O(k1/2+ϵ log k) for any arbitrary small ϵ > 0. Levi et al. (2015) consider a

newsvendor problem with an unknown demand function. They analyze the performance of a sample-

average approximation approach and show that the cumulative regret over T periods is O(log T ).

Chen et al. (2019a) study a joint pricing and inventory-replenishment problem with backorders over

a planning horizon of T periods where a retailer makes the replenishment and pricing decisions at

the beginning of each period. They propose a nonparametric learning algorithm with regret O(
√
T ).

Keskin et al. (2020) consider a utility company that dynamically sets electricity prices to serve N

customers over a time horizon of T periods. The company initially knows neither the underlying

cluster structure – induced by customer characteristics and exogenous factors – nor the consumption

parameters in each cluster. The authors develop a data-driven policy, using spectral clustering and

feature-based pricing, whose regret is O(
√
NT ) when all features are fully heterogeneous over time and

customers. Keskin and Li (2021) study a dynamic pricing problem with unknown and time-varying

heterogeneity in customers’ preferences for quality. The expected number of market shifts is at most

n over T periods in a Markovian market with unknown transition probabilities. The authors design

a simple and practically implementable policy whose regret is O(
√

n/T ). For an excellent review of

this literature, we refer the reader to den Boer (2015).

2 Static Campaign Arrivals

Recall that each advertising campaign is specified by its season (say, two weeks or a month), start

time, end time, and the target number of impressions. The static setting assumes that, for all the

campaigns within a season, this information is available at the beginning of that season. The platform

bids on an ad exchange to win the impressions needed to fulfill the campaigns. We begin this section

by precisely defining the static setting and stating our assumptions. Then, in Section 2.2, we derive an
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optimal bidding and allocation policy for the full-information scenario (i.e., the clairvoyant problem).

Finally, in Section 2.3, we derive an upper bound on the regret under any policy; this upper bound is

used later to obtain an upper bound on the regret under our policy.

Each season consists of T discrete time periods1, where the length of a time period is sufficiently

small so that at most one impression arrives in one time period over all locations of interest. Let

t ∈ {1, . . . , T} denote the tth period of a season. In the ith season, information about all the campaigns

that are to be executed in that season is available at the beginning of the season. Let mi denote the

total number of campaigns in season i. For the jth campaign in the ith season, denoted by (i, j),

j ∈ {1, . . . ,mi}, let Wi,j > 0 denote its target number of impressions and t̄i,j , ti,j ∈ {1, . . . , T} with

t̄i,j ≤ ti,j denote its start and end time periods. Without loss of generality, we order these campaigns

in increasing order of their end times, and let the end time of the last campaign in the season be T ,

i.e., ti,1 ≤ · · · ≤ ti,mi
= T . Let CI denote the set of all the campaigns over the first I seasons. That is,

CI =

I⋃
i=1

{(i, 1), . . . , (i,mi)}.

The concept of a season is defined as a practical “unit of time” to make it convenient for the

platform to accept advertisement campaigns and for customers to specify their campaigns. Suppose

the duration of a season is one month, with each season starting at the beginning of a month and

finishing at the end of the month. In practice, if a customer (company) wants to engage with the

platform over a long duration, then it requests the platform for a certain number of ad impressions

per season (i.e., per month); for example, 30,000 ad impressions per season. Thus, the company signs

a contract for several individual campaigns, each of duration one season. These individual campaigns

are billed separately and ensure that the ad impressions are evenly distributed over the entire length

of the engagement. In this manner, a long advertisement engagement is broken down into smaller

campaigns that each has a duration of one season. Note that the length of a season is arbitrary (e.g.,

2 weeks or 1 month or a quarter). In this sense, the assumption that all campaigns start and finish in

the same season is a mild assumption. We will discuss the case where this assumption is not satisfied

in Remark 4 in Section 3.2.

Let L = {1, . . . , L} denote the set of locations; impressions acquired from any of these locations

can be used to satisfy the requirement of any campaign. This is reasonable, for example, when the

advertisers that the platform caters to belong to the same metropolitan area. In period t of season i,

denoted by (i, t), an impression from location l ∈ L arrives with probability ql. Let ζi,t = l if an

impression arrives from location l ∈ L in period (i, t) and ζi,t = 0 if no impression arrives in that

1This is purely for expositional convenience. The analysis easily extends to the setting where the seasons are of
different lengths.

7



period. Thus, E[1{ζi,t = l}] = ql. Let bi,t denote the platform’s bid price in period (i, t). If no

impression arrives in period (i, t), i.e., ζi,t = 0, then no bid is placed and the bid price bi,t = 0. If

an impression arrives in period (i, t), i.e., ζi,t ̸= 0, then the platform decides whether or not to place

a bid. If no bid is placed, then the bid price bi,t = 0. Otherwise, the platform chooses a bid price

bi,t ∈ B = [bmin, bmax], where bmax > bmin > 0. Let di,t = 1 if the impression is won by bidding an

amount bi,t at location ζi,t, and di,t = 0 otherwise. Clearly, if the platform places no bid, i.e., bi,t = 0,

then no impression is won, i.e., di,t = 0. Let pl(γl, bl) denote the win curve at location l ∈ L, i.e., the

probability of winning an impression that arrives from location l by bidding an amount bl ∈ B, where

γl = (γl,1, . . . , γl,nl
) ∈ Γl ⊂ Rnl is a vector of nl parameters that characterize this distribution and Γl

is an open set. Then, di,t is Bernoulli distributed with mean pζi,t(γζi,t , bi,t). The true value of γl is

unknown to the platform, and is denoted by γ
(0)
l ; the platform learns this vector from the outcomes

of the bids it places for winning impressions at location l ∈ L. We assume that γ
(0)
l ∈ Γ

(0)
l , where

Γ
(0)
l ⊂ Γl is a compact and convex set. Let γ = (γ1, . . . , γL), γ

(0) = (γ
(0)
1 , . . . , γ

(0)
L ), Γ = Γ1 × · · · × ΓL,

and Γ(0) = Γ
(0)
1 × · · · × Γ

(0)
L . The characterization of pl(γl, bl) for l ∈ L is discussed in Section 2.1.

If an impression (from location ζi,t) is acquired in period (i, t), i.e., di,t = 1, then the platform

needs to determine the campaign to which that impression is assigned. Let ai,t denote the allocation

decision in period (i, t), with ai,t = (i, j) indicating that if an impression arises in that period and

is won, then it is allocated to campaign (i, j). Let ci,t,j denote the number of unmet impressions for

campaign (i, j) at the beginning of period (i, t). That is, at the beginning of period (i, t), campaign

(i, j) needs a further ci,t,j ∈ {0, . . . ,Wi,j} impressions to be fulfilled. In time period (i, t), we say

that a campaign (i, j) is active if an impression won in that period can be allocated to it; that is,

t̄i,j ≤ t ≤ ti,j and ci,t,j ≥ 1. Let Fi,t :=
{
(i, j) : t̄i,j ≤ t ≤ ti,j , ci,t,j ≥ 1, j ∈ {1, . . . ,mi}

}
denote the set

of all active campaigns in time period (i, t). Note that an impression won in period (i, t) can only be

allocated to an active campaign in that period, i.e., ai,t ∈ Fi,t.

We assume that the platform’s bidding and allocation decisions in a time period only depend on

the past history; specifically, the (i) arrival of impressions, (ii) the platform’s bids, (iii) the realizations

of the winning of impressions, (iv) the allocation of the impressions won to the various campaigns, and

(v) the information about the campaigns. Let hi,t denote the history until the beginning of period (i, t).

Thus, we let

hi,t := (ζî,t̂, bî,t̂, dî,t̂, aî,t̂,Wî,j , t̄̂i,j , t̂i,j : 1 ≤ î ≤ i, (̂i, t̂) < (i, t), 1 ≤ j ≤ mî), (1)

where (̂i, t̂) < (i, t) if and only if î < i or î = i and t̂ < t. Let Hi,t denote the set of all possible histories

until the beginning of period (i, t).

The sequence of events in period (i, t) is as follows: (i) the platform observes the history hi,t
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and makes the allocation decision2 ai,t; (ii) the impression arrival ζi,t is realized; (iii) the platform

determines the bid price bi,t; (iv) the binary outcome di,t, which indicates whether or not the platform

wins the impression, is realized; (v) if the impression is won, i.e., di,t = 1, then the platform pays

the bid bi,t and allocates the impression to campaign ai,t. A non-anticipating (deterministic) policy

π is then defined as π := (bπi,t,l(hi,t), a
π
i,t(hi,t) : i ∈ {1, . . . , I}, t ∈ {1, . . . , T}, l ∈ L, hi,t ∈ Hi,t), where

bπi,t,l(hi,t) is the bid price for an impression that arrives from location l in period (i, t) and aπi,t(hi,t)

is the campaign to which the impression won in that period is assigned under the history hi,t ∈ Hi,t.

For notational convenience, we use bπi,t,l (resp., a
π
i,t) to denote bπi,t,l(hi,t) (resp., a

π
i,t(hi,t)) whenever no

confusion arises in doing so. Let

xi,t := (ζî,t̂, dî,t̂,Wî,j , t̄̂i,j , t̂i,j : 1 ≤ î ≤ i, (̂i, t̂) < (i, t), 1 ≤ j ≤ mî). (2)

We show in Appendix A that for any xi,t and policy π, we can find the unique corresponding history

hπi,t = hπi,t(xi,t). Therefore, for notational brevity, we refer to xi,t as the history until the begin-

ning of period (i, t), and with slight abuse of notation, we use bπi,t,l(xi,t) (resp., aπi,t(xi,t)) to denote

bπi,t,l(h
π
i,t(xi,t)) (resp., aπi,t(h

π
i,t(xi,t))) in what follows. To further ease exposition, we drop the super-

script π in hπi,t(xi,t) and denote it simply as hi,t(xi,t).

The platform’s bidding cost is the cost it incurs in procuring the impressions. In period (i, t),

the bidding cost incurred under policy π is
∑

l∈L bπi,t,l1{ζi,t = l}di,t. If the platform fails to fulfill a

campaign (i.e., does not deliver the number of impressions needed to fulfill that campaign), then it

incurs a penalty cost. For each campaign (i, j), let ei,j ∈ [emin, emax] denote the unit penalty cost for

each unmet impression3. Then, the penalty cost for campaign (i, j) is[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπi,t = j}
]+

ei,j .

Thus, the total expected cost (i.e., bidding cost plus penalty cost) under policy π after I seasons is

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t +
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπi,t = j}
]+

ei,j

 . (3)

The platform’s goal is to obtain a bidding and allocation policy π that minimizes its cumulative

expected cost. For each location l ∈ L, since the underlying vector of parameters γl (that characterizes

the distribution of di,t) is unknown, a policy should be careful in offering bids to adequately learn the

unknown vector of parameters (i.e., compute a good estimate) at each location.

2Note that ai,t can be determined either before or after observing ζi,t and di,t.
3The unit penalty cost ei,j for each unmet impression includes both the opportunity cost of the revenue that could

have been earned from winning an impression, as well as additional direct penalty (i.e., the direct monetary penalty
that the platform pays advertisers for each unmet impression). In Remark 1 below, we specify the two parts of the unit
penalty cost ei,j in formulating an equivalent profit-maximization problem for the platform.
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It is immediate that, for any campaign (i, j), it is optimal for the platform to not assign more

than Wi,j impressions to that campaign. We let Π denote the set of all non-anticipating policies

satisfying
∑T

t=1

∑
l∈L 1{ζi,t = l}di,t1{aπi,t = j} ≤ Wi,j a.s. for all (i, j) ∈ CI . Under any policy π ∈ Π,

we can rewrite the total expected cost in (3) as

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t +
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπi,t = j}

]
ei,j

 (4)

=

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t −
T∑
t=1

∑
l∈L

1{ζi,t = l}di,t
mi∑
j=1

ei,j1{aπi,t = j}

+

I∑
i=1

mi∑
j=1

Wi,jei,j

=

I∑
i=1

E

[
T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t −
T∑
t=1

∑
l∈L

1{ζi,t = l}di,tei,aπi,t

]
+

I∑
i=1

mi∑
j=1

Wi,jei,j

= E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − ei,aπi,t)qldi,t

]
+

I∑
i=1

mi∑
j=1

Wi,jei,j .

The third equality holds, since E[1{ζi,t = l}] = ql. Thus, the platform’s problem can now be equiva-

lently written as

min
π∈Π

E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − ei,aπi,t)qldi,t

]
.

Remark 1: (Profit Maximization Version) Let ri,j denote the unit revenue the platform collects

for each impression supplied to satisfy the demand of campaign (i, j). Let êi,j be the direct unit

penalty cost for each unmet impression of campaign (i, j) (i.e., the direct monetary penalty that the

platform pays to the advertiser for each unmet impression of campaign (i, j)). Then, the platform’s

profit-maximization problem, over all policies π ∈ Π, is:

max
π∈Π

I∑
i=1

E

[
T∑

t=1

∑
l∈L

1{ζi,t = l}di,t
mi∑
j=1

1{aπ
i,t = j}(ri,j − bπi,t,l)−

mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπ
i,t = j}

]
êi,j

]

⇔max
π∈Π

I∑
i=1

E

[
T∑

t=1

∑
l∈L

(ri,aπ
i,t

− bπi,t,l)1{ζi,t = l}di,t −
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπ
i,t = j}

]
êi,j

]
−

I∑
i=1

mi∑
j=1

ri,jWi,j

⇔min
π∈Π

I∑
i=1

E

[
T∑

t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t +
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{aπ
i,t = j}

]
(ri,j + êi,j)

]
. (5)

Comparing the objective (5) above to the cost-minimization objective (4) we defined earlier, note that

the unit penalty cost ei,j for each unmet impression of campaign (i, j) in (4) corresponds to ri,j + êi,j

(i.e., the opportunity cost of the unit revenue that could have been earned from winning an impression

plus the direct unit penalty cost for each unmet impression of campaign (i, j)) in (5). ■

Our analysis with respect to the penalty cost is organized as follows. In the remainder of this

section and in Sections 3 and 4, we assume that the penalty cost for each unmet impression is the

10



same across different campaigns, denoted by e. This assumption is motivated by our observation of a

mobile-promotion platform in practice: nearly all the customers of this platform are small- to medium-

sized businesses, with similar valuations for an advertising opportunity. In Remark 5 in Section 3.2

and in Appendix I, we discuss the robustness of our results by analyzing a setting where the unit

penalty cost for an unmet impression differs across campaigns. In Section 5, we numerically examine

the behavior of the regret under our policy when the unit penalty cost for an unmet impression differs

across campaigns.

Under the assumption of the same penalty cost across campaigns, the platform’s problem can be

written as in (P ) below.

min
π∈Π

E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − e)qldi,t

]
. (P )

Remark 2: It is clear from the above objective that, if e ≤ bmin, then not placing any bid (thus

resulting in the objective function value of 0) is optimal for the platform, since it loses money by

placing a bid. Therefore, we assume henceforth that e > bmin. Also, for ease of exposition, we refer to

the objective of problem (P ) as the expected cost of the platform. ■

First-End-First-Serve (FEFS) allocation: We first specify the campaign to which an impression

won in period (i, t) is assigned. Recall that Fi,t is the set of all active campaigns in time period (i, t). It

is easy to see that the following is an optimal allocation policy: In any period, allocate the impression

won (if any) in that period to the active campaign that ends first, i.e., aπi,t = (i, gi,t), where gi,t =

min(i,j)∈Fi,t
j. We refer to such an allocation policy as a FEFS policy4 and formally note its optimality.

Property: Without loss of optimality, we can assume that the allocation policy is FEFS.

Note that if there are no active campaigns in period (i, t), i.e., Fi,t = ∅, then no bid should be placed

and no impression is won in that period; thus, the allocation aπi,t is of no consequence and can be

chosen arbitrarily.

2.1 Win Curves

We now discuss our assumptions on the win curve pl(γl, bl), i.e., the probability of winning an im-

pression that arrives from location l ∈ L by bidding a price bl ∈ B, with the vector of parameters

γl = (γl,1, . . . , γl,nl
) ∈ Γl characterizing this distribution. Note that the function pl(γl, bl) is defined on

Γl × B, and the true value of γl (i.e., γ
(0)
l ) is assumed to be in Γ

(0)
l ⊆ Γl. For l ∈ L, we impose the

following assumptions on the win curve pl(γl, bl).

4For the setting where the unit penalty cost for an unmet impression differs across campaigns (see Remark 5 at the
end of Section 3.2 and Appendix I), the FEFS allocation policy may not be optimal.
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Assumption 1 For any l ∈ L, pl(γl, bl) ∈ C2 (twice continuously differentiable in γl and bl) for all

bl ∈ B and γl ∈ Γl. Further, pl(γl, bl) is log concave in bl, pl(γl, bl) ∈ (0, 1) and ∂pl(γl,bl)
∂bl

> 0 for all

bl ∈ B and γl ∈ Γ
(0)
l .

Under the above assumption, the probability of winning an impression from any location l ∈ L is

bounded away from 0 and 1 on the bid interval B, and increases in the bid price bl ∈ B. Many

families of parametric win curves satisfy the above assumption (for appropriate choices of Γl, Γ
(0)
l and

B) including pl(γl, bl) = γl,1 + γl,2bl (linear win curve), pl(γl, bl) = exp(γl,1 + γl,2bl) (exponential win

curve), and pl(γl, bl) =
exp(γl,1+γl,2bl)

1+exp(γl,1+γl,2bl)
(logit win curve). Such linear, exponential, and logit forms

have been discussed in Broder and Rusmevichientong (2012) and den Boer and Zwart (2015).

We also impose a statistical assumption. For each location l ∈ L, let Qbl,γl
l : {0, 1}k → [0, 1] denote

the probability distribution of the outcome D = (D1, · · · , Dk) of the winning of impressions for a

given sequence of fixed bids bl = (bl,1, · · · , bl,k) ∈ Bk. This distribution is represented by

Qbl,γl
l (d) =

k∏
k̂=1

pl(γl, bl,k̂)
dk̂(1− pl(γl, bl,k̂))

1−dk̂ ,

where d ∈ {0, 1}k denotes an arbitrary realization of the random vector D.

Assumption 2 (Statistical Assumption). For any l ∈ L, there exist kl ∈ N and a vector of exploration

bids b̄l = (b̄l,1, · · · , b̄l,kl) ∈ Bkl such that the family of distributions {Qb̄l,γl
l : γl ∈ Γ

(0)
l } is identifiable,

i.e., ∀ γl ̸= γ̄l, ∃ d ∈ {0, 1}kl, s.t. Qb̄l,γl
l (d) ̸= Qb̄l,γ̄l

l (d). Moreover, the Fisher information matrix

Il(b̄l, γl), given by

[Il(b̄l, γl)]u,v = E
[
− ∂2

∂γl,u∂γl,v
logQb̄l,γl

l (D)

]
, for u, v = 1, . . . , nl, (6)

is positive definite.

Assumption 2 is a common assumption (see, e.g., Besbes and Zeevi 2009 and Broder and Rusmevichien-

tong 2012) and guarantees that we can estimate the vector of parameters γ
(0)
l based on the observations

of the impressions won at the exploration bids b̄l. As shown in the following examples, many para-

metric win curves satisfy Assumptions 1 and 2.

Example 1 (linear win curve). Let B = [1/2, 1], Γ
(0)
l = [1/8, 1/4] × [1/3, 2/3], Γl = (0, 7/24) ×

(0, 17/24), and pl(γl, bl) = γl,1+γl,2bl for all l ∈ L. It is straightforward to check that Assumption 1 is

satisfied and {Qb̄l,γl
l : γl ∈ Γ

(0)
l } is identifiable for any b̄l = (b̄l,1, b̄l,2) ∈ B2 with b̄l,1 ̸= b̄l,2. The Fisher

information matrix is:

Il(b̄l, γl) =
1

pl(γl, b̄l,1)(1− pl(γl, b̄l,1))

(
1 b̄l,1
b̄l,1 b̄2l,1

)
+

1

pl(γl, b̄l,2)(1− pl(γl, b̄l,2))

(
1 b̄l,2
b̄l,2 b̄2l,2

)
.
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It is easy to verify that the above matrix is positive definite. Thus, Assumption 2 is satisfied.

Example 2 (exponential win curve). Let B = [1/2, 1], Γ
(0)
l = [−3/2,−3/4] × [1/3, 2/3], Γl =

(−2,−17/24)× (0, 17/24), and pl(γl, bl) = exp(γl,1+ γl,2bl) for all l ∈ L. Assumption 1 is satisfied and

{Qb̄l,γl
l : γl ∈ Γ

(0)
l } is identifiable for any b̄l = (b̄l,1, b̄l,2) ∈ B2 with b̄l,1 ̸= b̄l,2. The Fisher information

matrix, which is positive definite (thus satisfying Assumption 2), is:

Il(b̄l, γl) =
pl(γl, b̄l,1)

1− pl(γl, b̄l,1)

(
1 b̄l,1
b̄l,1 b̄2l,1

)
+

pl(γl, b̄l,2)

1− pl(γl, b̄l,2)

(
1 b̄l,2
b̄l,2 b̄2l,2

)
.

Example 3 (logit win curve). Let B = [1/2, 1], Γ
(0)
l = [−3/2, 3/2]× [1/2, 3/2], Γl = (−2, 2)× (0, 2),

and pl(γl, bl) =
exp(γl,1+γl,2bl)

1+exp(γl,1+γl,2bl)
for all l ∈ L. Assumption 1 is satisfied and {Qb̄l,γl

l : γl ∈ Γ
(0)
l } is

identifiable for any b̄l = (b̄l,1, b̄l,2) ∈ B2 with b̄l,1 ̸= b̄l,2. Assumption 2 is also satisfied, since the Fisher

information matrix

Il(b̄l, γl) = pl(γl, b̄l,1)(1− pl(γl, b̄l,1))

(
1 b̄l,1
b̄l,1 b̄2l,1

)
+ pl(γl, b̄l,2)(1− pl(γl, b̄l,2))

(
1 b̄l,2
b̄l,2 b̄2l,2

)
is positive definite.

2.2 Optimal Bidding Policy for the Clairvoyant Problem (The Vector γ is Known)

We now obtain an optimal bidding policy for the clairvoyant problem; i.e., the problem in which

the vector of parameters of the win curves at all the locations γ = (γ1, . . . , γL) is known, where

γl = (γl,1, . . . , γl,nl
) characterizes the win curve at location l ∈ L = {1, . . . , L}. It is important to

note that, in our main optimization problem (P ), the learning of γ occurs across seasons, in the sense

that, in a given period, we can estimate γ based on the bids placed in the past (including the bids

placed before that period in the current season as well as those placed in all the previous seasons)

and the corresponding outcomes. However, when γ is known, no learning is needed. In this case,

the optimization problem (P ) decouples into I optimization problems, one for each season, since each

campaign starts and ends within the same season. Therefore, it is sufficient to solve the problem

corresponding to an individual season, say i ∈ {1, · · · , I}.

Given that allocations are made in an FEFS manner, it is easy to see that the optimization

problem for season i can be written as the following DP, in which the state in any period (i, t) is the

number of unmet impressions at the beginning of that period for each campaign in the season; i.e.,

(ci,t,1, · · · , ci,t,mi). In the sequel, we drop the time index (i, t) of ci,t,j , Fi,t, and gi,t when there is no

ambiguity in doing so. Let ci = (c1, · · · , cmi). Let Vi,t(ci; γ) denote the optimal cost-to-go function of

the DP and let b∗i,t,l(ci; γ) denote the optimal bid price at location l in period (i, t) in state ci. Then,

Vi,t(ci; γ) satisfies the following recursion:

Vi,t(ci; γ)
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= min
(b1,··· ,bL):
bl∈Bl,l∈L


{1{F ̸= ∅}

∑
l∈L qlpl(γl, bl)[bl − e+ Vi,t+1((c1, · · · , cg − 1, · · · , cmi); γ)] +[

1− 1{F ̸= ∅}
∑

l∈L qlpl(γl, bl)

]
Vi,t+1(ci; γ)


= 1{F ̸= ∅}

∑
l∈L

ql min
bl∈Bl

pl(γl, bl)
[
bl − e−∆Vi,t+1(ci; γ)

]
+ Vi,t+1(ci; γ),

where Vi,T+1(ci; γ) = 0 and, for F ̸= ∅,

∆Vi,t+1(ci; γ) = Vi,t+1(ci; γ)− Vi,t+1((c1, · · · , cg − 1, · · · , cmi); γ).

For F ̸= ∅, the optimal bid price when an impression arrives from location l ∈ L is as follows:

b∗i,t,l(ci; γ) = argmin
bl∈B

pl(γl, bl) [bl − e−∆Vi,t+1(ci; γ)] . (7)

If F = ∅, then no bid is placed, i.e., b∗i,t,l(ci; γ) = 0 for all l ∈ L. We show (in Lemma A.1, Appendix C)

that b∗i,t,l(ci; γ) is uniquely defined. The following technical assumption we make is similar in spirit to

Assumption R4 in Chen et al. (2019b).

Assumption 3 For all l ∈ L, γ ∈ Γ(0), F ̸= ∅, 1 ≤ i ≤ I, and 1 ≤ t ≤ T , the optimal bids

b∗i,t,l(ci; γ) ∈ (bmin, bmax), the interior of the bidding interval B.

Under Assumption 3, we establish Lemma 1, which will be used later in Section 3.2 to obtain an upper

bound on the regret under our policy. The proofs of the technical results are in the appendix.

Lemma 1 below shows that for any two vectors γ, γ̂ of parameters of the win curves, the difference

in the optimal bids under γ and γ̂ is O(∥γ − γ̂∥), where ∥ · ∥ denotes the Euclidean norm.

Lemma 1 For all l ∈ L, γ, γ̂ ∈ Γ(0), F ̸= ∅, 1 ≤ i ≤ I, and 1 ≤ t ≤ T , there exists a constant K1 > 1

that is independent of I and T , such that

∣∣b∗i,t,l(ci; γ)− b∗i,t,l(ci; γ̂)
∣∣ ≤ (K1)

T ∥γ − γ̂∥.

This concludes our analysis of the optimal policy when γ is known. In the remainder of Sections 2

and 3, we study the setting in which γ is unknown. Before we proceed with this, we define the

performance metric we use (namely, regret) when γ is unknown. This definition relies on the full-

information setting studied above.

Regret: The performance of a policy is measured by its regret, which is defined as the expected

increase in the platform’s cost from not using the optimal bidding and allocation policy (under the

true vector of parameters γ(0)). The platform’s optimal expected cost during season i ∈ {1, · · · , I}, if
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it knew γ(0), is Vi,1((Wi,1, · · · ,Wi,mi); γ
(0)). Thus, the regret under a policy π ∈ Π after I seasons can

be written as:

Regret(π, I; γ(0)) = E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − e)qldi,t

]
−

I∑
i=1

Vi,1((Wi,1, · · · ,Wi,mi); γ
(0)).

2.3 An Upper Bound on the Regret Under Any Bidding and Allocation Policy

In this section, we derive an upper bound on the regret under an arbitrary bidding and FEFS allocation

policy, say π. This will be useful in deriving an upper bound on the regret under our policy in

Section 3.2. For any γ ∈ Γ(0), we first compute the expected cost in each season under policy π.

Consider season i. Recall that xi,1 is the history until the beginning of season i. Let x̂i,t := (ζi,t̂, di,t̂ :

1 ≤ t̂ < t) denote the history in season i until the beginning of period (i, t). Then, the history until the

beginning of period (i, t) is xi,t = (xi,1, x̂i,t); thus, the bid price for each location l ∈ L under policy π

is bπi,t,l(xi,1, x̂i,t). Conditional on xi,1, we compute the expected cost-to-go in season i for state x̂i,t

under policy π, denoted by V π
i,t(x̂i,t;xi,1, γ), as follows.

