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In this paper we explore properties of a family of probability density functions, called norm-induced densities,
defined as

ft(x) =





e−t‖x‖p

dx∫
K

e−t‖y‖pdy
, x ∈ K

0, x /∈ K,

where K is a n-dimensional convex set, parameters t > 0 and p > 0, and ‖ · ‖ is any norm. We also develop
connections between these densities and geometric properties of K such as diameter, width of the recession cone,
and others.

Moreover, we establish a new set inclusion characterization for convex sets. This leads to a new concentration
phenomena for unbounded convex sets. More explicitly, we show that most points of a convex set are contained
in any enlargement of the set’s recession cone.

Finally, these properties are used to develop an efficient probabilistic algorithm to test whether a convex set,
represented only by a membership oracle, is bounded or not, where the algorithm reports an associated certificate
of boundedness or unboundedness.

Key words: convex sets ; unbounded sets ; homotopy ; random walk ; membership oracle

MSC2000 Subject Classification: Primary: 52A20 , 90C60 ; Secondary: 90C25

OR/MS subject classification: Primary: Convexity ; Secondary: Random Walk

1. Introduction. The geometry of convex sets has been extensively studied during the past half-
century. More recently, the interplay between convex geometry and probability theory has been investi-
gated. Among many possible research directions, log-concave probability measures provide an interesting
framework that generalizes uniform densities on convex sets but preserves many interesting properties, see
[11]. Here we will focus on a family of densities functions whose properties relate to geometric properties
of the convex set defined by its support. We say that a probability density function ft : IRn → IR+ is
called norm-induced if

ft(x) =





e−t‖x‖p

dx∫
K

e−t‖y‖pdy
, x ∈ K

0, x /∈ K

(1)

where K is a convex set in IRn, t > 0 and p > 0 are parameters, and ‖ · ‖ is a fixed norm. Note that a
probability density function of the form (1) is always proper. Moreover, ft is log-concave only if p ≥ 1.

We will explore the connection between these densities and geometric properties of the convex set
K itself, usually as a function of the parameter t. The geometry of unbounded convex sets plays an
important role in our analysis. For instance, given an arbitrary unbounded convex set we show that most
of its points are contained in any enlargement of its recession cone. This simple geometric phenomenon
motivates many of our results.

In the case of p ≥ 1, a random variable whose density distribution function is ft can be efficiently
simulated (at least approximately) by geometric random walk algorithms [10]. In turn, theoretical results
on ft can be used to construct (implementable) algorithms to test properties of K itself.

We also develop an algorithm to test if a given convex set K ⊂ IRn is bounded or unbounded. In
either case the algorithm will construct an associated certificate of boundedness or unboundedness based
on the properties established in Section 3. We emphasize that algorithms for this problem are closely
related to the representation used to describe the set K. Our interest lies in cases in which the convex set
is given only by a membership oracle. This (minimal assumption) framework is the standard framework
in several applications in the computer science literature. Furthermore, it covers many other problems
of interest such as convex feasibility.

The decision problem of testing for boundedness has a variety of interesting consequences. In recent
years, several probabilistic methods have been proposed to compute quantities like centroid, volume
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[13], convex optimization [6], and many others [1], in the context of convex bodies. In all these cases,
boundedness of a convex set is a fundamental assumption for whose testing our algorithm provides a
constructive approach. Khachiyan established the equivalence between a strongly polynomial algorithm
for linear programming and a strongly polynomial algorithm for testing unboundedness of a convex set
associated with a system of linear inequalities [7]. Moreover, linear homogeneous conic feasibility problems
of the form {

Ax ∈ C
x ∈ IRn\{0} (2)

(where C is closed convex cone) can be converted into our framework by defining

K = {x ∈ IRn : Ax + h ∈ C} (3)

for any h ∈ int C. In this case, 0 ∈ int K, and the recession cone of K coincides with the set of
feasible solutions of the original system (2). Moreover, K is bounded only if (2) is infeasible. Finally, a
membership oracle for the cone C suffices to construct a membership oracle for K and its recession cone
CK .

The implementability of our algorithm relies on the ability to sample random variables distributed
according to a probability density ft. Over the last decade many important developments on sampling
from log-concave densities, most notably via geometric random walks, have been observed. In particular,
the hit-and-run random walk has been extensively analyzed and polynomial rates of convergence have
been established for this particular random walk under the log-concavity assumption [8, 11, 12, 10].
Besides, the homotopy analysis proposed here is similar to the analysis done by Lovász and Vempala in
[13] of the algorithm they called reverse annealing, which was applied to the problem of computing the
volume of a (bounded) convex body. However, our approach differs from [13] with in respects: by using
a different density family, and by dealing explicitly with the possible unboundedness of K.

In the presence of additional structure, other algorithms are available in the literature. For example,
assuming that a self-concordant barrier function is available for K, minimizing such function leads to
appropriate certificates of boundedness or unboundedness (note that the minimum is finite only if K is
bounded). That idea was used first by de Ghellink and Vial in [3] for linear programming and more
recently by Nesterov, Todd and Ye [14] for nonlinear programming problems. Moreover, if K is given
explicitly by a set of linear inequalities, one can identify an element of the recession cone by solving a
linear programming problem.

We emphasize that none of these approaches extends to the membership oracle framework. In fact,
negative results do exist for approximating the diameter of a bounded convex set, which is a closely
related problem. Lovász and Simonovits [9] show that no polynomial time algorithm (deterministic or
probabilistic) can approximate the diameter of a convex set within a factor of

√
n in polynomial time

under the membership oracle framework. Thus, it is notable that, as we show, testing if a convex set is
unbounded is solvable in polynomial time.

An outline of this paper is as follows. Section 2 illustrates the geometric intuition underlying many
results. Then we establish many properties relating the density functions (1) and the convex set K in
Section 3. The algorithm to test boundedness is presented in Section 4 and its analysis is presented in
the following sections. Finally, Appendix A contains the details on how to implement the hit-and-run
geometric random walk efficiently for the density functions used in the algorithm.

1.1 Preliminaries, definitions, and notation. Recall that a real-valued function ‖·‖ : IRn → IR+

is said to be a norm if:

(i) ‖x‖ = 0 only if x = 0;

(ii) ‖tx‖ = |t|‖x‖ for any t ∈ IR;

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ IRn.

For a given norm, we can define a unit ball

B‖·‖(x, r) = B(x, r) = {y ∈ IRn : ‖y − x‖ ≤ r}, (4)

and a unit sphere Sn−1 = {y ∈ IRn : ‖y‖ = 1}.
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The Euclidean inner product is denoted by 〈·, ·〉 and ‖ · ‖2 =
√
〈·, ·〉 denotes the Euclidean norm

induced by it. For x ∈ IRn and r > 0, let B2(x, r) denote the Euclidean ball centered at x with radius
r, i.e., B2(x, r) = {y ∈ IRn : ‖x − y‖2 ≤ r}. The unit Euclidean sphere of IRn is denoted by Sn−1

2 , i.e.,
Sn−1

2 = {y ∈ IRn : ‖y‖ = 1}.
The dual norm of ‖ · ‖ induced by 〈·, ·〉 is defined by

‖s‖∗ = max{〈s, x〉 : x ∈ B(0, 1)}, (5)

for which we can also define a unit ball B∗(s, r) = {w ∈ IRn : ‖w− s‖∗ ≤ r} and a unit sphere Sn−1
∗ . By

definition we have that | 〈s, x〉 | ≤ ‖s‖∗‖x‖. The dual norm completely defines the original norm, since
we have

‖x‖ = max{〈s, x〉 : s ∈ B∗(0, 1)}. (6)
That is, the dual norm of the dual norm is the original norm. Recall that the dual norm of the Euclidean
norm is also the Euclidean norm, which is said to be self-dual.

A set K is convex if x, y ∈ S implies αx + (1 − α)y ∈ S for every α ∈ [0, 1]. C is a cone if x ∈ C
implies αx ∈ C for every α ≥ 0. If C is a convex cone, the width of C is given by

τC = max
x,τ

{τ : B(x, τ) ⊂ C, ‖x‖ = 1}, (7)

the radius of the largest ball contained in C centered at a unit vector (in the appropriate norm). L is a
subspace of IRn if x, y ∈ L implies that αx + βy ∈ L for every α, β ∈ IR.

For a set S, the operations conv(S), cone(S), ext(S), int (S), cl (S), diam(S), and Vol(S) denote,
respectively, the convex hull, conic hull, extreme points, interior, closure, diameter, and volume of S (see
[15] for complete definitions). Also, for x ∈ IRn, let dist(x, S) = inf{‖x− y‖ : y ∈ S} denote the distance
from x to S. For a scalar u, set (u)+ = max{0, u}, and for a matrix M denote by λmax(M) (respectively
λmin(M)) its maximum (respectively minimum) eigenvalue.

A membership oracle for a set S is any algorithm, that given any point x ∈ IRn, correctly identifies if
x ∈ S or not. Let 1S denote the indicator function of the set S, that is, 1S(x) = 1 if x ∈ S and 1S(x) = 0
otherwise.

With respect to complexity notation, g(n) is said to be O(f(n)) if there exists a constant M such
that g(n) ≤ Mf(n), while g(n, µ) is O∗(f(n, µ)) if there exists constants M and k such that g(n, µ) ≤
Mf(n, µ) lnk n (that is, the O∗ notation omit logarithmic factors of the dimension but still shows the
dependence on other possible condition measure µ).

1.2 Logconcave densities: concepts and notation. We define πf as the probability measure
associated with a probability density function f (i.e, πf (S) =

∫
S

f(x)dx), Ef [·] as the expectation with
respect to f , and zf as the mean of a random variable whose probability density function is f . The
following class of functions plays a central role in the sampling literature.

