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Abstract

A decision maker is engaged in a repeated interaction with Nature. The objective

of the decision maker is to guarantee to himself the average payo¤ as large as the

best-reply payo¤ to Nature�s empirical distribution of play, no matter what Nature

does. The decision maker with perfect recall can achieve this objective by a simple

better-reply strategy. In this paper we demonstrate that the relationship between

perfect recall and bounded recall is not straightforward: The decision maker with

bounded recall may fail to achieve this objective, no matter how long recall he has

and no matter what better-reply strategy he employs.
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1 Introduction

In every (discrete) period of time a decision maker (for short, Agent) makes a

decision and, simultaneously, Nature selects a state of the world. Agent receives

a payo¤ which depends on both his action and the state. Nature�s behavior

is ex-ante unknown to Agent, it may be as simple as an i.i.d. environment or

as sophisticated as a strategic play of a rational player. Agent�s objective is

to select a sequence of decisions which guarantees to him the average payo¤

as large as the best-reply payo¤ against Nature�s empirical distribution of

play, no matter what Nature does. A behavior rule of Agent which ful�lls

this objective is called universally consistent 1 : the rule is �consistent�if it is

optimized against the empirical play of Nature; the word �universally�refers

to its applicability to any behavior of Nature.

A range of problems can be described within this framework. One example,

known as the on-line decision problem, deals with predicting a sequence of

states of Nature, where at every period t Agent makes a prediction based on

information known before t. The classical problem of predicting the sequence

of 0�s and 1�s with �few�mistakes has been a subject of study in statistics,

computer science and game theory for more than 40 years. In a more general

problem, Agent�s goal is to predict a sequence of states of Nature at least as

well as the best expert from a given pool of experts 2 (see Littlestone and

Warmuth, 1994; Freund and Schapire, 1996; Cesa-Bianchi et al., 1997; Vovk,

1998). Another example is no-regret learning in game-theory. A regret 3 of

Agent for action a is his average gain had he played constant action a instead

of his actual past play; Agent�s goal is to play a sequence of actions so that

he has �no regrets�(e.g., Hannan, 1957; Fudenberg and Levine, 1995; Foster

and Vohra, 1999; Hart and Mas-Colell, 2000, 2001; Cesa-Bianchi and Lugosi,

2003).

1 The term �universal consistency�is due to Fudenberg and Levine (1995).
2 By an �expert�we understand a given deterministic on-line prediction algorithm.
Thus, �to do as well as the best expert�means to make predictions, on average, as
close to the true sequence of states as the best of the given prediction algoritms.
3 This paper deals with the simplest notion of regret known as external (or uncon-
ditional) regret (see, e.g., Foster and Vohra, 1999).
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Action a is called a better reply to Nature�s empirical play if Agent could

have improved upon his average past play had he played action a instead

of what he actually played in the past. In this paper, we assume that in

every period Agent plays a better reply to Nature�s past play. The better-

reply play is a natural adaptive behavior of an unsophisticated, myopic, non-

Bayesian decision maker. The class of better-reply strategies encompasses a

big variety of behavior rules, such as �ctitious play and smooth �ctitious

play 4 ; Hart and Mas-Colell (2000)�s �no-regret�strategy of playing an action

with probability proportional to the regret for that action; some forms of the

logistic (or exponential-weighted) algorithms used in both game theory and

computer science (see Littlestone and Warmuth, 1994; Freund and Schapire,

1996; Cesa-Bianchi et al., 1997; Vovk, 1998); the polynomial (lp-norm) �no-

regret�strategies and potential-based strategies of Hart and Mas-Colell (2001)

(see also Cesa-Bianchi and Lugosi, 2003).

Agent is said to have m-recall if he is capable of remembering the play of m

last periods; the empirical frequency of Nature�s play to which Agent �better-

replies� is the simple average across the time interval not exceeding the last

m periods. A special case of Agent with perfect recall (m =1) is well studied
in the literature, and universally consistent better-reply strategies of Agent

with perfect recall are well known (see Hannan, 1957; Foster and Vohra, 1999;

Hart and Mas-Colell, 2000, 2001; Cesa-Bianchi and Lugosi, 2003). The case

of bounded-recall strategies is considered by Lehrer and Solan (2008) whose

work is very close to our paper and will be discussed later on. There is also an

extensive literature on bounded-recall strategies (e.g., Lehrer, 1988; Aumann

and Sorin, 1989; Lehrer, 1994; Watson, 1994) and, more generally, strategies

implemented by �nite automata (e.g., Aumann, 1981; Rubinstein, 1986; Ben-

Porath, 1993; Neyman, 1998; Neyman and Okada, 2000) which studies what

equilibria can be achieved (or what payo¤s can be guaranteed) in repeated

games, extending the Folk Theorem to the case when players have �bounded

capacity�. In this literature, players are not constrained to such simplistic

4 In the original (Fudenberg and Levine, 1995)�s de�nition, the smooth �ctitious
play is not a better-reply strategy; however, certain versions of it, such as the lp-
norm strategy with large p (Hart and Mas-Colell, 2001; Cesa-Bianchi and Lugosi,
2003) are better-reply strategies.
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strategies as playing a better reply to the opponents�average behavior.