For a given x̂i,t, we can find the associated number of unmet impressions of each campaign (i, j)

at the beginning of period (i, t), denoted by cj(x̂i,t); see Appendix B for details. Let c(x̂i,t) :=∑
j:t̄i,j≤t≤ti,j

cj(x̂i,t) denote the associated total number of unmet impressions at the beginning of

period (i, t) over all the ongoing campaigns in that period. Let ci(x̂i,t) := (c1(x̂i,t), · · · , cmi(x̂i,t)).

V π
i,t(x̂i,t;xi,1, γ) satisfies the following recursion:

V π
i,t(x̂i,t;xi,1, γ) =

1{c(x̂i,t) ≥ 1}
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− e+ V π

i,t+1((x̂i,t, (l, 1));xi,1, γ)
]
+∑

l∈L
ql
[
1− 1{c(x̂i,t) ≥ 1}pl(γl, bπi,t,l(xi,1, x̂i,t))

]
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +(

1−
∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ),

and V π
i,T+1(·;xi,1, γ) = 0. Note that if c(x̂i,t) = 0, then there are no active campaigns, and thus no bid

should be placed, i.e., bπi,t,l(xi,1, x̂i,t) = 0 for all l ∈ L.

Under policy π, let Xπ
i,1 denote the random history until the beginning of season i and X̂π

i,t denote

the random history in season i until the beginning of period (i, t). Then, the expected cost under

policy π after I seasons is
∑I

i=1 E
[
V π
i,1(∅;Xπ

i,1, γ
(0))
]
, and thus the regret under policy π after I

seasons is:

Regret(π, I; γ(0)) =
I∑

i=1

E
[
V π
i,1(∅;Xπ

i,1, γ
(0))
]
−

I∑
i=1

Vi,1((Wi,1, · · · ,Wi,mi); γ
(0)).
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Lemma 2 below provides an upper bound on the above regret.

Lemma 2 There exists a constant K0 > 0 that is independent of I and T , such that the regret under

any bidding and FEFS allocation policy π after I seasons satisfies

Regret(π, I; γ(0)) ≤ K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπi,t,l(X

π
i,1, X̂

π
i,t)− b∗i,t,l(ci(X̂

π
i,t); γ

(0))
)2]

.

3 Analysis of Static Campaign Arrivals

In Section 3.1, we present our bidding and allocation policy for the setting where the vector of param-

eters γ = (γ1, · · · , γL) of the win curves is unknown, where γl = (γl,1, · · · , γl,nl
) characterizes the win

curve at location l ∈ L = {1, · · · , L}. Section 3.2 establishes an O(
√
I) upper bound on the regret

under this policy. In Section 3.3, we establish a matching Ω(
√
I) lower bound on the regret under any

policy. For the special case where the total number of required impressions over all the campaigns

in each season is strictly less than the number of periods in that season, we obtain an Ω(I2/7) lower

bound on the regret under any policy.

3.1 Bidding and Allocation Policy

We refer to our bidding and allocation policy as BidAlloc. Recall that allocations are made in an

FEFS manner. The formal description of BidAlloc follows.

Figure 1: The basic structure of BidAlloc, our bidding and allocation policy.
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Policy BidAlloc

Input: For each location l ∈ L, the exploration bids b̄l = (b̄1l , · · · , b̄
kl
l ); see Section 2.1.

Bidding: The bidding policy operates in cycles, with each cycle consisting of an exploration phase

and an exploitation phase. Figure 1 shows the basic structure of the policy. Let s denote the index

of a cycle, starting with s = 1. We refer to the infinite sequence b̄∞l = (b̄1l , · · · , b̄
kl
l , b̄

1
l , · · · , b̄

kl
l , · · · ),
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which iteratively repeats the sequence b̄l, as the exploration sequence for location l ∈ L. Let Υl denote

a counter for the exploration sequence for location l.

Initialize Υl = 0 for all l ∈ L. We now describe the two phases of an arbitrary cycle s, s ≥ 1.

� Exploration Phase of Cycle s: Consider any period (i, t) in this phase.

◦ If there are no active campaigns or if no impression arrives, then no bid is placed.

◦ Otherwise, for an impression that arrives from location l ∈ L, the exploration counter for l

increases by 1, that is, Υl = Υl + 1. The bid placed is the element in position Υl of the

exploration sequence b̄∞l .

This phase concludes whenever we have Υl ≥ skl for all l ∈ L; that is, every bid in b̄l has been

“explored” at least s times cumulatively from cycle 1.

At the end of this exploration phase, for each location l ∈ L, consider the first skl realized

outcomes of the bids placed at that location. Note that these observations correspond to the

placing of the exploration bids b̄l = (b̄1l , · · · , b̄
kl
l ) repeatedly s times. For 1 ≤ ŝ ≤ s, let Dl(ŝ) =

(D1
l (ŝ), · · · , D

kl
l (ŝ)) denote the corresponding outcomes when the exploration bids b̄l are placed

for the ŝth time. Let γ̂l(s) denote the maximum-likelihood estimate (MLE)5 based on these skl

observations; that is,

γ̂l(s) = argmax
γl∈Γ

(0)
l

s∏
ŝ=1

Qb̄l,γl
l (Dl(ŝ)).

� Exploitation Phase of Cycle s: Consider any period (i, t) in this phase.

◦ If there are no active campaigns or if no impression arrives, then no bid is placed.

◦ Otherwise, for an impression that arrives from location l ∈ L, place the bid b∗i,t,l(ci; γ̂(s)),

computed by Equation (7) using the vector of estimates γ̂(s) = (γ̂1(s), · · · , γ̂L(s)).

This phase concludes when a total of Ls bids are placed in this phase over all locations. Then,

the exploration phase for cycle s+ 1 begins.

Allocation: If an impression is acquired in a period, then allocate it to the active campaign that

ends first.

Lemma 3, below guarantees that, after a sufficient number of exploration cycles, our estimate γ̂(s)

is guaranteed to be close to γ(0), in the following precise sense:

5Note that both the MLE formulation (e.g., den Boer and Zwart (2015) and Broder and Rusmevichientong (2012))
and the Bayesian approach (e.g., Sunar et al. (2021), Qi et al. (2017), Harrison and Sunar (2015), and Harrison et al.
(2012)) are common modeling approaches for parametric learning problems. While our problem can also be modeled
with the Bayesian approach, our use of the MLE formulation is just a matter of modeling choice.
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Lemma 3 There exists a constant Kmle > 0 that is independent of I and T , such that, for any s ≥ 1,

the vector of the maximum-likelihood estimates γ̂(s) = (γ̂1(s), · · · , γ̂L(s)) after s exploration phases

satisfies:

E
[∥∥∥γ̂(s)− γ(0)

∥∥∥2] ≤ Kmle

s
.

We note that the basis for Lemma 3 is a fundamental result – Theorem 36.3 in Borovkov (1998) – on

the convergence of maximum-likelihood estimators.

3.2 Upper Bound on the Regret Under BidAlloc

The main result of this section is Theorem 1, which establishes an upper bound on the regret under

the policy BidAlloc.

Theorem 1 Under Assumptions 1, 2, and 3, the policy BidAlloc satisfies6

Regret(BidAlloc, I; γ(0)) ≤ K3

√
I,

where K3 = K2(K1)
2T
√
T for constants K1 and K2 that are independent of I and T .

Proof of Theorem 1: Let π̂ denote the policy BidAlloc. Let S0 = ⌈
√
2IT/L⌉. Then, the total

duration of the first S0 cycles is at least IT periods because the total number of bids placed during

the exploitation phases of S0 cycles is
∑S0

s=1 Ls = LS0(S0 + 1)/2 ≥ IT . Let X π̂ denote the random

history over I seasons under policy π̂. For any realized history x, let As1(x) (resp., As2(x)) denote

the collection of periods belonging to the exploration (resp., exploitation) phase of cycle s in which

there are active campaigns. Then, the regret of policy π̂ after I seasons satisfies:

I∑
i=1

E
[
V π̂
i,1(∅;X π̂

i,1, γ
(0))− Vi,1((Wi,1, · · · ,Wi,mi); γ

(0))
]

≤ K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

(using Lemma 2)

= K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}
(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

= K0

S0∑
s=1

E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As1(X
π̂)}
(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

+

6We also show that the regret is O(T ) in Lemma A.9 and O(
√
T log2(T )) under the setting defined in Theorem A.1;

see Remark 3 for more details.
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K0

S0∑
s=1

E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As2(X
π̂)}
(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

. (8)

The first equality holds since E[1{ζi,t = l}] = ql and ζi,t is independent of X̂ π̂
i,t and X π̂

i,1. The

second equality holds because for those periods with no active campaigns, we have bπ̂i,t,l(X
π̂
i,1, X̂

π̂
i,t) =

b∗i,t,l(ci(X̂
π̂
i,t); γ

(0)) = 0. We will show that the first (resp., second) expectation in each cycle in (8) is

bounded from above by a constant K̂ > 0 (resp., Ǩ = LKmle(K1)
2T > 0) that is independent of I

and s. Thus, we have

I∑
i=1

E
[
V π̂
i,1(∅;X π̂

i,1, γ
(0))− Vi,1((Wi,1, · · · ,Wi,mi); γ

(0))
]
≤ K0S0(K̂ + Ǩ) (9)

=

⌈√
2IT

L

⌉
K0(K̂ + Ǩ)

≤

(√
2IT

L
+ 1

)
K0(K̂ + Ǩ)

≤ K3

√
I,

where K3 = K2(K1)
2T
√
T for K2 = (

√
2
L + 1)K0(K̂ + LKmle).

We now derive an upper bound on the first expectation in (8):

E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As1(X
π̂)}
(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(c(X̂

π̂
i,t); γ

(0))
)2]

≤ (bmax − bmin)2E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As1(X
π̂)}

]

≤ (bmax − bmin)2
∑
l∈L

kl
ql
.

Thus, we let K̂ = (bmax − bmin)2
∑

l∈L
kl
ql
.

Next, we derive an upper bound on the second expectation in (8). Let X π̂ denote the set of all

possible histories under policy π̂. For any x ∈ X π̂, let Pr(x) denote the probability of x to be the

realized history under policy π̂, ζi,t(x) denote the realized impression arrival in period (i, t), and γ̂(s;x)

denote the realized estimates based on x. Then, we have

E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As2(X
π̂)}
(
bπ̂i,t,l(X

π̂
i,1, X̂

π̂
i,t)− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

= E

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As2(X
π̂)}
(
b∗i,t,l(ci(X̂

π̂
i,t); γ̂(s))− b∗i,t,l(ci(X̂

π̂
i,t); γ

(0))
)2]

≤ (K1)
2TE

[
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t = l}1{(i, t) ∈ As2(X
π̂)}
∥∥∥γ̂(s)− γ(0)

∥∥∥2]
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= (K1)
2T
∑
x∈X π̂

Pr(x)
I∑

i=1

T∑
t=1

∑
l∈L

1{ζi,t(x) = l}1{(i, t) ∈ As2(x)}
∥∥∥γ̂(s;x)− γ(0)

∥∥∥2 .
The inequality holds by Lemma 1.

Notice that for any given history x, the total number of bids placed in the exploitation phase of

cycle s is
∑I

i=1

∑T
t=1

∑
l∈L 1{ζi,t(x) = l}1{(i, t) ∈ As2(x)}. Recall that in the exploitation phase of

cycle s, the number of bids placed is Ls. Thus, for any x, we have

I∑
i=1

T∑
t=1

∑
l∈L

1{ζi,t(x) = l}1{(i, t) ∈ As2(x)} = Ls, and

(K1)
2T
∑
x∈X π̂

Pr(x)

I∑
i=1

T∑
t=1

∑
l∈L

1{ζi,t(x) = l}1{(i, t) ∈ As2(x)}
∥∥∥γ̂(s;x)− γ(0)

∥∥∥2
= (K1)

2T
∑
x∈X π̂

Pr(x)Ls
∥∥∥γ̂(s;x)− γ(0)

∥∥∥2
= (K1)

2TLsE
[∥∥∥γ̂(s)− γ(0)

∥∥∥2]
≤ (K1)

2TLs
Kmle

s
= (K1)

2TLKmle.

The inequality holds by Lemma 3. Thus, let Ǩ = (K1)
2TLKmle. This completes the proof of (9). ■

Remark 3: We also obtain an upper bound on the regret with respect to T . Specifically, we show that

the regret under any policy is O(T ), and that the constant in the definition of O(T ) is independent

of the number of locations L. Further, under the special case where all the impressions arrive from

a single location, whose win curve is p(γ, b) = exp(γ(b − e)), and the start and end times of the

campaigns in each season are ordered in the same way (i.e., the campaigns end in the order of their

arrival), we show in Theorem A.1 that the regret under our policy is O(
√
T log2(T )). We refer the

reader to Appendix G for more details. ■

Remark 4: Our analysis assumes that a campaign starts and finishes in the same season. Without this

assumption (i.e., when campaigns can start and end in different seasons), there is no “decomposition”

of campaigns across time, and hence a general analysis becomes intractable. However, under the special

case where all impressions arrive from a single location, whose win curve is p(γ, b) = exp(γ(b−e)), and

the start and end times of campaigns are ordered in the same way, Theorem A.1 (which we discussed in

Remark 3 above) helps us establish that the regret under our policy is O(
√
I log2(I)) (Theorem A.2).

We refer the reader to Appendix G for more details.

Remark 5 (Analysis of the Regret Under Other Allocation Policies): Consider the setting

where the unit penalty cost for an unmet impression differs across campaigns, and hence the FEFS
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allocation policy may not be optimal. Consider the following general class of non-anticipating (de-

terministic) allocation policies: In each season, the allocation decision in each period of that season

is deterministically defined based on the history in that season until the beginning of that period.

More precisely, the active campaign to which an impression acquired in period (i, t) from location l is

assigned (i.e., the allocation decision ai,t,l) is deterministically defined based on the history in season i

until the beginning of that period, i.e., x̂i,t. Let Φ denote the set of all such allocation policies. Given

an allocation policy7 in Φ, the platform only needs to decide its bidding policy. In Theorem A.5 of

Appendix I, we show that, under the given allocation policy, the regret under our bidding policy re-

mains O(
√
I), where I is the total number of seasons. Thus, our learning algorithm is effective under

any allocation policy in Φ.

To establish Theorem A.5, we formulate a DP and a cost-to-go recursion that both need to be

analyzed to evaluate the performance of our bidding policy: the DP defines the expected cost under

the optimal bidding policy for the clairvoyant problem and the cost-to-go recursion defines the ex-

pected cost under an arbitrary bidding policy. Note that when the unit penalty costs differ across

campaigns and we are given an arbitrary allocation policy in Φ, the DP and the cost-to-go recursion

are significantly different from the ones in our analysis of Theorem 1, which only applies to the FEFS

allocation policy. We use the DP to derive an upper bound on the difference between the optimal

bids under two arbitrary parameters of the win-curves (Lemma A.14). The DP and the cost-to-go

recursion are both used to obtain an upper bound on the regret under an arbitrary bidding policy

(Lemma A.15); in turn, this upper bound helps us obtain an upper bound on the regret under our

specific policy. Finally, using Lemmas A.14 and A.15, we show that the regret under our policy is

O(
√
I). We refer the reader to Appendix I and Appendix J for more details. ■

3.3 Lower Bounds on the Regret Under Any Policy

In Theorem 2 below, we obtain an Ω(
√
I) lower bound on the regret by constructing an instance of

problem (P ) that satisfies Assumptions 1, 2, and 3, and whose worst-case regret is Ω(
√
I) under any

policy. For the setting where the total number of required impressions by the campaigns in each season

is strictly less than the number of periods in a season, we establish an Ω(I2/7) lower bound on the

regret under any policy in Theorem 3.

Theorem 2 Consider the following instance of problem (P ): bmin = 5/8, bmax = 11/8, e = 2, T = 1

and I ≥ 2. There is only one location, i.e., L = 1. In each period, an impression arrives with

probability q > 0. The probability of winning an arriving impression under a bid price b ∈ B =

7Examples of allocation policies in the set Φ include the FEFS policy and the policy that allocates an acquired
impression to the active campaign with the highest ratio of penalty cost to the remaining duration of the campaign.
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[bmin, bmax] is p(γ, b) = 1/2 − γ + γb, where γ ∈ Γ(0) = [1/3, 1] and Γ(0) ⊂ Γ = (0, 4/3). There is one

campaign in each season and the required number of impressions is no less than the number of periods

in the season, so that the target of the campaign can never be exceeded. Then, the following statements

hold:

(i) Assumptions 1, 2, and 3 are satisfied for this instance.

(ii) For any policy π, there exists a true parameter γ(0) ∈ Γ(0) such that the regret after I seasons

satisfies:

Regret(π, I; γ(0)) ≥ q

2(243)

√
I.

The intuition is as follows. For the instance defined in Theorem 2, note that when b = 1, we have

p(γ, b) = 1/2, regardless of the value of the underlying parameter γ. Thus, bidding at this amount

does not help us gain information about the value of γ; thus, b = 1 is an uninformative bid. To learn

γ, we need to place some bids away from the uninformative bid. However, the uninformative bid is the

optimal bid when γ = 1/2; thus, placing bids away from the optimal bid increases the total expected

cost. This leads to the Ω(
√
I) lower bound on the regret in Theorem 2. The proof of Theorem 2 is

provided in Appendix D.1.

In the instance we used in Theorem 2, the required number of impressions by a campaign in a

season is no less than the number of periods in the season. den Boer and Zwart (2015) study the

dynamic pricing of multiple products and obtain an Ω(log I) lower bound on the regret under any

policy when the initial inventory of each season is strictly less than the number of periods in a season.

They show that their problem satisfies an endogenous learning property and propose a pricing policy

which achieves an O(log2(I)) upper bound on the regret. However, in our context, if the total number

of required impressions by the campaigns in each season is strictly less than the number of periods

in a season, then due to the random arrival of impressions, the endogenous learning property does

not hold and the O(log2(I)) upper bound on the regret cannot be achieved. Specifically, in this case,

Theorem 3 below establishes an Ω(I2/7) lower bound on the regret under any policy.

Theorem 3 Consider the following instance of problem (P ): bmin = 5/8, bmax = 11/8, e = 2, T = 2

and I ≥ 2. There is only one location, i.e., L = 1. In each period, an impression arrives with

probability q = K4I
−1/7 for a constant 0 < K4 <

√
31

24
√
6
that is independent of I. The probability of

winning an arriving impression under a bid price b ∈ B = [bmin, bmax] is p(γ, b) = 1/2− γ + γb, where

γ ∈ Γ(0) = [1/3, 1] and Γ(0) ⊂ Γ = (0, 4/3). There is one campaign in each season whose required

number of impressions is one. Then, the following statements hold:

(i) Assumptions 1, 2, and 3 are satisfied for this instance.
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(ii) For any policy π, there exists a true parameter γ(0) ∈ Γ(0) such that the regret after I seasons

satisfies:

Regret(π, I; γ(0)) ≥ 1

8

[√
K4

96
√
6
− (K4)

5/2

124

]2
I2/7.

We discuss the intuition. Consider an arbitrary season. Notice that, in the instance defined in

Theorem 3, the required number of impressions by the campaign in the season (namely, 1) is strictly

less than the number of periods in the season (namely, 2). Following the same argument as in the

intuition of Theorem 2, if no impression arrives in the first period of the season, then the optimal bid

in the second period is the uninformative bid b = 1 when γ = 1/2. We need to place some bids away

from the uninformative bid, which increases the total expected cost. If the arrival probability q of

impressions is reasonably small, then with high probability, no impression arrives in the first period

of the season. However, q should not be too small. This is because if no impression arrives in both

periods of the season, then no bids will be placed in the season and the regret in that season will be

zero. By choosing an appropriate value of q (namely, q = K4I
−1/7), we derive an Ω(I2/7) lower bound

on the regret under any policy in Theorem 3. The proof of Theorem 3 is provided in Appendix D.2.

4 Dynamic Campaign Arrivals

We now consider the setting in which campaigns arrive dynamically. To distinguish the notation from

that of the static model, we use superscript D to denote “Dynamic”, where necessary. At most one

campaign can arrive in a period, and a campaign arriving in period (i, t) (if any) is assumed to arrive

at the beginning of that period. For any w ≥ 0 and τ ≥ 1, let λw,τ
i,t denote the probability that a

campaign which requires w impressions and ends in period (i, τ) arrives in period (i, t); let W denote

the set of all possible values of the tuple (w, τ). All the other details of the dynamic setting are the

same as those in the static setting defined in Section 2. Note that, similar to the static setting, we

can also restrict our attention to FEFS allocation policies without loss of optimality.

The flow of our analysis in this section is similar to that for the static setting in Sections 2 and 3.

As with the static model, we first obtain an optimal bidding policy for the clairvoyant problem; i.e.,

the problem in which the vector of parameters of the win curves at all the locations γ = (γ1, · · · , γL)

is known, where γl = (γl,1, · · · , γl,nl
) characterizes the win curve at location l ∈ L = {1, · · · , L}.

4.1 Optimal Bidding Policy for the Clairvoyant Problem

For the clairvoyant problem, we specify the optimal bidding policy in each season by formulating the

following DP. Consider season i. Let ci,t,τ denote the number of unmet impressions at the beginning of

period (i, t) for all season-i campaigns that start in or before period (i, t) and end in period (i, τ); the
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time index (i, t) of ci,t,τ will be dropped when there is no ambiguity in doing so. Let c = (c1, · · · , cT ),

gt(c) = min{τ : τ ≥ t, cτ ≥ 1} and ηt(c) =
∑T

τ=t cτ . Note that if ηt(c) ≥ 1, i.e., there are active

campaigns in period (i, t), then the impression won in that period should be allocated to one of the

active campaigns that ends in period (i, gt(c)). Let eτ denote a unit vector of length T whose τ th

component equals to 1. The optimal cost-to-go V D
i,t (c; γ) at the beginning of period (i, t) satisfies the

following recursion:

V D
i,t (c; γ) =

∑
(w,τ)∈W

λw,τ
i,t min

(b1,...,bL):
bl∈B,l∈L


1 {ηt(c+ weτ ) ≥ 1}

∑
l∈L qlpl(γl, bl)

[
bl − e+ V D

i,t+1(c+ weτ − egt(c+weτ ); γ)
]
+(

1− 1 {ηt(c+ weτ ) ≥ 1}
∑

l∈L qlpl(γl, bl)
)
V D
i,t+1(c+ weτ ; γ)


=

∑
(w,τ)∈W

λw,τ
i,t

(
1 {ηt(c+ weτ ) ≥ 1}

∑
l∈L

ql min
bl∈B

pl(γl, bl)
[
bl − e−∆V D

i,t+1(c+ weτ ; γ)
]
+ V D

i,t+1(c+ weτ ; γ)

)
,

where ∆V D
i,t+1(c+weτ ; γ) = V D

i,t+1(c+weτ ; γ)−V D
i,t+1(c+weτ −egt(c+weτ ); γ) for all ηt(c+weτ ) ≥ 1

and V D
i,T+1(c+ weτ ; γ) = 0 for all ηT (c+ weτ ) ≥ 0.

Let bDi,t,l(c+weτ ; γ) denote the optimal bid price at location l ∈ L in period (i, t). If ηt(c+weτ ) = 0,

then no bid should be placed, i.e., bDi,t,l(c + weτ ; γ) = 0 for all l ∈ L. Otherwise, the optimal bid at

location l is:

bDi,t,l(c+ weτ ; γ) = argmin
bl∈B

pl(γl, bl)
[
bl − e−∆V D

i,t+1(c+ weτ ; γ)
]
.

As in the static setting, bDi,t,l(c+weτ ; γ) is uniquely defined (Lemma A.1 in Appendix C). Analogous

to Assumption 3 and Lemma 1 for the static model, we assume that the optimal bids lie strictly in

the interior of B and establish Lemma 4, which will be used later in Section 4.3 to derive an upper

bound on the regret under our policy.

Assumption 4 For all γ ∈ Γ(0), l ∈ L, 1 ≤ i ≤ I, 1 ≤ t ≤ T , and ηt(c+weτ ) ≥ 1, bDi,t,l(c+weτ ; γ) ∈

(bmin, bmax).

Under Assumption 4, we show that for any two vectors γ, γ̂ of parameters of the win curves, the

difference in the optimal bids under γ and γ̂ is O(∥γ − γ̂∥).

Lemma 4 For all l ∈ L, γ, γ̂ ∈ Γ(0), ηt(c) ≥ 1, 1 ≤ i ≤ I, and 1 ≤ t ≤ T , there exists a constant

K5 > 1 that is independent of I and T , such that

∣∣bDi,t,l(c; γ)− bDi,t,l(c; γ̂)
∣∣ ≤ (K5)

T ∥γ − γ̂∥.
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The proof of Lemma 4 is similar to that of Lemma 1, and is therefore omitted for brevity.

Next, we compute the expected cost under an arbitrary policy π when γ is unknown and derive

an upper bound on the regret under that policy; along with Lemma 4, this bound will also be used to

bound the regret under our policy in Section 4.3.

4.2 An Upper Bound on the Regret Under Any Bidding and Allocation Policy

Let wi,t (resp., τi,t) denote the target number of impressions (resp., end time) of the campaign that

arrives at the beginning of period (i, t). Let xDi,t denote the history before period (i, t). That is,

xDi,t :=
(
ζî,t̂, dî,t̂, wî,t̂, τî,t̂ : (̂i, t̂) < (i, t)

)
.

Note that the history xDi,t is comprised of the history before season i (i.e., xDi,1) and the history within

season i, denoted by x̂Di,t := (ζi,t̂, di,t̂, wi,t̂, τi,t̂ : 1 ≤ t̂ < t), i.e., xDi,t = (xDi,1, x̂
D
i,t). Thus, for an arbitrary

policy π, the bid price bπ,Di,t,l (x
D
i,1, x̂

D
i,t, wi,t, τi,t) in period (i, t) at location l ∈ L depends on wi,t, τi,t,

and the history xDi,t = (xDi,1, x̂
D
i,t).

For a given x̂Di,t, let cτ (x̂
D
i,t) denote the total number of unmet impressions at the beginning of

period (i, t) for all the campaigns that arrived before period (i, t) and end in period (i, τ). Let

c(x̂Di,t) = (c1(x̂
D
i,t), · · · , cT (x̂Di,t)). Recall that ηt(c) =

∑T
τ=t cτ and ηt(c) ≥ 1 if and only if there are

active campaigns in period (i, t). Conditional on xDi,1, the expected cost-to-go V π,D
i,t (x̂Di,t;x

D
i,1, γ) in

season i under policy π satisfies:

V π,D
i,t (x̂D

i,t;x
D
i,1, γ)

=
∑

(w,τ)∈W

λw,τ
i,t



1
{
ηt(c(x̂

D
i,t) + weτ ) ≥ 1

} ∑
l∈L

qlpl
(
γl, b

π,D
i,t,l(x

D
i,1, x̂

D
i,t, w, τ)

) bπ,D
i,t,l(x

D
i,1, x̂

D
i,t, w, τ)− e+

V π,D
i,t+1((x̂

D
i,t, (l, 1, w, τ));xD

i,1, γ)

+

∑
l∈L

ql
[
1− 1

{
ηt(c(x̂

D
i,t) + weτ ) ≥ 1

}
pl

(
γl, b

π,D
i,t,l(x

D
i,1, x̂

D
i,t, w, τ)

)]
V π,D
i,t+1((x̂

D
i,t, (l, 0, w, τ));xD

i,1, γ) +(
1−

∑
l∈L

ql

)
V π,D
i,t+1((x̂

D
i,t, (0, 0, w, τ));xD

i,1, γ)


,

and V π,D
i,T+1(·;xDi,1, γ) = 0. Note that if ηt(c(x̂

D
i,t) + weτ ) = 0, then no bid is placed, i.e.,

bπ,Di,t,l (x
D
i,1, x̂

D
i,t, w, τ) = 0 for all l ∈ L.