Definition 1.1 A function f : IRn → IR+ is logconcave if for any two points x, y ∈ IRn and any
λ ∈ (0, 1),

f(λx + (1− λ)y) ≥ f(x)λf(y)1−λ.

Definition 1.1 implies that ln f is a concave function and, in particular, the support of f is a convex set.
We say that a random variable is logconcave if its probability density function is a logconcave function.
Gaussians, exponential and uniforms densities are examples of logconcave densities.

There are a variety of metrics available for probability densities. Here, we will make use of two of
them: the total variation norm, defined as

‖f − g‖TV =
1
2

∫

IRn

|f(x)− g(x)|dx,

and the L2 norm of f with respect to g, defined as

‖f/g‖ = Ef

[
f(x)
g(x)

]
=

∫

IRn

f(x)
g(x)

f(x)dx =
∫

IRn

(
f(x)
g(x)

)2

g(x)dx.

The following useful concept is associated with the covariance matrix induced by f .
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Figure 1: High-dimensional bounded convex sets and volume. Exponential decay as we move away the
median cut.

Definition 1.2 A density function f with expectation zf is said to be C-isotropic if for every vector v,

‖v‖22
C

≤
∫

IRn

〈v, x− zf 〉2 f(x)dx ≤ ‖v‖22C,

equivalently, any eigenvalue λ of the covariance matrix of f satisfies:
1
C
≤ λ ≤ C.

A function f is said to be in isotropic position if it is 1-isotropic, that is, its covariance matrix is the
identity. Thus, any density can be made isotropic by a linear transformation of the space.

2. ε-Enlargements of the Recession Cone. In this section we revisit a classical representation
theorem for closed convex sets and we provide a new set inclusion characterization for such sets which
will be key in our analysis.

Let K ⊂ IRn be a closed convex set. As a matter of convenience, assume K is full dimensional, as one
can always work within the affine hull of K, but at considerable notational and expositional expense. For
the sake of exposition, in this section we will assume that K contains no lines (in the upcoming sections
we do not make such assumption).

As is standard in convex theory, the set of all directions of half-lines contained in K defines the recession
cone of K denoted by CK , i.e.,

CK = {d ∈ IRn : K + d ⊆ K}, (8)

which is a closed convex cone ([15] Corollary 8.3.2). Moreover, it is well-known that K is unbounded
only if CK 6= {0} ([15] Theorem 8.4).

Under this framework, K contains at least one extreme point ([15] Corollary 18.5.3). Thus, the
following representation theorem for closed, line-free, convex sets applies to K.

Theorem 2.1 Any closed line-free convex set K ⊂ IRn can be decomposed into the sum of two sets, the
recession cone of K and the convex hull of its extreme points. That is,

K = CK + conv
(
ext(K)

)
. (9)

In order to develop intuition on the relation between high-dimensional convex sets and volume, we
need to understand how to draw pictures of what high-dimensional convex sets look like. The intuition for
convex bodies (bounded convex sets with nonempty interior) was first suggested by Gromov and Milman
in [4]. The fact that the volume of parallel intersections of half-spaces with K decays exponentially fast
after passing the median level must be taken into account. As suggested by Gromov and Milman, small
dimensional pictures of a high-dimensional convex body should have a hyperbolic form, see Figure 1.
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Figure 2: High-dimensional unbounded convex sets and volume. Most of the mass concentrates around
the recession cone.

However, our concern here is to extend such intuition to unbounded convex sets. In this context a
similar (concentration) phenomenon will also be observed. Assuming that the recession cone has positive
width, “most of the points” of the set are in the recession cone. (Note that one needs to be careful
when quantifying “most of the points”, since the volume is infinite.) Again small dimensional pictures of
high-dimensional unbounded convex sets must have a hyperbolic form, see Figure 2.

In fact, even if the recession cone has zero width, “most of the points” of K will be contained in any
ε-enlargement of the recession cone, where the latter is formally defined as:

Cε
K = cone

{
Sn−1 ∩ (CK + B(0, ε))

}
. (10)

The following properties of the ε-enlargement of the recession cone follow directly from the definition.

Lemma 2.1 For ε > 0 sufficiently small, we have that:
(i) Cε

K is a closed cone and contains no line;
(ii) if CK = {0}, then Cε

K = {0};
(iii) if CK 6= {0}, then τCε

K
≥ max{τCK

, ε/3}.

Proof. Cε
K is a closed cone by definition. Since CK is a pointed cone, the Pompeiu-Hausdorff

distance of the cone CK to any cone C that contains a line is bounded away from zero, δ(CK , C) =
sup‖z‖≤1 |dist(z, CK)− dist(z, C)| > c > 0 (see [5] for details). Moreover, δ(CK , Cε

K) ≤ ε. Thus we can
choose ε < c and Cε

K does not contain lines.

If CK = {0}, for ε < 1 we have Sn−1 ∩ (CK + B(0, ε)) = ∅ and Cε
K = {0} and (ii) follows.

To prove (iii), observe that CK ⊂ Cε
K implies that τCε

K
≥ τCK

. Moreover, if z ∈ CK , ‖z‖ = 1,
we will show that B(z, ε/3) ⊂ Cε

K . Take x ∈ B(z, ε/3) and let w := x/‖x‖. Since ‖z‖ = 1, we have
1 + ε/3 ≥ ‖x‖ ≥ 1− ε/3. Then

∥∥∥ x
‖x‖ − z

∥∥∥ =
∥∥∥x−z
‖x‖ + z

‖x‖ − z
∥∥∥ ≤ ‖x−z‖

‖x‖ + ‖z‖
(

1
‖x‖ − 1

)

≤ ε
3

1
1−ε/3 + 1

1−ε/3 − 1 = 2ε
3−ε < ε,

where the last inequality follows since ε < 1. Since x/‖x‖ ∈ Sn−1 and x/‖x‖ ∈ B(z, ε), x ∈ Cε
K . This

implies that τCε
K
≥ ε/3.

¤
Now we are in position to obtain a set inclusion characterization of the aforementioned geometric

phenomena, which will motivate most of the analysis in the sections to come.

Theorem 2.2 Let K be a convex set. Then, for any ε > 0, there exists a positive scalar Rε such that

K ⊆ Cε
K + B(0, Rε). (11)
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Proof. Without loss of generality, assume 0 ∈ K. Suppose that there exists a sequence {xj} of
elements of K such that dist(xj , Cε

K) > j. The normalized sequence has a convergent subsequence,
{dkj = xkj /‖xkj‖}, to a point d. Since K is convex, closed and 0 ∈ K, dkj and d are in K. In fact,
d ∈ CK . For any ε > 0, there exists a number j0 such that

‖dkj − d‖ < ε for all j > j0.

Therefore, we have dkj ∈ Cε
K for j > j0. In addition, xkj ∈ Cε

K , since Cε
K is a cone, contradicting

dist(xj , Cε
K) > j for every j. ¤

It is well-known that for the polyhedral case Theorem 2.2 holds with ε = 0 but this is not the case in
general.

Example 2.1 Consider K = {(x, y) ∈ IR2 : x > −1, ln(x + 1) ≥ y}. Here the recession cone is CK =
IR+ × IR− and τCK

= 1/
√

2. Note that for all R > 1, the point (R, ln R) ∈ K and dist((R, ln R), CK) =
ln R. Consider ε < 1/5 which implies that Cε

K contains no lines. For any point (x, y) ∈ K such that
x ≥ 1

ε ln2 1
ε , we have that y ≤ ln x ≤ εx which implies that (x, y) ∈ Cε

K . Thus, Theorem 2.2 holds with
Rε := 2

ε ln2 1
ε .

The ε-enlargement of the recession cone captures all points of K except for a bounded subset. Thus,
assuming that K is unbounded, such geometric phenomenon implies that “most points” of K will be
contained in K ∩ Cε

K . Moreover, if τCK
> 0, most points of K will actually be contained in CK itself.

This is quantified in the next results.

Lemma 2.2 Let CK be a convex cone with strictly positive width τCK
. Then

Voln−1

(
Cε

K ∩ Sn−1
) ≤

(
1 +

2ε

τCK

)n

Voln−1

(
CK ∩ Sn−1

)
.

Proof. By definition of τCK
, B(z, τCK

) ⊂ CK for some z ∈ Sn−1. Since CK and Cε
K are cones,

Voln−1

(
Cε

K ∩ Sn−1
)

Voln−1 (CK ∩ Sn−1)
=

Vol (Cε
K ∩B(0, 1))

Vol (CK ∩B(0, 1))
≤ Vol ((CK ∩B(0, 1)) + B(0, ε))

Vol (CK ∩B(0, 1))
,

since
(
Cε

K ∩B(0, 1)
)
⊂

(
CK ∩B(0, 1) + B(0, ε)

)
. Next, we have B(z/2, τCK

/2) ⊂
(
CK ∩B(0, 1)

)
, so

that (
CK ∩B(0, 1)

)
+ B(0, ε) ⊂

(
CK ∩B(0, 1)

)
+

2ε

τCK

(
CK ∩B(0, 1)− z

2

)
,

and the result follows. ¤

Theorem 2.3 Let Xt be norm-induced random variable defined by a norm ‖ · ‖, parameters t > 0 and
p > 0, and a convex set K. Moreover, let Yt also be a norm-induced random variable defined by the same
norm ‖ · ‖, the same parameters t > 0 and p > 0, but with a different convex set KY such that

K ⊆ KY ⊆ Cε
K + B(0, Rε).

Then

P (Xt ∈ CK) ≥ P (Yt ∈ CK) ≥
(

1− 2ε

τCK

)n

P (Yt ∈ Cε
K) .

