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Abstract

Ryser’s max term rank formula with graph theoretic terminology is equivalent to a characterization
of degree sequences of simple bipartite graphs with matching number at least ℓ. In a previous paper [1]
by the authors, a generalization was developed for the case when the degrees are constrained by upper
and lower bounds. Here two other extensions of Ryser’s theorem are discussed. The first one is a
matroidal model, while the second one settles the augmentation version. In fact, the two directions
shall be integrated into one single framework.

1 Introduction

Ryser [16] derived a formula for the maximum term rank of a (0, 1)-matrix with specified row- and
column-sums. In graph theoretic terms, his theorem is equivalent to a characterization for the existence
of a degree-specified simple bipartite graph (bigraph for short) with matching number at least ℓ. Several
natural extensions, like the min-cost and the subgraph version, turned out to be NP-hard, but in a previous
paper [1], we could extend Ryser’s theorem to the degree-constrained case when, instead of exact degree-
specifications, lower and upper bounds are imposed on the degrees of the bigraph. An even more general
problem was also solved when, in addition, lower and upper bounds were imposed on the number of edges.
The main tool in [1] for proving these extensions was a general framework for covering an intersecting
supermodular function by degree-constrained simple bipartite graphs.

In the present paper we consider two other extensions of Ryser’s theorem: the augmentation and the
matroidal version. In the first one, a given initial bigraph is to be augmented to get a simple degree-
specified bigraph with matching number at least ℓ. In original matrix terms, this means that some of the
entries of the (0, 1)-matrix are specified to be 1. The solvability of this version is in sharp contrast with
the NP-completeness of another variation when some entries of the matrix are specified to be 0. (This
follows from the NP-completeness of the problem that seeks to decide whether an initial bigraph G0 has
a perfectly matchable degree-specified subgraph, see [11], [13], [14].)

In the matroidal extension of Ryser’s theorem, there is a matroid on S and there is a matroid on T,
and the goal is to find a degree-specified simple bigraph including a matching that covers bases in both
matroids. These results will be consequences of a general framework including both the augmentation and
the matroidal cases.

The starting point in deriving the main result is the supermodular arc-covering theorem by Frank
and Jordán [9] (Theorem 1 below). Since [9] describes a polynomial algorithm, relying on the ellipsoid
method, to compute the optima in question, our matroidal term rank augmentation problem also admits
a polynomial algorithm. One of the most important applications in [9] is the directed node-connectivity
augmentation problem. Végh and Benczúr [17] developed for this special case a pretty intricate but purely
combinatorial algorithm (not relying on the ellipsoid method). Although not mentioned explicitly in [17],
their algorithm can probably be extended to work on the supermodular arc covering theorem when the
function in question is ST -crossing supermodular, but the details have not been worked out. (In the special
case of node-connectivity augmentation, this general oracle was realized via network flow computations.)
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Therefore the algorithm of Végh and Benczúr seems to be adaptable to the term rank problem, too. In a
forthcoming paper [3], we shall develop a much simpler algorithm along with a natural unification of the
matroidal augmentation and the degree-constrained term rank problems.

1.1 Notions and notation

We use the notation of [1]. Here we briefly repeat the most important notions. For a family T of sets,
let ∪T denote the union of the members of T . For a subpartition T = {T1, . . . , Tq}, we always assume
that its members Ti are non-empty but T is allowed to be empty (that is, q = 0).

An arc st enters or covers a set X if s 6∈ X, t ∈ X. A digraph covers X if it contains an arc covering
X. Let S and T be two non-empty subsets of a ground-set V . By an ST -arc we mean an arc st with s ∈ S
and t ∈ T . Two sets X and Y are ST -independent if X∩Y ∩T = ∅ or S−(X∪Y ) = ∅, that is, no ST -arc
enters both sets. Two subsets X and Y are comparable if X ⊆ Y or Y ⊆ X. Two non-comparable sets
X and Y are T -intersecting if X ∩ Y ∩ T 6= ∅ and ST -crossing if X ∩ Y ∩ T 6= ∅ and S − (X ∪ Y ) 6= ∅.
A set-function p is called positively T -intersecting (ST -crossing) supermodular if the supermodular
inequality

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y )

holds for T -intersecting (resp. ST -crossing) subsets X and Y for which p(X) > 0 and p(Y ) > 0. The
function is fully supermodular if the supermodular inequality holds for every pair X and Y of subsets.

For a function m : V → R, the set-function m̃ is defined by m̃(X) =
∑

[m(v) : v ∈ X]. A set-function
p can analogously be extended to families F of sets by p̃(F) =

∑
[p(X) : X ∈ F ].

The following min-max theorem of Frank and Jordán [9] will be a basic tool in the proof of the main
theorem.