Let Xπ,D
i,1 (resp., X̂π,D

i,t ) denote the random history before season i (resp., within season i, before pe-

riod (i, t)) under policy π. Then, the expected cost under policy π in season i is E
[
V π,D
i,1 (∅;Xπ,D

i,1 , γ(0))
]
,

and the regret of policy π after I seasons is

RegretD(π, I; γ(0)) =

I∑
i=1

E
[
V π,D
i,1 (∅;Xπ,D

i,1 , γ(0))
]
−

I∑
i=1

V D
i,1(0; γ

(0)).
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Analogous to Lemma 2 in the static setting, the following result derives an upper bound on the

above regret.

Lemma 5 Let Wi,t (Ti,t) denote the random number of target impressions (resp., end time) of the

campaign that arrives in period (i, t). Then, there exists a constant K0 > 0 that is independent of I

and T , such that the regret under any policy π after I seasons satisfies

RegretD(π, I; γ(0)) ≤

K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπ,Di,t,l

(
Xπ,D

i,1 , X̂π,D
i,t ,Wi,t, Ti,t

)
− bDi,t,l

(
c(X̂π,D

i,t ) +Wi,teTi,t ; γ
(0)
))2]

.

The proof of Lemma 5 is similar to that of Lemma 2, and is therefore omitted for brevity.

4.3 Policy DynBid

We refer to our bidding policy under dynamic campaign arrivals as DynBid. This policy simply

modifies the BidAlloc policy under static campaign arrivals as follows: In the exploitation phase

of each cycle s, for an impression that arrives from location l ∈ L, place the bid bDi,t,l(c + weτ ; γ̂(s))

instead of the bid b∗i,t,l(ci; γ̂(s)) under the BidAlloc policy.

Upper Bound on the Regret of DynBid: Theorem 4 below establishes an upper bound on the

regret under the policy DynBid.

Theorem 4 Under Assumptions 1, 2, and 4, the policy DynBid satisfies8

RegretD(DynBid, I; γ(0)) ≤ K7

√
I,

where K7 = K6(K5)
2T
√
T for constants K5 and K6 that are independent of I and T .

The proof of Theorem 4 is similar to that of Theorem 1, and is therefore omitted for brevity.

Lower Bounds on the Regret Under Any Policy: The regret under any policy is Ω(
√
I) (resp.,

Ω(I2/7)) when the total number of required impressions by campaigns in each season is no less than

(resp., strictly less than) the number of periods in the season, since the problem instance described in

Theorem 2 (resp., Theorem 3) also serves as a special case of the setting of dynamic campaign arrivals,

where exactly one campaign arrives at the beginning of each season.

Remark 6: Consider the special case where all impressions arrive from a single location and the

win curve at that location satisfies the so-called “well-separated” condition defined in Broder and

8As in Remark 3, under dynamic campaign arrivals too, we can show that the regret is O(T ) and O(
√
T log2(T ))

under conditions similar to that in Theorem A.1 in Appendix G. The details are omitted for brevity.
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Rusmevichientong (2012). Under this condition, the uninformative bid is precluded; thus, the platform

can exploit at the optimal bid based on the estimated win curve, and at the same time passively learn

the parameters of the win curve. For a policy that is similar to the “greedy” policy presented in

Section 4.2 of Broder and Rusmevichientong (2012), we show in Appendix H that the regret over I

seasons is Θ(log I). ■

5 Numerical Analysis

In this section, we numerically illustrate the performance of our policy on a realistic setup that is

based on our observations at Cidewalk. Section 5.1 describes our test bed. Section 5.2 discusses the

approximations we use in our numerical computations for the dynamic programs in our learning algo-

rithm. In Section 5.3, we illustrate the rate of the regret under our policy with respect to the number

of seasons (I), the number of periods in each season (T ), and the number of locations (L). We also

consider the more-general setting where the unit penalty costs and the desired sets of geographical

locations (from which impressions are sought) differ across campaigns, and illustrate the rate of the

regret under our policy with respect to the number of seasons. In Section 5.4, we numerically decom-

pose the total regret under our policy to assess how much of it is due to the approximations used in

our computations.

5.1 Test Bed

In our test bed, the information regarding the geographical locations and the win curves is obtained

from data made available by Cidewalk while the choices of the other parameters are based on our

observations at that company.

In our base setting, each season consists of two weeks and there are 106 time periods in each week.

Thus, T = 2 × 106, which implies that the duration of each time period is about 0.6 seconds. We

consider three locations from the Boston area; these are indexed by l = 1, 2, 3 and corresponding

to zip codes 02110, 02114, and 02116, respectively. The monetary unit in the data below is 0.1

cents. The win curve at location l is pl(γl, bl) =
exp(γl,1+γl,2bl)

1+exp(γl,1+γl,2bl)
; l = 1, 2, 3, where bl ∈ B = [0.3, 8];

the true values of the parameters in the win curves are (γ1,1, γ1,2) = (−2.281, 0.705), (γ2,1, γ2,2) =

(−2.192, 1.042), (γ3,1, γ3,2) = (−1.905, 0.876), and Γ
(0)
l = [−8,−0.1] × [0.1, 8]. Note that the true

values of the parameters in the win curves are unknown to the platform in advance. The duration of

a campaign is either one week or two weeks, and each campaign requires 80, 000 impressions. In each

time period, an impression arrives from location l ∈ {1, 2, 3} with probability 0.01. In the base case,

the penalty cost of each unmet impression is 12.5; this cost is the same across different campaigns,

as is observed in the status quo at Cidewalk. Campaigns can arrive at the beginning of each week.
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Consider an arbitrary season: At most one campaign can arrive at the beginning of each week. At

the beginning of the first week, either a one-week or a two-week campaign can arrive; each of these

two events occurs with probability 0.45. At the beginning of the second week, a one-week campaign

arrives with probability 0.9.

We also consider a generalized setting where the unit penalty cost and the desired set of locations

may differ across campaigns: (i) the penalty cost of each unmet impression can take two values: 10

and 15. For a campaign arriving at the beginning of the first week, if the duration of a campaign is one

week (resp., two weeks), then the unit penalty cost is 10 (resp., 15). For a campaign arriving at the

beginning of the second week, the duration is one week and the unit penalty cost can either be 10 or 15.

(ii) Each campaign requires impressions from two out of the three locations; accordingly, there are

three desired sets of locations: {1, 2}, {1, 3}, and {2, 3}. Thus, there are six possible campaign-types

at the beginning of each week. For an arbitrary season, at the beginning of the first week, at most one

campaign belonging to one of the six types can arrive; each of these six events occurs with probability

0.15. Similarly, at the beginning of the second week, at most one single-week campaign belonging to

one of the six campaign types can arrive; each of these six events occurs with probability 0.15. All

other details are the same as in the base case.

5.2 Approximating the Dynamic Programs in the Learning Algorithm

Recall that the clairvoyant problem in Section 4.1 is a DP with a multi-dimensional state space and

its optimal solution is used as a benchmark to compute the regret under our policy. In our numerical

study, instead of solving the DP optimally, which would require sophisticated and industry-strength

software, we solve a convex optimization problem whose optimal objective value is a lower bound on

the optimal cost of the clairvoyant problem. Also, recall from Section 4.3 that at the beginning of

each exploitation phase, to compute the optimal bid based on the latest estimates, we need to solve a

DP with a multi-dimensional state space. Similar to the convex optimization problem to approximate

the DP of the clairvoyant problem, we define and solve a convex optimization problem instead of the

DP in the exploitation phase. The optimal solution of this problem is used to obtain the bid price

and allocation decision during the exploitation phase under our policy. Clearly, the expected cost

under these bid prices and allocation decisions is greater than the optimal cost-to-go of the DP. Thus,

through these two convex optimization problems, the regret we compute in our numerical study is an

upper bound on the true regret under our policy.

The technical developments of the two convex optimization problems are in Appendix L.
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Figure 2: Behavior of the regret with respect to the number of seasons, I.

5.3 Behavior of the Regret with Respect to I, T , and L

We first examine the behavior of the regret with respect to the number of seasons, I. For each value

of I, we compute the average regret under our policy over 80 simulations under the base setting defined

in Section 5.1. Figure 2 plots the logarithm9 of the average regret as a function of the logarithm of

the number of seasons, i.e., log(I), and also displays the corresponding best-fit line. Recall from

Section 5.2 that we, in fact, compute an upper bound on the true regret under our policy. Also, recall

from Theorem 4 that the true regret under our policy is O(
√
I). Thus, the slope of the best-fit line

would be close to 0.5 had we computed the true regret by optimally solving the DPs in our learning

algorithm. Instead, since the average regret we plot here is an upper bound on the true regret, the

slope of the best-fit line in Figure 2 is higher (approximately 0.70).

Next, we examine the regret under our policy with respect to the number of periods in each

season (T ) and the number of geographical locations (L), by fixing I = 10 and varying T or L. The

values of all the other parameter remain the same as in the base setting defined in Section 5.1. We vary

the number of periods in each week from 3×105 to 1.5×106, in increments of 3×105. Thus, since each

season consists of two weeks, the number of periods in a season, T ∈ {6× 105, 1.2× 106, · · · , 3× 106}.

Accordingly, we vary the required number of impressions by a campaign proportionately from 2.4×104

to 1.2 × 105, in increments of 2.4 × 104. For each value of T , we compute the average regret over 50

simulations. Figure 3 plots the logarithm of the average regret under our policy versus the logarithm

of the number of periods, i.e., log(T ), and also the corresponding best-fit line. Recall from Remark 3

(and Lemma A.9 in Appendix G) that the regret under any policy is O(T ) and note that the average

9Throughout our computations, logarithm refers to the natural logarithm, i.e., to the base e.
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regret we plot in Figure 3 is an upper bound on the true regret. Therefore, the slope (approximately

1.24) of the best-fit line is higher than the value of 1 suggested by our theoretical analysis. To examine

Figure 3: Behavior of the regret with respect to the number of time periods, T , in each season.

the behavior of the regret under our policy with respect to L (the number of geographical locations

from where impressions are sought), we vary L from 1 to 10 with (γl,1, γl,2) = (−2.281, 0.705) for

l ∈ {1, 2, · · · , 10}. For each value of L, we compute the average regret over 50 simulations. Figure 4

shows the logarithm of the average regret under our policy as a function of log(L). Recall from

Remark 3 (and Lemma A.9 in Appendix G) that there exists an upper bound on the regret under any

policy that is independent of L. In line with that analysis, the slope of the best-fit line in Figure 4 is

close to 0 (approximately 0.10).

We also examine the behavior of the regret with respect to the number of seasons, I, under the

generalized setting (defined in Section 5.1), where the unit penalty costs and the desired sets of

locations possibly differ across campaigns. For each value of I, we compute the average regret under

our policy over 80 simulations. Figure 5 plots the logarithm of the average regret under our policy

with respect to the logarithm of the number of seasons, i.e., log(I). Note that the FEFS property

(Section 2) no longer holds and the allocation decisions become significantly more complicated under

the generalized setting for two reasons. First, since the unit penalty costs differ across campaigns, the

allocation decision – i.e., the campaign to which an acquired impression is assigned – depends not only

on the end times of the ongoing campaigns, but also on the unit penalty costs of those campaigns.

Second, we now need extra constraints to ensure that the acquired impressions from a location are

only assigned to campaigns which seek impressions from that location. Thus, as explained earlier in

Section 5.2, we solve convex optimization problems to compute an upper bound on the true regret
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Figure 4: Behavior of the regret with respect to the number of geographical locations (L) from where
impressions are sought.

under our policy. In the generalized setting, the rate of increase in the regret with respect to I is

higher than that in the base case; specifically, the slope of the best-fit line in Figure 5 is about 0.88

as compared to 0.70 in Figure 2.

5.4 Decomposition of the Regret

In the numerical analysis reported in the previous subsection, we computed the regret as the difference

between the expected cost under our policy and a lower bound on the optimal cost of the clairvoyant

problem. Thus, our (reported) regret is, in fact, an upper bound on the “true regret” under our policy.

A natural question arises: How much of the regret is the true regret under our policy and how much of it

is due to the use of a lower bound on the optimal cost of the clairvoyant problem (i.e., the gap between

the optimal cost of the clairvoyant problem and its lower bound)? Further, for the general setting

where the unit penalty costs differ across campaigns, recall from Section 5.2 that we employ another

approximation: Since the FEFS allocation policy is no longer optimal, we instead define and solve a

convex optimization problem (based on the estimates of the parameters of the win curves) rather than

solving the DP in the exploitation phase of our policy. The optimal solution of this problem is then

used to obtain the bid price and allocation decision. This leads to another relevant question: How

much of the (true) regret is caused by learning (i.e., not knowing the parameters of the win curves)

and how much of it is caused by the suboptimal allocation of impressions? We examine both these

questions numerically on a test bed of instances for the general setting where the unit penalty costs
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Figure 5: Behavior of the regret with respect to the number of seasons, I, under the generalized setting

differ across campaigns.

For brevity, we relegate the details of this numerical study to Appendix M and only offer a quick

summary of our results here. A substantial portion of the regret under our policy is due to the gap

between the optimal cost of the clairvoyant problem and its lower bound. Specifically, after the first

season, about 19% of the regret can be attributed to the use of the lower bound (instead of the optimal

cost); after 50 seasons, this increases to about 36%. Our analysis of the second question shows that

learning is the dominant cause of the regret. After the first season, about 85% of the regret is caused

by learning and at most 15% of the regret is due to the suboptimal allocation of impressions. As

time goes by, the learning of the win curves improves and we get progressively better estimates of the

parameters of the win curves. Therefore, the percentage of the regret caused by learning reduces over

time. After 50 seasons, about 66% of the regret is caused by learning.

6 Concluding Remarks

Our analysis in this paper is situated in the operations of a mobile-promotion platform that faces both

supply-side and demand-side uncertainties. Each season, the platform accepts dynamically arriving

campaigns from individual advertisers – a campaign requires the platform to deliver a certain number

of mobile impressions from a set of locations over a desired time duration. The platform procures

impressions via real-time bidding on an ad exchange. The platform learns the win curves at the

various locations in real time based on the bids it places and the realized outcomes. Our two main

results are: (1) An Ω(
√
I) lower bound on the regret under any bidding and allocation policy, where I

is the number of seasons. (2) A bidding and allocation policy that offers a regret of O(
√
I). Thus,
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ours is an asymptotically tight learning algorithm for the platform.

In our setting, the mobile-promotion platform uses the bid prices for the impressions (at an ad-

exchange) as a lever to learn unknown information on the supply side, namely the win curves at

the various locations of interest. On the demand side, motivated by the current practice of fixed

pricing of the campaigns, we assume that the campaigns arrive dynamically with a known probability

distribution. However, to better match supply and demand, the platform can exploit pricing as a lever

on the demand side. For example, the pricing of the campaigns may change dynamically depending

on the length of the campaign, the number of required impressions, and the number of remaining

periods in a season. The design of effective dynamic pricing schemes for the campaigns in conjunction

with the learning of the win curves is an important and challenging direction in which future work

can proceed.
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Online Appendix: Proofs and Additional Technical Results

Appendix A History hπ
i,t = hπ

i,t(xi,t) Corresponding to xi,t and Policy π (Section 2)

For any xi,t (defined in (2)) and (deterministic) policy π, we show inductively that there is a unique correspond-

ing hπ
i,t = hπ

i,t(xi,t), where hπ
i,t is defined in (1); see Section 2. In period (1, 1), for x1,1 = (W1,j , t̄1,j , t1,j : 1 ≤

j ≤ m1), we have h
π
1,1(x1,1) = x1,1. Let h

π
i,t(xi,t) be the history corresponding to xi,t. Then, the bid price in pe-

riod (i, t) is bi,t = bπi,t,l(h
π
i,t(xi,t)) if ζi,t = l for l ∈ L, and bi,t = 0 if ζi,t = 0. The allocation decision in period (i, t)

is ai,t = aπi,t(h
π
i,t(xi,t)). Thus, if t < T , then for xi,t+1, we have hπ

i,t+1(xi,t+1) = (hπ
i,t(xi,t), ζi,t, bi,t, di,t, ai,t). If

t = T , then for xi+1,1, we have

hπ
i+1,1(xi+1,1) = (hπ

i,T (xi,T ), ζi,T , bi,T , di,T , ai,T ,Wi+1,j , t̄i+1,j , ti+1,j : 1 ≤ j ≤ mi+1).

Appendix B Obtaining the Number of Unmet Impressions cj(x̂i,t) of Each Cam-
paign (i, j) at the Beginning of Period (i, t), for a Given x̂i,t (Sec-
tion 2.3)

Recall from Section 2.3 that (a) x̂i,t denotes the history in season i until the beginning of period (i, t) and

(b) cj(x̂i,t) denotes the number of unmet impressions of campaign (i, j) in period (i, t), where t ≤ T . For any

x̂i,t, we derive a recursive expression for cj(x̂i,t). In period (i, 1), corresponding to x̂i,1 = ∅, we have cj(∅) = Wi,j .

Recall that c(x̂i,t) is the total number of unmet impressions at the beginning of period (i, t) over all the ongoing

campaigns in that period.

� If c(x̂i,t) = 0, then cj(x̂i,t+1) = cj(x̂i,t) for j = 1, · · · ,mi.

� If c(x̂i,t) > 0, recall that the impression won in period (i, t) is allocated to the active campaign that ends

first, i.e., (i, gi,t), where gi,t = min(i,j)∈Fi,t
j. For any l ∈ L and j ̸= gi,t, cj(x̂i,t+1) = cj(x̂i,t). For any

l ∈ L, cgi,t(x̂i,t, (0, 0)) = cgi,t(x̂i,t, (l, 0)) = cgi,t(x̂i,t) and cgi,t(x̂i,t, (l, 1)) = cgi,t(x̂i,t)− 1.

Appendix C Proofs of Lemmas 1 Through 3

We first establish two auxiliary results, Lemmas A.1 and A.2, which will be used to prove Lemmas 1 through 3.

Lemma A.1 For any l ∈ L, bl ∈ B, α ∈ R and γl ∈ Γl, define the function

f l(bl, α, γl) = pl(γl, bl)(bl − e− α).

Let b∗l (α, γl) = argminbl∈B f l(bl, α, γl). Thus, for F ̸= ∅, we have b∗i,t,l(ci; γ) = b∗l (α, γl), where α = ∆Vi,t+1(ci; γ).

Then:

(i) For each (α, γl) ∈ R× Γ
(0)
l , b∗l (α, γl) is uniquely defined.
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(ii) Let UAΓl
=
{
(α, γl) ∈ [bmin − e, 0]× Γ

(0)
l

∣∣bmin < b∗l (α, γl) < bmax
}
. For each (α, γl) ∈ UAΓl

,

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0.

(iii) For each (α, γl) ∈ UAΓl
, both b∗l (α, γl) and f l(b∗l (α, γl), α, γl) are continuously differentiable in α and γl.

(iv) For each (α, γl) ∈ UAΓl
, b∗l (α, γl) is increasing in α.

(v) There exists a K0 > 0 such that f l(bl, α, γl)− f l(b∗l (α, γl), α, γl) ≤ K0(bl − b∗l (α, γl))
2 for all bl ∈ B and

(α, γl) ∈ UAΓl
.

Proof of Lemma A.1:

(i) Let (α, γl) ∈ R× Γ
(0)
l . We have

∂f l(bl, α, γl)

∂bl
= pl(γl, bl) + (bl − e− α)

∂pl(γl, bl)

∂bl
, (A-1)

and
∂2f l(bl, α, γl)

∂b2l
= 2

∂pl(γl, bl)

∂bl
+ (bl − e− α)

∂2pl(γl, bl)

∂b2l
.

It follows that any bl ∈ B with ∂f l(bl,α,γl)
∂bl

= 0 satisfies the following:

∂2f l(bl, α, γl)

∂b2l
= 2

∂pl(γl, bl)

∂bl
+

−pl(γl, bl)

∂pl(γl, bl)/∂bl

∂2pl(γl, bl)

∂b2l

=
∂pl(γl, bl)

∂bl

[
2− pl(γl, bl)∂

2pl(γl, bl)/∂b
2
l

(∂pl(γl, bl)/∂bl)2

]
=

∂pl(γl, bl)

∂bl

[
1 +

(∂pl(γl, bl)/∂bl)
2 − pl(γl, bl)∂

2pl(γl, bl)/∂b
2
l

pl(γl, bl)2
pl(γl, bl)

2

(∂pl(γl, bl)/∂bl)2

]
=

∂pl(γl, bl)

∂bl

[
1− ∂2 log(pl(γl, bl))

∂b2l

pl(γl, bl)
2

(∂pl(γl, bl)/∂bl)2

]
> 0.

The inequality holds since ∂pl(γl,bl)
∂bl

> 0 by Assumption 1 (Section 2.1) and ∂2 log(pl(γl,bl))
∂b2l

≤ 0 by the log-

concavity of pl(γl, bl) with respect to bl.

Thus, f l(bl, α, γl) either has a unique minimum b∗l (α, γl) ∈ (bmin, bmax) with

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0, (A-2)

or is monotone on B and the unique minimum of f l(bl, α, γl) is on the boundary of B.

(ii) For (α, γl) ∈ UAΓl
, since b∗l (α, γl) ∈ (bmin, bmax), we have

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0 by (A-2).

(iii) We first show that b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
using the Implicit Function

Theorem (see, e.g., Theorem 9.2 in Munkres 2018). Notice that
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� By Assumption 1, ∂f l(bl,α,γl)
∂bl

in Equation (A-1) is continuously differentiable in α, γl, and bl, on the open

set R× Γl × (bmin, bmax) .

� By Lemma A.1 (ii), for each (α, γl) ∈ UAΓl
, (α, γl, b

∗
l (α, γl)) is a point in R× Γl × (bmin, bmax) such that

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0.

Therefore, by the Implicit Function Theorem, b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
.

Next, we show that f l(b∗l (α, γl), α, γl) is continuously differentiable in α and γl on UAΓl
. The partial

derivatives of f l(b∗l (α, γl), α, γl) with respect to α and γl are:

∂f l(b∗l (α, γl), α, γl)

∂α
=

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

∂b∗l (α, γl)

∂α
+

∂f l(bl, α, γl)

∂α

∣∣∣∣
bl=b∗l (α,γl)

= −pl(γl, b
∗
l (α, γl)),

∂f l(b∗l (α, γl), α, γl)

∂γl
=

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

∂b∗l (α, γl)

∂γl
+

∂f l(bl, α, γl)

∂γl

∣∣∣∣
bl=b∗l (α,γl)

= (b∗l (α, γl)− e− α)
∂pl(γl, bl)

∂γl

∣∣∣∣
b∗l (α,γl)

.

By Assumption 1 and the fact that b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
, the above

expressions of
∂f l(b∗l (α,γl),α,γl)

∂α and
∂f l(b∗l (α,γl),α,γl)

∂γl
are continuous in α and γl. Thus, f l(b∗l (α, γl), α, γl) is

continuously differentiable in α and γl on UAΓl
.

(iv) For all (α, γl) ∈ UAΓl
, we have

∂b∗l (α, γl)

∂α
= −

(
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

)−1

· ∂
2f l(bl, α, γl)

∂bl∂α

∣∣∣∣
bl=b∗l (α,γl)

.

Note that ∂2f l(bl,α,γl)
∂b2l

∣∣∣
bl=b∗l (α,γl)

> 0 by part (ii) of Lemma A.1 and

∂2f l(bl, α, γl)

∂bl∂α

∣∣∣∣
bl=b∗l (α,γl)

= − ∂pl(γl, bl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

< 0.

The strict inequality holds by Assumption 1. Thus, we have
∂b∗l (α,γl)

∂α > 0, i.e., b∗l (α, γl) is increasing in α.

(v) Let Kl
0 := sup(α,γl,bl)∈UAΓl

×B
∂2f l(bl,α,γl)

∂b2l
/2. Since ∂2f l(bl,α,γl)

∂b2l
is continuous in α, γl, and bl, on the closure

of UAΓl
×B, which is compact, and ∂2f l(bl,α,γl)

∂b2l

∣∣∣
bl=b∗l (α,γl)

> 0 for all (α, γl) ∈ UAΓl
, we have 0 < Kl

0 < ∞. The

Taylor expansion of f l(bl, α, γl) at bl = b∗l (α, γl) implies that

f l(bl, α, γl) ≤ f l(b∗l (α, γl), α, γl) +
∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

(bl − b∗l (α, γl)) +Kl
0(bl − b∗l (α, γl))

2

= f l(b∗l (α, γl), α, γl) +Kl
0(bl − b∗l (α, γl))

2.

Let K0 := maxl∈L Kl
0. Then, we have f l(bl, α, γl)− f l(b∗l (α, γl), α, γl) ≤ K0(bl − b∗l (α, γl))

2 for all l ∈ L. ■

Lemma A.2 For i ∈ {1, · · · , I}, 2 ≤ t ≤ T + 1, 1 ≤ j ≤ mi, and γ ∈ Γ(0), we have bmin − e ≤ Vi,t(ci; γ) −

Vi,t(ci − ej ; γ) ≤ 0 where ej is the unit vector of dimension mi whose jth component is 1.
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Proof of Lemma A.2: In the notation of Lemma A.1, let α = ∆Vi,t+1(ci; γ) and α′ = ∆Vi,t+1(ci−ej ; γ). For

each location l ∈ L, b∗i,t,l(ci; γ) = b∗l (α, γl) and b∗i,t,l(ci − ej ; γ) = b∗l (α
′, γl) are the optimal bids in period (i, t)

at states ci and ci − ej , respectively.

The proof is by induction on t. For t = T +1, Vi,T+1(ci; γ)−Vi,T+1(ci−ej ; γ) = 0. For 2 ≤ t ≤ T , suppose

that bmin−e ≤ Vi,t+1(ci; γ)−Vi,t+1(ci−ej ; γ) ≤ 0. We now show that bmin−e ≤ Vi,t(ci; γ)−Vi,t(ci−ej ; γ) ≤ 0

using the following three cases. Let Fi,t(ci) denote the set of all active campaigns in time period (i, t) when ci is

the vector of the number of unmet impressions at the beginning of that period for each campaign in the season.

Among the active campaigns in time period (i, t), let gi,t(ci) denote a campaign that ends first. For simplicity

of exposition, we drop the indices i and t of Fi,t and gi,t below.

� Case 1: F(ci − ej) ̸= ∅. Then, F(ci) ̸= ∅. We first show that Vi,t(ci; γ)− Vi,t(ci − ej ; γ) ≥ bmin − e:

Vi,t(ci; γ)− Vi,t(ci − ej ; γ)

= min
(b1,··· ,bL):
bl∈Bl,l∈L

{ ∑
l∈L qlpl(γl, bl)[bl − e+ Vi,t+1(ci − eg(ci); γ)] +

[1−
∑

l∈L qlpl(γl, bl)]Vi,t+1(ci; γ)

}
−

min
(b1,··· ,bL):
bl∈Bl,l∈L

{ ∑
l∈L qlpl(γl, bl)[bl − e+ Vi,t+1(ci − ej − eg(ci−ej); γ)] +

[1−
∑

l∈L qlpl(γl, bl)]Vi,t+1(ci − ej ; γ)

}

≥
∑
l∈L

qlpl(γl, b
∗
l (α, γl))(Vi,t+1(ci − eg(ci))− Vi,t+1(ci − ej − eg(ci−ej); γ)) +[

1−
∑
l∈L

qlpl(γl, b
∗
l (α, γl))

]
(Vi,t+1(ci; γ)− Vi,t+1(ci − ej ; γ))

≥ bmin − e.

The first inequality holds by letting bl = b∗l (α, γl) and the second holds by the induction hypothesis.

