
DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA 91125

A CHARACTERIZATION OF COMBINATORIAL DEMAND

Christopher P. Chambers

UC San Diego

Federico Echenique

California Institute of Technology

1 8 9 1

C
A

L
IF

O
R

N
IA

 I

N
S T IT U T E O F T

E
C

H
N

O
L

O
G

Y

SOCIAL SCIENCE WORKING PAPER 1420

May 2016



A characterization of combinatorial demand

Christopher P. Chambers Federico Echenique

Abstract

We prove that combinatorial demand functions are characterized by two properties:

continuity and the law of demand.

JEL classification numbers: D11,D44

Key words: Combinatorial auctions; revealed preference; integrability; quasi-linear util-

ity.



A characterization of combinatorial demand

Christopher P. Chambers Federico Echenique

1 Introduction

We prove that combinatorial demand functions are characterized by two properties: con-

tinuity and the law of demand. Suppose given a finite collection of items. We are

interested in the demand for packages, or bundles of items. For each vector of item

prices, we are given a collection of demanded packages, and we want to know if there

exists a valuation function for packages such that the demanded packages are optimal.

Utility is quasilinear in money. So the valuation has to be such that, for each price vector,

the demanded packages maximize the value of the packages when one subtracts the sum

of the prices for the items in the package.

The two properties that characterize optimal combinatorial demand are upper hemi-

continuity and the law of demand. The continuity property is technical, but familiar.

The law of demand captures the economic nature of our problem. Demand for a single

item must “slope down,” meaning that higher prices correspond to smaller demands.

For combinatorial demand, the law of demand says that the change in demanded items

should have a negative value, when evaluated by the change in prices. The law of demand

is an aggregate, or average, version of the downward sloping demand property, and it has

a long history in economics (see for example Samuelson (1948)).

While very natural, our result appears to be new. A long literature investigates the

combinatorial demands that satisfy specific behavioral properties, such as gross substi-

tutes: Murota (2003) provides a description of the literature. Our result is more basic,

in that we seek to understand optimal demand behavior alone, without additional be-

havioral properties. Brown and Calsamiglia (2007) investigate a similar question to ours

in the context of bundles of infinitely divisible goods, but their result does not extend



to combinatorial demand. Finally, we should mention the paper by Baldwin and Klem-

perer (2012) which introduces a new framework for the study of discrete demand, and

investigates many of its properties.

Our main result follows along the lines of Rochet’s approach to revealed preference

theory (see Rochet (1987)). The property of cyclic monotonicity is crucial to obtain a

rationalizing valuation. We use the results of Lavi et al. (2003) or Saks and Yu (2005) (in

a version due to Ashlagi et al. (2010)) to establish that the law of demand is sufficient

for cyclic monotonicity. The main issue in adapting these various results to our problem

is that cyclic monotonicity is not enough to obtain a strict rationalization: the difficulty

is that one may add optimal packages when constructing the rationalization from cyclic

monotonicity. The crucial idea to overcome this difficulty is contained in Lemma 4 in

the proof.

2 Results

2.1 Notation:

Let X be a finite set. Let S be the set of all nonempty subsets of 2X (so the empty set

is not in S, but {∅} is).

We identify a set A ⊆ X with its indicator function 1A ∈ RX . The inner product of

a vector p ∈ RX and 1A is denoted by 〈p,A〉 =
∑

x∈A px.

2.2 Results

A demand function is a function D : RX
++ → S with the property that there is p̄ ∈ RX

++

such that D(p) = {∅} for all p ≥ p̄.

The relevant properties for a demand function are three: A demand function D

• is quasilinear rationalizable if there exists v : 2X → R such that

D(p) = argmax{v(A)− 〈p,A〉 : A ⊆ X};
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• satisfies the law of demand if for all p, q ∈ RX
++, and all A ∈ D(p) and B ∈ D(q),

〈p− q, A−B〉 ≤ 0;

• is upper hemicontinuous if, for all p ∈ RX
++, there is a neighborhood V of p such

that D(q) ⊆ D(p) when q ∈ V .

Theorem 1. A demand function is quasilinear rationalizable iff it is upper hemicontin-

uous and satisfies the law of demand.

A stronger condition places more restrictions on the rationalization. We say a function

g : RX
+ → R is monotone if for all x, y ∈ RX

+ , x ≤ y (coordinatewise) implies g(x) ≤ g(y).

D is monotone, concave, quasilinear rationalizable (MCQ-rationalizable) if there exists a

monotone, concave g : RX
+ → R such that v(A) = g(1A), and

D(p) = argmax{v(A)− 〈p,A〉 : A ⊆ X}.