Proof. By definition we have that
P (Yt ∈ CK) = P (Yt ∈ CK |Yt ∈ K)P (Yt ∈ K) + P (Yt ∈ CK |Yt /∈ K) P (Yt /∈ K) .

Next, note that P (Yt ∈ CK |Yt /∈ K) = 0 and P (Yt ∈ CK |Yt ∈ K) = P (Xt ∈ CK) since CK ⊂ K ⊂ KY .
These relations imply the first inequality.

For simplicity, let A = {x ∈ IRn : ‖x‖ = ρ} denote the sphere of radius ρ. To prove the second
inequality, note that for any ρ ≥ 0

P (Yt ∈ CK | ‖Yt‖ = ρ) =
Voln−1(CK ∩A)
Voln−1(S ∩A)

≥
(

1− 2ε

τCK

)n
Voln−1(Cε

K ∩A)
Voln−1(S ∩A)

≥
(

1− 2ε

τCK

)n
Voln−1(Cε

K ∩A ∩ S)
Voln−1(S ∩A)

=
(

1− 2ε

τCK

)n

P (Yt ∈ Cε
K | ‖Yt‖ = ρ)
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where the first inequality follows from Lemma 2.2 and the second because Cε
K might not be contained in

S. Since this holds for every ρ ≥ 0, the result follows.

¤
Taken together, Theorems 2.2 and 2.3 with ε ≤ τCK

/4n imply that we have at least a constant fraction
(independent of the dimension) of the points in Cε

K in CK . Thus, finding points in CK is easily achieved
by finding random points in Cε

K ∩K.

3. Geometry of norm-induced densities. In this section we establish several properties of the
random variable Xt, whose density function ft is given by (1). Many properties of Xt can be related with
a variety of geometric quantities/properties of the set K itself. These results are partially motivated by
known properties of uniform distributions over convex sets. Nonetheless, norm-induced densities may fail
to be log-concave which is a key property used in similar results [11]. Moreover, for algorithmic reasons,
we are also interested in relating explicitly the dependence between geometric quantities of K and the
parameter t of the norm-induced density. For the sake of exposition, we will assume the following:

Assumption 3.1 K is a closed convex set that contains the origin and has nonempty interior.

Assumption 3.2 There exists a positive number R such that K ⊆ CK + B(0, R).

Assumption 3.1 is needed to ensure that K has positive n-dimensional volume (possibly infinite).
Nonetheless, one can always work with the affine hull of K if one uses the appropriate lower dimensional
volume. As expected, the origin could be replaced by any other point in K. All results could be restated
for that particular point (if we translate the density ft appropriately).

The focus on convex sets that satisfies Assumption 3.2 is not restrictive. In light of Section 2 we know
that such inclusion can always be obtained if the recession cone is properly enlarged. In the case of
unbounded convex sets whose recession cone has positive width, Theorem 2.3 shows how to relate the
enlarged cone with the original recession cone. On the other hand, for unbounded convex sets whose
recession cone has zero width, we know that the recession cone has zero measure for any ft. Finally,
Assumption 3.2 is always satisfied by any bounded convex set, using R = diam(K) and CK = {0}, or
any polyhedral convex set.

We start with a simple result of the levels sets of the norm-induced densities.

Theorem 3.1 The upper level sets of a density function ft defined as in (1). Moreover, consider the
function g(x) = ‖∇ ln ft(x)‖∗ which gives the dual norm of the gradient of the logarithm of ft at x. This
function is well defined even if ft is non-differentiable and we have two cases:
(i) if p ≥ 1 the lower level sets of g are convex;
(ii) if 0 < p ≤ 1 the upper level sets of g are convex.

Proof. The upper level sets of ft are defined by

{x ∈ K : ft(x) ≥ c} =
{

x ∈ K : t‖x‖p ≤ −ln
(
c

∫
ft(z)dz

)}

. Since the parameters t and p are positive, such set is either a scaling of the unit ball intersected with
K or the empty set (both convex sets).

For the second part of the theorem, we first compute g(x). Recall that if s ∈ ∂‖x‖ (s is in the
subdifferential of ‖ · ‖ at x), we have that s ∈ Sn−1

∗ . Then we have

g(x) = ‖ − tp‖x‖p−1s‖∗ = tp‖x‖p−1‖s‖∗ = tp‖x‖p−1.

The result follows since g is convex for p ≥ 1 and concave for 0 < g ≤ 1. ¤
The next lemma shows that the norm-induced densities exhibit a concentration phenomena similar to

log-concave densities.
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Lemma 3.1 Let Xt ∼ ft as in (1). For D ≥ 4 we have

P

(
‖Xt‖ ≥

(
n

tp
D

)1/p
)
≤ 1

3
e−

n
p D/3

Proof. Let M :=
(

n
tpD

)1/p

. Define KY := cone{MSn−1 ∩K} (a possible non-convex set) and let

Yt ∼ e−t‖y‖p

over KY . Then we have

P (‖Xt‖ ≥ M) ≤ P (‖Yt‖ ≥ M),

since {y ∈ KY : ‖y‖ ≤ M} ⊂ K and {y ∈ K : ‖y‖ ≥ M} ⊂ KY .

Then for Yt we have

P (‖Yt‖ ≥ M) =

∫
y∈KY :‖Yt‖≥M

e−t‖y‖p

dy∫
y∈KY

e−t‖y‖pdy
=

∫∞
M

vn−1e−tvp

dv∫∞
0

vn−1e−tvpdv
.

Let u := tvp, c := tMp = n
p D, and we obtain

P (‖Yt‖ ≥ M) =

∫∞
c

u
n
p−1e−udu∫∞

0
u

n
p−1e−udu

≤
∫∞

c
ud

n
p−1ee−udu∫∞

0
ud

n
p−1ee−udu

= e−c

dn
p−1e∑

i=0

ci

i!
.

Next recall that i! ≥ (i/e)i (from the Stirling’s formula, and using the convention that 00 = 1) and
ln(1 + h) ≤ h. Then

e−c
∑dn

p−1e
i=0

ci

i! ≤ e−
n
p D ∑dn

p−1e
i=0

( n
p D)i

(i/e)i = e−
n
p D ∑dn

p−1e
i=0 ei ln(

n/p
i De)

= e−
n
p D ∑dn

p−1e
i=0 ei ln(1+ (n/p)−i

i )+i ln(De) ≤ e−
n
p D ∑dn

p−1e
i=0 e(n/p)−i+i ln(De)

= e−
n
p (D−1) ∑dn

p−1e
i=0 ei ln(D) = e−

n
p (D−1) e

dn
p
−1e ln(D)−1
eln(D)−1

≤ 1
3e−

n
p (D−1−ln(D)) ≤ 1

3e−
n
p D/3.

¤
As anticipated, we will show that the probability of the event {Xt ∈ CK} will be large for “small”

values of t. To do so, we exploit the spherical symmetry of ft (i.e., ft(x) = ft(y) if ‖x‖ = ‖y‖) and the
geometric phenomena induced by the representation of Assumption 3.2. That symmetry will allow us
to connect the volume of relevant sets with the probability of the event {Xt ∈ CK}. Lemma 3.2 below
properly quantifies this notion.

Lemma 3.2 Suppose that K is an unbounded convex set, let Xt ∼ ft as in (1), and let ρ > 6R/τCK
.

Then

P (Xt ∈ CK | ‖Xt‖ = ρ ) ≥
(

1− 6R

τCK · ρ
)n

.

Proof. Note that restricted on ‖Xt‖ = ρ, the density ft is constant. Thus, we have

P (Xt ∈ CK | ‖Xt‖ = ρ ) =
Voln−1(CK ∩ (ρSn−1))
Voln−1(K ∩ (ρSn−1))

.

For any a, b, define the sets K[a,b] := {y ∈ K : a ≤ ‖y‖ ≤ b} and Ka := K[a,a] = (aSn−1) ∩K. Set
ρ̄ = ρ/3 ≥ 2R/τCK

, and consider the following set inclusions

I[ρ̄,ρ] := {y ∈ CK : ρ̄ ≤ ‖y‖ ≤ ρ} ⊂ K[ρ̄,ρ] ⊂ O[ρ̄,ρ] := {y ∈ B(0, R) + CK : ρ̄ ≤ ‖y‖ ≤ ρ}.

We first show that O[ρ̄,ρ] ⊂ I[ρ̄,ρ] + B(0, 2R). For y ∈ O[ρ̄,ρ], we have y = v + w, where ‖v‖ ≤ R,
w ∈ CK , ‖v + w‖ ∈ [ρ̄, ρ], and hence ‖w‖ ∈ [ρ̄ − R, ρ + R]. Therefore w ∈ I[ρ̄−R,ρ+R] ⊂ I[ρ̄,ρ] + B(0, R),
and the result follows since v ∈ B(0, R).

Now, take z ∈ CK , ‖z‖ = 1, such that B(z, τCK
) ⊂ CK . Thus,

B

(
(ρ̄ + ρ)

2
z,

(ρ̄ + ρ)
2

τCK

)
⊂ CK .
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Observe that ρ ≥ 3ρ̄ implies that ρ̄ ≤ (ρ̄+ρ)
2 − (ρ̄+ρ)

4 and (ρ̄+ρ)
2 + (ρ̄+ρ)

4 ≤ ρ, so we have

B

(
(ρ̄ + ρ)

2
z,

(ρ̄ + ρ)
4

τCK

)
= B

(
(ρ̄ + ρ)

2
z, 2κR

)
⊂ I[ρ̄,ρ], (12)

where κ = (ρ̄+ρ)
8

τCK

R . Thus, B (w, 2R) ⊂ 1
κI[ρ̄,ρ] for w = ρ̄+ρ

2κ z.