The question that we pose in this paper is whether there are better-reply

strategies for Agent with bounded recall (m < 1) which are (nearly) univer-
sally consistent if Agent has su¢ ciently large length of recall. We show that

Agent with long enough recall can approach the best reply to any i.i.d. envi-

ronment. However, by a simple example we demonstrate that Agent cannot

optimize his average play against general (non-i.i.d.) environment, no mat-

ter how long (yet, bounded) recall he has and no matter what better-reply

strategy he employs. Formally, we say that a family of better-reply strate-

gies with bounded recall is asymptotically universally consistent if for every

" > 0 and every su¢ ciently large m = m(") Agent with recall length m

has an "-universally consistent strategy in this family. We prove the following

statement.

There is no family of bounded-recall better-reply strategies which is asymp-

totically universally consistent.

The statement is proven by a counterexample. We construct a game where

Agent with m-recall is allowed to play any better-reply strategy; Nature is

assumed to play the �ctitious play with m-recall, i.e., in every period it plays

the best reply to Agent�s average play over the last m periods. Thus, given an

initial history and strategies of Agent and Nature, the joint play constitutes a

�nite Markov chain whose state space is the set of all histories of lengthm. We

show that there exists a closed set of states of the Markov chain (which forms

a cyclical play over the action pro�les in the game), where in every state the

average payo¤ of Agent (over the last m periods) is bounded away from the

best-reply payo¤by a uniform bound for every �nite m. Intuitively, the reason

for a cyclical behavior is that in every period t Agent learns a new observation,

a pair (at; !t), and forgets another observation, (at�m; !t�m). An addition of

the new observation shifts, in expectation, Agent�s average payo¤ (across the

last m periods) in a �better�direction, however, the loss of (at�m; !t�m) shifts

it in an arbitrary direction. Since the magnitude of the two e¤ects is the

same, 1=m, it may lead to a cyclical behavior of the play. Note that with

unbounded recall, m = 1, the second e¤ect does not exist: Agent does not
forget anything, and, consequently, a cyclical behavior is not possible.
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A setting very similar to ours is considered by Lehrer and Solan (2008), who

also assume bounded recall of a player, 5 however, they do not constrain the

player to play a better reply to the opponents� average play over the full

history within the recall limit. Lehrer and Solan construct an "-universally

consistent strategy where the player periodically �wipes out� his memory.

The idea of their strategy is that the player divides time into blocks of size

equal to her recall length m, and plays in every period a better-reply to the

opponents�average play within the current block, behaving as if she recalls

only the history of the current block. In contrast, in this paper we prove that

any better-reply strategy to the average play over the full history within the

recall limit need not be "-universally consistent.

The comparison of our result with Lehrer and Solan�s leads to the following

conclusion: sometimes Agent can be better o¤ by not using, or deliberately

forgetting some information about the past. The analysis of the situation 6

shows that in periods t = 1; : : : ;m, when Agent only accumulates information

without forgetting anything, he can approach the best reply to the opponent�s

average play with rate 1=
p
t. However, from period t = m + 1 on, Agent�s

memory is full, and in every period he forgets the oldest observation, which

can drive his average payo¤ away from the best reply and get him locked in

a non-optimal cyclical play. In this situation, periodic restarts �from scratch�

help Agent to get out of this �vicious�cycle.

2 Preliminaries

In every discrete period of time t = 1; 2; : : : Agent chooses an action, at, from

a �nite set A of actions, and Nature chooses a state, !t, from a �nite set 


of states. Let u : A � 
 ! R be Agent�s payo¤ function; u(at; !t) is Agent�s
payo¤at period t. Denote by ht := ((a1; !1); : : : ; (at; !t)) the history of play up

to t. Let Ht = (A�
)t be the set of histories of length t and let H =
S1
t=1Ht

be the set of all histories.

5 In fact, Lehrer and Solan (2008) deal with a more general problem of the set
approachability by bounded-recall strategies or by �nite automata in vector-payo¤
games.
6 See Section 6 for more details.
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Let p : H ! �(A) and q : H ! �(
) be behavior rules of Agent and Nature,

respectively. For every period t, we will denote by pt+1 := p(ht) the next-period

mixed action of Agent and by qt+1 := q(ht) the next-period distribution of

states of Nature. A pair (p; q) and an initial history ht0 induce a probability

measure over Ht for all t > t0.

We assume that Agent does not know q, that is, he plays against an un-

known environment. We consider better-reply behavior rules, according to

which Agent plays actions which are �better�than his actual past play against

the observed empirical behavior of Nature. Formally, for every a 2 A and every
period t de�ne Rmt (a) 2 R+ as the average gain of Agent had he played a over
the last m periods instead of his actual past play. Namely, let 7

Rmt (a) =
�
1

m

Xt

k=t�m+1 (u(a; !k)� u(ak; !k))
�+

for all t � m

and

Rmt (a) =
�
1

t

Xt

k=1
(u(a; !k)� u(ak; !k))

�+
for all t < m.

