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ON THE CONSTRUCTION OF CONVERGING HIERARCHIES

FOR POLYNOMIAL OPTIMIZATION

BASED ON CERTIFICATES OF GLOBAL POSITIVITY∗

AMIR ALI AHMADI† AND GEORGINA HALL‡

Abstract. In recent years, techniques based on convex optimization and real algebra that pro-
duce converging hierarchies of lower bounds for polynomial minimization problems have gained much
popularity. At their heart, these hierarchies rely crucially on Positivstellensätze from the late 20th
century (e.g., due to Stengle, Putinar, or Schmüdgen) that certify positivity of a polynomial on an
arbitrary closed basic semialgebraic set. In this paper, we show that such hierarchies could in fact be
designed from much more limited Positivstellensätze dating back to the early 20th century that only
certify positivity of a polynomial globally. More precisely, we show that any inner approximation to
the cone of positive homogeneous polynomials that is arbitrarily tight can be turned into a converging
hierarchy of lower bounds for general polynomial minimization problems with compact feasible sets.
This in particular leads to a semidefinite programming-based hierarchy that relies solely on Artin’s
solution to Hilbert’s 17th problem. We also use a classical result of Polyá on global positivity of even
forms to construct an “optimization-free” converging hierarchy for general polynomial minimization
problems with compact feasible sets. This hierarchy only requires polynomial multiplication and
checking nonnegativity of coefficients of certain fixed polynomials. As a corollary, we obtain new
linear programming and second-order cone programming-based hierarchies for polynomial minimiza-
tion problems that rely on the recently introduced concepts of dsos (diagonally dominant sum of
squares) and sdsos (scaled diagonally dominant sum of squares) polynomials. We remark that the
scope of this paper is theoretical at this stage as our hierarchies—though they involve at most two
sum of squares constraints or only elementary arithmetic at each level—require the use of bisection
and increase the number of variables (resp. degree) of the problem by the number of inequality
constraints plus three (resp. by a factor of two).
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1. Introduction. A polynomial optimization problem (POP) is an optimization
problem of the form

(1)
inf

x∈Rn
p(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m,

where p, gi, i = 1, . . . ,m, are polynomial functions in n variables x := (x1, . . . , xn)
and with real coefficients. It is well-known that polynomial optimization is a hard
problem to solve in general. For example, simply testing whether the optimal value
of problem (1) is smaller than or equal to some rational number k is NP-hard already
when the objective is quadratic and the constraints are linear [19]. Nevertheless, these
problems remain topical due to their numerous applications throughout engineering,
operations research, and applied mathematics (see, e.g., [15, 6, 2]). In this paper, we
are interested in obtaining lower bounds on the optimal value of problem (1). We focus
on a class of methods which construct hierarchies of tractable convex optimization
problems whose optimal values are lower bounds on the optimal value of (1), with
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convergence to it as the sequence progresses. This implies that even though the
original POP is nonconvex, one can obtain increasingly accurate lower bounds on its
optimal value by solving convex optimization problems. One method for constructing
these hierarchies of optimization problems that has gained attention in recent years
relies on the use of Positivstellensätze (see, e.g., [16] for a survey). Positivstellensätze
are algebraic identities that certify infeasibility of a set of polynomial inequalities, or
equivalently1, positivity of a polynomial on a basic semialgebraic set. (Recall that
a basic semialgebraic set is a set defined by finitely many polynomial inequalities.)
These Positivstellensätze can be used to prove lower bounds on POPs. Indeed, if we
denote the feasible set of (1) by S, the optimal value of problem (1) is equivalent to

(2)
sup
γ

γ

s.t. p(x)− γ ≥ 0, ∀x ∈ S.

Hence if γ is a strict lower bound on (1), we have that p(x) − γ > 0 on S, a fact
that can be certified using Positivstellensätze. At a conceptual level, hierarchies that
provide lower bounds on (1) are constructed thus: we fix the “size of the certificate” at
each level of the hierarchy and search for the largest γ such that the Positivstellensätze
at hand can certify positivity of p(x)− γ over S with a certificate of this size. As the
sequence progresses, we increase the size of the certificates allowed, hence obtaining
increasingly accurate lower bounds on (1).

Below, we present three of the better-known Positivstellensätze, given respectively
by Stengle [31], Schmüdgen [27], and Putinar [25]. These all rely on sum of squares
certificates. We recall that a polynomial is a sum of squares (sos) if it can be written
as a sum of squares of other polynomials. We start with Stengle’s Positivstellensatz,
which certifies infeasibility of a set of polynomial inequalities. It is sometimes re-
ferred to as “the Positivstellensatz” in related literature as it requires no assumptions,
contrarily to Schmüdgen and Putinar’s theorems which can be viewed as refinements
of Stengle’s result under additional assumptions. This Positivstellensatz was in fact
discovered by Krivine in 1964 [13], and rediscovered by Stengle later2; see [24, Section
4.7] for a more complete history of this result.