Theorem 1 (Supermodular arc-covering, set-function version). A positively ST -crossing supermodular
set-function p for which p(V ′) ≤ 0 holds when no ST -arc enters V ′ can be covered by γ (possibly parallel)
ST -arcs if and only if p̃(I) ≤ γ holds for every ST -independent family I of subsets of V . There is an
algorithm, which is polynomial in |S| + |T | and in the maximum value of p(X), to compute the minimum
number of ST -arcs to cover p and an ST -independent family I of subsets maximizing p̃(I).

Henceforth we assume that S and T are two disjoint non-empty sets and V := S∪T . Let G∗ = (S, T ;E∗)
denote the complete bipartite graph on bipartition (S, T ). Let D∗ = (S, T ;A∗) be the digraph arising from
G∗ by orienting each of its edges from S to T , that is, A∗ consists of all ST -arcs. More generally, for a

bigraph H = (S, T ;F ), let
−→
H = (S, T ;

−→
F ) denote the digraph arising from H by orienting each of its edges

from S toward T .
Throughout we are given a simple bigraph H0 = (S, T ;F0) serving as an initial bigraph to be augmented.

For E0 := E∗ − F0, the bigraph G0 = (S, T ;E0) is called the bipartite complement of H0, that is, F0

and E0 partition E∗. Note that a bigraph G = (S, T ;E) is a subgraph of G0 precisely if the augmented
bigraph G+ = (S, T ;F0 + E) is simple. For X ⊆ S and Y ⊆ T , let dG0

(X,Y ) denote the number of edges
of G0 connecting X and Y .

2 Matroidal covering and augmentation

Let pT be a positively intersecting supermodular set-function on T . In [1], we studied the problem of
finding a simple degree-specified bigraph G = (S, T ;E) covering pT in the sense that

|ΓG(Y )| ≥ pT (Y ) for every subset Y ⊆ T

where ΓG(Y ) denotes the set of neighbours of Y . Here we consider a framework which is more general in
two directions. First, for a given initial simple bigraph H0 = (S, T ;F0), we want to find a degree-specified
bigraph G in such a way that G+ := G + H0 is simple and covers pT . This kind of problems is often
referred to as augmentation problems to be distinguished from the synthesis problems where F0 is empty.
If pT ≡ 0, the augmentation problem is equivalent to finding a degree-specified subgraph of the bipartite
complement of H0.
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Second, we extend the notion of covering to matroidal covering in the following sense. Let MS = (S, rS)
be a matroid on S with rank function rS . A bigraph G is said to MS-cover pT if

rS(ΓG(Y )) ≥ pT (Y ) for every subset Y ⊆ T . (1)

Clearly, when MS is the free matroid, we are back at the original notion of covering by a bigraph.

2.1 Degree-specified matroidal augmentation

Let mV = (mS ,mT ) be a degree-specification. A bigraph G = (S, T ;E) is said to fit mV if dG(v) =
mV (v) for every v ∈ S∪T . Our main goal is to describe a characterization for the existence of a bigraph G
fitting mV so that G+H0 is simple and MS-covers pT . The more general problem, when there are upper
and lower bounds on V , will be discussed in [3]. This degree-constrained version was solved in [1] in the
special case when H0 has no edges and MS is the ℓ-uniform matroid on S.

Our main result is as follows.

Theorem 2. We are given a simple bigraph H0 = (S, T ;F0), a matroid MS = (S, rS), a positively inter-
secting supermodular set-function pT on T , and a degree-specification mV = (mS ,mT ) on V := S ∪ T for
which m̃S(S) = m̃T (T ) = γ. There is a bigraph G = (S, T ;E) fitting mV for which G+ = G+H0 is simple
and MS-covers pT if and only if

m̃S(X) + m̃T (Y )− dG0
(X,Y ) +

∑q
i=1

[pT (Ti)− rS(X ∪ ΓH0
(Ti))] ≤ γ

whenever Y ⊆ T , X ⊆ S, and T = {T1, . . . , Tq} is a subpartition of T − Y, (2)

where G0 is the bipartite complement of H0.

Proof. Proof. Necessity. Suppose that there is a requested bigraph G = (S, T ;E) and let G+ = (S, T ;E ∪
F0). Note that the simplicity of G+ is equivalent to the requirement that G is a subgraph of G0. Let X ⊆ S
and Y ⊆ T be subsets and let {T1, . . . , Tq} be a subpartition of T −Y . Let Wi := ΓG(Ti)− [X ∪ΓH0

(Ti)] =
ΓG+(Ti)− [X ∪ ΓH0

(Ti)]. Then we have

pT (Ti) ≤ rS(ΓG+(Ti)) ≤ rS(ΓH0
(Ti) ∪X) + rS(Wi) ≤

rS(ΓH0
(Ti) ∪X) + |Wi| ≤ rS(ΓH0

(Ti) ∪X) + dG(Ti,Wi)

from which dG(Ti,Wi) ≥ pT (Ti)−rS(X∪ΓH0
(Ti)). Therefore G has at least

∑q
i=1

[pT (Ti)−rS(X∪ΓH0
(Ti))]

edges connecting T −Y and S−X, and G has at least m̃S(X)+ m̃T (Y )−dG0
(X,Y ) edges with end-nodes

in X or in Y , from which the inequality in (2) follows.