We will refer to Rmt (a) as Agent�s regret for action a.

The parameter m 2 f1; 2; : : :g[ f1g is Agent�s length of recall. Agent with a
speci�ed m is said to have m-recall. We shall distinguish the cases of perfect

recall (m =1) and bounded recall (m <1).

Consider Agent with m-recall. Action a is called a better reply to Nature�s

empirical play if Agent could have improved upon his average past play had

he played action a instead of what he actually played in the last m periods.

De�nition 1. Action a 2 A is a better-reply action if Rmt (a) > 0.

A behavior rule is called a better-reply rule if Agent plays only better-reply

actions, as long as there are such.

De�nition 2. Behavior rule p is a better-reply rule if for every period t,

whenever maxa2ARmt (a) > 0,

Rmt (a) = 0 ) pt+1(a) = 0; a 2 A:

The focus of our study is how well better-reply rules perform against an un-

7 We write [x]+ for the positive part of a scalar x, i.e., [x]+ = maxf0; xg.
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known, possibly, hostile environment. To assess performance of a behavior rule,

we use Fudenberg and Levine (1995)�s criterion of "-universal consistency de-

�ned below.

Agent�s behavior rule p is said to be consistent with q if Agent�s average payo¤

(over the past that he remembers) tends to be at least as large as the best-reply

payo¤ to the average empirical play of Nature which plays q.

De�nition 3. Let " > 0. A behavior rule p of Agent with m-recall is "-

consistent with q if for every initial history ht0 there exists T such that for

every 8 t � T

Pr(p;q;ht0 )

�
max
a2A

Rmt (a) < "
�
> 1� ":

A behavior rule p is consistent with q if it is "-consistent with q for every " > 0.

Let Q be the class of all behavior rules. Agent�s behavior rule p is said to be

universally consistent if it is consistent with any behavior of Nature.

De�nition 4. A behavior rule p of Agent with m-recall is ("-) universally

consistent if it is ("-) consistent with q for every q 2 Q.

3 Perfect recall and prior results

Suppose that Agent has perfect recall (m = 1). This case has been exten-
sively studied in the literature, starting from Hannan (1957), who proved the

following theorem. 9

Theorem 1 (Hannan, 1957). There exists a better-reply rule which is uni-

versally consistent.

8 Pr(p;q;h)[E] denotes the probability of event E induced by strategies p and q, and

initial history h.
9 The statements of theorems of Hannan (1957) and Hart and Mas-Colell (2001)

presented in this section are su¢ cient for this paper, though the authors obtained

stronger results.
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Hart and Mas-Colell (2000) showed that the following rule is universally con-

sistent:

pt+1(a) :=

8>>><>>>:
R1t (a)P

a02AR
1
t (a

0)
; if

P
a02AR

1
t (a

0) > 0;

arbitrary, otherwise.
(1)

According to this rule, Agent assigns probability on action a proportional to

his regret for a; if there are no regrets, his play is arbitrary. This result is

based on Blackwell (1956)�s Approachability Theorem. We shall refer to p in

(1) as the Blackwell strategy.

The above result has been extended by Hart and Mas-Colell (2001) as follows.

A behavior rule p is called a (stationary) regret-based rule if for every period t

Agent�s next-period behavior depends only on the current regret vector. That

is, for every history ht, the next-period mixed action of Agent is a function

of R1t = (R1t (a))a2A only: pt+1 = �(R1t ). Hart and Mas-Colell proved that

among better-reply rules, all �well-behaved�stationary regret-based rules are

universally consistent.

Theorem 2 (Hart and Mas-Colell, 2001). Suppose that a better-reply rule

p satis�es the following:

(i) p is a stationary regret-based rule given for every t by pt+1 = �(R1t ); and

(ii) there exists a continuously di¤erential potential P : RjAj+ ! R+ such that
�(x) is positively proportional to rP (x) for every x 2 RjAj+ , x 6= 0.

Then p is universally consistent.

The class of universally consistent behavior rules (or �no regret� strategies)

which satisfy conditions of Theorem 2 includes the logistic (or exponential

adjustment) strategy given for every t and every a 2 A by

pt+1(a) =
exp(�Rmt (a))P
b2A exp(�R

m
t (b))

;

� > 0, used by Littlestone and Warmuth (1994), Freund and Schapire (1996),

Cesa-Bianchi et al. (1997), Vovk (1998) and others; the smooth �ctitious

play 10 ; the polynomial (lp-norm) strategies and other strategies based on

a separable potential (Hart and Mas-Colell, 2001; Cesa-Bianchi and Lugosi,

10 See footnote 4.
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2003).

4 Bounded recall and i.i.d. environment

The previous section shows that the universal consistency can be achieved

for agents with perfect recall. Considering the perfect recall as the limit of

m-recall as m ! 1, one may wonder whether the universal consistency can
be approached by bounded-recall agents with su¢ ciently large m.