Vol(I[ρ̄,ρ])
Vol(K[ρ̄,ρ])

≥ Vol(I[ρ̄,ρ])
Vol(O[ρ̄,ρ])

≥ Vol(I[ρ̄,ρ])
Vol(I[ρ̄,ρ] + B(0, 2R))

≥ Vol(I[ρ̄,ρ])
Vol(I[ρ̄,ρ] + 1

κI[ρ̄,ρ])
=

1(
1 + 1

κ

)n ≥
(

1− 1
κ

)n

.

We will complete the proof in three steps. For s ∈ [ρ̄, ρ], consider the sets Is and Os.

First note that

Voln−1(Is)
Voln−1(Os)

=
Voln−1(CK ∩ Sn−1)

Voln−1(CK + B(0, R/s) ∩ Sn−1)
=

Voln−1(CK ∩ Sn−1)
Voln−1(CK + B(0, R/s) ∩ Sn−1)

is a nondecreasing function of s. Second, observe that

Vol(I[ρ̄,ρ])
Vol(O[ρ̄,ρ])

=

∫ ρ

ρ̄
Voln−1(Is)ds∫ ρ

ρ̄
Voln−1(Os)ds

.

Next, we will make use of the following remark.

Remark 3.1 For any a < b and any two positive functions g and h such that

g(s)
h(s)

is nondecreasing for s ∈ [a, b], we have
g(a)
h(a)

≤
∫ b

a
g(s)

∫ b

a
h(s)

ds ≤ g(b)
h(b)

.

Third, applying Remark 3.1 with g(s) = Voln−1(Is), h(s) = Voln−1(Os), a = ρ̄ and b = ρ to obtain

P (Xt ∈ CK | ‖Xt‖ = ρ ) =
Voln−1(Iρ)
Voln−1(Kρ)

≥ Voln−1(Iρ)
Voln−1(Oρ)

≥ Vol(I[ρ̄,ρ])
Vol(O[ρ̄,ρ])

≥
(

1− 1
κ

)n

.

Finally, since ρ̄ = ρ/3 we have κ = τCK
ρ

6R . ¤

Proof. of Remark 3.1. Simply note that g(s)
h(s) ≤ g(b)

h(b) for s ∈ [a, b]. Then

∫ b

a

g(s)ds =
∫ b

a

h(s)
g(s)
h(s)

ds ≤
(

g(b)
h(b)

) ∫ b

a

h(s)ds,

and a similar argument yields the lower bound. ¤
Since the bound obtained in Lemma 3.2 is monotone in ρ and trivially true for bounded convex sets

(τCK
= 0), we have the following useful corollary.

Corollary 3.1 For any convex set K and ρ ≥ 6R/τCK we have

P (Xt ∈ CK | ‖Xt‖ ≥ ρ) ≥
(

1− 6R

τCK · ρ
)n

.

The previous results used conditioning on the event that the random points have large norm. It is
natural to bound the probability of these conditional events as well.

Lemma 3.3 Suppose that K is unbounded, and that ft is given by (1). For a random variable Xt dis-
tributed according to ft we have

P (‖Xt‖ ≥ ρ) ≥ 1− 4eρt1/p.
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Proof. We can assume that ρt1/p < 1/4e, since the bound is trivial otherwise. We use the notation
introduced in the proof of Lemma 3.2, K[a,b] = {y ∈ K : a ≤ ‖y‖ ≤ b}.

Assuming that K is unbounded, there exists z ∈ CK , ‖z‖ = 1. Then,

K[0,ρ] + (κ + 2ρ)z ⊂ K[κ,κ+3ρ] for any κ ∈ IR+, (13)

since for each x ∈ K[0,ρ], we have

‖x + (κ + 2ρ)z‖ ≤ ‖x‖+ (κ + 2ρ)‖z‖ ≤ κ + 3ρ,
‖x + (κ + 2ρ)z‖ ≥ (κ + 2ρ)‖z‖ − ‖x‖ ≥ κ + ρ,

and x + (κ + 2ρ)z ∈ K (the latter follows from z ∈ CK).

So, for any odd integer m ≥ 3, K[ρ,mρ] =
(m−1)/2⋃

i=1

K[(2i−1)ρ,(2i+1)ρ], where the union is disjoint (except

on a set of measure zero), and by (13) we have

Vol(K[ρ,mρ]) =
(m−1)/2∑

i=1

Vol(K[(2i−1)ρ,(2i+1)ρ]) ≥
(m− 1)

2
Vol(K[0,ρ]).

Now, define m := 1
ρt1/p . By assumption we have ρt1/p < 1/4e, which implies m ≥ 4e (again, we

assume that m in an odd integer for convenience). Thus,

P (‖Xt‖ ≥ ρ) =

∫
K[ρ,∞]

e−t‖x‖p

dx
∫

K[0,ρ]
e−t‖x‖pdx +

∫
K[ρ,∞]

e−t‖x‖pdx

≥
∫

K[ρ,mρ]
e−t‖x‖p

dx
∫

K[0,ρ]
e−t‖x‖pdx +

∫
K[ρ,mρ]

e−t‖x‖pdx

≥ Vol(K[ρ,mρ])e−t(mρ)p

Vol(K[0,ρ]) + Vol(K[ρ,mρ])e−t(mρ)p

≥ (m− 1)Vol(K[ρ,mρ])e−t(mρ)p

2Vol(K[ρ,mρ]) + (m− 1)Vol(K[ρ,mρ])e−t(mρ)p

≥ (m− 1)e−t(mρ)p

2 + (m− 1)e−t(mρ)p .

Using the definition of m, we have

P (‖Xt‖ ≥ ρ) ≥
( 1

ρt1/p − 1)e−1

2 + ( 1
ρt1/p − 1)e−1

=
( 1

ρt1/p − 1)

2e + ( 1
ρt1/p − 1)

≥ 1− 2e
1

ρt1/p − 1
= 1− 2eρt1/p

1− ρt1/p
≥ 1− 4eρt1/p.

¤
Lemma 3.2 and Corollary 3.1 quantify the geometric notion mentioned earlier (motivated by Figure

2), that most points in K outside a compact set are in CK if its width is positive. On the other hand,
Lemma 3.3 shows that the norm of Xt is likely to be greater than 0.01/t1/p. Taken together, they lead
to a lower bound on the probability of the event {Xt ∈ CK}.

Theorem 3.2 Suppose that K is unbounded, and ft is defined as in (1). Let δ ∈ (0, 1) and suppose

t ≤
(

δ2τCK

96enR

)p

,

and let Xt be a random variable distributed according to ft. Then

P (Xt ∈ CK) ≥ 1− δ.
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Proof. All that is needed is to combine Lemmas 3.2 and 3.3. Clearly,

P (Xt ∈ CK) ≥ P (‖Xt‖ ≥ ρ)P (Xt ∈ CK | ‖Xt‖ ≥ ρ) .

By Lemmas 3.2 and 3.3, we have

P (‖Xt‖ ≥ ρ) ≥ 1− 4eρt1/p and P (Xt ∈ CK | ‖Xt‖ ≥ ρ) ≥
(

1− 6R

τCK
· ρ

)n

.

It is sufficient to ensure that

1− 4etρ > 1− δ

2
and

(
1− 6R

τCK
· ρ

)n

> 1− δ

2

for some ρ ≥ 6R/τCK
. Noting that (1 − x)1/n ≤ 1 − x

n for all x ∈ [0, 1], the second relation also holds
since if

1− 6R

τCK
· ρ > 1− δ

2n
.

It suffices to choose ρ = 12nR
δτCK

for the second relation to hold, and the first relation holds since

4eρt1/p ≤ 4δ2τCK
e12nR

96enRδτCK

=
δ

2
.

¤
Theorem 3.2 characterizes the behavior of random variables Xt ∼ ft for values of t that are “relatively

small” with respect to its support K. It is natural to ask what kind of behavior one should expect for
values of t that are “relatively large” with respect to the support K. An answer to this question is given
in the next lemma.

Lemma 3.4 Assume that there exists v̄ ∈ K such that ‖v̄‖ = D. If t1/p ≥ 1/D, then

max
s∈Sn−1

∗
P

(∣∣ 〈s,Xt〉
∣∣ >

1
4ent1/p

)
>

1
9
.

Proof. Let γ = 1
4ent1/p . Since D = ‖v̄‖ = max{〈s, v̄〉 : s ∈ B∗(0, 1)}, there exists v ∈ Sn−1

∗ such
that 〈v, v̄〉 = D.

By obtaining a lower bound for v we automatically obtain a lower bound for the maximum over the
dual sphere. So,

max
s∈Sn−1

∗
P

(∣∣ 〈s,Xt〉
∣∣ > γ

) ≥ P
(∣∣ 〈v, Xt〉

∣∣ > γ
)
.

It will be convenient to define the following sets

A = {x ∈ K : | 〈v, x〉 | < γ} and B =

{
(1− α)x + αv̄ : x ∈ A

}
,

where α = γ
2
D

<
1

2en
.

Note that for any y ∈ B, y ∈ K since x and v̄ ∈ K and α ∈ (0, 1). Moreover,

| 〈v, y〉 | ≥ 〈v, y〉 = (1− α) 〈v, x〉+ α 〈v, v̄〉 > −γ + γ
2
D

D = γ.

Thus, y /∈ A.