Sufficiency. Let H0 := {V ′ ⊆ V : no arc of
−→
H0 enters V ′}. Then H0 is closed under taking union and

intersection. In the following definition of set-function p0, we have X ⊆ S, Y ⊆ T , and y ∈ T .

p0(V
′) :=





max{pT (y)− rS(X), mT (y)− |X|+ dH0
(y)} if V ′ = X + y ∈ H0,

pT (Y )− rS(X) if V ′ = X ∪ Y ∈ H0, |Y | ≥ 2

0 otherwise.

(3)

The definition of p0 implies that p0(V
′) can be positive only if V ′ ∈ H0.

Lemma 3. The set-function p0 is positively T -intersecting supermodular.

Proof. Proof. Let X1,X2 be subsets of S and let Y1, Y2 be subsets of T for which Y1 ∩ Y2 6= ∅. Suppose
that p0(Vi) > 0 for Vi = Xi ∪ Yi (i = 1, 2). Then each of the sets V1, V2, V1 ∩ V2, and V1 ∪ V2 belongs to
H0. We distinguish three cases.

Case 1 p0(Vi) = pT (Yi)− rS(Xi) for i = 1, 2. Then

p0(V1) + p0(V2) = [pT (Y1)− rS(X1)] + [pT (Y2)− rS(X2)] ≤

pT (Y1 ∩ Y2)− rS(X1 ∩X2) + pT (Y1 ∪ Y2)− rS(X1 ∪X2) ≤ p0(V1 ∩ V2) + p0(V1 ∪ V2).
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Case 2 p0(Vi) > pT (Yi) − rS(Xi) for i = 1, 2. Then Y1 = Y2 = {y} for some y ∈ T , and p0(Vi) =
mT (y)− |Xi|+ dH0

(y). We have

p0(V1) + p0(V2) = mT (y)− |X1|+ dH0
(y) +mT (y)− |X2|+ dH0

(y) =

mT (y)− |X1 ∩X2|+ dH0
(y) +mT (y)− |X1 ∪X2|+ dH0

(y) ≤ p0(V1 ∩ V2) + p0(V1 ∪ V2).

Case 3 p0(V1) = pT (Y1) − rS(X1) and p0(V2) > pT (Y2) − rS(X2). (The situation is analogous when the
indices i = 1, 2 are interchanged.) Then Y2 = {y} for some y ∈ T and y ∈ Y1. Since

rS(X1 ∪X2)− rS(X1) ≤ |(X1 ∪X2)−X1| = |X2| − |X1 ∩X2|,

we have −rS(X1)− |X2| ≤ −rS(X1 ∪X2)− |X1 ∩X2| and hence

p0(V1) + p0(V2) = [pT (Y1)− rS(X1)] + [mT (y)− |X2|+ dH0
(y)] =

[pT (Y1 ∪ Y2)− rS(X1)] + [mT (y)− |X2|+ dH0
(y)] ≤

pT (Y1 ∪ Y2)− rS(X1 ∪X2) +mT (y)− |X1 ∩X2|+ dH0
(y) ≤ p0(V1 ∪ V2) + p0(V1 ∩ V2),

as required. •

Claim 4. mS(s) ≤ dG0
(s) for each s ∈ S.

Proof. Proof. By applying (2) to Y = T , X = {s}, and T = ∅, the claim follows. •

For s ∈ S, let Vs := {v ∈ V − s : sv 6∈ F0}. Note that Vs ∈ H0 for s ∈ S. Let a set-function p1 on V
be defined as follows.

p1(V
′) :=

{
mS(s) if V ′ = Vs for some s ∈ S

p0(V
′) otherwise.

(4)

The definition of p1 implies that p1(V
′) can be positive only if V ′ ∈ H0.

Claim 5. p1(Vs) ≥ p0(Vs) holds for every s ∈ S.

Proof. Proof. Consider first the case when Vs ∩ T = {y} for some y ∈ T . By applying (2) to X = S − s,
Y = {y}, and T = ∅, we get

mT (y)− |S − s|+ dH0
(y) = mT (y)− dG0

(S − s, y) ≤ mS(s).

By applying (2) to X = S − s, Y = ∅, and T = {y}, we get pT (y)− rS(S − s) ≤ mS(s), from which

mS(s) ≥ max{pT (y)− rS(S − s), mT (y)− |S − s|+ dH0
(y)} = p0(Vs).

Second, assume that |Vs ∩ T | ≥ 2. By applying (2) to X = S − s, Y = ∅, and T = {Vs ∩ T}, we get

p0(Vs) = pT (Vs ∩ T )− rS(S − s) ≤ mS(s). •

Claim 6. The set-function p1 is positively ST -crossing supermodular.