Next, we show that Vi,t(ci; γ)− Vi,t(ci − ej ; γ) ≤ 0:

Vi,t(ci; γ)− Vi,t(ci − ej ; γ)

= min
(b1,··· ,bL):
bl∈Bl,l∈L

{ ∑
l∈L qlpl(γl, bl)[bl − e+ Vi,t+1(ci − eg(ci); γ)] +

[1−
∑

l∈L qlpl(γl, bl)]Vi,t+1(ci; γ)

}
−

min
(b1,··· ,bL):
bl∈Bl,l∈L

{ ∑
l∈L qlpl(γl, bl)[bl − e+ Vi,t+1(ci − ej − eg(ci−ej); γ)] +

[1−
∑

l∈L qlpl(γl, bl)]Vi,t+1(ci − ej ; γ)

}

≤
∑
l∈L

qlpl(γl, b
∗
l (α

′, γl))(Vi,t+1(ci − eg(ci))− Vi,t+1(ci − ej − eg(ci−ej); γ)) +[
1−

∑
l∈L

qlpl(γl, b
∗
l (α

′, γl))

]
(Vi,t+1(ci; γ)− Vi,t+1(ci − ej ; γ))

≤ 0.
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The first inequality holds by letting bl = b∗l (α
′, γl) and the second holds by the induction hypothesis.

� Case 2: F(ci − ej) = ∅ and F(ci) ̸= ∅. Then, we have g(ci) = j. We first show that Vi,t(ci; γ)− Vi,t(ci −

ej ; γ) ≥ bmin − e:

Vi,t(ci; γ)− Vi,t(ci − ej ; γ)

=
∑
l∈L

ql min
bl∈Bl

pl(γl, bl)[bl − e−∆Vi,t+1(ci; γ)] + Vi,t+1(ci; γ)− Vi,t+1(ci − ej ; γ)

=
∑
l∈L

qlpl(γl, b
∗
l (α, γl))(b

∗
l (α, γl)− e) +

[
1−

∑
l∈L

qlpl(γl, b
∗
l (α, γl))

]
∆Vi,t+1(ci)

≥ bmin − e.

The inequality holds by the induction hypothesis.

Next, we show that Vi,t(ci; γ)− Vi,t(ci − ej ; γ) ≤ 0:

Vi,t(ci; γ)− Vi,t(ci − ej ; γ)

=
∑
l∈L

ql min
bl∈Bl

pl(γl, bl)[bl − e−∆Vi,t+1(ci; γ)] + Vi,t+1(ci; γ)− Vi,t+1(ci − ej ; γ)

≤
∑
l∈L

qlpl(γl, b
min)[bmin − e−∆Vi,t+1(ci; γ)] + Vi,t+1(ci; γ)− Vi,t+1(ci − ej ; γ)

≤ 0.

The last inequality holds by the induction hypothesis.

� Case 3: F(ci − ej) = F(ci) = ∅. In this case, we have Vi,t(ci; γ) − Vi,t(ci − ej ; γ) = Vi,t+1(ci; γ) −

Vi,t+1(ci − ej ; γ). Therefore, b
min − e ≤ Vi,t(ci; γ)− Vi,t(ci − ej ; γ) ≤ 0 by the induction hypothesis. ■

Proof of Lemma 1: In the notation of Lemma A.1, let α = ∆Vi,t+1(ci; γ) and let α̂ = ∆Vi,t+1(ci; γ̂).

Then, b∗i,t,l(ci; γ) − b∗i,t,l(ci; γ̂) = b∗l (α, γl) − b∗l (α̂, γ̂l). By Lemma A.2 and Assumption 3, bmin − e ≤ α, α̂ ≤ 0

and b∗l (α, γl), b
∗
l (α̂, γ̂l) ∈ (bmin, bmax). Thus, (α, γl) ∈ UAΓl

and (α̂, γ̂) ∈ UAΓl
. Since b∗l (α, γl) is continuously

differentiable in α and γl on UAΓl
by part (iii) of Lemma A.1 and by the fact that the closure of UAΓl

is compact,

it follows from the first-order Taylor expansion that

|b∗l (α, γl)− b∗l (α̂, γ̂l)| ≤ Kl
8(|α− α̂|+ ∥γl − γ̂l∥), (A-3)

for Kl
8 > 0 that is independent of α, α̂, γl, and γ̂l. We show by backward induction below (under the title

“Derivation of Inequality (A-4)”) that there exists κt > 0 such that

|Vi,t(ci; γ)− Vi,t(ci; γ̂)| ≤ κt∥γ − γ̂∥, (A-4)

where κt ≤ (2K9 + 1)T−1 − 1 for all t ≥ 2 and a positive constant K9.
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Combining (A-3) and (A-4), we have

|b∗l (α, γl)− b∗l (α̂, γ̂l)|

≤ Kl
8(|α− α̂|+ ∥γl − γ̂l∥)

≤ Kl
8(|Vi,t+1(ci; γ)− Vi,t+1(ci; γ̂)|+

|Vi,t+1((c1, . . . , cg − 1, . . . , cmi); γ)− Vi,t+1((c1, . . . , cg − 1, . . . , cmi); γ̂)|+ ∥γl − γ̂l∥)

≤ Kl
8

(
2
[
(2K9 + 1)T−1 − 1

]
∥γ − γ̂∥+ ∥γ − γ̂∥

)
≤ (K1)

T ∥γ − γ̂∥,

where K1 = max
{
2maxl∈L Kl

8, 2K9 + 1
}
. ■

Derivation of Inequality (A-4): We show inequality (A-4) by backward induction on t. If t = T + 1, then

Vi,T+1(ci; γ) = Vi,T+1(ci; γ̂) = 0 and (A-4) holds. Let 1 ≤ t ≤ T . Suppose (A-4) holds for t+ 1. We now show

that (A-4) holds for t.

|Vi,t(ci; γ)− Vi,t(ci; γ̂)|

=

∣∣∣∣∣ 1{F ̸= ∅}
∑

l∈L ql minbl∈Bl
pl(γl, bl)[bl − e−∆Vi,t+1(ci; γ)] + Vi,t+1(ci; γ)−

1{F ̸= ∅}
∑

l∈L ql minbl∈Bl
pl(γ̂l, bl)[bl − e−∆Vi,t+1(ci; γ̂)]− Vi,t+1(ci; γ̂)

∣∣∣∣∣
≤

∣∣∣∣∣∑
l∈L

qlf
l(b∗l (α, γl), α, γl)−

∑
l∈L

qlf
l(b∗l (α̂, γ̂l), α̂, γ̂l)

∣∣∣∣∣+ κt+1∥γ − γ̂∥

≤ K9(|α− α̂|+ ∥γ − γ̂∥) + κt+1∥γ − γ̂∥

≤ K9[|Vi,t+1(ci; γ)− Vi,t+1(ci; γ̂)|+

|Vi,t+1((c1, . . . , cg − 1, . . . , cmi); γ)− Vi,t+1((c1, . . . , cg − 1, . . . , cmi); γ̂)|] + (K9 + κt+1)∥γ − γ̂∥

≤ K9 [κt+1∥γ − γ̂∥+ κt+1∥γ − γ̂∥] + (K9 + κt+1)∥γ − γ̂∥

= κt∥γ − γ̂∥,

where κt = 2K9κt+1 +K9 + κt+1. The second inequality holds since f l(b∗l (α, γl), α, γl) is continuously differen-

tiable in α and γl, by part (iii) of Lemma A.1. Therefore,
∑

l∈L qlf
l(b∗l (α, γl), α, γl) is continuously differentiable

in α and γ. In addition, [bmin − e, 0] × Γ(0) is compact. It follows by a first-order Taylor expansion that there

exists K9 > 0 that is independent of α, α̂, γ, and γ̂, such that∣∣∣∣∣∑
l∈L

qlf
l(b∗l (α, γl), α, γl)−

∑
l∈L

qlf
l(b∗l (α̂, γ̂l), α̂, γ̂l)

∣∣∣∣∣ ≤ K9(|α− α̂|+ ∥γ − γ̂∥).

Next, we show that κt ≤ (2K9 + 1)T−t+1 − 1 by backward induction on t. If t = T + 1, then κT+1 = 0. Let

1 ≤ t ≤ T . Suppose κt+1 ≤ (2K9 + 1)T−t − 1. We now show that κt ≤ (2K9 + 1)T−t+1 − 1:

κt = 2K9κt+1 +K9 + κt+1 ≤ (2K9 + 1)
[
(2K9 + 1)T−t − 1

]
+K9 ≤ (2K9 + 1)T−t+1 − 1.
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Then, we have κt ≤ (2K9 + 1)T−1 − 1 for all t ≥ 2. ■

Proof of Lemma 2: We establish the result by showing that there exists a constant K0 > 0 such that

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(ci(x̂i,t); γ) ≤ K0E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(
xi,1, X̂

π
i,t̂

)
− b∗

i,t̂,l

(
ci(X̂

π
i,t̂
); γ
))2∣∣∣∣∣∣ X̂π

i,t = x̂i,t

 .

(A-5)

Then, the regret under any FEFS policy π after I seasons satisfies

I∑
i=1

E
[
V π
i,1(∅;Xπ

i,1, γ
(0))− Vi,1((Wi,1, · · · ,Wi,mi); γ

(0))
]

=

I∑
i=1

E
[
V π
i,1(∅;Xπ

i,1, γ
(0))− Vi,1(ci(∅); γ(0))

]
≤ K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπi,t,l

(
Xπ

i,1, X̂
π
i,t

)
− b∗i,t,l

(
ci(X̂

π
i,t); γ

(0)
))2]

.

Next, we show (A-5) using backward induction on t. For t = T + 1, we have

V π
i,T+1(x̂i,T+1;xi,1, γ) = Vi,T+1(ci(x̂i,T+1); γ) = 0.

Let 1 ≤ t ≤ T . Suppose (A-5) holds at t+ 1, i.e.,

V π
i,t+1(x̂i,t+1;xi,1, γ)− Vi,t+1(ci(x̂i,t+1); γ)

≤ K0E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(
xi,1, X̂

π
i,t̂

)
− b∗

i,t̂,l

(
ci(X̂

π
i,t̂
); γ
))2∣∣∣∣∣∣ X̂π

i,t+1 = x̂i,t+1

 .

Let αl = Vi,t+1(ci(x̂i,t, (l, 0)); γ) − Vi,t+1(ci(x̂i,t, (l, 1)); γ) = ∆Vi,t+1(ci(x̂i,t); γ). Then, b∗i,t,l(ci(x̂i,t); γ) =

b∗l (αl, γl). By Lemma A.2 and Assumption 3, we have (αl, γl) ∈ UAΓl
.

� Case 1: If c(x̂i,t) = 0, then we have

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(ci(x̂i,t); γ)

=
∑
l∈L

qlV
π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +

(
1−

∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ) −

∑
l∈L

qlVi,t+1(ci(x̂i,t, (l, 0)); γ)−

(
1−

∑
l∈L

ql

)
Vi,t+1(ci(x̂i,t, (0, 0)); γ)

=
∑
l∈L

ql
[
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ)− Vi,t+1(ci(x̂i,t, (l, 0)); γ)

]
+(

1−
∑
l∈L

ql

)[
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ)− Vi,t+1(ci(x̂i,t, (0, 0)); γ)

]
= E

[
V π
i,t+1(X̂

π
i,t+1;xi,1, γ)− Vi,t+1(ci(X̂

π
i,t+1); γ)

∣∣∣ X̂π
i,t = x̂i,t

]

≤ E

K0E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(ci(X̂

π
i,t̂
); γ)

)2∣∣∣∣∣∣ X̂π
i,t+1

∣∣∣∣∣∣ X̂π
i,t = x̂i,t


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= K0E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(ci(X̂

π
i,t̂
); γ)

)2∣∣∣∣∣∣ X̂π
i,t = x̂i,t


The inequality holds by the induction hypothesis.

� Case 2: If c(x̂i,t) ≥ 1, then we have

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(ci(x̂i,t); γ)

=
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− e+ V π

i,t+1((x̂i,t, (l, 1));xi,1, γ)
]
+

∑
l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

]
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +

(
1−

∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ) −∑

l∈L

qlpl(γl, b
∗
i,t,l(ci(x̂i,t); γ))

[
b∗i,t,l(c(x̂i,t); γ)− e+ Vi,t+1(ci(x̂i,t, (l, 1)); γ)

]
−

∑
l∈L

ql
[
1− pl(γl, b

∗
i,t,l(ci(x̂i,t); γ))

]
Vi,t+1(ci(x̂i,t, (l, 0)); γ)−

(
1−

∑
l∈L

ql

)
Vi,t+1(ci(x̂i,t, (0, 0)); γ)

=
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
V π
i,t+1((x̂i,t, (l, 1));xi,1, γ)− Vi,t+1(ci(x̂i,t, (l, 1)); γ)

]
+∑

l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

] [
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ)− Vi,t+1(ci(x̂i,t, (l, 0)); γ)

]
+(

1−
∑
l∈L

ql

)[
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ)− Vi,t+1(ci(x̂i,t, (0, 0)); γ)

]
+∑

l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))Vi,t+1(ci(x̂i,t, (l, 1)); γ) +

∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− e

]
+∑

l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

]
Vi,t+1(ci(x̂i,t, (l, 0)); γ) −∑

l∈L

qlpl(γl, b
∗
i,t,l(ci(x̂i,t); γ))

[
b∗i,t,l(ci(x̂i,t); γ)− e+ Vi,t+1(ci(x̂i,t, (l, 1)); γ)

]
−∑

l∈L

ql
[
1− pl(γl, b

∗
i,t,l(ci(x̂i,t); γ))

]
Vi,t+1(ci(x̂i,t, (l, 0)); γ)

= E
[
V π
i,t+1(X̂

π
i,t+1;xi,1, γ)− Vi,t+1(ci(X̂

π
i,t+1); γ)

∣∣∣ X̂π
i,t = x̂i,t

]
+∑

l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− e− αl

]
−
∑
l∈L

qlpl(γl, b
∗
l (αl, γl)) [b

∗
l (αl, γl)− e− αl]

≤ E

K0E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(ci(X̂

π
i,t̂
); γ)

)2∣∣∣∣∣∣ X̂π
i,t+1

∣∣∣∣∣∣ X̂π
i,t = x̂i,t

 +

K0

∑
l∈L

ql
(
bπi,t,l(xi,1, x̂i,t)− b∗l (αl, γl)

)2

= K0E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(ci(X̂

π
i,t̂
); γ)

)2∣∣∣∣∣∣ X̂π
i,t = x̂i,t


The inequality holds by the induction hypothesis and part (v) of Lemma A.1. ■
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Proof of Lemma 3: For l ∈ L, recall that γ̂l(s) is the maximum-likelihood estimate of γl based on the

skl observations corresponding to the placing of the exploration bids b̄l = (b̄1l , · · · , b̄
kl

l ) repeatedly s times.

We apply the Tail Inequality (Theorem 36.3 in Borovkov 1998) on the finite-sample mean-squared error of

maximum-likelihood estimators. For any l ∈ L, Borovkov’s result guarantees that there exist constants β1 > 0

and β2 > 0 such that for any s ≥ 1 and any ϵ ≥ 0, we have

Pr
{∥∥∥γ̂(s)− γ(0)

∥∥∥ ≥ ϵ
}
≤ β1 exp(−sβ2ϵ

2), (A-6)

when the following conditions hold:

(i) The family {Qb̄l,γl

l : γl ∈ Γ
(0)
l } is identifiable.

(ii) For some z > kl, supγl∈Γ
(0)
l

E
[∥∥∥∇ logQb̄l,γl

l (D)
∥∥∥z] = κ < ∞.

(iii)

√
Qb̄l,γl

l (d) is differentiable in γl on Γ
(0)
l for any d ∈ {0, 1}kl .

(iv) The Fisher information matrix Il(b̄l, γl) for any γl ∈ Γ
(0)
l in (6) is positive definite.

The constants β1 and β2 depend only on z, kl, Q
b̄l,γl

l , and Γ
(0)
l .

To use inequality (A-6), we first verify that the above conditions hold. Conditions (i) and (iv) hold by

Assumption 2. To verify condition (ii), recall that for any d ∈ {0, 1}kl ,

Qb̄l,γl

l (d) =

kl∏
g=1

pl(γl, b̄
g
l )

dg (1− pl(γl, b̄
g
l ))

1−dg .

Thus, we have

∇ logQb̄l,γl

l (d) =

kl∑
g=1

[
dg∇ log pl(γl, b̄

g
l ) + (1− dg)∇ log(1− pl(γl, b̄

g
l ))
]
,

which implies ∥∥∥∇ logQb̄l,γl

l (d)
∥∥∥ ≤

kl∑
g=1

[∥∥∇ log pl(γl, b̄
g
l )
∥∥+ ∥∥∇ log(1− pl(γl, b̄

g
l ))
∥∥] .

Note that pl(γl, b̄
g
l ) is continuously differentiable in γl on Γ

(0)
l and is bounded away from 0 and 1 by Assump-

tion 1. Thus, ∇ log pl(γl, b̄
g
l ) and ∇ log(1 − pl(γl, b̄

g
l )) are continuous in γl on the compact set Γ

(0)
l . Conse-

quently, there exists a constant D̄ such that
∥∥∥∇ logQb̄l,γl

l (d)
∥∥∥ ≤ D̄. Then, with probability one, we have∥∥∥∇ logQb̄l,γl

l (d)
∥∥∥z ≤ D̄z. It follows that condition (ii) holds.

Next, we verify that condition (iii) holds. Note that pl(γl, b̄
g
l ) is differentiable in γl on Γ

(0)
l and is bounded

away from 0 and 1 by Assumption 1. It follows that Qb̄l,γl

l (d) =
∏kl

g=1 pl(γl, b̄
g
l )

dg (1 − pl(γl, b̄
g
l ))

1−dg is also

differentiable in γl on Γ
(0)
l and is bounded away from zero. Thus,

√
Qb̄l,γl

l (d) is differentiable in γl on Γ
(0)
l , i.e.,

condition (iii) holds.
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Having verified conditions (i)-(iv) above, we now use (A-6) to show that there exists a constant Kl
mle =

β1/β2 > 0 such that E
[∥∥∥γ̂l(s)− γ

(0)
l

∥∥∥2] ≤ Kl
mle

s :

E
[∥∥∥γ̂l(s)− γ

(0)
l

∥∥∥2] = ∫ ∞

0

Pr

{∥∥∥γ̂(s)− γ(0)
∥∥∥2 ≥ µ

}
dµ ≤

∫ ∞

0

β1 exp(−sβ2µ)dµ =
β1

β2s
=

Kl
mle

s
.

Letting Kmle =
∑

l∈L Kl
mle, we have

E
[∥∥∥γ̂(s)− γ(0)

∥∥∥2] =∑
l∈L

E
[∥∥∥γ̂l(s)− γ

(0)
l

∥∥∥2] ≤∑
l∈L

Kl
mle

s
=

Kmle

s
. ■

Appendix D Proofs of Theorems 2 and 3

Let γ0 := 1/2; this constant plays an important role in the proofs of Theorems 2 and 3. Before we proceed to

establish Theorem 2 (resp., Theorem 3), we state and prove an intermediate result, namely Lemma A.3 (resp.,

Lemma A.4), using the KL divergence as a measure of the difference between two distributions. Broder and

Rusmevichientong (2012) also apply KL divergence to establish Theorem 3.1 in their paper. However, they

compute the KL divergence of the distributions of the demands (consumer responses to a sequence of prices)

under two different values of the underlying parameters, while we use the KL divergence of the joint distributions

of the outcomes of impression arrivals (uncertain but observable) and the winning of impressions (responses to

a sequence of bids) under two different values of γ(0).

The following definition is reproduced verbatim from Broder and Rusmevichientong (2012) (Definition 3.2

of their paper), who attribute the definition in this form to Cover and Thomas (1999).

Definition 1 (Definition 2.26 in Cover and Thomas 1999). For any probability measures Q0 and Q1 on

a discrete sample space Y, the KL divergence of Q0 and Q1 is

K(Q0;Q1) =
∑
y∈Y

Q0(y) log

(
Q0(y)

Q1(y)

)
.

Intuitively, if the KL divergence between two distributions is large, then they are far apart and easy to distin-

guish, and vice versa.

D.1 Proof of Theorem 2

Consider the problem instance defined in the statement of Theorem 2. We compute the joint probability

distribution of the realizations of impression arrival and winning outcomes under a given parameter γ ∈ Γ(0)

and policy π. We then compute the KL divergence of the joint probability distributions corresponding to two

different underlying parameters.

Recall that T = 1 in our instance; i.e., there is one period in each season. Let ζi = 1 if an impression

arrives in season i and ζi = 0 otherwise. Let di = 1 if an impression is won in season i and di = 0 otherwise.
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Let xi = (ζi, di) denote the outcome in season i and X = {(0, 0), (1, 0), (1, 1)} denote the set of all possible

outcomes in each season. Let xi = (xî : 1 ≤ î ≤ i) denote the outcome in the first i seasons. Then, the bid

price in season i depends on the outcome in the past i− 1 seasons, denoted by bπi (xi−1). For any γ ∈ Γ(0) and

policy π, let

Qπ,γ
i (xi) =

i∏
î=1

([
qp(bπ

î
(xî−1), γ)

dî(1− p(bπ
î
(xî−1), γ))

1−dî

]ζî
(1− q)1−ζî

)
.

Note that this is the probability of observing the realization xi under policy π when the underlying parameter

is γ. Then, for any γ ∈ Γ(0), the KL divergence of Qπ,γ0

i and Qπ,γ
i is

K(Qπ,γ0

i ;Qπ,γ
i ) =

∑
xi∈Xi

Qπ,γ0

i (xi) log

(
Qπ,γ0

i (xi)

Qπ,γ
i (xi)

)
.

The following result helps us make a connection between the regret of a policy π and the above KL divergence.

Lemma A.3 Let γ1 = γ0 +
1
4I

−1/4. For any I ≥ 2 and policy π, the following statements hold:

(i) Regret(π, I; γ0) ≥ 7
12

√
IK(Qπ,γ0

I ;Qπ,γ1

I ).

(ii) Regret(π, I; γ0) + Regret(π, I; γ1) ≥ q
√
I

12(242) exp(−K(Qπ,γ0

I ;Qπ,γ1

I )).

The proof of Lemma A.3 is provided in Appendix E. We now prove Theorem 2 using Lemma A.3.

Proof of Theorem 2: (i) It is easy to verify that Assumptions 1 and 2 are satisfied for the instance defined

in the statement of the theorem. Next, we show that Assumption 3 is satisfied as well. Since T = 1 for the

instance, we have

b∗i,1,l(ci; γ) = argmin
b∈B

p(b, γ)(b− e) = argmin
b∈B

(1/2− γ + γb)(b− 2) = 3/2− 1/(4γ).

Let b∗(γ) = 3/2− 1/(4γ). Thus, b∗(γ) ∈ [3/4, 5/4] for γ ∈ [1/3, 1], which implies that b∗(γ) ∈ (bmin, bmax), i.e.,

Assumption 3 is satisfied.

(ii) Using part (i) of Lemma A.3, we have

Regret(π, I; γ0) + Regret(π, I; γ1) ≥ Regret(π, I; γ0) ≥
7

12

√
IK(Qπ,γ0

I ;Qπ,γ1

I ).

Combining this inequality and part (ii) of Lemma A.3, we have

2[Regret(π, I; γ0) + Regret(π, I; γ1)]

≥ 7

12

√
IK(Qπ,γ0

I ;Qπ,γ1

I ) + q

√
I

12(242)
exp(−K(Qπ,γ0

I ;Qπ,γ1

I ))

≥ q

√
I

12(242)
(K(Qπ,γ0

I ;Qπ,γ1

I ) + exp(−K(Qπ,γ0

I ;Qπ,γ1

I )))

≥ q

√
I

12(242)
. (A-7)
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The last inequality holds since K(Qπ,γ0

I ;Qπ,γ1

I ) ≥ 0 and χ+ exp(−χ) ≥ 1 for any χ ≥ 0.

Inequality (A-7) implies that at least one of Regret(π, I; γ0) and Regret(π, I; γ1) is no less than q
√
I

2(243) .

Therefore, there exists γ(0) ∈ {γ0, γ1} such that Regret(π, I; γ(0)) ≥ q
√
I

2(243) . ■

D.2 Proof of Theorem 3

Consider the problem instance defined in the statement of Theorem 3. Note that T = 2 in this instance; i.e.,

there are two periods in each season. Recall that ζi,t = 1 if an impression arrives in period t ∈ {1, 2} of season

i and ζi,t = 0 otherwise; di,t = 1 if an impression is won in period t of season i and di,t = 0 otherwise. Let

xi,t = (ζi,t, di,t) denote the outcome in period (i, t) and X = {(0, 0), (1, 0), (1, 1)} denote the set of all possible

outcomes in a period. Let xi,t = (x1,1, x1,2, · · · , xi,t) denote the outcomes until period t of season i. Then,

the bid price in period 1 (resp., period 2) of season i, denoted by bπi,1(xi−1,2) (resp., bπi,2(xi,1)), depends on

the outcome in the past i − 1 seasons (resp., plus the outcome in period 1 of season i). For any γ ∈ Γ(0) and

policy π, let

Qπ,γ
i,1 (xi,1) = Pπ,γ

i,1 (xi,1)

i−1∏
î=1

[
Pπ,γ

î,1
(xî,1)P

π,γ

î,2
(xî,2)

]
,

Qπ,γ
i,2 (xi,2) =

i∏
î=1

[
Pπ,γ

î,1
(xî,1)P

π,γ

î,2
(xî,2)

]
,

where

Pπ,γ

î,1
(xî,1) =

[
qp(bπ

î,1
(xî−1,2), γ)

dî,1(1− p(bπ
î,1
(xî−1,2), γ))

1−dî,1

]ζî,1
(1− q)1−ζî,1 ,

Pπ,γ

î,2
(xî,2) =

[
qp(bπ

î,2
(xî,1), γ)

dî,2(1− p(bπ
î,2
(xî,1), γ))

1−dî,2

]ζî,2
(1− q)1−ζî,2 .

Then, for any γ ∈ Γ(0), the KL divergence of Qπ,γ0

i,t and Qπ,γ
i,t is

K(Qπ,γ0

i,t ;Qπ,γ
i,t ) =

∑
xi,t∈X2i−2+t

Qπ,γ0

i,t (xi,t) log

(
Qπ,γ0

i,t (xi,t)

Qπ,γ
i,t (xi,t)

)
.

The following result helps us make a connection between the regret of a policy π and the above KL divergence.

Recall that γ0 = 1/2.

Lemma A.4 Let γ1 = γ0 +
1
4I

−2/7. For any I ≥ 2 and policy π, the following statements hold:

(i)
√

Regret(π, I; γ0) ≥ 7I1/7

62
√
K4

K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )− (K4)
5/2I1/7

124 .

(ii) Regret(π, I; γ0) + Regret(π, I; γ1) ≥ K4I
2/7

4(243) exp(−K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )).

The proof of Lemma A.4 is provided in Appendix F. We now establish Theorem 3 using Lemma A.4.
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Proof of Theorem 3: (i) It is easy to verify that Assumptions 1 and 2 are satisfied for the instance defined

in the statement of the theorem. Next, we show that Assumption 3 is satisfied as well:

b∗i,1,l(1; γ) = argmin
b∈B

(1/2− γ + γb)(b− 2−∆Vi,2(1; γ)) =
3γ − 1/2− qγ2/4− q/16− qγ/4

2γ
,

b∗i,2,l(1; γ) = argmin
b∈B

p(b, γ)(b− e) = argmin
b∈B

(1/2− γ + γb)(b− 2) = 3/2− 1/(4γ).

Let b∗1(γ) =
3γ−1/2−qγ2/4−q/16−qγ/4

2γ and b∗2(γ) = 3/2−1/(4γ). It is easy to verify that b∗1(γ), b
∗
2(γ) ∈ (bmin, bmax)

for γ ∈ [1/3, 1], i.e., Assumption 3 is satisfied.

(ii) Using part (i) of Lemma A.4, we have

√
Regret(π, I; γ0) + Regret(π, I; γ1) ≥

√
Regret(π, I; γ0) ≥

7I1/7

62
√
K4

K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )− (K4)
5/2I1/7

124
.