Theorem 1.1 (Stengle’s Positivstellensatz [31]). The closed basic semialgebraic
set

S = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

is empty if and only if there exist sum of squares polynomials s0(x),s1(x),. . ., sm(x),
s12(x), s13(x),. . ., s123...m(x) such that

−1 = s0(x) +
∑

i

si(x)gi(x) +
∑

{i,j}

sij(x)gi(x)gj(x) + . . .+ s123...m(x)g1(x) . . . gm(x).

The next two theorems, due to Schmüdgen and Putinar, certify positivity of a polyno-
mial p over a closed basic semialgebraic set S. They impose additional compactness
assumptions comparatively to Stengle’s Positivstellensatz.

Theorem 1.2 (Schmüdgen’s Positivstellensatz [27]). Assume that the set

S = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

1Note that the set {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0} is empty if and only if −g1(x) > 0 on

the set {x ∈ R
n | g2(x) ≥ 0, . . . , gm(x) ≥ 0}.

2We thank an anonymous referee for pointing this out to us and for providing us with the
appropriate references.
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is compact. If a polynomial p is positive on S, then

p(x) = s0(x) +
∑

i

si(x)gi(x) +
∑

{i,j}

sij(x)gi(x)gj(x) + . . .+ s123...m(x)g1(x) . . . gm(x),

where s0(x),s1(x),. . ., sm(x), s12(x), s13(x),. . ., s123...m(x) are sums of squares.

Theorem 1.3 (Putinar’s Positivstellensatz [25]). Let

S = {x ∈ R
n | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

and assume that {g1, . . . , gm} satisfy the Archimedean property, i.e., there exists
N ∈ N such that

N −
∑

i

x2
i = σ0(x) + σ1(x)g1(x) + . . .+ σm(x)gm(x),

where σ1(x), . . . , σm(x) are sums of squares. If a polynomial p is positive on S, then

p(x) = s0(x) + s1(x)g1(x) + . . .+ sm(x)gm(x),

where s1(x), . . . , sm(x) are sums of squares.

Note that these three Positivstellensätze involve in their expressions sum of squares
polynomials of unspecified degree. To construct hierarchies of tractable optimiza-
tion problems for (2), we fix this degree: at level r, we search for the largest γ
such that positivity of p(x) − γ over S can be certified using the Positivstellensätze
where the degrees of all sos polynomials are taken to be less than or equal to 2r.
Solving each level of these hierarchies is then a semidefinite program (SDP). This is
a consequence of the fact that one can optimize over (or test membership to) the
set of sum of squares polynomials of fixed degree using semidefinite programming
[21, 20, 14]. Indeed, a polynomial p of degree 2d and in n variables is a sum of squares
if and only if there exists a symmetric matrix Q � 0 such that p(x) = z(x)TQz(x),
where z(x) = (1, x1, . . . , xn, . . . , x

d
n)

T is the standard vector of monomials in n vari-
ables and of degree less than or equal to d. We remark that the hierarchy obtained
from Stengle’s Positivstellensatz was proposed and analyzed by Parrilo in [21]; the
hierarchy obtained from Putinar’s Positivstellensatz was proposed and analyzed by
Lasserre in [14]. There have been more recent works that provide constructive proofs
of Schmüdgen and Putinar’s Positivstellensätze; see [5, 28, 30]. These proofs rely on
other Positivstellensätze, e.g., a result by Polyá (see Theorem 1.6 below) in [28, 30],
and the same result by Polyá, Farkas’ lemma, and Stengle’s Positivstellensatz in [5].
We would like to thank an anonymous referee for pointing out that the construction
in [28] can be used to develop converging hierarchies of lower bounds for POPs with
compact feasible sets. These hierarchies rely on Gröbner bases computations and lin-
ear programs involving only two variables. Some experiments with this technique were
carried out by Datta [7] and Averkov has more recently shown [5] that the (potentially
expensive) Gröbner bases computations can be avoided in this approach. Other re-
cent research efforts relating to Positivstellensätze have been focused around deriving
complexity bounds for Schmüdgen and Putinar’s Positivstellensätze; see [18, 29].

On a historical note, Stengle, Schmüdgen, and Putinar’s Positivstellensätze were
derived in the latter half of the 20th century. As mentioned previously, they all
certify positivity of a polynomial over an arbitrary basic semialgebraic set (modulo
compactness assumptions). By contrast, there are Positivstellensätze from the early
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20th century that certify positivity of a polynomial globally. Perhaps the most well-
known Positivstellensatz of this type is due to Artin in 1927, in response to Hilbert’s
17th problem. Artin shows that any nonnegative polynomial is a sum of squares of
rational functions. Here is an equivalent formulation of this statement:

Theorem 1.4 (Artin [4]). For any nonnegative polynomial p, there exists a
nonzero sos polynomial q such that p · q is a sum of squares.