Proof. Proof. It follows from Claim 5 that p1 arises from p0 by increasing its values on sets Vs (s ∈ S).
Let V ′ ⊂ V be a set which is ST -crossing with Vs (in particular, V ′ and Vs are not comparable). Then
S 6⊆ Vs ∪ V ′ and hence V ′ ∩ S ⊆ Vs ∩ S. Therefore V ′ ∩ T 6⊆ Vs ∩ T , that is, there is an element

t ∈ (V ′ − Vs) ∩ T . Since st is an arc of
−→
H0 entering V ′, we conclude that p1(V

′) = 0, implying that p1 is
indeed positively ST -crossing supermodular. •

Let ν denote the maximum total p1-value of ST -independent sets.

Lemma 7. ν = γ.
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Proof. Proof. Since the family L = {Vs : s ∈ S} is ST -independent, ν ≥ p̃1(L) = m̃S(S) = γ. Suppose
indirectly that ν > γ and let I be an ST -independent family for which p̃1(I) = ν. We can assume that |I|
is minimal in which case p1(V

′) > 0 for each V ′ ∈ I .

Claim 8. There are no two T -intersecting members V1 and V2 of I for which p1(Vi) = p0(Vi) (i = 1, 2).

Proof. Proof. Suppose indirectly the existence of such T -intersecting members V1 and V2 of I . Since I is
ST -independent, we must have S ⊆ V1∪V2 and hence p0(V1∪V2) = 0. Since p0 is positively T -intersecting
supermodular,

p1(V1) + p1(V2) = p0(V1) + p0(V2) ≤

p0(V1 ∩ V2) + p0(V1 ∪ V2) = p0(V1 ∩ V2) ≤ p1(V1 ∩ V2).

Now I ′ = I − {V1, V2} + {V1 ∩ V2} is also ST -independent and p̃1(I
′) ≥ p̃1(I), but we must have

equality by the optimality of I , contradicting the minimality of |I|. •

We say that a member V ′ ∈ I is of Type I if V ′ = Xt + t for some t ∈ T and Xt ⊆ S and

p1(Xt + t) = p0(Xt + t) = mT (t)− |Xt|+ dH0
(t) > pT (t)− rS(Xt).

Let I1 (⊆ I) denote the family of sets of Type I. Claim 8 implies that if X1 + t1 ∈ I1 and X2 + t2 ∈ I1
for which X1 + t1 6= X2 + t2 (Xi ⊆ S, ti ∈ T ), then t1 6= t2. Let

Y := {t ∈ T : there is a member Xt + t ∈ I1}.

Note that |Y | = |I1|.
We say that a member V ′ ∈ I is of Type II if

p1(V
′) = p0(V

′) = pT (V
′ ∩ T )− rS(V

′ ∩ S).

Let I2 = {V1, V2, · · · , Vq} (⊆ I) denote the family of sets of Type II. Let

T := {T1, . . . , Tq} where Ti := Vi ∩ T for i = 1, . . . , q.

Since p1(Vi) > 0, the members of T are non-empty. Furthermore, Claim 8 implies that T is a subpartition
of T − Y .

Let I3 := I − (I1 ∪ I2). The members of I3 are called of Type III. Then each member V ′ of I3 is of
form V ′ = Vs for some s ∈ S such that mS(s) = p1(V

′) > p0(V
′). Let

X := {s ∈ S : Vs ∈ I3}.

It follows from the definitions that I1,I2, and I3 form a partition of I .

Claim 9. Let t ∈ Y and Xt + t ∈ I1. Then X ⊆ Xt.

Proof. Proof. Suppose indirectly that there is an element s ∈ X−Xt. By the ST -independence of the sets

Xt + t and Vs, the element t cannot be in Vs. Therefore the arc st belongs to
−→
F0. Since st enters Xt + t,

we have p1(Xt + t) = 0, a contradiction. •

Claim 10.
∑

[|Xt| − dH0
(t) : t ∈ Y ] ≥ dG0

(X,Y ).

Proof. Proof. What we prove is that |Xt| − dH0
(t) ≥ dG0

(X, t) for t ∈ Y and Xt + t ∈ I1. Since no arc of
−→
H0 enters Xt + t and since X ⊆ Xt by Claim 9, we have

|Xt| − dH0
(t) = |Xt| − dH0

(Xt, t) = dG0
(Xt, t) ≥ dG0

(X, t),

as required. •

Claim 11. X ∪ ΓH0
(Ti) ⊆ Vi ∩ S holds for each i = 1, . . . , q.