Combining this inequality and part (ii) of Lemma A.4, we have

2
√

Regret(π, I; γ0) + Regret(π, I; γ1)

≥ 7

62
√
K4

I1/7K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 ) +
√
K4

I1/7

96
√
6
exp(−K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )/2)− (K4)
5/2

124
I1/7

≥
√
K4

I1/7

96
√
6

(
K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 ) + exp(−K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )/2)
)
− (K4)

5/2

124
I1/7

≥
[√

K4

96
√
6
− (K4)

5/2

124

]
I1/7.

The last inequality holds since K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 ) ≥ 0 and χ + exp(−χ/2) ≥ 1 for any χ ≥ 0. Note that
√
K4

96
√
6
−

(K4)
5/2

124 > 0 for 0 < K4 <
√

31
24

√
6
. Therefore, at least one of Regret(π, I; γ0) and Regret(π, I; γ1) is no less than

1

8

[√
K4

96
√
6
− (K4)

5/2

124

]2
I2/7. ■

Appendix E Proof of Lemma A.3

We first derive some preliminary results that will be useful in establishing Lemma A.3.

Consider the instance of problem (P ) defined in Theorem 2. Also, recall from Section 3.3 that γ0 = 1/2.

We make the following observations:

� p(γ, b) ∈ [1/8, 7/8] for any b ∈ B and γ ∈ Γ(0) and hence

p(γ, b)(1− p(γ, b)) ≥ 7/64. (A-8)

� Let bπi denote the bid price in season i under policy π. Since the target of each campaign can never be

exceeded, we can write the regret as:

Regret(π, I; γ(0))
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=

I∑
i=1

E
[
q(bπi − e)p(γ(0), bπi )

]
− Iqmin

b∈B
{(b− e)p(γ(0), b)}

= q

I∑
i=1

E
[
r(bπi , γ

(0))− r(b∗(γ(0)), γ(0))
]
, (A-9)

where r(b, γ) = (b − e)p(γ, b) = (b − 2)(1/2 − γ + γb) and b∗(γ) = 3/2 − 1/(4γ) is the optimal solution

that minimizes r(b, γ).

� b∗(γ0) = 1.

� Since γ ≤ 1, we have

|b∗(γ)− b∗(γ0)| =
|γ − γ0|
4γγ0

≥ |γ − γ0|
2

. (A-10)

� The absolute difference |p(γ0, b)− p(γ, b)| satisfies:

|p(γ0, b)− p(γ, b)| = |γ − γ0||b− 1| = |γ − γ0||b− b∗(γ0)|. (A-11)

�

∂2r(b,γ)
∂b2 = 2γ ≥ 2/3. Using this along with the fact that ∂r(b,γ)

∂b = 0 at b = b∗(γ), we obtain

r(b, γ)− r(b∗(γ), γ) =

∣∣∣∣∣
∫ b

b∗(γ)

∫ υ

b∗(γ)

∂2r(b̃, γ)

∂b̃2
db̃dυ

∣∣∣∣∣
≥ 2

3

∣∣∣∣∣
∫ b

b∗(γ)

∫ υ

b∗(γ)

db̃dυ

∣∣∣∣∣
=

1

3
(b− b∗(γ))2. (A-12)

Lemma A.5 below proves an inequality that will be useful in establishing Lemma A.6. In turn, Lemma A.6 will

be used to prove part (i) of Lemma A.3.

Lemma A.5 For any ω, ν > 0, ω log(ων ) + (1− ω) log(1−ω
1−ν ) ≤

(ω−ν)2

ν(1−ν) .

Proof of Lemma A.5: Note that for any ρ > 0, log ρ ≤ ρ− 1. Thus, we have ω log(ων ) + (1− ω) log( 1−ω
1−ν ) ≤

ω(ων − 1) + (1− ω)( 1−ω
1−ν − 1) = (ω−ν)2

ν(1−ν) . ■

Lemma A.6 For any γ ∈ Γ(0), i ≥ 1, and policy π,

∑
xi−1∈Xi−1

Qπ,γ0

i−1 (xi−1)
∑
xi∈X

Qπ,γ0

i (xi|xi−1) log

(
Qπ,γ0

i (xi|xi−1)

Qπ,γ
i (xi|xi−1)

)
≤ 192

7
q(γ0 − γ)2E [r(bπi , γ0)− r(b∗(γ0), γ0)] .

Proof of Lemma A.6: We first derive an upper bound on
∑

xi∈X Qπ,γ0

i (xi|xi−1) log
(

Q
π,γ0
i (xi|xi−1)

Qπ,γ
i (xi|xi−1)

)
:

∑
xi∈X

Qπ,γ0

i (xi|xi−1) log

(
Qπ,γ0

i (xi|xi−1)

Qπ,γ
i (xi|xi−1)

)
= qp(γ0, b

π
i (xi−1)) log

(
p(γ0, b

π
i (xi−1))

p(γ, bπi (xi−1))

)
+ q(1− p(γ0, b

π
i (xi−1))) log

(
1− p(γ0, b

π
i (xi−1))

1− p(γ, bπi (xi−1))

)
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≤ q
(p(γ0, b

π
i (xi−1))− p(γ, bπi (xi−1)))

2

p(γ, bπi (xi−1))(1− p(γ, bπi (xi−1)))

≤ 64

7
q(p(γ0, b

π
i (xi−1))− p(γ, bπi (xi−1)))

2

=
64

7
q(γ0 − γ)2(bπi (xi−1)− b∗(γ0))

2

≤ 192

7
q(γ0 − γ)2(r(bπi (xi−1), γ0)− r(b∗(γ0), γ0)). (A-13)

The first inequality holds by Lemma A.5. The second inequality holds by (A-8). The second equality holds

by (A-11). The last inequality holds by (A-12).

Using inequality (A-13), we have

∑
xi−1∈Xi−1

Qπ,γ0

i−1 (xi−1)
∑
xi∈X

Qπ,γ0

i (xi|xi−1) log

(
Qπ,γ0

i (xi|xi−1)

Qπ,γ
i (xi|xi−1)

)

≤ 192

7
q(γ0 − γ)2

∑
xi−1∈Xi−1

Qπ,γ0

i−1 (xi−1)(r(b
π
i (xi−1), γ0)− r(b∗(γ0), γ0))

=
192

7
q(γ0 − γ)2E [r(bπi , γ0)− r(b∗(γ0), γ0)] . ■

The proof of part (ii) of Lemma A.3 uses the following result, which we reproduce verbatim from Lemma

EC.1.3 in Broder and Rusmevichientong (2012). They obtain the lemma using Theorem 2.2 of Tsybakov (2009).

Lemma A.7 (Theorem 2.2, Tsybakov 2009) Let Q0 and Q1 be two probability distributions on a finite

space Y, with Q0(y), Q1(y) > 0 for all y ∈ Y. Then for any function J : Y → {0, 1},

Q0{J = 1}+Q1{J = 0} ≥ 1

2
exp(−K(Q0;Q1)),

where K(Q0;Q1) denotes the KL divergence of Q0 and Q1.

Proof of Lemma A.3: (i) We apply the Chain rule for KL divergence (Theorem 2.5.3 in Cover and Thomas

2012):

K(Qπ,γ0

I ;Qπ,γ
I ) =

I∑
i=1

∑
xi−1∈Xi−1

Qπ,γ0

i−1 (xi−1)
∑
xi∈X

Qπ,γ0

i (xi|xi−1) log

(
Qπ,γ0

i (xi|xi−1)

Qπ,γ
i (xi|xi−1)

)

≤ 192

7
(γ0 − γ)2q

I∑
i=1

E[r(bπi , γ0)− r(b∗(γ0), γ0)].

The inequality holds by Lemma A.6. Thus, for γ1 = γ0 +
1
4I

−1/4, using (A-9), we have

Regret(π, I; γ0) = q

I∑
i=1

E
[
r(bπi , γ0)− r(b∗(γ0), γ0)

]
≥ 7

192(γ0 − γ1)2
K(Qπ,γ0

I ;Qπ,γ1

I ) =
7

12

√
IK(Qπ,γ0

I ;Qπ,γ1

I ).

(ii) We first define two intervals Bγ0
∈ B and Bγ1

∈ B:

Bγ0
:=

{
b : |b∗(γ0)− b| ≤ 1

24I1/4

}
and Bγ1

:=

{
b : |b∗(γ1)− b| ≤ 1

24I1/4

}
.

A15



Note that Bγ0
and Bγ1

are disjoint since |b∗(γ1) − b∗(γ0)| ≥ |γ1−γ0|
2 = 1

8I1/4 using (A-10). Recall from (A-12)

that r(b∗(γ), γ)− r(b, γ) ≥ 1
3 (b

∗(γ)− b)2. For each γ ∈ {γ0, γ1}, if b /∈ Bγ , then

r(b∗(γ), γ)− r(b, γ) ≥ 1

3
(b∗(γ)− b)2 ≥ 1

3(242)
√
I
.

For any i ≥ 1, let Ji+1 = 1{bπi+1 ∈ Bγ1
}. Then, we have

Regret(π, I; γ0) + Regret(π, I; γ1)

≥ q

I−1∑
i=1

(
E
[
r(bπi+1, γ0)− r(b∗(γ0), γ0)

]
+ E

[
r(bπi+1, γ1)− r(b∗(γ1), γ1)

])
≥ q

1

3(242)
√
I

I−1∑
i=1

(
Qπ,γ0

i {bπi+1 /∈ Bγ0}+Qπ,γ1

i {bπi+1 /∈ Bγ1}
)

≥ q
1

3(242)
√
I

I−1∑
i=1

(
Qπ,γ0

i {bπi+1 ∈ Bγ1}+Qπ,γ1

i {bπi+1 /∈ Bγ1}
)
[since Bγ0 and Bγ1 are disjoint]

= q
1

3(242)
√
I

I−1∑
i=1

(Qπ,γ0

i {Ji+1 = 1}+Qπ,γ1

i {Ji+1 = 0})

≥ q
1

3(242)
√
I

1

2

I−1∑
i=1

exp(−K(Qπ,γ0

i ;Qπ,γ1

i )) [by Lemma A.7]

≥ q
1

3(242)
√
I

I − 1

2
exp(−K(Qπ,γ0

I ;Qπ,γ1

I )) [since K(Qπ,γ0

i ;Qπ,γ1

i ) is non-decreasing in i]

≥ q

√
I

12(242)
exp(−K(Qπ,γ0

I ;Qπ,γ1

I )). ■

Appendix F Proof of Lemma A.4

We first derive some preliminary results that will be useful in establishing Lemma A.4.

Consider the instance of problem (P ) defined in Theorem 3. Also, recall from Section 3.3 that γ0 = 1/2.

We make the following observations:

� p(γ, b) ∈ [1/8, 7/8] for any b ∈ B and γ ∈ Γ(0) and hence

p(γ, b)(1− p(γ, b)) ≥ 7/64. (A-14)

� Let bπi,1, b
π
i,2 denote the bid prices in season i under policy π. Let r2(b, γ) = (b − e)p(γ, b) = (b −

2)(1/2 − γ + γb). Then, b∗2(γ) = 3/2 − 1/(4γ) is the optimal solution that minimizes r2(b, γ). Let

r1(b, γ) = (b−e−∆Vi,2(1; γ))p(γ, b) = (b−2−∆Vi,2(1; γ))(1/2−γ+γb), where ∆Vi,2(1; γ) = qr2(b
∗
2(γ), γ) =

− q
γ (

γ
2 + 1

4 )
2. Then b∗1(γ) =

3γ−1/2−qγ2/4−q/16−qγ/4
2γ is the optimal solution that minimizes r1(b, γ). We

have

Regret(π, I; γ(0))
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=

I∑
i=1

E
[
q(bπi,1 − e−∆V π

i,2(1; γ))p(γ
(0), bπi,1) + q(bπi,2 − e)p(γ(0), bπi,2)

]
−

I∑
i=1

[qmin
b∈B

{(b− e−∆Vi,2(1; γ))p(γ
(0), b)}+ qmin

b∈B
{(b− e)p(γ(0), b)}]

=

I∑
i=1

E
[
q(bπi,1 − e− q(bπi,2 − e)p(γ(0), bπi,2))p(γ

(0), bπi,1) + q(bπi,2 − e)p(γ(0), bπi,2)
]
−

I[qmin
b∈B

{(b− e− qmin
b∈B

{(b− e)p(γ(0), b)})p(γ(0), b)}+ qmin
b∈B

{(b− e)p(γ(0), b)}]

=

I∑
i=1

E
[
q(bπi,1 − e− qmin

b∈B
{(b− e)p(γ(0), b)})p(γ(0), bπi,1) + q(bπi,2 − e)p(γ(0), bπi,2)

]
−

I[qmin
b∈B

{(b− e− qmin
b∈B

{(b− e)p(γ(0), b)})p(γ(0), b)}+ qmin
b∈B

{(b− e)p(γ(0), b)}]+

I∑
i=1

E
[
q(qmin

b∈B
{(b− e)p(γ(0), b)} − q(bπi,2 − e)p(γ(0), bπi,2))p(γ

(0), bπi,1)
]

= q
I∑

i=1

E
[
r1(b

π
i,1, γ

(0))− r1(b
∗
1(γ

(0)), γ(0))
]
+

q

I∑
i=1

E
[
(r2(b

π
i,2, γ

(0))− r2(b
∗
2(γ

(0)), γ(0)))(1− qp(γ(0), bπi,1))
]

≥ q

8

I∑
i=1

2∑
t=1

E
[
rt(b

π
i,t, γ

(0))− rt(b
∗
t (γ

(0)), γ(0))
]
. (A-15)

� b∗2(γ0) = 1 and b∗1(γ0) = 1− q/4.

� Since γ ≤ 1, we have

|b∗2(γ)− b∗2(γ0)| =
|γ − γ0|
4γγ0

≥ |γ − γ0|
2

.

� The absolute difference |p(γ0, b)− p(γ, b)| satisfies:

|p(γ0, b)− p(γ, b)| = |γ − γ0||b− 1| = |γ − γ0||b− b∗2(γ0)| = |γ − γ0||b− b∗1(γ0)− q/4|.

�

∂2r2(b,γ)
∂b2 = 2γ ≥ 2/3. Using this, along with the fact that ∂r2(b,γ)

∂b = 0 at b = b∗2(γ), we obtain

r2(b, γ)− r2(b
∗
2(γ), γ) =

∣∣∣∣∣
∫ b

b∗2(γ)

∫ υ

b∗2(γ)

∂2r2(b̃, γ)

∂b̃2
db̃dυ

∣∣∣∣∣
≥ 2

3

∣∣∣∣∣
∫ b

b∗2(γ)

∫ υ

b∗2(γ)

db̃dυ

∣∣∣∣∣
=

1

3
(b− b∗2(γ))

2. (A-16)

Similarly, we have

r1(b, γ)− r1(b
∗
1(γ), γ) ≥

1

3
(b− b∗1(γ))

2, (A-17)

and

r1(b, γ)− r1(b
∗
1(γ), γ) ≤ (b− b∗1(γ))

2 ≤ 1. (A-18)
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Lemma A.8 For any γ ∈ Γ(0), i ≥ 1, and policy π, we have

∑
xi−1,2∈X2i−2

Qπ,γ0

i−1,2(xi−1,2)
∑

xi,1∈X
Qπ,γ0

i,1 (xi,1|xi−1,2) log

(
Qπ,γ0

i,1 (xi,1|xi−1,2)

Qπ,γ
i,1 (xi,1|xi−1,2)

)

≤ 248

7
q(γ0 − γ)2

√
E
[
r1(bπi,1, γ0)− r1(b∗1(γ0), γ0)

]
+

4

7
q3(γ0 − γ)2,

and

∑
xi,1∈X2i−1

Qπ,γ0

i,1 (xi,1)
∑

xi,2∈X
Qπ,γ0

i,2 (xi,2|xi,1) log

(
Qπ,γ0

i,2 (xi,2|xi,1)

Qπ,γ
i,2 (xi,2|xi,1)

)

≤248

7
q(γ0 − γ)2

√
E
[
r2(bπi,2, γ0)− r2(b∗2(γ0), γ0)

]
+

4

7
q3(γ0 − γ)2.

Proof of Lemma A.8: We first derive an upper bound on
∑

xi,1∈X Qπ,γ0

i,1 (xi,1|xi−1,2) log
(

Q
π,γ0
i,1 (xi,1|xi−1,2)

Qπ,γ
i,1 (xi,1|xi−1,2)

)
:

∑
xi,1∈X

Qπ,γ0

i,1 (xi,1|xi−1,2) log

(
Qπ,γ0

i,1 (xi,1|xi−1,2)

Qπ,γ
i,1 (xi,1|xi−1,2)

)

= qp(γ0, b
π
i,1(xi−1,2)) log

(
p(γ0, b

π
i,1(xi−1,2))

p(γ, bπi,1(xi−1,2))

)
+ q(1− p(γ0, b

π
i,1(xi−1,2))) log

(
1− p(γ0, b

π
i,1(xi−1,2))

1− p(γ, bπi,1(xi−1,2))

)

≤ q
(p(γ0, b

π
i,1(xi−1,2))− p(γ, bπi,1(xi−1,2)))

2

p(γ, bπi,1(xi−1,2))(1− p(γ, bπi,1(xi−1,2)))

≤ 64

7
q(p(γ0, b

π
i,1(xi−1,2))− p(γ, bπi,1(xi−1,2)))

2

=
64

7
q(γ0 − γ)2(bπi,1(xi−1,2)− b∗1(γ0)− q/4)2

≤ 192

7
q(γ0 − γ)2(r1(b

π
i,1(xi−1,2), γ0)− r1(b

∗
1(γ0), γ0)) +

4

7
q3(γ0 − γ)2 +

32

7
q2(γ0 − γ)2|bπi,1(xi−1,2)− b∗1(γ0)|

≤ 192

7
q(γ0 − γ)2(r1(b

π
i,1(xi−1,2), γ0)− r1(b

∗
1(γ0), γ0)) +

4

7
q3(γ0 − γ)2+

32
√
3

7
q2(γ0 − γ)2

√
r1(bπi,1(xi−1,2), γ0)− r1(b∗1(γ0), γ0)

≤248

7
q(γ0 − γ)2

√
r1(bπi,1(xi−1,2), γ0)− r1(b∗1(γ0), γ0) +

4

7
q3(γ0 − γ)2.

The first inequality holds by Lemma A.5. The second inequality holds by (A-14). The third and fourth

inequalities hold by (A-17). The last inequality holds by (A-18).

Then, we have

∑
xi−1,2∈X2i−2

Qπ,γ0

i−1,2(xi−1,2)
∑

xi,1∈X
Qπ,γ0

i,1 (xi,1|xi−1,2) log

(
Qπ,γ0

i,1 (xi,1|xi−1,2)

Qπ,γ
i,1 (xi,1|xi−1,2)

)

≤ 248

7
q(γ0 − γ)2

∑
xi−1,2∈X2i−2

Qπ,γ0

i−1,2(xi−1,2)
√

r1(bπi,1(xi−1,2), γ0)− r1(b∗1(γ0), γ0) +
4

7
q3(γ0 − γ)2

=
248

7
q(γ0 − γ)2E

[√
r1(bπi,1, γ0)− r1(b∗1(γ0), γ0)

]
+

4

7
q3(γ0 − γ)2

≤ 248

7
q(γ0 − γ)2

√
E
[
r1(bπi,1, γ0)− r1(b∗1(γ0), γ0)

]
+

4

7
q3(γ0 − γ)2.
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By Lemma A.6, we have

∑
xi,1∈X2i−1

Qπ,γ0

i,1 (xi,1)
∑

xi,2∈X
Qπ,γ0

i,2 (xi,2|xi,1) log

(
Qπ,γ0

i,2 (xi,2|xi,1)

Qπ,γ
i,2 (xi,2|xi,1)

)

≤192

7
q(γ0 − γ)2E

[
r2(b

π
i,2, γ0)− r2(b

∗
2(γ0), γ0)

]
≤248

7
q(γ0 − γ)2

√
E
[
r2(bπi,2, γ0)− r2(b∗2(γ0), γ0)

]
+

4

7
q3(γ0 − γ)2. ■

Proof of Lemma A.4: (i) We apply the Chain rule for KL divergence (Theorem 2.5.3 in Cover and Thomas

2012):

K(Qπ,γ0

I,2 ;Qπ,γ
I,2 )

=

I∑
i=1

∑
xi−1,2∈X2i−2

Qπ,γ0

i−1,2(xi−1,2)
∑

xi,1∈X
Qπ,γ0

i,1 (xi,1|xi−1,2) log

(
Qπ,γ0

i,1 (xi,1|xi−1,2)

Qπ,γ
i,1 (xi,1|xi−1,2)

)
+

I∑
i=1

∑
xi,1∈X2i−1

Qπ,γ0

i,1 (xi,1)
∑

xi,2∈X
Qπ,γ0

i,2 (xi,2|xi,1) log

(
Qπ,γ0

i,2 (xi,2|xi,1)

Qπ,γ
i,2 (xi,2|xi,1)

)

≤ 248

7
q(γ0 − γ)2

I∑
i=1

(√
E
[
r1(bπi,1, γ0)− r1(b∗1(γ0), γ0)

]
+
√

E
[
r2(bπi,2, γ0)− r2(b∗2(γ0), γ0)

])
8

7
q3I(γ0 − γ)2

≤ 248

7
q(γ0 − γ)2

√
2I

√√√√ I∑
i=1

(
E
[
r1(bπi,1, γ0)− r1(b∗1(γ0), γ0)

]
+ E

[
r2(bπi,2, γ0)− r2(b∗2(γ0), γ0)

])
+

8

7
q3I(γ0 − γ)2

≤ 992

7

√
q(γ0 − γ)2

√
I
√
Regret(π, I; γ0) +

8

7
q3I(γ0 − γ)2

The first inequality holds by Lemma A.8. The last inequality holds by (A-15).

For γ1 = γ0 +
1
4I

−2/7 and q = K4I
−1/7, we have

√
Regret(π, I; γ0) ≥

7

992
√
qI(γ0 − γ1)2

K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )− 8q5/2
√
I

992
=

7I1/7

62
√
K4

K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )− (K4)
5/2I1/7

124
.

(ii) We first define two intervals Bγ0
⊂ B and Bγ1

⊂ B:

Bγ0
:=

{
b : |b∗2(γ0)− b| ≤ 1

24I2/7

}
and Bγ1

:=

{
b : |b∗2(γ1)− b| ≤ 1

24I2/7

}
.

Note that Bγ0 and Bγ1 are disjoint since |b∗2(γ1)−b∗2(γ0)| ≥
|γ1−γ0|

2 = 1
8I2/7 . Recall from (A-16) that r2(b

∗
2(γ), γ)−

r2(b, γ) ≥ 1
3 (b

∗
2(γ)− b)2. For each γ ∈ {γ0, γ1}, if b /∈ Bγ , then

r2(b
∗
2(γ), γ)− r2(b, γ) ≥

1

3
(b∗2(γ)− b)2 ≥ 1

3(242)I4/7
.

For any i ≥ 1, let Ji+1 = 1{bπi+1,2 ∈ Bγ1}. Then, we have

Regret(π, I; γ0) + Regret(π, I; γ1)
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≥ q

8

I−1∑
i=1

(
E
[
r2(b

π
i+1,2, γ0)− r2(b

∗
2(γ0), γ0)

]
+ E

[
r2(b

π
i+1,2, γ1)− r2(b

∗
2(γ1), γ1)

])
≥ q

1

243I4/7

I−1∑
i=1

(
Qπ,γ0

i,2 {bπi+1,2 /∈ Bγ0}+Qπ,γ1

i,2 {bπi+1 /∈ Bγ1}
)

≥ q
1

243I4/7

I−1∑
i=1

(
Qπ,γ0

i,2 {bπi+1,2 ∈ Bγ1}+Qπ,γ1

i,2 {bπi+1,2 /∈ Bγ1}
)
[since Bγ0 and Bγ1 are disjoint]

= q
1

243I4/7

I−1∑
i=1

(
Qπ,γ0

i,2 {Ji+1 = 1}+Qπ,γ1

i,2 {Ji+1 = 0}
)

≥ q
1

243I4/7
1

2

I−1∑
i=1

exp(−K(Qπ,γ0

i,2 ;Qπ,γ1

i,2 )) [by Lemma A.7]

≥ q
1

243I4/7
I − 1

2
exp(−K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )) [since K(Qπ,γ0

i,2 ;Qπ,γ1

i,2 ) is non-decreasing in i]

≥ K4I
2/7

4(243)
exp(−K(Qπ,γ0

I,2 ;Qπ,γ1

I,2 )). ■

Appendix G Further Results on the Regret

In this section, we first establish an upper bound on the regret under any policy that is linear in T (i.e., the

number of periods in a season) and independent of L (i.e., the number of geographical locations from where

the impressions are acquired). Then, we consider the following setting of the mobile-promotion platform’s

problem: All impressions arrive from a single location that has the win curve p(γ, b) = exp(γ(b − e)), and

the start times and the end times of the campaigns in each season are ordered in the same way; that is, the

campaigns end in the order of their arrival. For this setting, we show that in Theorem A.1 that the regret under

our policy is O(
√
T log2(T )). This result also allows us to analyze the setting where campaigns can start and

finish in different seasons (Theorem A.2).

Let P = {p1(γ, b), · · · , pυ(γ, b)} denote the set of possible functional forms of the win curves, where υ

is independent of L. Thus, the win curve at each location has its own unknown parameters but the set of

possible functional forms of the win curves is fixed and limited. Let Γj denote the set of all possible values of γ

for pj(γ, b). Then, we have

Lemma A.9 For any policy π, there exists an upper bound on the regret that is linear in T and independent

of L. Precisely, Regret(π, I; γ(0)) ≤ K0IT (b
max − bmin)2, and the constant K0 is independent of I, T , and L.

Proof of Lemma A.9: Using Lemma 2, we have

Regret(π, I; γ(0)) ≤ K0E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπi,t,l(X

π
i,1, X̂

π
i,t)− b∗i,t,l(ci(X̂

π
i,t); γ

(0))
)2]

≤ K0IT (b
max − bmin)2.
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Recall from the proof of Lemma A.1 that K0 is independent of T and

K0 ≤ sup
j∈{1,··· ,υ}

sup
(α,γ,b)∈[bmin−e,0]×Γj×B

∂2fj(b, α, γ)

∂b2
/2,

where fj(b, α, γ) = pj(γ, b)(b− e−α) is continuous in b, α and γ. It is clear that K0 is independent of L and T .

Consequently, the upper bound on the regret is independent of L and

Regret(π, I; γ(0)) = O(T ). ■

Next, we establish an O(
√
T log2(T )) upper bound on the regret under our policy for a special setting.

Theorem A.1 Consider the following setting of the mobile-promotion platform’s problem: All impressions

arrive from a single location and the win curve at that location is p(γ, b) = exp(γ(b − e)) for b ∈ B and

γ ∈ Γ(0) = [γmin, γmax], where γmax ≥ γmin > 0. The start times and the end times of the campaigns in each

season are ordered in the same way; that is, the campaigns end in the order of their arrival. Then, for T ≥ 3,

there exists a constant K10 > 0 that is independent of I and T , such that

Regret(BidAlloc, I; γ(0)) ≤ K10

√
IT log2(T ).

Proof of Theorem A.1: Recall from equation (9) in the proof of Theorem 1 that

Regret(BidAlloc, I; γ(0)) ≤

(√
2IT

L
+ 1

)
K0(K̂ + Ǩ),

where K0 and K̂ are independent of I and T . We show that
∣∣b∗i,t(c; γ)− b∗i,t(c; γ̂)

∣∣ ≤ 2 log T
(γmin)2 |γ−γ̂| in Lemma A.10

below. Thus, Ǩ = 4 log2(T )LKmle/(γ
min)4 and Regret(BidAlloc, I; γ(0)) ≤ K10

√
IT log2(T ) for K10 =(√

2
L + 1

)
K0

(
K̂ + 4LKmle

(γmin)4

)
. ■

We now prepare the groundwork to state and prove Lemma A.10. Consider the setting defined in Theo-

rem A.1. Recall that ci,t,j is the number of unmet impressions for campaign (i, j) at the beginning of period (i, t).