An easy corollary, demonstrated by our proof is the following:

Corollary 2. If a demand function is quasilinear rationalizable, then it is MCQ-rationalizable.

The corollary demonstrates that there is no additional empirical content delivered by

the hypotheses of concavity and monotonicity.

3 Proof of Theorem 1

Lemma 3. If D is quasilinear rationalizable then it is upper hemicontinuous and satisfies

the law of demand

Proof. Let v rationalize B. Let u(p) = max{v(A)− 〈p,A〉 : A ⊆ X}.

First we show that D is upper hemicontinuous. Since X is finite, there is ε > 0 such

that u(p) − (v(B′) − 〈p,B′〉) > ε for all B′ /∈ D(p). Let V be a ball with center p and

radius small enough that for all q ∈ V , and all B′ /∈ D(p), u(q) − (v(B′) − 〈q, B′〉) > ε.

Then D(q) ⊆ D(p) for all q ∈ V .

Second we show the law of demand. Let A ∈ D(p) and A′ ∈ D(p′). Then v(A) −
〈p,A〉 ≥ v(A′)−〈p,A′〉 and v(A′)−〈p′, A′〉 ≥ v(A)−〈p′, A〉. Adding these two inequalities

and rearranging yields 〈p− p′, A− A′〉 ≤ 0.
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Lemma 3 establishes the necessity direction in the theorem. We now turn to suf-

ficiency. The upper hemicontinuity of D implies the following property: A demand

function D satisfies condition ♠ if for all p and B /∈ D(p) there is A ∈ D(p) and p′ such

that A ∈ D(p′) and 〈p′, A−B〉 > 〈p,A−B〉.
Lemma 4. If D is upper hemicontinuous, then it satisfies condition ♠.

Proof. Let p ∈ RX
++ and B /∈ D(p). Let V be a neighborhood of p as in the definition of

upper hemicontinuity. So D(q) ⊆ D(p) for all q ∈ V .

Let W = ∪A′∈D(p)(A
′ \B) and E = ∪A′∈D(p)(B \ A′). Note that

(B \ A′) ∪ (A′ \B) 6= ∅ (1)

for each A′ ∈ D(p).

Let λ, λ′ > 0. By definition of W , 〈1W , B〉 = 0. So

〈λ1W − λ′1E, A
′ −B〉 = λ〈1W , A

′〉 − λ′〈1E, A
′〉+ λ′〈1E, B〉.

Then for each A′ ∈ D(p), (1) implies that 〈1W , A
′〉 6= 0 or 〈1E, B〉 6= 0, or both. Moreover,

if 〈1W , A
′〉 = 0 then it must be true that A′ ( B, which implies that

−〈1E, A
′〉+ 〈1E, B〉 = 〈1E, B − A′〉 > 0. (2)

Choose λ, λ′ > 0 such that λ〈1W , A
′〉 − λ′〈1E, A

′〉 + λ′〈1E, B〉 > 0 for all A′ ∈ D(p).

This is possible by equation (2), and for example by letting λ/λ′ > |X|. Also choose λ, λ′

such that p′ = p+ (λ1W − λ′1E) ∈ V .

Now, for any A′ ∈ D(p′),

〈p′, A′ −B〉 − 〈p,A′ −B〉 = 〈(λ1W − λ′1E), A′ −B〉 > 0.

Moreover, A′ ∈ D(p), as p′ ∈ V and thus D(p′) ⊆ D(p).

A demand function satisfies cyclic monotonicity if, for all n, and using summation

mod n,
n∑

i=1

〈pi, Ai − Ai+1〉 ≤ 0,
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where Ai ∈ D(pi), for all sequences {pi}ni=1.

The following argument is mostly standard, adapting the construction of Rockafellar

(1966) and Rochet (1987). A potential novelty is the use of the upper hemicontinuity

condition in guaranteeing strict inequalities when necessary.

Lemma 5. If D satisfies cyclic monotonicity, and condition ♠, then it is quasilinear

rationalizable.

Proof. We have assumed that there is p∗ for which {∅} = D(p∗). For any A ⊆ X, define:

v(A) = inf〈p1, A− A1〉+ . . .+ 〈p∗, Ak −∅〉,

where the infimum is taken over all finite sequences (pi, Ai)
k
i=1 for which Ai ∈ D(pi).

Observe that by cyclic monotonicity, v(∅) ∈ R; in fact v(∅) ≥ 0. By construction, v

is nondecreasing, as it is the lower envelope of nondecreasing functions. Hence v(A) ∈ R

for all A. Finally, observe that v is the lower envelope of restriction of affine functions

on RX . Conclude that v is the restriction of a concave function on RX .