5



Proof. Proof. As Vi ∈ H0, we have ΓH0
(Ti) ⊆ Vi ∩ S. If, indirectly, there is an s ∈ X − Vi, then the

ST -independence of Vs and Vi implies that Vs ∩ Vi ∩ T = ∅. In this case, an element t ∈ Vi ∩ T cannot be

in Vs implying that st ∈
−→
F0. But then p1(Vi) = 0, contradicting the property p1(V

′) > 0 for each V ′ ∈ I.
•

Recall that T is a subpartition of T − Y . This and the last two claims imply

γ < ν = p̃1(I) = p̃1(I1) + p̃1(I2) + p̃1(I3) =

∑
[mT (t)− |Xt|+ dH0

(t) : Xt + t ∈ I1] +

q∑

i=1

[pT (Ti)− rS(Vi ∩ S)] +
∑

[mS(s) : Vs ∈ I3] ≤

∑
[mT (t) : Xt + t ∈ I1]− dG0

(X,Y ) +

q∑

i=1

[pT (Ti)− rS(X ∪ ΓH0
(Ti))] + m̃S(X) =

m̃T (Y )− dG0
(X,Y ) +

q∑

i=1

[pT (Ti)− rS(X ∪ ΓH0
(Ti))] + m̃S(X),

in a contradiction with (2), completing the proof of the lemma. • •

Claim 12. If p1(V
′) is positive, then

−→
G0 covers V ′.

Proof. Proof. As already observed after (4), V ′ ∈ H0. Assume to the contrary that
−→
G0 does not cover V ′.

As G0 denotes the bipartite complement of H0, this is only possible if V ′ ∩ T = ∅ or S ⊆ V ′.
If V ′ = Vs for some s ∈ S, then s /∈ V ′, hence V ′ ∩ T = ∅. This means that st ∈ F0 for each t ∈ T . By

applying (2) to X = {s}, Y = T and T = ∅, we get p1(V
′) = mS(s) ≤ 0, a contradiction.

Therefore, we must have p1(V
′) = p0(V

′). As p0 was defined to be 0 for sets not intersecting T , we can
assume that S ⊆ V ′ holds. If p0(V

′) = pT (V
′ ∩ T )− rS(V

′ ∩ S), then (2), when applied to Y = ∅, X = S
and T = {V ′ ∩ T}, gives p0(V

′) = pT (V
′ ∩ T )− rS(S) ≤ 0, a contradiction. Therefore p0(V

′) is defined by
the first line of (3). Hence V ′ = S + y for some y ∈ T and p0(V

′) = mT (y)− |S|+ dH0
(y). Now (2), when

applied to Y = {y}, X = S and T = ∅, gives p0(V
′) = mT (y) − |S| + dH0

(y) = mT (y) − dG0
(S, y) ≤ 0,

thus leading to a contradiction again. •

By Claim 12, Theorem 1 can be applied to p1. This means that there is a digraph D = (V,A) on V
with ν = γ ST -arcs that covers p1, that is, ̺D(V

′) ≥ p1(V
′) for every subset V ′ ⊆ V . Let G = (S, T ;E)

denote the undirected bipartite graph underlying D.

Claim 13. dG(s) = mS(s) for every s ∈ S and dG(t) = mT (t) for every t ∈ T .

Proof. Proof. Since dG(s) = δD(s) ≥ ̺D(Vs) ≥ p1(Vs) = mS(s) for every s ∈ S, we have m̃S(S) = |E| =∑
[dG(s) : s ∈ S] ≥ m̃S(S), from which dG(s) = mS(s) follows for every s ∈ S.
Since dG(t) = ̺D(t) ≥ ̺D(ΓH0

(t) + t) ≥ p0(ΓH0
(t) + t) ≥ mT (t) for every t ∈ T , we have m̃T (T ) =

|E| =
∑

[dG(t) : t ∈ T ] ≥ m̃T (T ), from which dG(t) = mT (t) follows for every t ∈ T . •

Claim 14. The bigraph G+ = (S, T ;E + F0) is simple.

Proof. Proof. The minimality of D implies that each arc of D enters a subset V ′ with p1(V
′) > 0. Since

p1(V
′) can be positive only if no arc of

−→
H0 enters V ′, we can conclude that no edge of G is parallel to an

edge of H0.
Suppose indirectly that there are two parallel edges e and e′ of G connecting s and t for some s ∈ S

and t ∈ T . Let X := ΓH0
(t). Then p1(X + t) ≥ mT (t) = ̺D(t). For V ′ = X + s + t, we have

̺D(t)− 2 ≥ ̺D(V
′) ≥ p1(V

′) ≥ p1(X + t)− 1 ≥ mT (t)− 1 = ̺D(t)− 1, a contradiction. •

Claim 15. rS(ΓG+(Y )) ≥ pT (Y ) for every subset Y ⊆ T .