Then, the optimization problem of the clairvoyant problem for season i can be written as the following DP, in

which the state in any period (i, t) is the total number of unmet impressions ci,t over all the campaigns that end in

or after that period; i.e., ci,t =
∑

j:ti,j≥t ci,t,j . A formal description of this DP follows. Let Ci,t :=
∑

j:ti,j≥t Wi,j

denote the total number of required impressions for all the campaigns in season i that end in or after period

(i, t), thus, ci,t ≤ Ci,t. Let Ĉi,t :=
∑

j:t̄i,j≥t Wi,j denote the total number of required impressions over all the

campaigns that start in or after period (i, t), thus, ci,t ≥ Ĉi,t+1. If ci,t = Ĉi,t+1, then there is no active campaign

in period (i, t), and thus no bid should be placed in that period.

Next, we present some observations when ci,t > Ĉi,t+1; these will be used in defining the DP recursion for

season i.

� If ci,t > Ci,t+1, then the optimal allocation policy assigns the impression won (if applicable) in period (i, t)

to the lowest-indexed active campaign that ends in that period. As a result, no impression is assigned to
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campaigns that end after period (i, t); thus, the total number of unmet impressions for these campaigns

in period t + 1 is their total number of required impressions, i.e., Ci,t+1. Thus, if ci,t > Ci,t+1, then the

state in period (i, t + 1) is ci,t+1 = Ci,t+1, regardless of whether or not the platform wins an impression

in period (i, t).

� If ci,t ≤ Ci,t+1, then the state in period (i, t+ 1) is either ci,t+1 = ci,t − 1 or ci,t+1 = ci,t.

◦ If, in period (i, t), an impression arrives from one of the locations in L, say l, and it is won, then

the state in period (i, t+ 1) is ci,t+1 = ci,t − 1.

◦ If, in period (i, t), no impression arrives or the arriving impression is not won, then the state in

period (i, t+ 1) is ci,t+1 = ci,t.

We now formulate the DP. In the sequel, we drop the time index (i, t) of ci,t when there is no ambiguity.

Let Vi,t(c; γ) denote the optimal cost-to-go function of the DP and let b∗i,t(c; γ) denote the optimal bidding

amount in period (i, t) when there are c unmet impressions over the campaigns that end in or after period (i, t).

If c = Ĉi,t+1, then there are no active campaigns, and thus no bid should be placed (i.e., b∗i,t(c; γ) = 0) and

Vi,t(c; γ) = Vi,t+1(c; γ). Otherwise, for c > Ĉi,t+1, Vi,t(c; γ) satisfies the following recursion:

For any c > Ĉi,t+1,

Vi,t(c; γ) = minb∈B


1{c > Ci,t+1} [qp(γ, b)(b− e) + Vi,t+1(Ci,t+1; γ)] +

1{c ≤ Ci,t+1}qp(γ, b)[b− e+ Vi,t+1(c− 1; γ)] +

1{c ≤ Ci,t+1} [1− qp(γ, b)]Vi,t+1(c; γ)


= qminb∈B p(γ, b) [b− e− 1{c ≤ Ci,t+1}∆Vi,t+1(c; γ)] +

1{c > Ci,t+1}Vi,t+1(Ci,t+1; γ) + 1{c ≤ Ci,t+1}Vi,t+1(c; γ),

where Ci,T+1 = 0, Vi,T+1(c; γ) = 0 for any c ≥ 0, and

∆Vi,t+1(c; γ) := Vi,t+1(c; γ)− Vi,t+1(c− 1; γ).

The optimal bidding amount when an impression arrives is as follows:

For any c > Ĉi,t+1,

b∗i,t(c; γ) = argmin
b∈B

p(γ, b) [b− e− 1{c ≤ Ci,t+1}∆Vi,t+1(c; γ)] . (A-19)

Lemma A.10 Consider the setting defined in Theorem A.1. For all γ, γ̂ ∈ Γ(0) = [γmin, γmax], c > Ĉi,t+1,

1 ≤ i ≤ I, and 1 ≤ t ≤ T , we have

∣∣b∗i,t(c; γ)− b∗i,t(c; γ̂)
∣∣ ≤ 2 log T

(γmin)2
|γ − γ̂|.
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To establish Lemma A.10, we compare the optimal bidding amount defined in (A-19) with the one under

the setting where there is only one campaign in each season that starts at the beginning of the season and

ends at the end the season. When there is only one campaign in each season, the optimization problem of the

clairvoyant problem for season i can be written as the following DP, in which the state in any period (i, t) is the

total number of unmet impressions ci,t of the campaign. In the sequel, we drop the time index (i, t) of ci,t when

there is no ambiguity. Let Ṽi,t(c; γ) denote the optimal cost-to-go function of the DP and let b̃i,t(c; γ) denote

the optimal bidding amount in period (i, t) when there are c unmet impressions. If c = 0, then no bid should

be placed (i.e., b̃i,t(0; γ) = 0) and Ṽi,t(0; γ) = 0. Otherwise, for c > 0, Ṽi,t(c; γ) satisfies the following recursion:

Ṽi,t(c; γ) = qmin
b∈B

p(γ, b)
[
b− e−∆Ṽi,t+1(c; γ)

]
+ Ṽi,t+1(c; γ). (A-20)

where ∆Ṽi,t+1(c; γ) := Ṽi,t+1(c; γ) − Ṽi,t+1(c − 1; γ). The optimal bidding amount when an impression arrives

is b̃i,t(c; γ) = argminb∈B p(γ, b)
[
b− e−∆Ṽi,t+1(c; γ)

]
.

Lemma A.11 For Ĉi,t < c ≤ Ci,t, we have ∆Ṽi,t(1; γ) ≤ ∆Vi,t(c; γ).

Proof of Lemma A.11: In the notation of Lemma A.1, let α = ∆Vi,t+1(c; γ). The proof is by induction

on t. For t = T + 1, ∆Ṽi,T+1(1; γ) = ∆Vi,T+1(c; γ) = 0 for all c > 0. For 2 ≤ t ≤ T , suppose that

∆Ṽi,t+1(1; γ) ≤ ∆Vi,t+1(c; γ) holds for all Ĉi,t+1 < c ≤ Ci,t+1. We show that ∆Ṽi,t(1; γ) ≤ ∆Vi,t(c; γ) for all

Ĉi,t < c ≤ Ci,t using the following three cases.

� Case 1: c ≤ Ci,t+1. In this case, we have

∆Ṽi,t(1; γ)−∆Vi,t(c; γ)

= ∆Ṽi,t+1(1; γ) + qmin
b∈B

p(γ, b)[b− e−∆Ṽi,t+1(1; γ)] −

∆Vi,t+1(c; γ)− qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c; γ)] +

1{c > Ĉi,t + 1}qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c− 1; γ)]. (A-21)

If c > Ĉi,t+1 + 1, then we have

∆Ṽi,t(1; γ)−∆Vi,t(c; γ)

= ∆Ṽi,t+1(1; γ) + qmin
b∈B

p(γ, b)[b− e−∆Ṽi,t+1(1; γ)] −

∆Vi,t+1(c; γ)− qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c; γ)] +

qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c− 1; γ)]

≤ ∆Ṽi,t+1(1; γ) + qp(γ, b∗(α, γ))[b∗(α, γ)− e−∆Ṽi,t+1(1; γ)] −

∆Vi,t+1(c; γ)− qp(γ, b∗(α, γ))[b∗(α, γ)− e−∆Vi,t+1(c; γ)]

= (1− qp(γ, b∗(α, γ))) (∆Ṽi,t+1(1; γ)−∆Vi,t+1(c; γ))
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≤ 0.

The first inequality holds, since

qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c− 1; γ)] ≤ qp(γ, bmin)[bmin − e−∆Vi,t+1(c− 1; γ)] ≤ 0 [by Lemma A.2].

The second inequality holds by the induction hypothesis.

If c = Ĉi,t+1 + 1, then we have

∆Ṽi,t(1; γ)−∆Vi,t(c; γ)

= ∆Ṽi,t+1(1; γ) + qmin
b∈B

p(γ, b)[b− e−∆Ṽi,t+1(1; γ)] −

∆Vi,t+1(c; γ)− qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c; γ)]

≤ (1− qp(γ, b∗(α, γ))) (∆Ṽi,t+1(1; γ)−∆Vi,t+1(c; γ))

≤ 0.

The second inequality holds by the induction hypothesis.

� Case 2: c = Ci,t+1 + 1. In this case, we have

∆Ṽi,t(1; γ)−∆Vi,t(c; γ)

= ∆Ṽi,t(1; γ) + qmin
b∈B

p(γ, b)[b− e−∆Ṽi,t+1(1; γ)]−

qmin
b∈B

p(γ, b)(b− e)− Vi,t+1(Ci,t+1; γ) +

1{c > Ĉi,t + 1}qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c− 1; γ)] + Vi,t+1(c− 1; γ)

= ∆Ṽi,t(1; γ) + qmin
b∈B

p(γ, b)[b− e−∆Ṽi,t+1(1; γ)] −

qmin
b∈B

p(γ, b)(b− e) + 1{c > Ĉi,t + 1}qmin
b∈B

p(γ, b)[b− e−∆Vi,t+1(c− 1; γ)].

Following an argument similar to that in Case 1 by letting ∆Vi,t+1(c; γ) = 0 in (A-21), we have ∆Ṽi,t(1; γ) ≤

∆Vi,t(c; γ).

� Case 3: c > Ci,t+1 + 1. In this case, we have

∆Ṽi,t(1; γ)−∆Vi,t(c; γ) = ∆Ṽi,t(1; γ) ≤ 0.

The inequality holds by Lemma A.2. ■

Proof of Lemma A.10: Consider the setting defined in Theorem A.1. Let zi,t = γ(bi,t− e) and p(z) = exp(z)

for z ∈ Z = [γ(bmin − e), γ(bmax − e)]. Let bπi,t denote the bidding price in period (i, t) under policy π. Then,

the optimization problem defined in Theorem A.1, i.e.,

min
π∈Π

E

[
I∑

i=1

T∑
t=1

(bπi,t − e)qdi,t

]
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can be equivalently written as

1

γ
min
π∈Π

E

[
I∑

i=1

T∑
t=1

zπi,tqdi,t

]
or min

π∈Π
E

[
I∑

i=1

T∑
t=1

zπi,tqdi,t

]
.

Note that, for the clairvoyant problem, the optimal decision in any period (i, t) when there are c un-

met impressions over all the campaigns that end in or after that period, denoted by z∗i,t(c), is indepen-

dent of the parameter γ. Then, we have b∗i,t(c; γ) = z∗i,t(c)/γ + e or z∗i,t(c) = γ(b∗i,t(c; γ) − e). Conse-

quently,
∣∣b∗i,t(c; γ)− b∗i,t(c; γ̂)

∣∣ = |z∗
i,t(c)|
γγ̂ |γ − γ̂|. Similarly, when there is only one campaign in each season,

let z̃i,t(c) = γ(b̃i,t(c; γ) − e) denote the optimal decision in period (i, t) when there are c unmet impres-

sions. In the notion of Lemma A.1, b∗i,t(c; γ) = b∗(∆Vi,t+1(c), γ) and b̃i,t(c; γ) = b∗(∆Ṽi,t+1(c), γ). Recall that

∆Ṽi,t(1; γ) ≤ ∆Vi,t(c; γ) by Lemma A.11. In addition, it is straightforward that ∆Ṽi,2(1; γ) ≤ ∆Ṽi,t(1; γ) for

t ≥ 2. Thus, we have ∆Ṽi,2(1; γ) ≤ ∆Ṽi,t(1; γ) ≤ ∆Vi,t(c; γ). Recall that b
∗(α, γ) is increasing in α by part (iv)

of Lemma A.1. Thus, b̃i,1(1; γ) ≤ b∗i,t(c; γ) for all t ≥ 1 and c > Ĉi,t+1, which implies that z̃i,1(1) ≤ z∗i,t(c). In

addition, it is straightforward that z∗i,t(c) ≤ 0. Thus, we have

∣∣b∗i,t(c; γ)− b∗i,t(c; γ̂)
∣∣ = |z∗i,t(c)|

γγ̂
|γ − γ̂| ≤ |z̃i,1(1)|

(γmin)2
|γ − γ̂|.

We show by backward induction below (under the title “Derivation of Inequality (A-22)”) that

z̃i,t(1) ≥ − log(T − t+ 1)− 1. (A-22)

Thus, |z̃i,1(1)| ≤ 2 log T and
∣∣b∗i,t(c; γ)− b∗i,t(c; γ̂)

∣∣ ≤ 2 log T
(γmin)2 |γ − γ̂|. ■

Derivation of Inequality (A-22): When there is only one campaign in each season, for any c ≥ 1, the optimal

cost-to-go function Ṽi,t(c) in (A-20) satisfies the following recursion:

γṼi,t(c) = min
z∈Z

qp(z)
[
z − γ∆Ṽi,t+1(c)

]
+ γṼi,t+1(c).

Then, the optimal decision z̃i,t(c) in period (i, t) at state c is

z̃i,t(c) = argmin
z∈Z

p(z)
[
z − γ∆Ṽi,t+1(c)

]
. (A-23)

Solving (A-23), we have

z̃i,t(1) = γṼi,t+1(1)− 1.

Combining with γṼi,t(1) = q exp(z̃i,t(1))[z̃i,t(1)− γṼi,t+1(1)] + γṼi,t+1(1), we have z̃i,T (1) = −1 and z̃i,t−1(1) =

z̃i,t(1) − q exp(z̃i,t(1)). We show that z̃i,t(1) ≥ − log(T − t + 1) − 1 by backward induction. When t = T , we

have

z̃i,T (1) = −1 = − log(T − T + 1)− 1.

Suppose z̃i,t+1(1) ≥ − log(T − t)− 1. We show that z̃i,t(1) ≥ − log(T − t+ 1)− 1:

z̃i,t(1) = z̃i,t+1(1)− q exp(z̃i,t+1(1))
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≥ z̃i,t+1(1)− exp(z̃i,t+1(1))

≥ − log(T − t)− 1− exp(− log(T − t)− 1)

≥ − log(T − t+ 1)− 1.

The second inequality holds since z−exp(z) increases in z for all z ≤ 0. Let y = T − t ≥ 1. Showing the validity

of the third inequality is equivalent to showing

− log y − 1− exp(− log y − 1) ≥ − log(y + 1)− 1 ⇔ log(
y + 1

y
)y ≥ exp(−1).

Since log(y+1
y )y increases in y for y ≥ 1, we have

log(
y + 1

y
)y ≥ log 2 ≥ exp(−1). ■

We now discuss the advantage offered by the single-location and exponential win-curve assumptions. To

establish the upper bound O(
√
T log2 T ) on the regret in Theorem A.1, we use a DP, which defines the optimal

bidding amount for the clairvoyant problem, to derive an upper bound on the difference between the optimal

bids under two arbitrary parameters of the win-curve. We show that this upper bound is O(log T ) times

the absolute difference between the two parameters (Lemma A.10). The single-location assumption and the

exponential win-curve assumption help us establish certain properties of the optimal bidding amount, which in

turn help us prove the upper bound in Lemma A.10. More specifically, under the single-location and exponential

win-curve assumptions, we can isolate the win-curve parameter from the optimization problem through a linear

transformation of the optimal bidding amount to show the following property: For two arbitrary values γ and

γ̂ of the win-curve parameter, the difference between the corresponding optimal bids, i.e., |b∗i,t(c; γ)− b∗i,t(c; γ̂)|,

equals
|z∗

i,t(c)|
γγ̂ |γ− γ̂|, where z∗i,t(c) is the optimal decision in a new problem that is independent of the win-curve

parameter. This property, together with the exponential win-curve assumption and the monotonicity of the

optimal bidding amount with respect to time period t and the remaining number of unmet impressions c, helps

us derive an O(log T ) upper bound on |z∗i,t(c)|. In general (i.e., without the single-location and exponential

win-curve assumptions), we are unable to establish this result.

Theorem A.1 also lets us address the setting where campaigns can start and finish in different seasons.

Theorem A.2 Consider the following setting of the mobile-promotion platform’s problem: All impressions

arrive from a single location and the win curve at that location is p(γ, b) = exp(γ(b − e)) for b ∈ B and

γ ∈ Γ(0) = [γmin, γmax], where γmax ≥ γmin > 0. The start times and the end times of the campaigns are

ordered in the same way; that is, the campaigns end in the order of their arrival (the campaigns can start and

end in different seasons). Then, for I ≥ 3 and T ≥ 3, we have

Regret(BidAlloc, I; γ(0)) ≤ K11

√
I log2(I),

where K11 = 4K10

√
T log2 T for constant K10 that is independent of I and T.
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Proof of Theorem A.2: Consider the I seasons as one dummy season consisting of IT periods. Then, by

Theorem A.1, we have

Regret(BidAlloc, I; γ(0)) ≤ K10

√
IT log2(IT ) ≤ K11

√
I log2(I),

where K11 = 4K10

√
T log2 T . ■

Appendix H The Well-Separated Case

In this section, we consider a “well-separated” setting defined in Broder and Rusmevichientong (2012); see

Assumptions 5 and 6 below. We assume that all impressions arrive from a single location. In section H.1, we

show that the regret under any policy is Ω(log I) under the well-separated condition. Then, in section H.2,

we propose a policy similar to the one presented in Broder and Rusmevichientong (2012), which achieves a

matching upper bound on the regret, i.e., the regret under that policy is O(log I).

Let γ ∈ Γ(0) ⊂ R denote the unknown parameter of the win curve p(γ, b). Recall that Qb,γ is the probability

distribution of the outcome D of the winning of impression for a given bid b. Under the well-separated condition,

the win curve satisfies the following two assumptions.

Assumption 5 For all bids b ∈ B,

1. The family of distributions {Qb,γ : γ ∈ Γ(0)} is identifiable.

2. There exists a constant cf > 0 such that the Fisher information I(b, γ), given by

I(b, γ) = E
[
− ∂2

∂γ2
logQb,γ(D)

]
satisfies I(b, γ) ≥ cf for all γ ∈ Γ(0).

Assumption 6 For any sequence of bids b = (b1, · · · , bk) ∈ Bk and d ∈ {0, 1}k, − logQb,γ(d) is convex in γ

for γ ∈ Γ(0).

H.1 Lower Bound on the Regret

In this section, we derive an Ω(log I) lower bound on the regret under any policy.

Theorem A.3 Consider the following instance of problem (P ): B = [5/8, 7/8], Γ(0) = [2, 3], e = 1, T = 1, and

I ≥ 2. There is only one location, i.e., L = 1. In each period, an impression arrives with probability q > 0. The

probability of winning an arriving impression under a bid price b ∈ B = [bmin, bmax] is p(γ, b) = −1/2 + (bγ)/2.

There is one campaign in each season and the required number of impressions is no less than the number of

periods in the season, so that the target of the campaign can never be exceeded. Then, for any policy π setting

bids in B, there exist γ ∈ Γ(0) and a constant K13 > 0 that is independent of I, such that

Regret(π, I; γ) ≥ K13 log(I).
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Let r(b, γ) = (b− 1)[−1/2+ (bγ)/2]. Then, b∗(γ) = 1
2 +

1
2γ minimizes r(b, γ). Lemma A.12 below is used in

the proof of Theorem A.3.

Lemma A.12 Consider the problem instance defined in the statement of Theorem 5 above. Let γ̂ be a random

variable taking values in Γ(0) = [2, 3], with density ρ : Γ(0) → R+ given by ρ(γ) = 2{cos(π(γ − 5/2))}2. Then,

for any bidding policy π and any season i ≥ 1, there exists a constant K12 > 0 such that

E
[
(b∗(γ̂)− bi+1)

2
]
≥ K12 ·

1

i
,

where bi+1 is the bid placed by π at season i + 1, and E[·] denotes the expectation with respect to the joint

distribution of bi and the prior density ρ of the parameter γ̂ ∈ Γ(0).

The proof of Lemma A.12 is similar to the proof of Lemma 4.6 in Broder and Rusmevichientong (2012), and

thus is omitted for brevity.

Proof of Theorem A.3: It is straightforward to check that

r(b, γ)− r(b∗(γ), γ) ≥ (b∗(γ)− b)2.

Then, we have

sup
γ∈Γ(0)

Regret(π, I; γ)

≥ q sup
γ∈Γ(0)

I−1∑
i=1

E[r(bi+1, γ)− r(b∗(γ), γ)]

≥ q

I−1∑
i=1

E[r(bi+1, γ̂)− r(b∗(γ̂), γ̂)]

≥ q

I−1∑
i=1

E[(b∗(γ̂)− bi+1)
2]

≥ qK12

I−1∑
i=1

1

i

≥ K13 log(I),

where K13 = qK12. The fourth inequality holds by Lemma A.12. ■

H.2 Upper Bound on the Regret

In this section, we present a bidding policy similar to the pricing policy presented in Broder and Rusmevichien-

tong (2012), and show that the regret under our policy is O(log I). Let π̃ denote the bidding policy defined

below.

Inputs: An initial bid b1 ∈ B.

Initialization: When the first impression arrives, place the bid b1 and observe the corresponding outcome D1.

Description: For τ ≥ 2, when the τ th impression arrives:
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� Compute the maximum-likelihood estimate γ̂(τ − 1) given by

γ̂(τ − 1) = argmax
γ∈Γ(0)

Qπ̃,γ(Dτ−1).

where Dτ−1 = (D1, · · ·Dτ−1) denotes the observed outcome under policy π̃ for the first τ − 1 arrived

impressions and

Qπ,γ(Dτ−1) =

τ−1∏
τ̂=1

[
p(bπτ̂ (Dτ̂−1), γ)

Dτ̂ (1− p(bπτ̂ (Dτ̂−1), γ))
1−Dτ̂

]
is the probability of observing the realization Dτ−1 under policy π when the underlying parameter is γ.

� Let (i(τ), t(τ)) denote the period when the τ th impression arrives. Place bid bDi(τ),t(τ)(c+weτ ; γ̂(τ−1)) (see

Section 4) based on the estimate γ̂(τ − 1).

Next, we show the regret under policy π̃ is O(log I).

Theorem A.4 Under Assumptions 1, 4, 5, and 6, For any initial bid b1 ∈ B, T ≥ 3 and I ≥ 3, policy π̃

satisfies

Regret(π̃, I; γ(0)) ≤ K17 log I,

where K17 = K16(K5)
2T log(T ) for constants K5 and K16 that are independent of I and T .

Lemma A.13 below is used in the proof of Theorem A.4.

Lemma A.13 (Theorem 4.7 in Broder and Rusmevichientong 2012) Let γ̂(τ) be the maximum-likelihood

estimate based on the observed outcomes for the first τ arrived impressions. Under Assumptions 1, 4, 5, and 6,

there exists a constant cH such that for any τ ≥ 1, γ ∈ Γ(0), and ϵ ≥ 0,

Pr{|γ̂(τ)− γ(0)| ≥ ϵ} ≤ 2 exp(−τcHϵ2/2) and E[|γ̂(τ)− γ(0)|2] ≤ 4

cH
· 1
τ
.

Proof of Theorem A.4:

Regret
(
π̃, I; γ(0)

)
≤ K0E

[
I∑

i=1

T∑
t=1

q
(
bπ̃,Di,t (X π̃,D

i,1 , X̂ π̃,D
i,t ,Wi,t, Ti,t)− bDi,t

(
c(X̂ π̃,D

i,t ) +Wi,teTi,t ; γ
(0)
))2]

≤ K0(b
max − bmin)2 +K0E

[ T∑
τ=2

(
bDi,t(c(X̂

π̃,D
i,t ) +Wi,teTi,t ; γ̂(τ − 1))− bDi,t

(
c(X̂ π̃,D

i,t ) +Wi,teTi,t ; γ
(0)
))2]

≤ K0(b
max − bmin)2 +K0(K5)

2TE

[T −1∑
τ=1

(γ̂(τ)− γ(0))2

]

≤ K0(b
max − bmin)2 +K0(K5)

2T 4

cH

IT∑
τ=1

1

τ

≤ K0(b
max − bmin)2 +K0(K5)

2T 4

cH
[1 + log(IT )]
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≤ K14 +K15(K5)
2T log(T ) log(I)

≤ K17 log(I),

where K14 = K0(b
max − bmin)2, K15 = 16K0/cH , and K17 = (K14 + K15)(K5)

2T log(T ). The first inequality

holds by Lemma 5. The third inequality holds by Lemma 4. The fourth inequality holds by Lemma A.13. Let

K16 = K14 +K15. This completes the proof of Theorem A.4. ■

Appendix I Analysis of the Regret Under a Given Allocation Policy

In this section, we consider a setting where we are given an arbitrary and non-anticipating (deterministic)

allocation policy in the set Φ (defined in Remark 5 of the main paper). Specifically, the active campaign to

which an impression acquired in period (i, t) from location l is assigned (i.e., the allocation decision ai,t,l) is

deterministically defined based on the history in season i until the beginning of that period, i.e., x̂i,t. Examples

of such allocation policies include the FEFS policy and the policy that allocates an acquired impression to the

active campaign with the highest ratio of penalty cost to the remaining duration of the campaign. Given any

such allocation policy, the platform only needs to determine its bidding policy.

For convenience, we now recall the formulation of the platform’s problem where the penalty costs are

different across campaigns and the given allocation policy belongs to the set Φ. Let ei,j ∈ [emin, emax] denote

the unit penalty cost of campaign (i, j). The total expected cost (i.e., the bidding cost plus the penalty cost)

under policy π after I seasons is

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t +
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{ai,t,l = j}
]+

ei,j

 . (A-24)

Recall that, for any campaign (i, j), it is optimal for the platform to not assign more than Wi,j impressions

to that campaign. We let Π denote the set of all non-anticipating policies satisfying
∑T

t=1

∑
l∈L 1{ζi,t =

l}di,t1{ai,t,l = j} ≤ Wi,j a.s. for all (i, j) ∈ CI . Under any policy π ∈ Π, we can rewrite the total expected cost

in (A-24) as

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t +
mi∑
j=1

[
Wi,j −

T∑
t=1

∑
l∈L

1{ζi,t = l}di,t1{ai,t,l = j}

]
ei,j


=

I∑
i=1

E

 T∑
t=1

∑
l∈L

bπi,t,l1{ζi,t = l}di,t −
T∑

t=1

∑
l∈L

1{ζi,t = l}di,t
mi∑
j=1

ei,j1{ai,t,l = j}

+

I∑
i=1

mi∑
j=1

ei,jWi,j

= E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − ei,ai,t,l
)qldi,t

]
+

I∑
i=1

mi∑
j=1

ei,jWi,j .