Finally, observe by construction that if A ∈ D(p), then for any B ⊆ X,

v(B) ≤ 〈p,B − A〉+ v(A),

from which we obtain v(A)− 〈p,A〉 ≥ v(B)− 〈p,B〉.

Finally, to prove the lemma we need to show that if in addition B /∈ D(p) then

v(A)− 〈p,A〉 > v(B)− 〈p,B〉, or that v(A) > 〈p,A−B〉+ v(B). By condition ♠, there

is A′ ∈ D(p) and p′ such that A′ ∈ D(p′) and 〈p′, A′ −B〉 > 〈p,A′ −B〉.

Suppose that {(Ai, pi)} is a sequence as in the definition of v(A′). Then

v(B) ≤ 〈p′, B − A′〉+
n∑

i=1

〈pi, Ai − Ai+1〉 < 〈p,B − A′〉+
n∑

i=1

〈pi, Ai − Ai+1〉,

so v(B) < 〈p,B − A′〉+ v(A′); and thus

v(A)− 〈p,A〉 = v(A′)− 〈p,A′〉 > v(B)− 〈p′, B〉.
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We finish the proof by using a recent result in the mechanism design literature, es-

tablishing conditions under which monotonicity (a condition that coincides with the law

of demand) implies cyclic monotonicity: see Lavi et al. (2003) and Saks and Yu (2005).

Lemma 6. A demand function satisfies cyclic monotonicity if it satisfies the law of

demand.

Proof. So let D satisfy the law of demand and suppose towards a contradiction that

there is a sequence (pi, Ai)
n
i=1, with Ai ∈ D(pi) and

∑n
i=1〈pi, Ai−Ai+1〉 > 0 (summation

mod n), but no such sequence with n ≤ 2. Choose such a sequence with minimal n, and

observe that n ≥ 3.

For any selection f(p) ∈ D(p), if f is monotone then it is cyclically monotone, see e.g.

Saks and Yu (2005) or Ashlagi et al. (2010), Theorem S.7 in the supplementary material.1

Since D satisfies the law of demand, any selection f is monotone, and therefore cyclically

monotone.

If pi 6= pj for all i, j = 1, . . . , n with i 6= j, then we can choose a selection f of D with

f(pi) = Ai, violating cyclic monotonicity of f , and hence contradicting the fact that it

is monotone.

We now claim that in fact it is the case that pi 6= pj for all i 6= j.

Observe first that if pi = pi+1 for some i, then 〈piAi − Ai+1〉 + 〈pi+1Ai+1 − Ai+2〉 =

〈piAi − Ai+2〉, implying the existence of a shorter sequence, a contradiction.

Suppose then that pi = pj. By the preceding, we know that j = i + 1 is false, and

i = j + 1 is false. Without loss, suppose that i = 1. Then j 6= n and j 6= 2. Further,

〈pj, Aj − Aj+1〉 = 〈pj, Aj − A1〉+ 〈p1, A1 − Aj+1〉, so

0 <
n∑

i=1

〈pi, Ai − Ai+1〉 = 〈p1, A1 − A2〉+ · · ·+ 〈pj, Aj − A1〉+ 〈p1, A1 − Aj+1〉

+〈pj+1, Aj+1 − Aj+2〉+ · · ·+ 〈pn, A1 − An〉.
1Technically, the Ashlagi et al. (2010) result requires the output of f to be a probability measure. To

modify the construction to fit our environment, simply let y∗ 6∈ X, and consider the set Y ⊆ RX∪{y∗}

given by Y = {(p, 0) : p ∈ RX
++}. Define the function f∗ : Y → ∆(X ∪ {y∗}) by f∗(p, 0)(x) =

1x∈f(p)

|X|

and f∗(p, 0)(y∗) = 1− |f(p)||X| . Observe that 〈(q, 0), f∗(p, 0)〉 = 〈q, f(p)〉 1
|x| , and therefore monotonicity of

f is equivalent to that of f∗ and cyclic monotonicity of f is equivalent to that of f∗.
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Consequently, either 〈p1, A1 − A2〉 + · · · + 〈pj, Aj − A1〉 > 0 or 〈p1, A1 − Aj+1〉 + · · · +
〈pj+1, Aj+1 − Aj+2〉+ · · ·+ 〈pn, A1 − An〉 > 0. In either case, we have demonstrated the

existence of a shorter cycle violating cyclic monotonicity, a contradiction.
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