Proof. Proof. Let X := ΓG+(Y ) and V ′ := Y ∪X. Then 0 = ̺D(V
′) ≥ p1(V

′) ≥ pT (Y ) − rS(X), from
which the claim follows. •

We conclude that G meets all the requirements of the theorem, and the proof is complete. • • •
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2.2 Variations

2.2.1 Degree-specification only on S

With the proof technique used above, one can derive the following variation where the degrees are
specified only for the nodes in S. Namely, the definition of p0 in (3) should be modified as follows.

p0(V
′) :=

{
pT (Y )− rS(X) if V ′ = X ∪ Y ∈ H0, X ⊆ S, Y ⊆ T

0 otherwise.
(5)

Theorem 16. We are given a simple bigraph H0 = (S, T ;F0), a matroid MS = (S, rS), a positively
intersecting supermodular function pT on T , and a degree-specification mS on S for which m̃S(S) = γ.
There is a bigraph G = (S, T ;E) fitting mS for which G+ = G +H0 is simple and MS-covers pT if and
only if

mS(s) + dH0
(s) ≤ |T | for every s ∈ S (6)

and

m̃S(X) +
∑q

i=1
[pT (Ti)− rS(X ∪ ΓH0

(Ti))] ≤ γ

whenever X ⊆ S and T = {T1, . . . , Tq} a subpartition of T . (7)

One reason why we do not go into the details is that the proof is quite similar to (and, in fact, slightly
simpler than) the proof of Theorem 2. Another reason is that, in a forthcoming work [3], we solve a
common generalization of Theorems 2 and 16 where, instead of degree-specifications, there are both upper
and lower bounds for the degrees of all nodes in S ∪ T .

2.2.2 Fully supermodular pT

In the special case when pT ≡ 0, it suffices to require the inequality in (2) only for the empty T , in
which case Theorem 2 reduces to the following classic result (which actually holds for non-simple bigraphs,
too).

Theorem 17 (Ore [12]). A simple bigraph G0 = (S, T ;E0) has a subgraph fitting a degree-specification
(mS ,mT ) with m̃S(S) = m̃T (T ) = γ if and only if

m̃S(X) + m̃T (Y )− dG0
(X,Y ) ≤ γ whenever X ⊆ S, Y ⊆ T . (8)

The content of the next result is that the condition in Theorem 2 can also be simplified when pT is
fully supermodular.

Theorem 18. We are given a simple bigraph H0 = (S, T ;F0), a matroid MS = (S, rS), a fully supermodular
function pT on T , and a degree-specification mV = (mS,mT ) for which m̃S(S) = m̃T (T ) = γ. There is a
bigraph G = (S, T ;E) fitting mV for which G+ = G +H0 is simple and MS-covers pT if and only if (8)
holds and

m̃S(X) + m̃T (Y )− dG0
(X,Y ) + pT (T0)− rS(X ∪ ΓH0

(T0)) ≤ γ

whenever Y ⊆ T , X ⊆ S, T0 ⊆ T − Y , (9)

where G0 is the bipartite complement of H0.

Proof. Proof. Conditions (8) and (9) correspond to the special cases of Condition (2) when |T | = 0 and
|T | = 1, respectively. Therefore their necessity was proved earlier. To see sufficiency, by Theorem 2 it
suffices to show that (2) holds in general. Suppose, indirectly, that there are X, Y , and T violating (2).
Assume that |T | is minimal. Then (8) and (9) imply that |T | ≥ 2. Let T1, T2 be two members of T . Since

pT (T1 ∪ T2)− rS(X ∪ ΓH0
(T1 ∪ T2)) ≥ pT (T1) + pT (T2)− rS(X ∪ ΓH0

(T1))− rS(X ∪ ΓH0
(T2)),

the unchanged sets X,Y and the partition T ′ obtained from T by replacing T1 and T2 with the single set
T1 ∪ T2 also violate (2), contradicting the minimal choice of T . •

It is worth formulating Theorem 18 in the special case when H0 has no edges.
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Corollary 19. We are given a matroid MS = (S, rS), a fully supermodular function pT on T , and a degree-
specification mV = (mS ,mT ) for which m̃S(S) = m̃T (T ) = γ. There is a simple bigraph G = (S, T ;E)
fitting mV and MS-covering pT if and only if

m̃S(X) + m̃T (Y )− |X||Y | ≤ γ whenever X ⊆ S, Y ⊆ T (10)

and

m̃S(X) + m̃T (Y )− |X||Y |+ pT (T0)− rS(X) ≤ γ whenever Y ⊆ T , X ⊆ S, T0 ⊆ T − Y . (11)

If, in addition, pT is monotone non-decreasing, then T0 in (11) can be chosen to be T0 = T − Y , that is,

m̃S(X) + m̃T (Y )− |X||Y |+ pT (T − Y )− rS(X) ≤ γ whenever X ⊆ S, Y ⊆ T. (12)

Proof. Proof. The first part is a special case of Theorem 18. When pT , in addition, is monotone non-
decreasing in the second part, we can choose T0 in (11) as large as possible, that is, T0 = T − Y . •

3 Matroidal max term rank

Let G(mS ,mT ) denote the set of simple bigraphs G = (S, T ;E) fitting a degree-specification (mS ,mT )
with m̃S(S) = m̃T (T ) = γ. It follows from Theorem 17 that G(mS ,mT ) is non-empty if and only if (10)
holds. In [1] (Theorem 26), we reformulated Ryser’s classic max term rank formula in graph theoretic
language.