The second equality holds, since E[1{ζi,t = l}] = ql. Thus, the platform’s problem can now be equivalently

written as

min
π∈Π

E

[
I∑

i=1

T∑
t=1

∑
l∈L

(bπi,t,l − ei,ai,t,l
)qldi,t

]
.
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We consider the clairvoyant problem in season i and formulate a DP that defines its optimal cost. For

a given allocation policy ϕ in Φ, let aϕi,t,l(x̂i,t) denote the active campaign to which an impression acquired

in period (i, t) from location l is assigned. For ease of exposition, we henceforth drop the superscript ϕ in

aϕi,t,l(x̂i,t) when there is no ambiguity. Recall that c(x̂i,t) is the associated total number of unmet impressions at

the beginning of period (i, t) over all the ongoing campaigns in that period. Let Vi,t(x̂i,t; γ) denote the optimal

cost-to-go function of the DP and let b∗i,t,l(x̂i,t; γ) denote the optimal bid price at location l in period (i, t) in

state x̂i,t. Then, Vi,t(x̂i,t; γ) satisfies the following recursion:

Vi,t(x̂i,t; γ)

= min
(b1,··· ,bL):
bl∈Bl,l∈L


1{c(x̂i,t) ≥ 1}

∑
l∈L qlpl(γl, bl)

[
bl − ei,ai,t,l(x̂i,t) + Vi,t+1((x̂i,t, (l, 1)); γ)

]
+∑

l∈L ql [1− 1{c(x̂i,t) ≥ 1}pl(γl, bl)]Vi,t+1((x̂i,t, (l, 0)); γ) +(
1−

∑
l∈L ql

)
Vi,t+1((x̂i,t, (0, 0)); γ)


=1{c(x̂i,t) ≥ 1}

∑
l∈L

ql min
bl∈Bl

pl(γl, bl)
[
bl − ei,ai,t,l(x̂i,t) −∆Vi,t+1((x̂i,t, (l, 0)); γ)

]
+

∑
l∈L

qlVi,t+1((x̂i,t, (l, 0)); γ) +

(
1−

∑
l∈L

ql

)
Vi,t+1((x̂i,t, (0, 0)); γ)

and Vi,T+1(·; γ) = 0, where

∆Vi,t+1((x̂i,t, (l, 0)); γ) = Vi,t+1((x̂i,t, (l, 0)); γ)− Vi,t+1((x̂i,t, (l, 1)); γ).

For c(x̂i,t) ≥ 1, the optimal bid price when an impression arrives from location l ∈ L is as follows:

b∗i,t,l(x̂i,t; γ) = argmin
bl∈B

pl(γl, bl)
[
bl − ei,ai,t,l(x̂i,t) −∆Vi,t+1((x̂i,t, (l, 0)); γ)

]
.

Lemma A.14 For all l ∈ L, γ, γ̂ ∈ Γ(0), c(x̂i,t) ≥ 1, 1 ≤ i ≤ I, and 1 ≤ t ≤ T , there exists a constant K18 > 0

such that

∣∣b∗i,t,l(x̂i,t; γ)− b∗i,t,l(x̂i,t; γ̂)
∣∣ ≤ K18∥γ − γ̂∥.

The proof of Lemma A.14 is provided in Appendix J.

When γ is unknown, conditional on xi,1, the expected cost-to-go in season i for state x̂i,t under policy π,

denoted by V π
i,t(x̂i,t;xi,1, γ), satisfies the following recursion:

V π
i,t(x̂i,t;xi,1, γ) =

1{c(x̂i,t) ≥ 1}
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− ei,ai,t,l(x̂i,t) + V π

i,t+1((x̂i,t, (l, 1));xi,1, γ)
]
+∑

l∈L

ql
[
1− 1{c(x̂i,t) ≥ 1}pl(γl, bπi,t,l(xi,1, x̂i,t))

]
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +
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(
1−

∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ),

and V π
i,T+1(·;xi,1, γ) = 0.

Under policy π, recall that Xπ
i,1 is the random history until the beginning of season i and X̂π

i,t is the random

history in season i until the beginning of period (i, t). Then, the expected cost under policy π after I seasons is∑I
i=1 E

[
V π
i,1(∅;Xπ

i,1, γ
(0))
]
and the one under the optimal policy of the clairvoyant problem is

∑I
i=1 Vi,1(∅; γ(0)),

and thus the regret under policy π after I seasons is:

Regret(π, I; γ(0)) =

I∑
i=1

E
[
V π
i,1(∅;Xπ

i,1, γ
(0))
]
−

I∑
i=1

Vi,1(∅; γ(0)).

Lemma A.15 There exists a constant K19 > 0 such that the regret under any bidding policy π after I seasons

satisfies

Regret(π, I; γ(0)) ≤ K19E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπi,t,l(X

π
i,1, X̂

π
i,t; γ

(0))− b∗i,t,l(X̂
π
i,t; γ

(0))
)2]

.

The proof of Lemma A.15 is provided in Appendix J.

Consider a new policy denoted by π̌, where the given allocation policy is an arbitrary policy in Φ, and the

bidding policy is similar to the one in BidAlloc except that the bidding amount in the exploitation phase of

cycle s is replaced by b∗i,t,l(x̂i,t; γ̂(s)) based on the vector of estimates γ̂(s). Then, we have

Theorem A.5 Under Assumptions 1, 2, and 3, the policy π̌ satisfies

Regret(π̌, I; γ(0)) ≤ K21

√
I,

where K21 = K20K19(K18)
2
√
T for constants K18 and K19 that are independent10 of I, and K20 that is inde-

pendent of I and T .

The proof of Theorem A.5 is similar to that of Theorem 1, and thus is omitted for brevity.

Appendix J Proofs of Lemmas A.14 and A.15

First, we show two lemmas that are used to show Lemmas A.14 and A.15.

Let x̃i,t and x̌i,t denote two histories in season i until the beginning of period (i, t). For ease of exposition,

we drop γ in Vi,t(x̂i,t; γ) and b∗i,t,l(x̂i,t; γ) in Lemma A.16 when there is no ambiguity.

10Here, the allocation policy is arbitrary. Therefore, the values of the constants K19 and K18 may depend on the given
allocation policy, which may also depend on T . Since the allocation policy is arbitrary, it is difficult to isolate the exact
dependence of K19 and K18 on T . When the allocation policy is FEFS, we have K19 = K0 and K18 = (K1)

T , where K0

and K1 are independent of I and T .
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Lemma A.16 For i ∈ {1, · · · , I}, 2 ≤ t ≤ T + 1, and γ ∈ Γ(0), there exists kt ≥ 0 such that |Vi,t(x̃i,t) −

Vi,t(x̌i,t)| ≤ kt. Let K22 = maxt kt. Then |Vi,t(x̃i,t)− Vi,t(x̌i,t)| ≤ K22.

Proof of Lemma A.16: The proof is by induction on t. For t = T + 1, |Vi,T+1(x̃i,t) − Vi,T+1(x̌i,t)| = 0. For

2 ≤ t ≤ T , suppose that |Vi,t+1(x̃i,t+1) − Vi,t(x̌i,t+1)| ≤ kt+1. We now show that |Vi,t(x̃i,t) − Vi,t(x̌i,t)| ≤ kt

using the following four cases. For simplicity of exposition, we drop the indices i and t of ai,t,l and b∗i,t,l below.

� Case 1: c(x̌i,t) ≥ 1 and c(x̃i,t) ≥ 1.

Vi,t(x̃i,t)− Vi,t(x̌i,t)

= min
(b1,··· ,bL):
bl∈Bl,l∈L


∑
l∈L

qlpl(γl, bl)
[
bl − ei,al(x̃i,t) + Vi,t+1((x̃i,t, (l, 1)))

]
+

∑
l∈L

ql [1− pl(γl, bl)]Vi,t+1((x̃i,t, (l, 0))) +

(
1−

∑
l∈L

ql

)
Vi,t+1((x̃i,t, (0, 0)))

−

min
(b1,··· ,bL):
bl∈Bl,l∈L


∑
l∈L

qlpl(γl, bl)
[
bl − ei,al(x̌i,t) + Vi,t+1((x̌i,t, (l, 1)))

]
+

∑
l∈L

ql [1− pl(γl, bl)]Vi,t+1((x̌i,t, (l, 0))) +

(
1−

∑
l∈L

ql

)
Vi,t+1((x̌i,t, (0, 0)))


≥
∑
l∈L

qlpl(γl, b
∗
l (x̃i,t))[Vi,t+1((x̃i,t, (l, 1)))− Vi,t+1((x̌i,t, (l, 1)))] + emin − emax +∑

l∈L

ql [1− pl(γl, b
∗
l (x̃i,t))] [Vi,t+1((x̃i,t, (l, 0)))− Vi,t+1((x̌i,t, (l, 0)))]+(

1−
∑
l∈L

ql

)
[Vi,t+1((x̃i,t, (0, 0)))− Vi,t+1((x̌i,t, (0, 0)))]. (A-25)

The inequality holds by letting bl = b∗l (x̃i,t).

Vi,t(x̃i,t)− Vi,t(x̌i,t)

= min
(b1,··· ,bL):
bl∈Bl,l∈L


∑
l∈L

qlpl(γl, bl)
[
bl − ei,al(x̃i,t) + Vi,t+1((x̃i,t, (l, 1)))

]
+

∑
l∈L

ql [1− pl(γl, bl)]Vi,t+1((x̃i,t, (l, 0))) +

(
1−

∑
l∈L

ql

)
Vi,t+1((x̃i,t, (0, 0)))

−

min
(b1,··· ,bL):
bl∈Bl,l∈L


∑
l∈L

qlpl(γl, bl)
[
bl − ei,al(x̌i,t) + Vi,t+1((x̌i,t, (l, 1)))

]
+

∑
l∈L

ql [1− pl(γl, bl)]Vi,t+1((x̌i,t, (l, 0))) +

(
1−

∑
l∈L

ql

)
Vi,t+1((x̌i,t, (0, 0)))


≤
∑
l∈L

qlpl(γl, b
∗
l (x̌i,t))[Vi,t+1((x̃i,t, (l, 1)))− Vi,t+1((x̌i,t, (l, 1)))] + emax − emin +∑

l∈L

ql [1− pl(γl, b
∗
l (x̌i,t))] [Vi,t+1((x̃i,t, (l, 0)))− Vi,t+1((x̌i,t, (l, 0)))]+(

1−
∑
l∈L

ql

)
[Vi,t+1((x̃i,t, (0, 0)))− Vi,t+1((x̌i,t, (0, 0)))]. (A-26)

The inequality holds by letting bl = b∗l (x̌i,t). Combining (A-25) and (A-26), we have

|Vi,t(x̃i,t)− Vi,t(x̌i,t)| ≤ kt+1 + emax − emin.
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� Case 2: c(x̌i,t) = 0 and c(x̃i,t) ≥ 1.

|Vi,t(x̃i,t)− Vi,t(x̌i,t)|

=

∣∣∣∣∣
∑

l∈L ql minbl∈B pl(γl, bl)
[
bl − ei,al(x̃i,t) −∆Vi,t+1((x̃i,t, (l, 0)))

]
+
∑

l∈L qlVi,t+1((x̃i,t, (l, 0)))+(
1−

∑
l∈L ql

)
Vi,t+1((x̃i,t, (0, 0)))−

∑
l∈L qlVi,t+1((x̌i,t, (l, 0)))−

(
1−

∑
l∈L ql

)
Vi,t+1((x̌i,t, (0, 0)))

∣∣∣∣∣
≤ max{|bmin − emax|, |bmax − emin|}+ 2kt+1.

The inequality holds by the induction hypothesis.

� Case 3: c(x̌i,t) ≥ 1 and c(x̃i,t) = 0. Similar to the argument in Case 2, we have

|Vi,t(x̃i,t)− Vi,t(x̌i,t)| ≤ max{|bmin − emax|, |bmax − emin|}+ 2kt+1.

� Case 4: c(x̌i,t) = 0 and c(x̃i,t) = 0.

|Vi,t(x̃i,t)− Vi,t(x̌i,t)|

=

∣∣∣∣∣
∑

l∈L qlVi,t+1((x̃i,t, (l, 0))) +
(
1−

∑
l∈L ql

)
Vi,t+1((x̃i,t, (0, 0)))−∑

l∈L qlVi,t+1((x̌i,t, (l, 0)))−
(
1−

∑
l∈L ql

)
Vi,t+1((x̌i,t, (0, 0)))

∣∣∣∣∣
≤ kt+1.

The inequality holds by the induction hypothesis. Let kt = max{kt+1 + emax − emin,max{bmin −

emax|, |bmax − emin|}+ 2kt+1}. Then, we have |Vi,t(x̃i,t)− Vi,t(x̌i,t)| ≤ kt ■

Lemma A.17 For any l ∈ L, bl ∈ B, α ∈ R and γl ∈ Γl, define the function

f l(bl, α, γl) = pl(γl, bl)(bl − α).

Let b∗l (α, γl) = argminbl∈B f l(bl, α, γl). Thus, for c(x̂i,t) ≥ 1, we have b∗i,t,l(x̂i,t; γ) = b∗l (α, γl), where α =

ei,ai,t,l(x̂i,t) +∆Vi,t+1((x̂i,t, (l, 0)); γ). Then:

(i) For each (α, γl) ∈ R× Γ
(0)
l , b∗l (α, γl) is uniquely defined.

(ii) Let UAΓl
=
{
(α, γl) ∈ [−K22 + emin,K22 + emax]× Γ

(0)
l

∣∣bmin < b∗l (α, γl) < bmax
}
. For each (α, γl) ∈

UAΓl
,

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0.

(iii) For each (α, γl) ∈ UAΓl
, both b∗l (α, γl) and f l(b∗l (α, γl), α, γl) are continuously differentiable in α and γl.

(iv) There exists a K19 > 0 such that f l(bl, α, γl)− f l(b∗l (α, γl), α, γl) ≤ K19(bl − b∗l (α, γl))
2 for all bl ∈ B and

(α, γl) ∈ UAΓl
.
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Proof of Lemma A.17:

(i) Let (α, γl) ∈ R× Γ
(0)
l . We have

∂f l(bl, α, γl)

∂bl
= pl(γl, bl) + (bl − α)

∂pl(γl, bl)

∂bl
, (A-27)

and
∂2f l(bl, α, γl)

∂b2l
= 2

∂pl(γl, bl)

∂bl
+ (bl − α)

∂2pl(γl, bl)

∂b2l
.

It follows that any bl ∈ B with ∂f l(bl,α,γl)
∂bl

= 0 satisfies the following:

∂2f l(bl, α, γl)

∂b2l
= 2

∂pl(γl, bl)

∂bl
+

−pl(γl, bl)

∂pl(γl, bl)/∂bl

∂2pl(γl, bl)

∂b2l

=
∂pl(γl, bl)

∂bl

[
2− pl(γl, bl)∂

2pl(γl, bl)/∂b
2
l

(∂pl(γl, bl)/∂bl)2

]
=

∂pl(γl, bl)

∂bl

[
1 +

(∂pl(γl, bl)/∂bl)
2 − pl(γl, bl)∂

2pl(γl, bl)/∂b
2
l

pl(γl, bl)2
pl(γl, bl)

2

(∂pl(γl, bl)/∂bl)2

]
=

∂pl(γl, bl)

∂bl

[
1− ∂2 log(pl(γl, bl))

∂b2l

pl(γl, bl)
2

(∂pl(γl, bl)/∂bl)2

]
> 0.

The inequality holds since ∂pl(γl,bl)
∂bl

> 0 by Assumption 1 (Section 2.1) and ∂2 log(pl(γl,bl))
∂b2l

≤ 0 by the log-

concavity of pl(γl, bl) with respect to bl.

Thus, f l(bl, α, γl) either has a unique minimum b∗l (α, γl) ∈ (bmin, bmax) with

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0,

or is monotone on B and the unique minimum of f l(bl, α, γl) is on the boundary of B.

(ii) For (α, γl) ∈ UAΓl
, since b∗l (α, γl) ∈ (bmin, bmax), we have

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0.

(iii) We first show that b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
using the Implicit Function

Theorem (see, e.g., Theorem 9.2 in Munkres 2018). Notice that

� By Assumption 1, ∂f l(bl,α,γl)
∂bl

in Equation (A-27) is continuously differentiable in α, γl, and bl, on the

open set R× Γl × (bmin, bmax) .

� By (ii), for each (α, γl) ∈ UAΓl
, (α, γl, b

∗
l (α, γl)) is a point in R× Γl × (bmin, bmax) such that

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

= 0 and
∂2f l(bl, α, γl)

∂b2l

∣∣∣∣
bl=b∗l (α,γl)

> 0.

Therefore, by the Implicit Function Theorem, b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
.
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Next, we show that f l(b∗l (α, γl), α, γl) is continuously differentiable in α and γl on UAΓl
. The partial

derivatives of f l(b∗l (α, γl), α, γl) with respect to α and γl are:

∂f l(b∗l (α, γl), α, γl)

∂α
=

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

∂b∗l (α, γl)

∂α
+

∂f l(bl, α, γl)

∂α

∣∣∣∣
bl=b∗l (α,γl)

= −pl(γl, b
∗
l (α, γl)),

∂f l(b∗l (α, γl), α, γl)

∂γl
=

∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

∂b∗l (α, γl)

∂γl
+

∂f l(bl, α, γl)

∂γl

∣∣∣∣
bl=b∗l (α,γl)

= (b∗l (α, γl)− α)
∂pl(γl, bl)

∂γl

∣∣∣∣
b∗l (α,γl)

.

By Assumption 1 and the fact that b∗l (α, γl) is continuously differentiable in α and γl on UAΓl
, the above

expressions of
∂f l(b∗l (α,γl),α,γl)

∂α and
∂f l(b∗l (α,γl),α,γl)

∂γl
are continuous in α and γl. Thus, f l(b∗l (α, γl), α, γl) is

continuously differentiable in α and γl on UAΓl
.

(iv) Let Kl
19 := sup(α,γl,bl)∈UAΓl

×B
∂2f l(bl,α,γl)

∂b2l
/2. Since ∂2f l(bl,α,γl)

∂b2l
is continuous in α, γl, and bl, on the closure

of UAΓl
× B, which is compact, and ∂2f l(bl,α,γl)

∂b2l

∣∣∣
bl=b∗l (α,γl)

> 0 for all (α, γl) ∈ UAΓl
, we have 0 < Kl

19 < ∞.

The Taylor expansion of f l(bl, α, γl) at bl = b∗l (α, γl) implies that

f l(bl, α, γl) ≤ f l(b∗l (α, γl), α, γl) +
∂f l(bl, α, γl)

∂bl

∣∣∣∣
bl=b∗l (α,γl)

(bl − b∗l (α, γl)) +Kl
19(bl − b∗l (α, γl))

2

= f l(b∗l (α, γl), α, γl) +Kl
19(bl − b∗l (α, γl))

2.

Let K19 := maxl∈L Kl
19. Then, we have f l(bl, α, γl)− f l(b∗l (α, γl), α, γl) ≤ K19(bl − b∗l (α, γl))

2 for all l ∈ L. ■

Proof of Lemma A.14: In the notation of Lemma A.17, let αl = ei,ai,t,l(x̂i,t)+∆Vi,t+1((x̂i,t, (l, 0)); γ) and α̂l =

ei,ai,t,l(x̂i,t) +∆Vi,t+1((x̂i,t, (l, 0)); γ̂). Then, b
∗
i,t,l(x̂i,t; γ)− b∗i,t,l(x̂i,t; γ̂) = b∗l (αl, γl)− b∗l (α̂l, γ̂l). By Lemma A.16

and Assumption 3, (αl, γl) ∈ UAΓl
and (α̂l, γ̂l) ∈ UAΓl

. Since b∗l (αl, γl) is continuously differentiable in αl and

γl on UAΓl
by part (iii) of Lemma A.17 and by the fact that the closure of UAΓl

is compact, it follows from the

first-order Taylor expansion that

|b∗l (αl, γl)− b∗l (α̂l, γ̂l)| ≤ Kl
23(|αl − α̂l|+ ∥γl − γ̂l∥), (A-28)

for Kl
23 > 0 that is independent of αl, α̂l, γl, and γ̂l. We show by backward induction below (under the title

“Derivation of Inequality (A-29)”) that there exists κt > 0 such that

|Vi,t(x̂i,t; γ)− Vi,t(x̂i,t; γ̂)| ≤ κt∥γ − γ̂∥. (A-29)

Combining (A-28) and (A-29), we have

|b∗l (αl, γl)− b∗l (α̂l, γ̂l)|

≤Kl
23(|αl − α̂l|+ ∥γl − γ̂l∥)

≤Kl
23(|Vi,t+1((x̂i,t, (l, 0)); γ)− Vi,t+1((x̂i,t, (l, 0)); γ̂)|+

|Vi,t+1((x̂i,t, (l, 1)); γ)− Vi,t+1((x̂i,t, (l, 1)); γ̂)|+ ∥γl − γ̂l∥)
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≤ Kl
23

(
2 max
t∈{1,...,T}

κt+1∥γ − γ̂∥+ ∥γ − γ̂∥
)

≤ K18∥γ − γ̂∥,

where K18 = maxl∈L Kl
23

(
2maxt∈{1,...,T} κt+1 + 1

)
. ■

Derivation of Inequality (A-29): We show inequality (A-29) by backward induction on t. If t = T + 1, then

Vi,T+1(x̂i,T+1; γ) = Vi,T+1(x̂i,T+1; γ̂) = 0 and (A-29) holds. Let 1 ≤ t ≤ T . Suppose (A-29) holds for t+ 1. We

now show that (A-29) holds for t.

|Vi,t(x̂i,t; γ)− Vi,t(x̂i,t; γ̂)|

=

∣∣∣∣∣∣∣∣∣∣∣∣

1{c(x̂i,t) ≥ 1}
∑
l∈L

ql min
bl∈Bl

pl(γl, bl)(bl − αl) +
∑
l∈L

qlVi,t+1((x̂i,t, (l, 0)); γ)+(
1−

∑
l∈L

ql

)
Vi,t+1((x̂i,t, (0, 0)); γ)− 1{c(x̂i,t) ≥ 1}

∑
l∈L

ql min
bl∈Bl

pl(γ̂l, bl)(bl − α̂l)−∑
l∈L

qlVi,t+1((x̂i,t, (l, 0)); γ̂)−
(
1−

∑
l∈L

ql

)
Vi,t+1((x̂i,t, (0, 0)); γ̂)

∣∣∣∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∑
l∈L

qlf
l(b∗l (αl, γl), αl, γl)−

∑
l∈L

qlf
l(b∗l (α̂l, γ̂l), α̂l, γ̂l)

∣∣∣∣∣+ κt+1∥γ − γ̂∥

≤ K24(|αl − α̂l|+ ∥γ − γ̂∥) + κt+1∥γ − γ̂∥

≤ K24[|Vi,t+1((x̂i,t, (l, 0)); γ)− Vi,t+1((x̂i,t, (l, 0)); γ̂)|+ |Vi,t+1((x̂i,t, (l, 1)); γ)− Vi,t+1((x̂i,t, (l, 1)); γ̂)|]+

(K24 + κt+1)∥γ − γ̂∥

≤ K24 [κt+1∥γ − γ̂∥+ κt+1∥γ − γ̂∥] + (K24 + κt+1)∥γ − γ̂∥

= κt∥γ − γ̂∥,

where κt = 2K24κt+1 + K24 + κt+1. The second inequality holds since f l(b∗l (αl, γl), αl, γl) is continuously

differentiable in αl and γl, by part (iii) of Lemma A.17. Therefore,
∑

l∈L qlf
l(b∗l (αl, γl), αl, γl) is continuously

differentiable in αl and γ. In addition, [−K22 + emin,K22 + emax]× Γ(0) is compact. It follows by a first-order

Taylor expansion that there exists K24 > 0 that is independent of αl, α̂l, γ, and γ̂, such that∣∣∣∣∣∑
l∈L

qlf
l(b∗l (αl, γl), αl, γl)−

∑
l∈L

qlf
l(b∗l (α̂l, γ̂l), α̂l, γ̂l)

∣∣∣∣∣ ≤ K24(|αl − α̂l|+ ∥γ − γ̂∥). ■

Proof of Lemma A.15: We establish the result by showing that there exists a constant K19 > 0 such that

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(x̂i,t; γ)

≤K19E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(
xi,1, X̂

π
i,t̂

)
− b∗

i,t̂,l

(
X̂π

i,t̂
; γ
))2∣∣∣∣∣∣ X̂π

i,t = x̂i,t

 . (A-30)

Then, the regret under any policy π after I seasons satisfies

I∑
i=1

E
[
V π
i,1(∅;Xπ

i,1, γ
(0))− Vi,1(∅; γ(0))

]
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≤ K19E

[
I∑

i=1

T∑
t=1

∑
l∈L

ql

(
bπi,t,l

(
Xπ

i,1, X̂
π
i,t

)
− b∗i,t,l

(
X̂π

i,t; γ
(0)
))2]

.

Next, we show (A-30) using backward induction on t. For t = T + 1, we have

V π
i,T+1(x̂i,T+1;xi,1, γ) = Vi,T+1(x̂i,T+1; γ) = 0.

Let 1 ≤ t ≤ T . Suppose (A-30) holds at t+ 1, i.e.,

V π
i,t+1(x̂i,t+1;xi,1, γ)− Vi,t+1(x̂i,t+1; γ)

≤ K19E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(
xi,1, X̂

π
i,t̂

)
− b∗

i,t̂,l

(
X̂π

i,t̂
; γ
))2∣∣∣∣∣∣ X̂π

i,t+1 = x̂i,t+1

 .

Let αl = ei,ai,t,l(x̂i,t) + ∆Vi,t+1((x̂i,t, (l, 0)); γ). Then, b∗i,t,l(x̂i,t; γ) = b∗l (αl, γl). By Lemma A.16 and Assump-

tion 3, we have (αl, γl) ∈ UAΓl
.

� Case 1: If c(x̂i,t) = 0, then we have

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(x̂i,t; γ)

=
∑
l∈L

qlV
π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +

(
1−

∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ) −

∑
l∈L

qlVi,t+1((x̂i,t, (l, 0)); γ)−

(
1−

∑
l∈L

ql

)
Vi,t+1((x̂i,t, (0, 0)); γ)

= E
[
V π
i,t+1(X̂

π
i,t+1;xi,1, γ)− Vi,t+1(X̂

π
i,t+1; γ)

∣∣∣ X̂π
i,t = x̂i,t

]

≤ E

K19E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(X̂π

i,t̂
; γ)
)2∣∣∣∣∣∣ X̂π

i,t+1

∣∣∣∣∣∣ X̂π
i,t = x̂i,t



= K19E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(X̂π

i,t̂
; γ)
)2∣∣∣∣∣∣ X̂π

i,t = x̂i,t


The inequality holds by the induction hypothesis.

� Case 2: If c(x̂i,t) ≥ 1, then we have

V π
i,t(x̂i,t;xi,1, γ)− Vi,t(x̂i,t; γ)

=
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− ei,ai,t,l(x̂i,t) + V π

i,t+1((x̂i,t, (l, 1));xi,1, γ)
]
+∑

l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

]
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ) +(

1−
∑
l∈L

ql

)
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ)−
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∑
l∈L

qlpl(γl, b
∗
i,t,l(x̂i,t; γ))

[
b∗i,t,l(x̂i,t; γ)− ei,ai,t,l(x̂i,t) + Vi,t+1((x̂i,t, (l, 1)); γ)

]
−∑

l∈L

ql
[
1− pl(γl, b

∗
i,t,l(x̂i,t; γ))

]
Vi,t+1((x̂i,t, (l, 0)); γ) −(

1−
∑
l∈L

ql

)
Vi,t+1((x̂i,t, (0, 0)); γ)

=
∑
l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
V π
i,t+1((x̂i,t, (l, 1));xi,1, γ)− Vi,t+1((x̂i,t, (l, 1)); γ)

]
+∑

l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

] [
V π
i,t+1((x̂i,t, (l, 0));xi,1, γ)− Vi,t+1((x̂i,t, (l, 0)); γ)

]
+(

1−
∑
l∈L

ql

)[
V π
i,t+1((x̂i,t, (0, 0));xi,1, γ)− Vi,t+1((x̂i,t, (0, 0)); γ)

]
+∑

l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))Vi,t+1((x̂i,t, (l, 1)); γ)+∑

l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− ei,ai,t,l(x̂i,t)

]
+∑

l∈L

ql
[
1− pl(γl, b

π
i,t,l(xi,1, x̂i,t))

]
Vi,t+1((x̂i,t, (l, 0)); γ) −∑

l∈L

qlpl(γl, b
∗
i,t,l(x̂i,t; γ))

[
b∗i,t,l(x̂i,t; γ)− ei,ai,t,l(x̂i,t) + Vi,t+1((x̂i,t, (l, 1)); γ)

]
−∑

l∈L

ql
[
1− pl(γl, b

∗
i,t,l(x̂i,t; γ))

]
Vi,t+1((x̂i,t, (l, 0)); γ)

= E
[
V π
i,t+1(X̂

π
i,t+1;xi,1, γ)− Vi,t+1(X̂

π
i,t+1; γ)

∣∣∣ X̂π
i,t = x̂i,t

]
+∑

l∈L

qlpl(γl, b
π
i,t,l(xi,1, x̂i,t))

[
bπi,t,l(xi,1, x̂i,t)− αl

]
−
∑
l∈L

qlpl(γl, b
∗
l (αl, γl)) [b

∗
l (αl, γl)− αl]

≤ E

K19E

 T∑
t̂=t+1

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(X̂π

i,t̂
)
)2∣∣∣∣∣∣ X̂π

i,t+1

∣∣∣∣∣∣ X̂π
i,t = x̂i,t

 +

K19

∑
l∈L

ql
(
bπi,t,l(xi,1, x̂i,t)− b∗l (αl, γl)

)2

= K19E

 T∑
t̂=t

∑
l∈L

ql

(
bπ
i,t̂,l

(xi,1, X̂
π
i,t̂
)− b∗

i,t̂,l
(X̂π

i,t̂
; γ)
)2∣∣∣∣∣∣ X̂π

i,t = x̂i,t


The inequality holds by the induction hypothesis and part (iv) of Lemma A.17. ■

Appendix K Comparison with Respect to Broder and Rusmevichientong (2012)
and den Boer and Zwart (2015)

Broder and Rusmevichientong (2012) study the dynamic pricing of a single product with unlimited inventory,

where the seller needs to learn the unknown parameters of a general parametric demand distribution. They show

that the regret under any pricing policy is Ω(
√
N), where N is the number of consumer arrivals, and propose

a pricing policy that achieves a regret of O(
√
N). den Boer and Zwart (2015) study the dynamic pricing of
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multiple products, each of which has a finite inventory and is sold over a selling season of finite length. Only one

product is sold in a season and all the products share the same unknown parametric demand distribution. They

show that the regret under any pricing policy is Ω(log I) and offer a policy that achieves a regret of O(log2(I)),

where I is the number of seasons in the planning horizon of interest.