We start with a result that establishes existence of better-reply rules which

are consistent with any i.i.d. environment. Nature�s behavior rule q is called

an i.i.d. rule if qt = qt0 for all t; t0, independently of the history. Let Qi:i:d: � Q
be the set of all i.i.d. behavior rules. Agent�s behavior rule p is said to be i.i.d.

consistent if it is consistent with any i.i.d. behavior of Nature.

De�nition 5. A behavior rule p of Agent withm-recall is ("-) i.i.d. consistent

if it is ("-) consistent with q for every q 2 Qi:i:d:.

Denote by Pm the class of all better-reply rules for an agent with m-recall,
m 2 N. Consider an indexed family of better-reply rules p = (p1; p2; : : :),

where pm 2 Pm, m 2 N.

De�nition 6. A family p is asymptotically i.i.d consistent if for every " > 0

there exists m such that for every m0 � m rule pm
0
is "-i.i.d. consistent.

Theorem 3. There exists a family p of better-reply rules which is asymptot-

ically i.i.d. consistent.

Proof Let q� 2 �(
) and suppose that qt = q� for all t. Denote by �qmt the

empirical distribution of Nature�s play over the last m periods,

�qmt (!) =
1

m
jk 2 ft�m+ 1; : : : ; tg : !k = !j ; ! 2 
:

Suppose that Agent plays the �ctitious play with m-recall. Namely, Agent�s

next-period play, pmt+1, assigns probability 1 on an action in argmax
a2A

u(a; �qmt ),

ties are resolved arbitrarily. Thus, Agent plays in every period a best reply

to the average realization of m i.i.d. random variables with mean q�. Since

maxa2A u(a; x) is uniformly continuous in x for x 2 �(
), the Law of Large
Numbers implies that in every period Agent obtains an expected payo¤which

9



is "m-close to the best reply payo¤ to q� with probability at least 1� "m, with
"m ! 0 as m!1. �

5 A negative result

In this section we demonstrate that Agent with bounded recall cannot guaran-

tee his play to be "-optimized against the empirical play of Nature, no matter

how large recall length he has and no matter what better-reply rule he uses.

De�nition 7. Family p = (p1; p2; : : :) of better-reply rules is asymptotically

universally consistent if for every " > 0 there exists m such that for every

m0 � m rule pm
0
is "-universally consistent.

Theorem 4. There is no family of better-reply rules which is asymptotically

universally consistent.

The theorem is proven by a counterexample.

L M R

U 1,0 0,1 1,3
4

D 0,1 1,0 1,3
4

Fig. 1.

Consider a repeated game � with the stage game given by Fig. 1, where the

row player is Agent and the column player is Nature. For every m denote by

pm and qm be the behavior rules of Agent and Nature, respectively. We shall

show that for every m0 2 N there exists m � m0 such that the following

holds.

Suppose that Agent with recall length m and Nature play game �. Then for

every agent�s better-reply rule pm there exist behavior rule qm of Nature, initial

history ht0 and period T such that for all t � T

Pr(pm;qm;ht0 )

"
max

a2fU,Dg
Rmt (a) �

1

32

#
� 1

32
:

Let M = f4j + 2jj = 2; 3; : : :g. For every m 2 M , let pm be an arbitrary

better-reply rule, and let qm be the �ctitious play with m-recall. Namely,

10



denote by uN the payo¤ function of Nature as given by Fig. 1, and denote by

�pt the empirical distribution of Agent�s play over the last m periods,

�pt(a) =
1

m
jk : t�m+ 1 � k � t; ak = aj ; a 2 A:

Then qmt+1 assigns probability 1 to a state in argmax
!2fL;M;Rg

uN(�pt; !) (ties are re-

solved arbitrarily). Let Pm be the Markov chain with state space Hm :=

(A� 
)m induced by pm and qm and an initial state ht0 . A history of the

last m periods, hmt 2 Hm will be called, for short, history at t. Denote by

Hm
C � Hm the set of states generated along the following cycle (Fig. 2).

Fig. 2. Closed cycle of Markov chain Pm

The cycle has four phases. In two phases labeled (U,R) and (D,R), the play is

deterministic, and the duration of each phase is exactly m=2 periods. In the

two other phases, the play may randomize between two pro�les (one written

above the other), and the duration of each phase is m=2 or m=2 + 1 periods.

First, we show that this cycle is closed in Pm, i.e., hmt 2 Hm
C implies h

m
t0 2 Hm

C

for every t0 > t.

Lemma 1. For every m 2M , the set Hm
C is closed in Pm.

The proof is in the Appendix.

Next, we show that the expected regrets generated by this cycle are bounded

away from zero by a uniform bound for all m.

Lemma 2. For every m 2 M , if ht0 2 Hm
C , then there exists period T such

that for all t � T

Pr(pm;qm;ht0 )

"
max

a2fU,Dg
Rmt (a) �

1

32

#
� 1

32
:

The proof is in the Appendix. Lemmata 1 and 2 entail the statement of The-

orem 4.
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Remark 1 In the proof of Theorem 4, Nature plays the �ctitious play with

m-recall, which is a better-reply strategy for every m. Consequently, Agent

with bounded recall cannot guarantee a nearly optimized behavior even if

Nature�s behavior is constrained to be in the class of better-reply strategies.