Theorem 20 (Ryser). Let ℓ ≤ |T | be an integer. Suppose that G(mS ,mT ) is non-empty. Then G(mS ,mT )
has a member G with matching number ν(G) ≥ ℓ if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ (ℓ− |X| − |Y |) ≤ γ whenever X ⊆ S, Y ⊆ T. (13)

Moreover, (13) holds if the inequality in it is required only when X consists of the i largest values of mS

and Y consists of the j largest values of mT (i = 0, 1, . . . , |S|, j = 0, 1, . . . , |T |).

We keep using graph terminology, but the original expression (max term rank) of Ryser is retained.
Our present goal is to extend Ryser’s theorem in two directions. In the augmentation version an initial
bigraph is to be augmented while in the matroidal form the matching is expected to cover a basis of a
matroid MS on S and a basis of matroid MT on T . Actually, we shall integrate the two generalizations
into one single framework.

In what follows, MS = (S, rS) and MT = (T, rT ) will be matroids of rank ℓ. In [1], the complementary
set-function p of a set-function b was defined by p(Y ) := b(S)− b(S − Y ). Clearly, b is submodular if and
only if p is supermodular, and p is monotone non-decreasing if and only if b is monotone non-decreasing.
The complementary function pT of the rank function rT of MT is called the co-rank function of MT . It
can easily be shown that pT (Y ) = min{|Y ∩B| : B a basis of MT }.

The following extension of Edmonds’ matroid intersection theorem [6] will be used. For notational
convenience, the bipartite graph in the theorem is denoted by G+.

Theorem 21 (Brualdi, [4]). Let G+ = (S, T ;E+) be a bigraph with a matroid MS = (S, rS) on S and with
a matroid MT = (T, rT ) on T for which rS(S) = rT (T ) = ℓ. There is a matching of G+ covering bases of
MS and MT if and only if

rS(X
′) + rT (Y

′) ≥ ℓ

whenever X ′ ∪ Y ′ hits every edge of G+ (X ′ ⊆ S, Y ′ ⊆ T ). (14)

We need the following equivalent version of Theorem 21.

Lemma 22. Let G+ = (S, T ;E+) be a bigraph. Let MS be a matroid on S with rank function rS and
MT a matroid on T with co-rank function pT for which rS(S) = pT (T ) = ℓ. There is a matching of G+

covering bases of MS and MT if and only if

rS(ΓG+(Y )) ≥ pT (Y ) for every Y ⊆ T. (15)
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Proof. Proof. The necessity is straightforward. The sufficiency follows from Theorem 21 once we show
that (14) holds. Since X ′ ∪ Y ′ hits every edge of G+, for Y := T − Y ′ we have ΓG+(Y ) ⊆ X ′. Therefore
(15) implies that rS(X

′) ≥ rS(ΓG+(Y )) ≥ pT (Y ) = rT (T ) − rT (Y
′) = ℓ − rT (Y

′) and hence (14) indeed
holds.

Theorem 23. We are given a simple bigraph H0 = (S, T ;F0), a matroid MS = (S, rS) and a matroid
MT = (T, rT ) with rS(S) = rT (T ) = ℓ, and a degree-specification mV = (mS ,mT ) on V := S ∪T for which
m̃S(S) = m̃T (T ) = γ. There is a bigraph G = (S, T ;E) fitting mV for which G+ = G+H0 is simple and
includes a matching covering a basis of MS and a basis of MT if and only if (8) holds and

m̃S(X) + m̃T (Y )− dG0
(X,Y ) + ℓ− rS(X

′)− rT (Y
′) ≤ γ

whenever X ⊆ X ′ ⊆ S, Y ⊆ Y ′ ⊆ T , and X ′ ∪ Y ′ hits all the edges of H0, (16)

where G0 is the bipartite complement of H0.

Proof. Proof. Necessity. Suppose that the requested bigraph G and its ℓ-element matching M exist. The
number of edges of G with at least one end-node in X ∪ Y is at least m̃S(X) + m̃T (Y )− dG0

(X,Y ). The
number of edges in M with at least one end-node in X ′ ∪ Y ′ is at most rS(X

′) + rT (Y
′). Therefore M has

at least ℓ − rS(X
′) − rT (Y

′) elements connecting S −X ′ and T − Y ′. But these elements must be in E
since X ′ ∪ Y ′ hits all edges of H0. Therefore the total number of edges of G is at least m̃S(X) + m̃T (Y )−
dG0

(X,Y ) + ℓ− rS(X
′)− rT (Y

′), and (16) follows.
Sufficiency. Let pT denote the co-rank function of MT , that is, pT (Z) = ℓ− rT (T −Z) for Z ⊆ T . Note

that pT is fully supermodular.

Claim 24. Condition (9) is satisfied.