We now discuss the core features that differentiate the mobile-promotion platform’s procurement problem

from these two pricing problems:

� The notion of a “product” in our context is fundamentally different from that in the two papers above. An

acquired impression cannot be stored in inventory and must be allocated to a campaign instantaneously.

Further, impressions are substitutable in the sense that a campaign’s demand can possibly be fulfilled

by impressions acquired from different locations, with each location characterized by its own arrival

probability and its own win curve. The platform’s cost for acquiring different impressions could be

different, not only for those arising at different locations but also for those from the same location.

� In both Broder and Rusmevichientong (2012) and den Boer and Zwart (2015), the supply side is “inactive”,

in the sense that the former assumes unlimited inventory and the latter assumes a fixed amount of

inventory of each product. In contrast, in our problem, the supply of impressions is uncertain. Specifically,

both the arrival of impressions as well as their acquisition by the platform (via real-time bidding on an

ad-exchange) are uncertain.

� An impression won by the platform can be assigned to any one of multiple ongoing campaigns. This

results in the need to allocate the impression to a campaign. Such an allocation decision is not needed in

Broder and Rusmevichientong (2012) and den Boer and Zwart (2015), where for a given product and a

given price, a consumer determines whether or not to buy the product.

Next, we contrast our policies for the bidding and allocation of impressions with the pricing policies in

Broder and Rusmevichientong (2012) and den Boer and Zwart (2015).

� As in Broder and Rusmevichientong (2012), our bidding policy is also cyclic, with each cycle consisting of

an exploration phase and an exploitation phase. However, within each of these phases, our policy is sig-

nificantly different. We now briefly highlight these differences. First, note that, in contrast to Broder and

Rusmevichientong (2012), we consider impression arrivals from multiple locations. During the exploration

phase of a cycle, we offer “exploration bids” sequentially to estimate the underlying win-curve parameters

for each location based on the observed realizations of the winning of impressions. If no impression arrives,

then no bid is placed and, therefore, no observation is generated. For each location, we need a sufficient

(location-specific) number of impression arrivals to place our exploration bids and obtain a good estimate

of the underlying parameters. As a result, not only is the length of the exploration phase random, but

also the number of observations of the winning of impressions. Consequently, for some locations with
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high impression-arrival probabilities, we may have more observations than needed to compute a good

estimate of its underlying parameters. All this is in contrast to Broder and Rusmevichientong (2012),

where there is only one product and hence the number of observations (i.e., consumer arrivals) is fixed in

each exploration phase.

During the exploitation phase of each cycle, we offer “optimal” bids at each location that are computed

based on the current estimates of the underlying parameters at all the locations. In Broder and Rus-

mevichientong (2012), the corresponding notion is that of offering prices based on the current estimate

of the underlying parameters of the demand curve; each price is the solution of a single-period revenue-

maximization problem. In contrast, we face a capacity constraint across all locations – namely, that the

number of impressions assigned to each campaign cannot exceed its requirement. Also, the number of

additional impressions required for each campaign changes dynamically as impressions are won and allo-

cated to the campaigns. Therefore, to compute the optimal bid in each time period at each location, we

need to solve a stochastic dynamic program (DP) based on the current values of the estimated parameters

at all the locations. Consequently, our analysis of the regret in the exploitation phase is necessarily more

sophisticated than the one in Broder and Rusmevichientong (2012).

Broder and Rusmevichientong (2012) show that the regret under any pricing policy is Ω(
√
N). If the

total number of impressions required over all the campaigns in each season is no less than the number

of periods in the season, then we also show an Ω(
√
I) lower bound on the regret under any policy. If

the total number of required impressions in each season is strictly less than the number of periods in the

season, then we establish an Ω(I2/7) lower bound on the regret under any policy.

� den Boer and Zwart (2015) obtain an Ω(log I) lower bound on the regret under any policy when the initial

inventory in each season is strictly less than the number of periods in the season. They propose a pricing

policy that is a modification of the certainty-equivalent pricing strategy (i.e., offering the optimal price

with respect to the current parameter estimates); this policy achieves a regret of O(log2(I)). However,

we show that this bound cannot be achieved for our problem; in particular, as mentioned above, we

establish an Ω(I2/7) lower bound on the regret under any policy when the required number of impressions

in each season is strictly less than the number of periods in the season. The underlying reason for

this difference is as follows. den Boer and Zwart (2015) show that their problem satisfies an “endogenous

learning” property: if the chosen selling prices are sufficiently close to the optimal ones, then the unknown

parameters can be learned fast. In turn, this is possible due to a minimum amount of price dispersion

guaranteed in the optimal policy for the clairvoyant problem. However, in our context, no such bid

dispersion is guaranteed since the arrival of impressions is uncertain. For instance, it is possible that no

impression arrives during the early stages of a season and, as a result, when the first impression arrives,

the maximum number of impressions that can be potentially acquired during the remainder of the season
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is too few to exceed the targets of the ongoing campaigns in that season. In this case, the clairvoyant

problem is effectively unconstrained and the optimal bids simply minimize the cost in each period and

are therefore identical. Thus, since no bid dispersion can be guaranteed, our problem does not satisfy

the endogenous learning property and the O(log2(I)) upper bound on the regret cannot be achieved. A

consequence of this is that our bidding policy requires active experimentation.

Appendix L Technical Details in Section 5.2: Approximations of the DPs in the
Learning Algorithm

Since the FEFS property (Section 2) no longer holds in the generalized setting where the unit penalty cost and

the desired set of geographical locations (from where impressions are sought) may differ across campaigns, we

first formulate a generalized clairvoyant problem that incorporates the allocation decisions and define another

problem (problem P0 below) by replacing the random impression arrivals and random outcome of the winning

of impressions in the clairvoyant problem with their expectations. The optimal objective value of problem P0 is

a lower bound on that of the clairvoyant problem. Next, we present an alternate (and equivalent) formulation,

defined as problem P1 below. The decisions of problem P0 are the bid prices at each location and the allocation

decisions of the acquired impressions to the campaigns, in each time period. In the alternate formulation (P1),

the decisions in each time period are the probabilities of winning impressions from each location, and the

probabilities of winning impressions from each location and allocating them to specific campaigns. We then

consider a problem – defined as problem P2 below – where the campaign-allocation decision for an acquired

impression is randomized, and show that the optimal objective value of this problem is lower than that of

problem P1. Next, we define a deterministic problem – problem (P3) below – by replacing the random campaign

arrivals with their expectations, and show that the optimal objective value of problem P3 is a lower bound on

that of P2. Finally, we consider another deterministic problem – defined as problem P4 below – that is related

to problem P3 via the following property: Every feasible solution to P3 corresponds to a feasible solution to

P4 with a (weakly) lower objective function value. Thus, the optimal objective value of problem P4 is a lower

bound on that of problem P3. We now formally define problems P0–P4.

Consider the clairvoyant problem in season i. Let T denote the number of weeks in each season and S

denote the number of time periods in each week. Then, the total number of time periods in each season is

T = T · S. In our numerical experiments, T = 2 and S = 106. For i ∈ {1, · · · , I}, t ∈ {1, · · · ,T}, and

s ∈ {1, · · · ,S}, let ζi,t,s = l if an impression arrives from location l ∈ L in period (i, t, s) and ζi,t,s = 0 if no

impression arrives in that period. Thus, E[1{ζi,t,s = l}] = ql, where ql is the arrival probability of an impression

from location l in each time period. Let bπi,t,s,l ∈ B denote the bid price at location l in time period (i, t, s)

under policy π. Let di,t,s = 1 if the impression is won by bidding an amount bπi,t,s,ζi,t,s at location ζi,t,s, and

di,t,s = 0 otherwise. Recall that pl(γl, bl) is the win curve at location l ∈ L, i.e., the probability of winning
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an impression that arrives from location l by bidding an amount bl ∈ B, where γl is a vector of parameters

that characterize this distribution. Then, di,t,s is Bernoulli distributed with mean pζi,t,s(γζi,t,s , b
π
i,t,s,ζi,t,s

). Let

c denote a campaign with penalty cost ec for each unmet impression that starts at the beginning of week t̄c and

ends at the end of week tc, and requires impressions from locations in Lc. Let Wc be a random variable, with a

known distribution, representing the number of impressions required by campaign c. We allow P(Wc = 0) > 0,

i.e., there is a positive probability that campaign c does not arrive at the beginning of week t̄c. Let C denote

the set of all possible campaigns. Let (aπi,t,s,l : l ∈ L) denote the allocation decision in time period (i, t, s) under

policy π, with aπi,t,s,l = c ∈ C indicating that if an impression arrives from location l in that period and is won,

then it is allocated to campaign c. Then, the optimization problem in season i is:

min
π

E

[
T∑

t=1

S∑
s=1

∑
l∈L

bπi,t,s,l1{ζi,t,s = l}di,t,s +

∑
c∈C

(
Wc −

T∑
t=1

S∑
s=1

∑
l∈L

1{ζi,t,s = l}di,t,s1{aπi,t,s,l = c}1{̄tc ≤ t ≤ tc}1{l ∈ Lc}

)+

ec

]
.

We replace the random impression arrivals (i.e., 1{ζi,t,s = l}) and the random outcome of the winning of

impressions (i.e., di,t,s) in the objective function above with their expectations to define problem P0 below.

Note that the objective function of the clairvoyant problem above is convex in 1{ζi,t,s = l} and di,t,s. Thus, by

Jensen’s inequality, the optimal objective value of P0 is an lower bound on that of the clairvoyant problem.

min
π

E

[
T∑

t=1

S∑
s=1

∑
l∈L

bπi,t,s,lqlpl(γl, b
π
i,t,s,l) + (P0)

∑
c∈C

(
Wc −

T∑
t=1

S∑
s=1

∑
l∈L

qlpl(γl, b
π
i,t,s,l)1{aπi,t,s,l = c}1{̄tc ≤ t ≤ tc}1{l ∈ Lc}

)+

ec

]
.

Next, we formulate an optimization problem that is equivalent to P0. In this problem, the two decisions in

each time period are the probabilities of winning impressions that arrive from each location, and the probabilities

of winning impressions from each location and allocating them to specific campaigns. Let yπi,t,s,l denote the

winning probability under policy π at location l in time period (i, t, s). Let zπi,t,s,l,c denote the probability

with which policy π wins the impression from location l and allocates it to campaign c in time period (i, t, s).

Note that an acquired impression can only be assigned to one of the campaigns. Thus, for t ∈ {1, · · · ,T},

s ∈ {1, · · · ,S}, and l ∈ L, only one of (zπi,t,s,l,c : c ∈ C) is positive, and that probability equals yπi,t,s,l. In the

sequel, we drop γl of pl(γl, b) when there is no ambiguity in doing so. Let bl(y) be the inverse of the function

pl(b), i.e. bl(y) = p−1
l (y). Thus, bl(y) is the bid price required to ensure a winning probability of y at location

l in each time period. Let fl(y) := bl(y)y denote the expected bidding cost associated with a target winning

probability of y for an impression at location l in each time period. We show that fl(y) is convex in y (see the

proof of Lemma A.18). Let ymin
l = pl(b

min) and ymax
l = pl(b

max). Then, problem P0 can be equivalently written
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as:

fi := min
π

E

[
T∑

t=1

S∑
s=1

∑
l∈L

qlfl(y
π
i,t,s,l) +

∑
c∈C

(
Wc −

T∑
t=1

S∑
s=1

∑
l∈L

qlz
π
i,t,s,l,c

)+

ec

]
. (P1)

s.t. yπi,t,s,l =
∑
c∈C

zπi,t,s,l,c,∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L,

(yπi,t,s,l − zπi,t,s,l,c)z
π
i,t,s,l,c = 0,∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C,

zπi,t,s,l,c ≤ 1{̄tc ≤ t ≤ tc}1{l ∈ Lc},∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C,

yπi,t,s,l ∈ [ymin
l , ymax

l ],∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L.

Consider now a relaxed version of problem P1 obtained by randomizing the impression-allocation decision,

i.e., by allowing an acquired impression from one location to be assigned to multiple campaigns with positive

probabilities. This is problem (P2) defined below. Clearly, the optimal objective value of problem (P2) is no

greater than that of problem (P1).

f̃i := min
π

E

[
T∑

t=1

S∑
s=1

∑
l∈L

qlfl(y
π
i,t,s,l) +

∑
c∈C

(
Wc −

T∑
t=1

S∑
s=1

∑
l∈L

qlz
π
i,t,s,l,c

)+

ec

]
. (P2)

s.t. yπi,t,s,l =
∑
c∈C

zπi,t,s,l,c,∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L,

zπi,t,s,l,c ≤ 1{̄tc ≤ t ≤ tc}1{l ∈ Lc},∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C,

yπi,t,s,l, z
π
i,t,s,l,c ∈ [ymin

l , ymax
l ],∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C.

Next, we construct a deterministic problem whose optimal objective value is an lower bound on that of

problem (P2) (see proof of Lemma A.18). In this problem, the decisions in each time period are determin-

istic; thus, for convenience, we drop the policy superscript π from yπi,t,s,l and zπi,t,s,l,c. Let y̌ = (yi,t,s,l : t ∈

{1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L) and ž = (zi,t,s,l,c : t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C). Then, the

following deterministic problem is obtained by replacing Wc with its expectation:

hi := min
y̌,ž

{
T∑

t=1

S∑
s=1

∑
l∈L

qlfl(yi,t,s,l) +
∑
c∈C

(
E[Wc]−

T∑
t=1

S∑
s=1

∑
l∈L

qlzi,t,s,l,c

)+

ec

}
. (P3)

s.t. yi,t,s,l =
∑
c∈C

zi,t,s,l,c,∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L

zi,t,s,l,c ≤ 1{̄tc ≤ t ≤ tc}1{l ∈ Lc},∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C

yi,t,s,l, zi,t,s,l,c ∈ [ymin
l , ymax

l ],∀t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C

Finally, we define another deterministic problem whose optimum objective value is a lower bound on that

of problem P3. Let yi,t,l denote the winning probability at location l in each time period of week t of season i.

Let zi,t,l,c denote the probability of winning the impression from location l and allocating it to campaign c in

each time period of week t of season i. Let ŷ = (yi,t,l : t ∈ {1, · · · ,T}, l ∈ L) and ẑ = (zi,t,l,c : t ∈ {1, · · · ,T}, l ∈
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L, c ∈ C). Consider the following deterministic problem:

gi := min
(ŷ,ẑ)

{
S

T∑
t=1

∑
l∈L

qlfl(yi,t,l) +
∑
c∈C

(
E[Wc]−S

T∑
t=1

∑
l∈L

qlzi,t,l,c

)+

ec

}
. (P4)

s.t. yi,t,l =
∑
c∈C

zi,t,l,c,∀t ∈ {1, · · · ,T}, l ∈ L

zi,t,l,c ≤ 1{̄tc ≤ t ≤ tc}1{l ∈ Lc},∀t ∈ {1, · · · ,T}, l ∈ L, c ∈ C

yi,t,l, zi,t,l,c ∈ [ymin
l , ymax

l ],∀t ∈ {1, · · · ,T}, l ∈ L, c ∈ C

In the proof of the following result, we will show that the optimal objective value of problem (P4) is a lower

bound on that of problem (P3). Thus, we have

Lemma A.18 The optimal objective value of problem (P4) is a lower bound on that of problem (P1), i.e.,

gi ≤ fi.

Proof of Lemma A.18: The conclusion that the optimal objective value of problem (P2) is a lower bound on

that of problem (P1), i.e., f
i ≥ f̃i, is trivial. Further, since

(
Wc −

∑T
t=1

∑S
s=1

∑
l∈L qlz

π
i,t,s,l,c

)+
ec is convex in

Wc, we have (from Jensen’s inequality) that the optimal objective value of problem (P3) is a lower bound on

that of problem (P2), i.e., f̃
i ≥ hi.

Next, we show that the optimal objective value of problem (P4) is a lower bound on that of problem (P3),

i.e., hi ≥ gi. Let (y∗i,t,s,l, z
∗
i,t,s,l,c : t ∈ {1, · · · ,T}, s ∈ {1, · · · ,S}, l ∈ L, c ∈ C) denote an optimal solution of

problem (P3). Let ŷi,t,l =
∑S

s=1 y∗
i,t,s,l

S and ẑi,t,l,c =
∑S

s=1 z∗
i,t,s,l,c

S . It is straightforward to verify that (ŷi,t,l, ẑi,t,l,c :

t ∈ {1, · · · ,T}, l ∈ L, c ∈ C) is a feasible solution to problem (P4). In addition, fl(y) is convex in y: Recall that

pl(b) is log concave in b, which implies that ∂ log pl(b)
∂b = ∂pl(b)/∂b

pl(b)
decreases in b. Then,

∂fl(y)

∂y
= bl(y) + y

∂bl(y)

∂y

increases in y. It is clear that bl(y) increases in y. Note that y ∂bl(y)
∂y = pl(b)

∂pl(b)/∂b
increases in y. Thus, fl(y) is

convex in y and the objective function of problem (P3) is convex in (y̌, ž). Consequently, the objective value of

problem (P4) under (ŷi,t,l, ẑi,t,l,c : t ∈ {1, · · · ,T}, l ∈ L, c ∈ C) is a lower bound of the optimal objective value

of problem (P3). ■

Lemma A.18 immediately implies that the regret of any policy π is smaller than the difference between the

expected cost under policy π and
∑I

i=1 g
i.

Recall that at the beginning of each exploitation phase, to compute the optimal bid based on the latest

estimates, we need to solve a DP with a multi-dimensional state space. Similar to the convex optimization

problem we developed above to approximate the DP of the clairvoyant problem above, we solve a convex

optimization problem in our numerical experiments to approximate the DP in the exploitation phase. Consider

an exploitation phase that starts in time period (i, t, s). Let Či,t,s denote the set of campaigns that arrive
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in or before time period (i, t, s). Let Ĉi,t,s denote the set of campaigns that arrive after time period (i, t, s).

For any c ∈ Či,t,s, let wc denote the total number of unmet impressions for campaign c in period (i, t, s).

Let f̂l(y) denote the expected bidding cost associated with a target win probability of y for an impression at

location l in each time period based on the updated estimates. Let ỹ = (yi,̂t,l : t̂ ∈ {t, · · · ,T}, l ∈ L) and

z̃ = (zi,̂t,l,c : t̂ ∈ {t, · · · ,T}, l ∈ L, c ∈ C). Then, we solve the following problem to approximate the DP.

min
ỹ,z̃



(S− s+ 1)
∑

l∈L ql f̂l(yi,t,l) +S
∑T

t̂=t+1

∑
l∈L ql f̂l(yi,̂t,l)+∑

c∈Či,t,s

[
wc − (S− s+ 1)qlzi,t,l,c −S

∑T
t̂=t+1

∑
l∈L qlzi,̂t,l,c

]+
ec+∑

c∈Ĉi,t,s

[
E[Wc]− (S− s+ 1)qlzi,t,l,c −S

∑T
t̂=t+1

∑
l∈L qlzi,̂t,l,c

]+
ec


(A-31)

s.t. yi,̂t,l =
∑
c∈C

zi,̂t,l,c, ∀̂t ∈ {t, · · · ,T}, l ∈ L

zi,̂t,l,c ≤ 1{̄tc ≤ t̂ ≤ tc}1{l ∈ Lc}, ∀̂t ∈ {t, · · · ,T}, l ∈ L, c ∈ C

yi,̂t,l, zi,̂t,l,c ∈ [ymin
l , ymax

l ], ∀̂t ∈ {t, · · · ,T}, l ∈ L, c ∈ C

The optimal solution of the above problem is used to obtain the bid price and allocation decision during the

exploitation phase under our policy. The expected cost under these bid prices and allocation decisions is greater

than the optimal cost-to-go of the DP based on the updated estimates. Thus, the difference between the

expected cost under our policy, where the bid prices and allocation decisions during the exploitation phase are

obtained by solving problem (A-31) above, and
∑I

i=1 g
i is an upper bound on the true regret under our policy.

Appendix M Decomposition of Regret (Section 5.4): Details of Numerical Anal-
ysis

In this section, we discuss the details of our numerical study to address the two questions, defined in Section

5.4, on the decomposition of regret under our policy.

In order to compute the optimal cost of the clairvoyant problem, which is used as a benchmark to compute

the true regret under our policy, we need to solve a DP with multi-dimensional state space optimally. Thus, we

conduct another numerical study on a tractable scale. In this new setting, each season consists of 200 time peri-

ods. There are 3 locations indexed by l = 1, 2, 3 and the win curve at location l is pl(γl, bl) =
exp(γl,1+γl,2bl)

1+exp(γl,1+γl,2bl)
; l =

1, 2, 3, where the true values of the parameters in the win curves are (γ1,1, γ1,2) = (−2.281, 0.705), (γ2,1, γ2,2) =

(−2.192, 1.042), (γ3,1, γ3,2) = (−1.905, 0.876), and Γ
(0)
l = [−8,−0.1] × [0.1, 8], l = 1, 2, 3. Impressions acquired

from any of these locations can be used to satisfy the requirement of any campaign. The duration of a campaign

is either 100 periods or 200 periods, and each campaign requires 10 impressions. The penalty cost of each unmet

impression can take two values: 10 and 15. If the duration of a campaign is one week (resp., two weeks), then

the unit penalty cost is 10 (resp., 15). In each time period, an impression arrives from location l ∈ {1, 2, 3}

with probability 0.1. Campaigns can arrive at the beginning of the first period or the 101st period. Consider

an arbitrary season: At most one campaign can arrive at the beginning of the first period (resp., 101st period).
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At the beginning of the first period, either a 100-period or a 200-period campaign can arrive; each of these two

events occurs with probability 0.48. At the beginning of the 101st period, a 100-period campaign arrives with

probability 0.96.

Recall from Section 5.2 that, to approximate the DP of the clairvoyant problem, we solve a convex optimiza-

tion problem whose optimal objective value is a lower bound on the optimal cost of the clairvoyant problem.

Thus, our (reported) regret (i.e., the difference between the expected cost under our policy and the lower bound

on the optimal cost of the clairvoyant problem) is, in fact, an upper bound on the “true regret” under our policy.

Let C∗ and C denote the optimal cost of the clairvoyant problem and its lower bound, respectively. Further,

for the general setting where the unit penalty costs differ across campaigns, when the underlying parameters of

the win curves are unknown, the FEFS allocation policy is no longer optimal. We instead define and solve a

convex optimization problem (based on the estimates of the parameters of the win curves) rather than solving

the DP in the exploitation phase of our policy. The optimal solution of this problem is then used to obtain the

bid price and allocation decision. Let π̂ denote our policy and let Ĉ denote the expected cost under π̂.

Note that Ĉ −C = (Ĉ −C∗) + (C∗ −C). We first examine how much of the difference between Ĉ and C is

the true regret under our policy, i.e., the difference between Ĉ and C∗, and how much of it is caused by the gap

between the optimal cost C∗ and its lower bound C. For each value of I, we compute the average cost under

our policy over 100 simulations. Figure 6 plots the percentage of the difference between Ĉ and C that is caused

by the “true” regret under our policy, i.e., Ĉ − C∗, and the percentage caused by the gap between the optimal

cost and its lower bound, i.e., C∗ − C, as a function of the number of seasons I. After the first season, about

81% of the difference between Ĉ and C is caused by the true regret under our policy and 19% is caused by the

gap between C∗ and C. As time goes by, the true regret under our policy per season reduces while the gap

(per season) between the optimal cost and its lower bound remains unaffected. After 50 seasons, about 64%

of the difference between Ĉ and C is caused by the true regret under our policy and 36% is caused by the gap

between C∗ and C. Therefore, a substantial portion of the loss under our policy compared to the lower bound

of the optimal cost is due to the gap between the optimal cost of the clairvoyant problem and its lower bound.

Next, we examine how much of the (true) regret (i.e., the difference between the expected cost Ĉ under

our policy π̂ and the optimal cost C∗ of the clairvoyant problem) is caused by learning and how much of it is

caused by the approximation of the DP (note that this includes the regret caused due to the possible suboptimal

allocation of impressions when the parameters of the win-curve are known). Consider a policy π̃ in which the bid

price and allocation decision in each period are obtained by solving the convex optimization problem optimally

for the clairvoyant problem (i.e., one in which the platform has full information about the win curves at all the

locations in advance). Let C̃ denote the expected cost under policy π̃. Then, the regret under our policy π̂

equals Ĉ −C∗ = (Ĉ − C̃)+ (C̃ −C∗). The first term, namely Ĉ − C̃, is the regret caused by learning, while the

second term, namely C̃ − C∗, is the regret caused by the approximation of the DP (including the suboptimal

A47



Figure 6: Percentage of the difference between Ĉ and C caused by the true regret under our policy
and the gap between the optimal cost and its lower bound

Ĉ: the average cost under our policy π̂; C∗: the optimal cost of the clairvoyant problem; C: the lower bound
on the optimal cost of the clairvoyant problem.

allocation of impressions). For each value of I, we compute the average cost under our policy π̂ and the average

cost under policy π̃ over 100 simulations. Figure 7 plots the percentage of the regret caused by learning (resp.,

suboptimal allocation of impressions) as a function of the number of seasons (I). After the first season, about

85% of the regret is caused by learning and at most 15% of the regret is caused by the suboptimal allocation

of impressions. With time, the learning of the win curves improves and we get progressively better estimates of

the parameters of the win curves. Therefore, the percentage of the regret caused by learning reduces over time.

After 50 seasons, about 66% of the regret is caused by learning and at most 34% is caused by the suboptimal

allocation of impressions. To summarize, learning (in other words, insufficient knowledge of the parameters of

the win curves) is the dominant cause of regret.
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Figure 7: Percentage of the regret caused by learning and approximation of the DP (including subop-
timal allocation of impressions).

Ĉ: the average cost under our policy π̂; C∗: the optimal cost of the clairvoyant problem; C̃: the average cost
under policy π̃.
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