Remark 2 The result can be strengthened as follows. Suppose that whenever

Agent has no regrets, then he plays a fully mixed action, i.e.,

max
a02A

Rmt (a
0) = 0 ) pmt+1(a) > 0 for all a 2 A: (2)

The next lemma shows that if in game � Agent plays a better-reply strategy

pm which satis�es (2) and Nature plays the �ctitious play with m-recall, then

the Markov chain Pm converges to the cycleHm
C regardless of an initial history.

Thus the above negative result is not an isolated phenomenon, it is not peculiar

to a small set of initial histories.

Lemma 3. For every m 2M , if pm satis�es (2), then for every initial history
ht0 the process P

m converges to Hm
C with probability 1.

The proof is in the Appendix.

To see that the statement of Lemma 3 does not hold if pm fails to satisfy

(2), consider again game � with Agent playing a better-reply strategy pm

and Nature playing the �ctitious play with m-recall, qm. In addition, suppose

that whenever maxa02ARmt (a
0) = 0, pmt+1(U) = 1 if t is odd and 0 if t is

even. Let t be even and let ht consist of alternating (UR) and (DR). Clearly,

Rmt (U) = Rmt (D) = 0, and Nature�s best reply is R, thus, qt+1(R) = 1. The

following play is deterministic, alternating between (UR) and (DR) forever.

6 Concluding remarks

We conclude the paper with a few remarks.

1. Why does the better-reply play of Agent with bounded recall fail to exhibit

a (nearly) optimized behavior (against Nature�s empirical play)?

For every a 2 A denote by vt(a) the one-period regret for action a,

vt(a) = u(a; !t)� u(at; !t);

12



and let vt = (vt(a))a2A. Since R
m
t�1 =

1
m

Pt�1
k=t�m vk, we can consider how the

regret vector changes from period t� 1 to period t:

Rmt = R
m
t�1 +

1

m
vt �

1

m
vt�m:

Since the play at period t is a better reply to the empirical play over time

interval t�m; : : : ; t�1, the term 1
m
vt(a) shifts the regret vector, in expectation,

towards zero, however, the term� 1
m
vt�m shifts the regret vector in an arbitrary

direction. A carefully constructed example, as in Section 5, causes the regret

vector to display a cyclical behavior.

2. The following behavior rule was introduced by Lehrer and Solan (2008).

Suppose that Agent has bounded recall m. Divide the time into blocks of

size m: the �rst block contains periods 1; : : : ;m, the second block contains

periods m+1; : : : ; 2m, etc. Let n(t) be the �rst period of the current block, 11

n(t) = m dt=me+ 1. Agent�s regret for action a 2 A is de�ned by

R̂mt (a) =
1

t� n(t) + 1
Xt

�=n(t)
(u(a; !� )� u(a� ; !� )) :

That is, R̂mt (a) is Agent�s average increase in payo¤had he played a constantly

instead of his actual past play within in the current block. Let R̂mt (a) =

(R̂mt (a))a2A, and let p
m be a behavior rule, where in every period t, pmt+1 is the

function of R̂mt only,
12 pmt+1 = �(R̂

m
t ). Clearly, this rule can be implemented

by Agent with m-recall. However, Agent behaves as if he remembers only

the history of the current block, and at the beginning of a new block he

�wipes out�the content of his memory. Lehrer and Solan show that for every

" > 0 and large enoughm there exists anm-recall "-universally consistent rule

pm. Indeed, let pm be the Blackwell strategy (1) with R1t replaced by R̂mt .

Notice that the induced probability distribution over histories within every

block is identical to the probability distribution over histories within �rst

m periods in the model with a perfect-recall agent. The Blackwell (1956)�s

11 dxe denotes a number x rounded up to the nearest integer.
12Note that the described rule is non-statonary, as pmt+1 actually depends on the
starting period of the current block. Lehrer and Solan (2008) also construct a sta-
tionary rule of the same kind, where the beginning of the block is �marked� by
a speci�c sequence of actions which is unlikely to occur in the course of a regular
better-reply play.
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Approachability Theorem (which is behind the result of Hart and Mas-Colell

(2000) on the universal consistency of pm) gives the rate of convergence of

1=
p
t, hence, within each block Agent can approach 1=

p
m-best reply to the

empirical distribution of Nature�s play.

This result is a surprising contrast to the counterexample in Section 5. It shows

that Agent can achieve a better average payo¤ by not using, or deliberately

forgetting some information about the past. Indeed, according to the example

presented in Section 5, if Agent uses full information that he remembers,

the play may eventually enter the cycle with far-from-optimal behavior. A

deliberate forgetting of past information may help Agent to get out of this

cyclical behavior.