Proof. Proof. For the present pT , Condition (9) requires

m̃S(X) + m̃T (Y )− dG0
(X,Y ) + ℓ− rT (T − T0)− rS(X ∪ ΓH0

(T0)) ≤ γ. (17)

No sets X ⊆ S, Y ⊆ T , and T0 ⊆ T − Y can violate this inequality since then, by letting Y ′ := T − T0 and
X ′ := X ∪ ΓH0

(T0), the quadruple (X, Y, X ′, Y ′) would violate (16). •

By Theorem 18, there is a bigraph G fitting mV for which G+ = G+H0 is simple and MS-covers pT .
The latter property, by definition, means that (15) holds, and therefore Lemma 22 implies that G+ has a
requested matching.• •

When mV ≡ 0 and γ = 0, it suffices to require (16) only for X = Y = ∅ in which case it transforms to

ℓ− rS(X
′)− rT (Y

′) ≤ 0 whenever X ′ ⊆ S, Y ′ ⊆ T , and X ′ ∪ Y ′ hits all the edges of H0, (18)

which is the same as (14). In other words, Theorem 23 may be considered as a straight generalization of
Brualdi’s theorem.

The content of the next corollary is that in the special case of Theorem 8 when F0 = ∅ it suffices to
require (16) only in a simplified form.

Corollary 25. Let S and T be two disjoint sets and (mS ,mT ) a degree-specification on S ∪ T for which
m̃S(S) = m̃T (T ) = γ and G(mS ,mT ) is non-empty, that is, (10) holds. Let MS = (S, rS) and MT = (T, rT )
be matroids for which rS(S) = rT (T ) = ℓ. There is a simple bigraph G = (S, T ;E) fitting (mS ,mT ) that
includes a matching covering bases of MS and MT if and only if

m̃S(X) + m̃T (Y )− |X||Y |+ ℓ− rS(X)− rT (Y ) ≤ γ (19)

holds for every X ⊆ S and Y ⊆ T .
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Proof. Proof. Consider Theorem 23 in the special case when F0 = ∅. Then the bipartite complement G0

of H0 is a complete bigraph and hence dG0
(X,Y ) = |X||Y |. Therefore Condition (10) requested in the

corollary is the same as Condition (8) requested in Theorem 23. Furthermore (19) is the special case of
(16) when X ′ = X and Y ′ = Y , and hence (19) is necessary.

We claim, conversely, that (19) implies (16). Indeed, if X ⊆ X ′ and Y ⊆ Y ′ violate the inequality in
(16), then the monotonicity of matroid rank functions imply that γ < m̃S(X) + m̃T (Y ) − |X||Y | + ℓ −
rS(X

′) − rT (Y
′) ≤ m̃S(X) + m̃T (Y ) − |X||Y | + ℓ − rS(X) − rT (Y ), contradicting (19). Therefore the

requested bigraph exists by Theorem 23. •

Note that the inequalities in Conditions (10) and (19) can be integrated into the following single form:

m̃S(X) + m̃T (Y )− |X||Y |+ (ℓ− rS(X)− rT (Y ))+ ≤ γ. (20)

By specializing Theorem 23 to the case when MS and MT are ℓ-uniform matroids on S and T , respec-
tively, one obtains the following.

Corollary 26. We are given a simple bigraph H0 = (S, T ;F0), an integer ℓ, and a degree-specification
(mS ,mT ) for which m̃S(S) = m̃T (T ) = γ. There is a bigraph G = (S, T ;E) fitting (mS ,mT ) for which
G+ = G+H0 is simple and includes an ℓ-element matching if and only if (8) holds and

m̃S(X) + m̃T (Y )− dG0
(X,Y ) + ℓ− |X ′| − |Y ′| ≤ γ

whenever X ⊆ X ′ ⊆ S, Y ⊆ Y ′ ⊆ T , and X ′ ∪ Y ′ hits all the edges of H0, (21)

where G0 is the bipartite complement of H0.

Proof. Proof. Consider Theorem 23 in the special case when MS and MT are ℓ-uniform matroids on S and
on T , respectively. Since matroid rank functions are subcardinal, (21) is implied by (16) and hence (21) is
necessary.

We claim, conversely, that (21) implies (16), that is, α+ ℓ− rS(X
′)− rT (Y

′) ≤ γ where α := m̃S(X)+
m̃T (Y )− dG0

(X,Y ). Indeed, if max{|X ′|, |Y ′|} ≤ ℓ, then α+ ℓ− rS(X
′)− rT (Y

′) = α+ ℓ−min{ℓ, |X ′|}−
min{ℓ, |Y ′|} = α+ℓ−|X ′|−|Y ′| ≤ γ, where the last inequality follows by (21). If max{|X ′|, |Y ′|} > ℓ, and,
say, |X ′| > ℓ, then α+ ℓ− rS(X

′)− rT (Y
′) = α+ ℓ−min{ℓ, |X ′|} −min{ℓ, |Y ′|} ≤ α+ ℓ− ℓ− 0 = α ≤ γ,

where the last inequality follows by (8). Therefore the requested bigraph exists by Theorem 23. •
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