Next recall that for any M > 0 (and ‖x‖ 6= 0), we have

‖(1− α)x + αv̄‖p ≤ ‖x‖p
(
1 +

2γ

M

)p

+ (M + 2γ)p. (14)
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By choosing M = 2eγn, we have

P (Xt ∈ K \A) ≥ P (Xt ∈ B) =
∫

B

e−t‖y‖p

dy∫
K

e−t‖z‖dz

=
1∫

K
e−t‖z‖pdz

∫

A

e−t‖(1−α)x+αv̄‖p

(1− α)ndx

≥ e−t(M+2γ)p

(1− α)n

∫
K

e−t‖z‖pdz

∫

A

e−t‖(1+ 2γ
M )x‖p

dx

≥ e−t(2γ)p(en+1)p

(1− α)n
(
1 + 1

en

)−n

∫
K

e−t‖z‖pdz

∫

(1+ 2γ
M )A

e−t‖x‖p

dx

≥ e−t(2γ)p4pnp

e−1/(2e−1)e−1/eP (Xt ∈ A)

≥ 1
e2 P (Xt ∈ A) = 1

e2 (1− P (Xt ∈ K \A))

and we have P (Xt ∈ K \A) ≥ 1/9. ¤
This result allows us to construct several useful bounds on the moments of Xt.

In the case of p = 1, we can improve on Lemma 3.4 as follows.

Corollary 3.2 If in addition we have p = 1, for t ≥ √
n/D we have

max
s∈Sn−1

∗
P

(∣∣ 〈s,Xt〉
∣∣ >

1
4et
√

n

)
>

1
3
.

Proof. The proof is similar to Lemma 3.4. We define A :=
{

x ∈ K : | 〈v, x〉 | < 1
4et
√

n

}
, and

α := 1
2etD

√
n

< 1
2en . Next, note that the inequality (14) becomes

‖(1− α)x + αv̄‖ ≤ ‖x‖+ α‖v̄‖,
and there is no need to use M . In this case, it follows that

P (Xt ∈ K \A) ≥ e−tα‖v̄‖(1− α)nP (Xt ∈ A) ≥ 1
2
P (Xt ∈ A) =

1
2

(1− P (Xt ∈ K \A))

and we have P (Xt ∈ K \A) ≥ 1/3. This holds since we have

e−tα‖v̄‖(1− α)n = e−1/(2e
√

n)
(
1− 1

2etD
√

n

)n

≥ e−1/2e
(
1− 1

2en

)n

≥ e−1/2e · e−1/(2e−1) ≥ 0.664 ≥ 1/2.

¤
For the reader convenience, the next corollary is specialized for the case of ‖ · ‖ = ‖ · ‖2 and p = 1; it

will be used in the following section. It shows how one can relate the eigenvalues of the second moment
matrix, the parameter t, and the diameter of K (if the latter is bounded).

Corollary 3.3 Assume that p = 1 and ‖ · ‖ = ‖ · ‖2. If K is unbounded, then for every t > 0

λmax (E [XtX
′
t]) ≥

1
n(7et)2

.

Otherwise, suppose that for some t > 0 we have

λmax (E [XtX
′
t]) <

1
n(7et)2

.

Then K is bounded and K ⊂ B(0, R) for R =
√

n
t .
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Proof. If one is using the Euclidean norm, we have ‖ · ‖2 = ‖ · ‖ = ‖ · ‖∗. Moreover, we have that

λmax (E [XtX
′
t]) = max

s∈Sn−1
〈s,E [XtX

′
t] s〉 = max

s∈Sn−1
E

[
〈s,Xt〉2

]
.

If K is unbounded, there exists v ∈ K such that ‖v‖ ≥ √
n/t. Thus, we have

max
s∈Sn−1

E
[
〈s, Xt〉2

]
≥ 1

n(4et)2
max

s∈Sn−1
P

(∣∣ 〈s,Xt〉
∣∣ >

1√
n(4et)

)
≥ 1

n(4et)2
1
3
≥ 1

n(7et)2

where the second inequality follows from Corollary 3.2.

For the second part, suppose there exists v̄ ∈ K, with ‖v̄‖ ≥
√

n
t . Let R := ‖v̄‖ ≥ √

n/t. Then
t ≥ √

n/R and ‖v̄‖ = R, so by Corollary 3.2 we have a contradiction.

¤
A similar result can be established for small values at t. Intuitively we will recover results known for

the uniform density as we let t goes to zero.

Lemma 3.5 Assume that there exists v̄ ∈ K such that ‖v̄‖ = D. If t1/p < 1/(2D),

max
s∈Sn−1

∗
P

(∣∣ 〈s,Xt〉
∣∣ >

D

4en

)
>

1
9
.

Proof. The proof is similar to the proof of Lemma 3.4 if one defines

A =
{

x ∈ K : | 〈v, x〉 | < D

4en

}
.

¤

Corollary 3.4 Assume that K has diameter D and t < 1/(2D). Then,

E
[‖Xt‖

] ≥ D

72en
.

Proof. If K has diameter D, there exist two points v̄, w̄ ∈ K such that ‖v̄ − w̄‖ = D. We can
assume that ‖v̄‖ ≥ D/2. The result follows from Lemma 3.5. ¤

We close this section with a simple observation with respect to the entropy of a density function

Ent(f) = −
∫

IRn

f(x) ln f(x)dx.

Corollary 3.5 If ft is a norm induced density function, then

Ent(ft) = tE[‖Xt‖p].

Thus, Lemma 3.4, Lemma 3.5, and Corollary 3.2 can be used to bound the entropy.

Proof. The result follows by noting that −f(x) ln f(x) = t‖x‖pe−t‖x‖p

. ¤

4. Testing the Boundedness of a Convex Set: a Density Homotopy. The algorithm we
propose is a homotopy procedure to simulate a random variable which has desirable properties with
respect to K. Motivated by the geometry of unbounded convex sets, the uniform density over K would
be an interesting candidate. Unfortunately, as opposed to most frameworks in the literature, a random
variable which is uniformly distributed over K will not be proper if K is unbounded and cannot be used.
Instead, we will work with a parameterized family of densities, F = {ft : t ∈ (0, t0]}, such that ft is
a proper density for every t. In addition, for any fixed compact subset of K the parameterized density
uniformly converges to the uniform density over that compact set as t → 0. As mentioned earlier, the
algorithm must provide us with a certificate of boundedness or unboundedness. Any nonzero element of
the recession cone of K is a valid certificate of unboundedness. We will assume that a membership oracle
for the recession cone of K itself is available.
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On the other hand, the certificate of boundedness is more thought-provoking. If K is described
by a set of linear inequalities, K = {x ∈ IRn : Ax ≤ b}, K will be bounded if and only if positive
combinations of the rows of A span IRn. More generally, if K is represented by a separation oracle, a
valid certificate of boundedness would be a set of normal vectors associated with hyperplanes returned
by the separation oracle whose positive combinations span IRn. Note that a membership oracle provides
much less information and we cannot sensibly extend the previous concept to our framework. Instead,
our certificate of boundedness will be given by the eigenvalues of the second moment matrix associated
with the random variables induced by the family F . In contrast with the previous certificates, it will be
a “probabilistic certificate of boundedness” since the true second moment matrix is unknown and must
be estimated via a probabilistic method.

4.1 Assumptions and condition measures. In addition to Assumptions 3.1 and 3.2, we make
the following assumptions on the set K:

Assumption 4.1 K is a closed convex set given by a membership oracle.

Assumption 4.2 There exists r > 0 such that B(0, r) ⊆ K.

Assumption 4.3 A membership oracle is available for CK , the recession cone of K.

The closedness of K could be relaxed with minor adjustments on the implementation of the random
walk. Assumption 4.3 specifies how K is represented.

Assumption 4.2 is stronger than Assumption 3.1. It requires that we are given a point in the interior
of K, which is assumed to be the origin without loss of generality. That is standard in the membership
oracle framework, since the problem of finding a point in a convex set given only by a membership oracle
is hard in general. Finally, we emphasize that only a lower bound on r is required to implement our
algorithm. Section 5.3 gives a simple procedure to obtain an approximation of r within a factor of

√
n.

In our analysis, besides the dimension of K, there are three geometric quantities that naturally arise:
r, R, and τCK . Not surprisingly, the dependence of the computational complexity of our algorithm on
these geometric quantities differs if K is bounded or unbounded (recall that the case of τCK = 0 is
fundamentally different if K is bounded or unbounded). Nonetheless, in either case the dependence on
these quantities will be only logarithmic. An instance of the problem is said to be ill-conditioned if
τCK

= 0 and K is unbounded, otherwise the instance is said to be well-conditioned.

4.2 The algorithm. In order to define the algorithm, let ft be defined as (1) with ‖ · ‖ = ‖ · ‖2 (the
Euclidean norm). Let α ∈ (0, 1) and let hit-and-run be a geometric random walk which will simulate the
next random variable (see Section 6 for details). This yields the following “exact” method to test the
boundedness of K:

Density Homotopy Algorithm (Exact):
Input: r such that B(0, r) ⊂ K, define t0 = tinitial(r), α ∈ (0, 1), and set k ← 0.
Step 1. (Initialization) Draw Xt0 ∼ ft0(x).
Step 2. (Testing Unboundedness) If Xtk

∈ CK \ {0}, stop.
Step 3. (Variance and Mean) Compute the mean and covariance of Xtk

: zk and Vk.
Step 4. (Testing Boundedness) If λmax

(
Vk + zkzT

k

)
< 1

n(7etk)2 , stop.
Step 5. (Update Density) Update the parameter: tk+1 = (1− α) · tk.
Step 6. (Random Point) Draw Xtk+1 ∼ hit-and-run( ftk+1 , Xtk

, Vk)
Step 7. (Loop) Set k ← k + 1, goto Step 2.

This (exact) method requires r, the exact draw of Xtk+1 , and the exact computation of the mean zk+1

and covariance matrix Vk+1 of the random variable Xtk+1 . In order to obtain an implementable method,
we can use only approximations of these objects.