3. Hart and Mas-Colell (2001) used a slightly di¤erent notion of better reply.

Consider Agent with perfect recall and de�ne for every period t and every

a 2 A

Dm
t (a) =

1

t

Xt

k=1
(u(a; !k)� u(ak; !k)) :

Note that Rmt (a) = [D
m
t (a)]

+. Action a is a strict better reply (to the empirical

distribution of Nature�s play) if Dm
t (a) > 0 and it is a weak better reply if

Dm
t (a) � 0. According to Hart and Mas-Colell, behavior rule p is a better-

reply rule if whenever there exist actions which are weak better replies, only

such actions are played; formally, whenever maxa2ADm
t (a) � 0,

Dm
t (a) < 0 ) pt+1(a) = 0; a 2 A:

The de�nition of a better-reply rule used in this paper is the same as Hart and

Mas-Colell�s, except that the word �weak� is replaced by �strict�; formally,

whenever maxa2ADm
t (a) > 0,

Dm
t (a) � 0 ) pt+1(a) = 0; a 2 A:

These notions are very close, and one does not imply the other. To the best

of our knowledge, all speci�c better-reply rules mentioned in the literature

satisfy both notions of better reply. It can be veri�ed that our results remain

intact with either notion.

14



Appendix

A-1 Proof of Lemma 1.

Let k = m�2
4
. Denote by zt the empirical distribution of play, that is, for every

(a; !) 2 A� 
, zt(a; !) is the frequency of (a; !) in the history at t,

zt(a; !) :=
1

m
jf� 2 ft�m+ 1; : : : ; tg : (a� ; !� ) = (a; !)j :

Let �t be is the frequency of play of U in the last m periods, �t = zt(U;L) +

zt(U;M) + zt(U;R).

Fact 1. For every period t,

!t+1 =

8>>>>>>>><>>>>>>>>:

L; if �t <
1
4
;

M; if �t >
3
4
;

R; if 1
4
< �t <

3
4
:

Proof. Note that

uN(�pt;L)= zt(D,L) + zt(D,M) + zt(D,R) = 1� �t;
uN(�pt;M)= zt(U,L) + zt(U,M) + zt(U,R) = �t;

uN(�pt;R)=
3

4
:

Since Nature plays �ctitious play, at t+1 it selects !t+1 2 argmax
!2fL,M,Rg

uN(�pt; !).

Note that ties never occur, since m 2M and �t is a multiple of
1
m
, thus �t 6= 1

4

or 3
4
. �

Fact 2. Suppose that hmt 2 Hm
C such that t is the last period of the (D,R)

phase, and suppose that the (U,M)/(D,M) phase preceding the (D,R) phase

has form (a), (b) or (c), as shown in Fig. 3. Then the play for the next 2m,

2m+ 1, or 2m+ 2 periods constitute the full cycle as shown in Fig. 2, where

phases (D,L)/(U,L) and (U,M)/(D,M) have forms 13 (a), (b) or (c).

13 The forms of the (D,L)/(U,L) phase are symmetric to those of (U,M)/(D,M),

obtained by replacement of (U,M) by (D,L) and (D,M) by (U,L).
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Fig. 3. Three forms of the (U,M)/(D,M) phase

Proof. Suppose that hmt contains m=2 (D,R)�s, preceded by the (U,M)/(D,M)

phase in form (a), (b), or (c). We shall show that the play in the next m=2 or

m=2+1 periods constitute phase (D,L)/(U,L) in form (a), (b) or (c), followed

by m=2 (U,R)�s. Once this is established, by considering the last period of

phase (U,R) and repeating the arguments, we obtain Fact 2.

Case 1. Phase (U,M)/(D,M) preceding phase (D,R) has form (a) or (b). Note

that whether the (U,M)/(D,M) phase has form (a) or (b), hmt is the same,

since it contains only 2k + 1 � m=2 last periods of the (U,M)/(D,M) phase.
Let t be the last period of the (D,R) phase. We have �t =

k
m
< 1

4
, thus by Fact

1, !t+1 =L. Also,

Rmt (U)= zt(D,L)� zt(D,M) = �zt(D,M) = �
k + 1

m
;

Rmt (D)= zt(U,M)� zt(U,L) = zt(U,M) =
k

m
;

hence at+1 =D. Further, in every period t+j, j = 1; : : : ; k, (at+j; !t+j) = (D,L)

is played and (at+j�m; !t+j�m) = (U,M) disappears from the history. At period

t+ k we have

Rmt+k(U)= zt+k(D,L)� zt+k(D,M) =
k

m
� k + 1

m
= � 1

m
;

Rmt+k(D)= zt+k(U,M)� zt+k(U,L) = 0� 0 = 0:

There are no regrets, and therefore both (U,L) and (D,L) may occur at t+k+1.

Suppose that (D,L) occurs. Since (at+k�m; !t+k�m) = (D,M), it will disappear

from the history at t+ k + 1, so, we have

16



Rmt+k+1(U)=
k + 1

m
� k

m
=
1

m
;

Rmt+k+1(D)= 0� 0 = 0;

and (U,L) occurs in periods k + 2; : : : ; 2k + 2, until we reach �t+2k+2 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)�s, then k + 1 (U,L)�s, i.e.,

it takes form (b). If instead at t+ k + 1 action pro�le (U,L) occurs, then

Rmt+k+1(U)=
k

m
� k

m
= 0;

Rmt+k+1(D)= 0�
1

m
= � 1

m
;

and, again, there are no regrets and both (U,L) and (D,L) may occur at t+1.