Detailed bounds on the computational complexity of the hit-and-run procedure, on the estimation of
ẑk+1 and V̂k+1, and r̂ are provided in Sections 5.3, 6, and 7. Moreover, the use of an approximate mean
and approximate covariance matrix must be taken into account in the test of boundedness (Step 4), which
is presented in Theorem 4.1.
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Each loop of the algorithm (Steps 2-7) is called an iteration of the algorithm. Thus, the work per
iteration consists of (i) performing the hit-and-run random walk, (ii) computing an approximation of the
covariance matrix, (iii) testing if the current point belongs to the recession cone, and (iv) computing
the largest eigenvalue of a positive definite matrix. Although a highly accurate approximation of the
covariance matrix is not needed, the probabilistic method used to estimate such matrix requires at least
O∗(n) samples. Such estimation will dominate the computational complexity per iteration.

Letting tfinal denote the final value of the parameter t when the algorithm stops, the total number of
iterations of the algorithm will be ⌈

1
α
· ln

(
tinitial

tfinal

)⌉
.

The following theorem is the main characterizes the complexity of the homotopy algorithm.

Theorem 4.1 Let K be a convex set satisfying Assumptions 3.2, 4.2, 4.3, and 4.1 and consider the
homotopy algorithm using a family of densities F = {ft(x) ∼ 1K(x) · e−t‖x‖2 : t ∈ (0, t0]}. Then:

(i) If K is unbounded, the algorithm will compute a valid certificate of unboundedness in at most

O

(√
n ln

(
n

δ

1
τCK

R

r

))
iterations with probability 1− δ,

where each iteration makes at most O∗
(
n4 ln

(
1
δ ln

(
1
δ

1
τCK

R
r

)))
calls to the membership oracle.

(ii) If K is bounded, the algorithm will compute a valid certificate of boundedness in at most

O

(√
n ln

(
n

R

r

))
iterations with probability 1− δ,

where each iteration makes at most O∗ (
n4 ln

(
1
δ ln

(
R
r

)))
calls to the membership oracle.

The proof of Theorem 4.1, which is provided in Section 10, is built upon the analysis of the next six
sections.

5. Analysis of the homothopy algorithm

5.1 Stopping criteria: unbounded case. An appropriate certificate of unboundedness for a con-
vex set is to exhibit a non-zero element of the recession cone of K. Assumption 4.3 allows us to correctly
verify if a point is an element of CK . For example, in the case of linear conic systems (3), any membership
oracle for C itself can be used to construct a membership oracle for K and CK .

If the algorithm terminates indicating that K is unbounded, a nonzero element of the recession cone
was found (a certificate of unboundedness). Thus, the algorithm always terminates correctly in this
case. The following corollary of Theorem 3.2 ensures that we can find such certificate, which provides a
desirable stopping criteria in the case of K being unbounded.

Corollary 5.1 Suppose K is unbounded. After

T =
1
α

ln
(

t0
96enR

δ2τCK

)

iterations of the exact algorithm, we have P (XtT ∈ CK) ≥ 1− δ.

Proof. We start the algorithm with t = t0, and after T iterations, we obtain tT = δ2τCK

96enR . The result
follows by applying Theorem 3.2 to XtT

. ¤

5.2 Stopping criteria: bounded case. In contrast with the unbounded case, we lack a straight-
forward certificate for the case of K being bounded. In addition, an unbounded set whose recession cone
has zero width should not be wrongly classified as bounded. That is, our analysis should cover such an
ill-conditioned case as well.
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In the search for an appropriate certificate, the mean of the random variable Xt appears as a natural
candidate. Assuming that the set K is unbounded and line-free, its norm should increase as the parameter
t decreases. On the other hand, if K is bounded, the mean will remain bounded no matter how much
t decreases. Unfortunately, that analysis breaks down for sets that contain lines. For example, if K is
symmetric the mean of Xt is zero for every t > 0, whether K is bounded or not.

In order to overcome this we consider the second moment matrix Ωt of the random variable Xt. The
matrix Ωt will be large, in the positive definite sense, if either the covariance matrix or the norm of the
mean of Xt is large. Again, if K is unbounded the maximum eigenvalue of Ωt increases as the parameter
t decreases. Otherwise, K being bounded, the maximum eigenvalue will eventually be bounded. This
provides a nice criterion which is robust to instances where K contains lines and/or τCK = 0. We
emphasize that the second order information is readily available, since we are required to compute the
covariance matrix and the mean of Xt to implement the hit-and-run random walk for ft (see Section 6
for details on the sampling theory and the reasons why we need to compute the covariance matrix to
keep ft in near-isotropic position). The next corollary provides the desirable stopping criteria.

Corollary 5.2 Suppose K is bounded. The exact algorithm will detect boundedness for all t < 1
7eR

√
n
,

and will bound R by
√

n
t . Moreover, this will happen in at most T = 1

α ln (t0 7eR
√

n) iterations.

Proof. If t < 1
7eR

√
n
, then λmax (E[XtX

′
t]) < 1

(7et)2n from Corollary 3.3. From Corollary 3.3, this

means that K is bounded and R <
√

n
t .

Moreover, starting with t = t0, after T = 1
α ln (t0 7eR

√
n) iterations we obtain tT ≤ 1

7eR
√

n
. ¤

To generate a certificate of boundedness, the maximum eigenvalue of the second moment matrix must
be estimated (Section 7 covers the necessary theory for that). Since it will be estimated via a probabilistic
method, there is a probability of failure on each iteration which must be properly controlled (see Section
9 for details). Thus, in contrast to the unbounded case, if the algorithm terminates indicating that K is
bounded, there is a probability of failure associated with that decision which can be made smaller at the
expense of computational time.

5.3 Initialization of the algorithm: unknown r. This section clarifies how to start the algo-
rithm, that is, how should we choose the initial value t0 based on r. As is usual under the membership
oracle framework, it is assumed that we know a point in the interior of K, which is taken to be the origin
for convenience (Assumption 4.2). In some applications of interest such points are readily available, for
example 0 ∈ int K in the conic system (3).

The implementation of Step 1 will be done by a simple accept-reject method, see [2]. Note that it is
simple to draw a random variable Xt0 whose density is proportional to ft0(x) ∼ e−t0‖x‖2 on IRn instead
of only on K (pick a point uniformly on Sn−1

2 and then scale using a Γ(n, t0) random variable1). If it
is the case that Xt0 ∈ K, we accept that point; otherwise, we draw another point according to ft0 and
repeat the process until a point in K is obtained.

Now, we need a constructive approach to bound r from below. Fortunately, a simple procedure is
available for estimating r up to a factor of

√
n. That will be satisfactory since the final dependence on r

is only logarithmic. Consider the following quantity:

r̂ = min
i=1,...,n

max{ t : tei ∈ K, −tei ∈ K}, (15)

where ei ∈ IRn denotes the ith unit vector of IRn. It is clear that r̂ can be approximated in O
(
n| ln 1

r |
)

operations (via a simple binary search) and will not increase the order of the computational complexity
of the algorithm. The next lemma provides a guarantee of the quality of the approximation provided by
r̂.

Lemma 5.1 Let r be the radius of the largest ball centered at the origin contained in K and let r̂ be as
defined in (15). Then r̂ ≥ r ≥ r̂/

√
n.

1A Γ(α, β) random variable is characterized by the density f(x) = (βα/Γ(α))xα−1e−βx for x ≥ 0, and zero otherwise.



Belloni: Norm-induced Densities
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS 17

Proof. Clearly, r̂ ≥ r. Note that r̂ei ∈ K for every i. Thus, the convex hull of these points contains
a ball of radius r̂/

√
n which is contained in K. Therefore, r̂ ≥ r ≥ r̂/

√
n. ¤

We also need to ensure that the probability of the event {Xt0 ∈ K} is reasonably large. The next
lemma achieves this by a suitable choice of the initial parameter t0 based on the radius r of the largest
ball centered at the origin contained in K.

Lemma 5.2 Assume that the ball centered at the origin with radius r is contained in K. Let Xt0 be a
random variable whose density is proportional to e−t0‖x‖2 for any x ∈ IRn. Then if t0 ≥ 2 (n−1)

r , we have

P (Xt0 ∈ K) ≥ 1− en−(t0r/2).

Proof. Using Lemma 5.16 of [11] (since t0r/(n− 1) ≥ 2) for the second inequality, we have

P (Xt0 /∈ K) ≤ P (Xt0 /∈ B(0, r)) = P
(
ft0(Xt0) ≤ ft0(0)e−t0r

) ≤
(
e1− t0r

n−1 t0r
n−1

)n−1

≤ en−1
(
e−

t0r
n−1 t0r

n−1

)n−1

≤ en−(t0r/2)

since e−cc ≤ e−c/2 for every c ≥ 0.

¤
This allows us to efficiently implement the accept-reject method in Step 1 of the algorithm.

Corollary 5.3 After computing r̂ as in (15), it suffices to initialize the algorithm with

t0 =
8n3/2

r̂

to obtain that P (Xt0 ∈ K) ≥ 1− e−3n.

Proof. Recall that Lemma 5.1 implies that r̂ ≥ r/
√

n. By Lemma 5.2, P (Xt0 ∈ K) ≥ 1 −
en−4n3/2 r

r̂ ≥ 1− e−3n. ¤

6. Sampling ft via a geometric random walk. The ability to sample according to any density
in the family F is the driving force of our algorithm. Although a variety of densities can be perfectly
simulated with negligible computational effort, that is no longer the case if we restrict the support of
the density to be an arbitrary convex set K given by a membership oracle. In fact, even to generate a
random point distributed uniformly over a convex set is an interesting problem with many remarkable
applications (linear programming, computing the volume, etc., see [6],[13],[10]).

Important tools to generate random points proportional to a density function restricted to a high
dimensional convex set K are the so-called geometric random walks. Starting with a point in K, at
each step the random walk moves to a point according to some distribution that depends only (i) on
the current point, and (ii) on the desired density f to be simulated. Thus, the sequence of points of the
random walk is a Markov chain whose state space is K. Moreover, there are simple choices of transition
kernels (which is the continuous state space analog for the transition matrix for a finite state Markov
chain) that make f the unique stationary distribution of this Markov chain (for example, the celebrated
Metropolis filter), which automatically ensures several asymptotic results for arbitrary Markov chains [2].
Going one step further, we are interested in the convergence rate to the stationary distribution, which
is a much more challenging question (which could be arbitrarily slow in general). So we can bound the
necessary number of steps required by the random walk to generate a random point whose density is
approximately f .

By choosing F to be a family of logconcave densities (in our case the parameter p = 1), we will be able
to invoke several results from a recent literature which demonstrate the efficiency of one particular random
walk called hit-and-run, see [8, 11, 12]. Roughly speaking, these results show that if (i) a relatively good
approximation of the covariance matrix is available, and (ii) the density of the current point is close to
the desired density, then only O∗(n3) steps of the random walk are necessary to generate a random point
whose distribution is a good approximation of the desired (target) distribution.



18 Belloni: Norm-induced Densities
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

In our context, recall that the distribution of interest ftk
is changing at each iteration. The current

approximation of the covariance matrix V̂k will be used as the approximation to the true covariance matrix
of the next iteration Vk+1, which in turn will be estimated by V̂k+1. In a similar way, the current point
Xtk

, distributed approximately according to ftk
, will be used as the starting point for the random walk

to approximate a random variable distributed according to ftk+1 . The parameter α, which dictates the
factor by which t is decreased at each iteration, will be the largest value such that these approximations
are valid from a theoretical perspective.

6.1 A geometric random walk: hit-and-run. There are several possible choices of geometric
random walks. We refer to [16] for a recent survey. Here we use the so-called hit-and-run random walk.
The implementation of this random walk requires the following as input: a density function f (known
up to a multiplicative constant), a starting point X0, a covariance matrix V , and a number of steps m.

Subroutine: hit-and-run
(
f, X0, V, m

)

Step 0 Set k ← 0.
Step 1 Pick a random vector d ∼ N(0, V ).
Step 2 Define the line `(Xk, d) = {Xk + td : t ∈ IR}.
Step 3 Move to a point Xk+1 chosen according to f restricted to `(Xk, d).
Step 4 Set k ← k + 1. If k ≤ m, goto Step 1.
Step 5 Report Xm.

Although hit-and-run can be implemented for arbitrary densities, we will restrict ourselves to the case
of logconcave densities. In such case, the implementation of hit-and-run can be done efficiently, and
we refer to the Appendix for a complete description for the case in which ft is defined as in (1) with
‖ · ‖ = ‖ · ‖2, the Euclidean norm, which is the proposed density for the algorithm.

6.2 Sampling complexity. Here we state without proof results in the literature of sampling random
points according to logconcave densities. We start with a complexity result for the mixing time of the
hit-and-run random walk.

Theorem 6.1 ([10] Theorem 1.1) Let f be a logconcave density and let X denote the associated random
variable. Moreover, f is such that (i) the level set of probability 1/8 contains a ball of radius s, (ii)
Ef

[‖X − zf‖22
] ≤ S2, and (iii) the L2 norm of the starting distribution σ with respect to the stationary

distribution πf is at most M . Let σm be the distribution of the current point after m steps of hit-and-run
applied to f with V = I. Then, after

m = O

(
n2S2

s2
ln5

(
nM

ε

))
steps,

the total variation distance of σm and πf is at most ε.

Theorem 6.1 bounds the rate of convergence of the geometric random walk not only by the dimension
but also by the L2 norm of the starting density with respect to the stationary density ft, and by how
“well-rounded” is ft via the ratio S/s. The notion of “well-rounded” is deeply connected with the concept
of near isotropic position. The next lemma quantifies this connection.

Lemma 6.1 ([11] Lemma 5.13) Let f be a density in C-isotropic position. Then Ef

[‖X − zf‖22
] ≤ Cn,

and any upper level set U of f contains a ball of radius πf (U)/e
√

C.

Any (full-dimensional) density can be put in near-isotropic position by a suitable linear transformation.
By using an approximation of the covariance matrix V̂ to implement the hit-and-run random walk such
that all eigenvalues of V̂ −1V are between 1/C and C, ft is in C-isotropic position. Thus, the ratio
S/s can be bounded by 8eC

√
n (in this case, note that only m = O∗(n3) steps of the random walk

will be necessary to generate one random sample). The next section summarizes how to compute an
approximation V̂k which puts ftk

in 2-isotropic position. Moreover, it will be shown that all densities
simulated by the algorithm will be at most C-isotropic for a constant C (independent of the dimension)
as we decrease the homotopy parameter t.
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Remark 6.1 In our analysis we will be assuming independence among different samples for simplicity
(recall that they are separated by m = O∗(n3) steps of the random walk). Although this is not the case,
independence can be approximated at the cost of an additional constant factor in the number m of steps
of the random walk. Here we have chosen exposition over formalism since no additional insight is gained
if we work out all the details.

7. Estimating the covariance matrix, the mean, and the second moment matrix. In this
section, we recall estimation results for the mean and covariance matrix of a logconcave random variable.
Moreover, we show that these estimates can be used to approximate the second moment matrix with
a desired relative accuracy. Herein it will be assumed that independent identically distributed samples
{Xi} are available. We emphasize that these estimations depend only on the samples and not on the
isotropic position of the density function. As stated before, the isotropic position plays an important role
to bound the number of steps of the chain required to obtain each sample.

First we recall a result for estimating the mean and covariance matrix.

Lemma 7.1 ([11] Lemma 5.17) Let z and V denote respectively the mean and covariance matrix of a
logconcave random variable. For any ξ > 0 and δ ∈ (0, 1), using

N >
4
ξ2

n ln2 1
δ

samples and X̂ =
1
N

N∑

i=1

Xi,

we have that
P

(∥∥∥V −1/2
(
X̂ − z

)∥∥∥
2

> ξ
)
≤ δ.

Lemma 7.2 ([6] Corollary A.2) Let V denote the covariance matrix of a logconcave random variable.
Using N > O(ln3 1

δ n ln2 n) samples, where δ < 1/n, define

V̂ =
1
N

N∑

i=1

(Xi − X̂)(Xi − X̂)T

we have that all eigenvalues of the matrix V̂ −1V are in the interval [1/2, 2] with probability at least 1−δ.

These results yield a useful estimation procedure for the second moment matrix. In particular the
maximum eigenvalue of Ω will be estimated up to a (known) constant factor.

Lemma 7.3 Let Ω denote the second moment matrix associated with a logconcave random variable. Then
for ξ < 1/4 and using N > O(ln3 1

δ n ln2 n + 1
ξ2 n ln2 1

δ ), for δ < 1/n, the matrix

Ω̂ = V̂ + X̂X̂T

is such that all eigenvalues of Ω̂−1Ω are in he interval [(1/2− 2ξ), (2+2ξ + ξ2)] with probability at least
1− δ.

Proof. In this proof let ‖ · ‖ = ‖ · ‖2. Lemma 7.1 yields that ‖V −1/2(X̂ − z)‖ ≤ ξ with probability
greater than 1− δ/2. In this event, there exists d ∈ IRn with ‖d‖ ≤ 1 satisfying

X̂ = z + ξV 1/2d.

For any w ∈ IRn, we have that
〈
w, Ω̂w

〉
=

〈
w, V̂ w

〉
+

〈
X̂, w

〉2

=
〈
w, V̂ w

〉
+

〈
z + ξV 1/2d,w

〉2

=
〈
w, V̂ w

〉
+ 〈z, w〉2 + 2ξ 〈z, w〉 〈d, V 1/2w

〉
+ ξ2

〈
d, V 1/2w

〉2

≥ 1
2 〈w, V w〉+ 1

2 〈z, w〉2 − 2ξ 〈w, Ωw〉 = ( 1
2 − 2ξ) 〈w, Ωw〉 .

(16)

¤
We will use the following corollary in our algorithm.
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Corollary 7.1 Using N = O(n ln2 n ln3 1
δ ) samples to estimate the second moment matrix Ω̂, with

probability at least 1− δ we have that all eigenvalues of Ω̂−1Ω are between 1/3 and 3.

Proof. Set ξ = 1/24 and apply Lemma 7.3. ¤
Thus, with O∗(n) samples per iteration one can properly estimate the mean, covariance matrix, and

second moment matrix to conduct the algorithm.

8. Updating the parameter t: warm-start. Since the parameter α controls how fast the sequence
{tk} decreases, its value is critical to the computational complexity of the algorithm. Although we are
tempted to decrease t as fast as possible, we still need to use the current density as a “warm-start” to
approximate the next density. That is, the L2 norm of ftk

with respect to ftk+1 needs to be controlled.
Moreover, the covariance matrix associated with ftk

should also be close to the covariance matrix of
the next iterate ftk+1 . The trade-off among these quantities will decide how fast one can decrease the
parameter t. Kalai and Vempala show how to relate the L2 norm of two logconcave densities and their
covariance matrices. For the reader’s convenience we re-state their results here.

Lemma 8.1 ([6] Lemma 3.8) Let f and g be logconcave densities over K with mean zf = Ef [X] and
zg = Eg[X], respectively. Then, for any c ∈ IRn

Ef

[
〈c,X − zf 〉2

]
≤ 16 ‖f/g‖ Eg

[
〈c,X − zg〉2

]

This result implies that it suffices to control the L2 norm of ftk+1 with respect to ftk
in order to

guarantee that the covariance matrices of these densities are relatively close. A simple extension of
Lemma 3.11 of [6] yields a bound this L2 norm.