If (U,L) occurs, then

Rmt+k+2(U)=
k

m
� k � 1

m
=
1

m
;

Rmt+k+1(D)= 0�
2

m
= � 2

m
;

and (U,L) occurs in periods k + 3; : : : ; 2k + 1, until we reach �t+2k+1 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k (D,L)�s, then k + 1 (U,L)�s, i.e., it

takes form (a). Finally, if at t+ k + 2 (D,L) occurs, then

Rt+k+1(U)=
k + 1

m
� k � 1

m
=
2

m
;

Rt+k+1(D)= 0�
1

m
= � 1

m
;

and (U,L) occurs in periods k + 3; : : : ; 2k + 2, until we reach �t+2k+2 =
k+1
m
>

1=4. Thus, the phase (D,L)/(U,L) has k (D,L)�s, then single (U,L), then single

(D,L), and then k (U,L)�s, i.e., it takes form (c).

Case 2. Phase (U,M)/(D,M) preceding phase (D,R) has form (c). Then, sim-

ilarly to Case 1, we have �t =
k
m
< 1

4
, and (D,L) is deterministically played

k + 1 times, until

Rmt+k+1(U)= zt+k+1(D,L)� zt+k+1(D,M) =
k + 1

m
� k

m
=
1

m
;

Rmt+k+1(D)= zt+k+1(U,M)� zt+k+1(U,L) = 0� 0 = 0:

After that, (U,L) is played in periods k+2; : : : ; 2k+2, until we reach �t+2k+2 =

17



k+1
m
> 1=4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)�s and then k + 1

(U,L)�s, i.e., it takes form (b).

Let t1 = t+2k+1 if the phase (D,L)/(U,L) had form (a) and t1 = t+2k+2 if

(b) or (c). Notice that at the end of the phase (D,L)/(U,L) we have zt1(U,M) =

zt1(D,M) = 0, hence

Rmt1 (U)= zt1(D,L)� zt1(D,M) > 0;
Rmt1 (D)= zt1(U,M)� zt1(U,L) < 0;

Thus, (U,R) is played for the next m=2 = 2k + 1 periods, until we reach

�t1+m=2 =
3k+2
m

> 3=4, and phase (U,M)/(D,M) begins. �

A-2 Proof of Lemma 2.

By Lemma 1, ht0 2 Hm
C implies h

m
t 2 Hm

C for all t > t0. Let h
m
t 2 Hm

C such that

t is the period at the end of the (D,R) phase. Since the history at t contains

only (U,M)/(D,M) and (D,R) phases, we have zt(D,L) = zt(U,L) = 0. Also,

since at the end of the (D,R) phase the number of U in the history is m+2
4
, it

implies that zt(U,M) = 1
4
+ 1

2m
. Therefore,

Rmt (D) = zt(U,M)� zt(U,L) = zt(U,M) =
1

4
+

1

2m
� C

For every period � ,
���Rm� (D)�Rm�+1(D)��� � 2

m
, therefore, in periods t � j and

t + j the regret for D must be at least Rmt (D)� 2j=m. Since the duration of
every cycle is at most 2m+ 2, the average regret for D during the cycle is at

least

1

2m+ 2

 
C + 2

"�
C � 2

m

�
+
�
C � 4

m

�
+ : : :+

 
C � 2(m=4� 2)

m

!#!
�

� 1

2m

 
m

2
C � 2

m

m2 � 4
32

!
� 1

32
: (3)

Let 
m be the limit frequency of periods where at least one of the regrets

exceeds ",


m = lim
t!1

1

t

���� 2 f1; : : : ; tg : maxa2fU,DgRm� (a) � "��� :
18



Clearly, 
m > " implies that for all large enough t

Pr(pm;qm;ht0 )
h
maxa2fU,DgR

m
t (a) � "

i
� ":

Combining (3) with the fact that 
m is at least as large as the average regret

for D during the cycle, we obtain 
m � 1=32. �

A-3 Proof of Lemma 3.

We shall prove that, regardless of the initial history, some event Hm
E � Hm

occurs in�nitely often, and whenever it occurs, the process reaches the cycle,

Hm
C , within at most 2m periods with strictly positive probability. It follows

that the process reaches the cycle with probability 1 from any initial history.

Fact 3. Regardless of an initial state, L and M occur in�nitely often.

Proof. Suppose that M never occurs from some time on. Then at any t

Rmt (U)= zt(D,L)� zt(D,M) = zt(D,L) � 0;
Rmt (D)= zt(U,M)� zt(U,L) = �zt(U,L) � 0:

Case 1. zt(D,L) > 0. Suppose that L occurred last time at t�j, 0 � j � m�1.
After that Umust be played with probability 1 in every period j0 = t�j+1; : : :,
until frequency of U increases above 3

4
and, by Fact 1 (see proof of Lemma 1),

Nature begins playing M. Contradiction.

Case 2. zt(D,L) = 0, That is, Agent has no regrets, his play is de�ned arbitrar-

ily. By assumption (2), pmt+1(U) > 0, and thus there is a positive probability

that U occurs su¢ ciently many times that the frequency of U increases above
3
4
and M is played. Contradiction.

The proof that L occurs in�nitely often is analogous. �

Fact 4. If !t =L and !t+j =M, then j > m
2
. Symmetrically, if !t =M and

!t+j =L, then j > m
2
.

Proof. Suppose that !t =L, then by Fact 1, �t�1 <
1
4
. Clearly, it requires

j > m
2
periods to reach �t+j�1 greater than

3
4
, which is required to have

!t+j =M. The second part of the fact is proved analogously. �

Fact 5. Regardless of an initial state, the event {!t =L and there are no more
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L in hmt } occurs in�nitely often.

Proof. By Fact 3, both L and M occur in�nitely often. By Fact 4, the minimal

interval of occurrence of L and M is m
2
, hence if L occurs �rst time after M,

previous occurrence of L is at least m+ 1 periods ago. �

Fact 6. Suppose that !t =L and there are no more L in the history. Then

after j < m periods we obtain 1
4
< �t+j <

1
4
+ 1

m
, and with strictly positive

probability Rmt+j(U) > 0 and R
m
t+j(D) � 0.

Proof. We have

Rmt (U)= zt(D,L)� zt(D,M);
Rmt (D)= zt(U,M)� zt(U,L):

By Fact 1, !t =L implies �t�1 <
1
4
, that is, U occurs at most k times in the

history at t� 1, thus zt(U,M) � zt�1(U,M) � k
m
.

Case 1.Rmt (D) > 0 andR
m
t (U) > 0 Then both (D,L) and (U,L) may be played.

Since history at t� 1 does not contain L, regardless of what disappears from
the history, we have Rmt (U) nondecreasing and R

m
t (D) nonincreasing. Thus,

with positive probability, both (D,L) and (U,L) are played for j periods, until

we obtain 1
4
< �t+j <

1
4
+ 1

m
, Rmt+j(U) > 0 and Rmt+j(D) � 0. Note that

j < 3
4
m+1, since by Fact 4 the interval between the last occurrence of M and

the �rst occurrence of L is at least m=2, thus after period t +m=2 there are

no M in the history, Rmt+m=2(U) > 0, R
m
t+m=2(D) < 0, and (U,L) is played at

most k + 1 = m+2
4
times until the frequency of U becomes above 1=4.

Case 2. Rmt (D) > 0, Rmt (U) � 0. Then (D,L) is played for the next j0 =

(zt(D,L)� zt(D,M)) �m+1 periods. At period t+ j0 we have Rmt+j0(D) > 0 and
Rmt+j0(U) > 0, and proceed similarly to Case 1.

Case 3. Rmt (D) � 0, Rmt (U) � 0. That is, Agent has no regrets, his play is

de�ned arbitrarily. By assumption (2), pt+1(D) > 0, hence there is a positive

probability that (D,L) occurs for j0 = zt(D,M) � m periods which will yield

Rmt+j0(U) > 0, Case 2.

Case 4. Rmt (D) � 0, Rmt (U) > 0. Then (U,L) is played for j = 1 or 2 periods
(depending whether (at; !t) = (D,L) or (U,L)), and we have 14 < �t+j <

1
4
+ 1
m
,

Rmt+j(U) = R
m
t (U) > 0 and R

m
t+j(D) < R

m
t (D) � 0. �
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Using Fact 6, we can now analyze the dynamics of the process. Suppose that
1
4
< �t <

1
4
+ 1

m
, Rmt (U) > 0, R

m
t (D) � 0. Then

I. (U,R) is played in the next jUR � m
2
periods, and we obtain 3

4
< �t+jUR <

3
4
+ 1

m
. Since by now M has disappeared from the history, the regrets are

Rmt+jUR(U)� zt(D,L) > 0;
Rmt+jUR(D)��zt(U,L) � 0:

II. (U,M) is played for the next jUM = k + 1 periods. Since jUR + jUM �
m
2
+ k + 1 = 3k + 1, it implies that zt+jUR+jUM (U,L) � k, and

Rmt+jUR+jUM (D) = zt+jUR+jUM (U,M)� zt+jUR+jUM (U,L)

� k + 1
m

� k

m
=
1

m
> 0:

III. With positive probability, (D,M) is played for the next jDM = k + 1

periods, and, since by now L is not in the history, we have

�t+jUR+jUM+jDM =1�
jDM
m

=
3k + 1

m
<
3

4
;

Rmt+jUR+jUM+jDM (U)=�zt+jUR+jUM+jDM (D,M) < 0;
Rmt+jUR+jUM+jDM (D)= zt+jUR+jUM+jDM (U,M) > 0:

Notice that at period t + jUR + jUM + jDM the last m periods correspond to

phases (U,R) and (U,M)/(D,M) of the cycle (the latter is in form (b)). �
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