Corollary 8.1 Consider the densities ftk
and ftk+1 such that tk+1 = (1 − α)tk = (1 − 1√

n
)tk, i.e.,

α = 1/
√

n. For n ≥ 5,

‖ftk
/ftk+1‖ ≤ en/(n−1) and ‖ftk+1/ftk

‖ ≤ en/(n−2
√

n).

The next lemma combines the previous results to ensure that all the densities used in the algorithm
will be in 28-isotropic position.

Lemma 8.2 Assuming that n ≥ 16, and using N = O∗(κ3n) samples at any iteration, the distribution
encountered by the sampling algorithm in the next iteration is 28-isotropic with probability 1− 2−κ.

Proof. By using Lemma 7.2, we have that ftk
is 2-isotropic after we estimated its covariance matrix

in Step 2 of the algorithm with probability 1−2−κ. Using Lemma 8.1 and Corollary 8.1, for any v ∈ Sn−1,

Eftk+1

[〈
v, x− zftk+1

〉2
]
≤ 16 en/(n−2

√
n)Eftk

[〈
v, x− zftk

〉2
]
≤ 32 en/(n−2

√
n) ≤ 28,

since n ≥ 16. ¤
Lemma 8.2 ensures that O∗(n) samples suffice to estimate the current covariance matrix accurately

enough to be used as an approximation to the covariance matrix associated with the next iteration.

9. Controlling the overall probability of failure. Before we proceed to the proof of Theorem
4.1, we prove a technical lemma which allows us to properly control the overall probability of failure of
the algorithm. First note that if the algorithm finds an element of CK it will always stop correctly. Thus,
the algorithm can fail only if it (wrongly) declares that K is a bounded set or if it does not terminate.
The latter concerns with the stopping criteria of the algorithm and it was already analyzed in Sections
5.1 and 5.2. The first issue can occur only if the estimated second moment matrix Ω̂k differs significantly
from the true matrix Ωtk

. In turn their difference is controlled by the number of samples used to estimate
Ω̂tk

, which depends on the probability of failure used for the current iteration. Recall that we do not
know the total number of iterations T a priori (since we do not have any estimates for R or τCK ), and
so we cannot simply set the probability of failure to δ/T for each iteration. Instead of using a constant
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probability of failure for all iterations, we slightly increase the number of samples used to estimate Ω̂tk

at each iteration to ensure that the probability of failure will not accumulate indefinitely.

Lemma 9.1 Let T be the total number of iterations of the algorithm and 1− δf the desired probability of
success. Initializing the algorithm with δ = δf/4 and setting the probability of failure of the ith iteration
to δi = 1

i2 δf/4, we obtain:
(i) the probability of success is at least 1− δf/2;
(ii) The smallest δ used by the algorithm satisfies δ ≥ δf

4
1

T 2 .

Proof. (i) By setting a probability of failure of the ith iteration of the algorithm to (1/i2)δf/4, we
have that the total probability of failure is bounded by

T∑

i=1

δi =
T∑

i=1

δf

4i2
≤ δf

4

∞∑

i=1

1
i2
≤ δf/2

since
∑∞

i=1
1
i2 = π2/6 < 2.

(ii) follows since the algorithm terminates after T iterations.

¤

10. Proof of Theorem 4.1. Let α = 1√
n

and let 1− δf be the desired probability of success. The

algorithm terminates in T =
√

n ln
(

tinitial

tfinal

)
iterations. Next we need to: (i) properly bound tinitial, (ii)

ensure that the algorithm terminates, i.e., properly bound tfinal (which also bounds T ), and (iii) control
the probability that it wrongly terminates.

(i) Corollary 5.3 yields tinitial = t0 = 8n3/2/r̂ which is at least 8n/r and at most 8n3/2/r.

(ii) We will use Corollaries 5.2 and 5.1 with δ = δf/2. Thus, the algorithm will correctly terminate
with probability at least 1− δf/2 after at most

T =
√

n ln
(
(8n3/2/r)(96enR)/((δf/2)2τCK )

)

iterations if K is unbounded, and after at most

T =
√

n ln
(
(8n3/2/r)21eR

√
n)

)

iterations if K is bounded (note that we use 21 instead of 7 to take into account a factor of 3 in the
approximation of the maximum eigenvalue of Vk).

(iii) Finally, we ensure that the probability of (wrongly) terminating before reaching iteration T is at
most δf/2. This is achieved by slightly reducing the probability of failure as described in Lemma 9.1.

Now we analyze the impact of reducing the probability of failure on the computational complexity of
each iteration. Lemma 9.1(ii) ensures that it is sufficient to use

δ =
δf/2

4T
2 =

δf

32n ln2 (tinitial/tfinal)
.

This will dictate the number of samples needed to estimate the covariance matrix. In Lemma 8.2 we will
need at most

κ =
1

ln 2
ln

32T
2

δf

at any given iteration (given that we terminate correctly). That leads to a total of at most

O

(
n ln3

(
T

δf

))

samples per iteration of the algorithm where each sample requires O∗(n3) steps of the geometric random
walk.

Defining a condition measure µ := R
r if K is bounded, or µ := R

r
1

τCK
if K is unbounded, the overall

complexity is

O∗
(

T n4 ln3

(
T

δf

))
= O∗

(
n4.5 ln

(
µ

δf

)
ln3

(
n ln(nµ/δ)

δf

))
.

The results of Theorem 4.1 follow by using the appropriate T on each case as defined in (ii).
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11. Conclusions. In this work we study probability densities ft induced by an arbitrary norm with
a convex support K as defined by (1). Our goal is to relate geometric properties of K with analytical
properties of ft.

Using these properties, we also develop an algorithm to test whether a convex set, given only by a
membership oracle, is bounded or unbounded. The computational complexity of the probabilistic method
proposed is polynomial in the dimension of the set and only logarithmic in other condition measures (such
as the width of the recession cone and the diameter of the set, respectively, for the unbounded and bounded
cases).

Clearly, one can derive a similar method based on uniform densities, instead of norm-induced densities,
by defining ft(x) ∼ 1K(x)1B(0,1/t)(x). These densities would be well-defined and many results of Section
3 can be adapted for this case as well. Although this could lead to a simpler analysis, the parameter α
that is used to decrease t on each iteration must be set to 1/n instead of 1/

√
n for the current density

be a good “starting point” for the next density. This leads to an algorithm of the order O∗(n5).

Exploiting the geometry of unbounded convex sets was key in developing such probabilistic method. A
concentration phenomenon guarantees that most points of an unbounded convex set will be in its recession
cone if that cone has positive width. In such a case, random points with large norms are likely to belong
to the recession cone which yields a certificate of unboundedness. In the case of the set being bounded,
the second moment matrix associated with the random variable must also be bounded, in opposition to
the unbounded case, which yields a certificate of boundedness.

In contrast with probabilistic methods over convex sets in the literature, we need to explicitly deal
with unbounded sets, and additional effort is needed to ensure that all the densities are well defined.
Moreover, if K is unbounded our analysis shows that an element of Cε

K can be computed in

O∗
(√

n ln
(

R

rε

))
iterations.

That is particularly relevant for the ill-conditioned case of τCK
= 0. Although we cannot find an element of

CK (which has zero volume), the algorithm will generate a direction d, ‖d‖ = 1, such that dist(d,CK) < ε
in at most

O∗
(√

n ln
(

R

r

1
ε

))

iterations of the homotopy algorithm.
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Appendix A. Hit-and-run for f(x) ∼ e−‖x‖2 . Here we specialize the method for implementing
the hit-and-run method for logconcave densities proposed in [11] to the densities defined as in (1) with
the Euclidean norm.

Given x0 ∈ K, d ∈ Sn−1, define the line segment `(x0, d) = K ∩ {x0 + td : t ∈ IR} (note that if it
is not a line segment, either d or −d belongs to CK). The next iterate should be chosen from `(x0, d)
according to the density f . Let M` = maxy∈`(x0,d) f(y) denote the maximum density on `(x0, d) and, for
v ∈ (0,M`), let L`(v) denote the corresponding level set restricted to `(x0, d).
It is a two step method:
Step 1. Choose v uniformly on (0, M`);
Step 2. Choose y uniformly on L`(v).
To implement this, we need to compute three quantities: M` and the two endpoints of L`(v). It is possible
to speed up the process by using closed-form formulas since we know the functional form of f (although
additional effort is necessary to adjust it for the support of f).

On `(x0, d), f can be written as f(x0 + td) ∼ e−
√
‖x0‖2+2t〈x0,d〉+t2‖d‖2 . It is convenient to note that

t∗ = −〈x0, d〉
‖d‖2 ∈ arg max{f(x0 + td) : t ∈ IR},

that is, for x∗ = x0 + t∗d, f(x∗) ≥ ML. If x∗ ∈ K, we have found M`, otherwise, we need to make a
binary search on [x0, x

∗] to find it (note that in the second case we already have one of the endpoints of
L`(v)).

After drawing v ∈ (0,M`), again we can compute the explicit “unrestricted” point of where the
endpoints should be

t̂ ∈
{

t : v = e−
√
‖x0‖2+2t〈x0,d〉+t2‖d‖2

}

or equivalently, the solution for the following quadratic equation

t̂2‖d‖2 + 2t̂ 〈x0, d〉+ ‖x0‖2 + ln2 v = 0.

Again, if the solutions t̂ lie in K we found an endpoint; otherwise, we need to perform binary search on
[x0, x0 + t̂d].