To the best of our knowledge, in this area, all converging hierarchies of lower bounds
for POPs are based off of Positivstellensätze that certify nonnegativity of a polynomial
over an arbitrary basic semialgebraic set. In this paper, we show that in fact, under
compactness assumptions, it suffices to have only global certificates of nonnegativity
(such as the one given by Artin) to produce a converging hierarchy for general POPs.
As a matter of fact, even weaker statements that apply only to globally positive (as
opposed to globally nonnegative) forms are enough to derive converging hierarchies for
POPs. Examples of such statements are due to Habicht [11] and Reznick [26]. With
such an additional positivity assumption, more can usually be said about the structure
of the polynomial q in Artin’s result. Below, we present the result by Reznick.

Theorem 1.5 (Reznick [26]). For any positive definite form p, there exists r ∈ N

such that p(x) · (∑i x
2
i )

r is a sum of squares.

We show in this paper that this Positivstellensatz also gives rise to a converging
hierarchy for POPs with a compact feasible set similarly to the one generated by
Artin’s Positivstellensatz.

Through their connections to sums of squares, the two hierarchies obtained using
the theorems of Reznick and Artin are semidefinite programming-based. In this paper,
we also derive an “optimization-free” converging hierarchy for POPs with compact
feasible sets where each level of the hierarchy only requires that we be able to test
nonnegativity of the coefficients of a given fixed polynomial. To the best of our
knowledge, this is the first converging hierarchy of lower bounds for POPs which
does not require that convex optimization problems be solved at each of its levels.
To construct this hierarchy, we use a result of Polyá [22], which just like Artin’s and
Reznick’s Positivstellensätze, certifies global positivity of forms. However this result is
restricted to even forms. Recall that a form p is even if each of the variables featuring
in its individual monomials has an even power. This is equivalent (see [8, Lemma 2])
to p being invariant under change of sign of each of its coordinates, i.e.,

p(x1, . . . , xn) = p(−x1, . . . , xn) = · · · = p(x1, . . . ,−xn).

Theorem 1.6 (Polyá [22]). For any positive definite even form p, there exists
r ∈ N such that p(x) · (∑i x

2
i )

r has nonnegative coefficients.

A perhaps better-known but equivalent formulation of this theorem is the follow-
ing: for any form h that is positive on the standard simplex, there exists r ∈ N such
that h(x) · (∑i xi)

r has nonnegative coefficients. The two formulations are equivalent
by simply letting p(x) = h(x2). The latter formulation has been used to derive similar
optimization-free converging hierarchies of lower bounds for polynomial minimization
problems over the simplex; see, e.g., [9, 10].

Our aforementioned optimization-free hierarchy also enables us to obtain linear
programming (LP) and second-order cone programming (SOCP)-based hierarchies for
general POPs with compact feasible sets that rely on the concepts of dsos and sdsos
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polynomials. These are recently introduced inner approximations to the set of sos
polynomials that have shown much better scalability properties in practice [3].

As a final remark, we wish to stress the point that the goal of this paper is first
and foremost theoretical, i.e., to provide methods for constructing converging hier-
archies of lower bounds for POPs using as sole building blocks certificates of global
positivity. We do not make any claims that these hierarchies can outperform the
popular existing hierarchies due, e.g., to Lasserre [14] and Parrilo [21]. In particular,
all hierarchies that we generate increase the number of variables and the degree of the
polynomials involved from n to n+m+ 3, and from d to 2d, respectively. They also
necessitate the use of bisection, which, while not a problem in theory, increases the
computational overload. We remark however that each level of our hierarchies only
involves either one sum of squares constraint (the hierarchy based on the certificate
of Reznick; Theorem 3.2), two sum of squares constraints (the hierarchy based on
the certificate of Artin; Theorem 3.4), or nothing but elementary computations (the
hierarchy based on the certificate of Polyá; Theorem 4.1). By contrast, each level
of the hierarchy based on Putinar’s (resp. Schmüdgen’s) certificate involves m + 1
(resp. 2m) sum of squares constraints, but necessitates no need to use bisection or to
increase the number of variables/degree of the problem. Similarly, a hierarchy based
on Stengle’s certificate, which would work by showing infeasibility of the constraints
{γ− p(x) ≥ 0, g1(x) ≥ 0, . . . , gm(x) ≥ 0}, requires the use of bisection on γ and 2m+1

sum of squares constraints in each level, but necessitates no increase in the number
of variables/degree of the problem. Of course, such comparisons would become more
meaningful if one could also relate the quality of the bounds obtained from the differ-
ent approaches. Some remarks on why it is nontrivial to connect our hierarchies to
previous ones in this sense are made in Section 5.

1.1. Outline of the paper. The paper is structured as follows. In Section 2, we
show that if one can inner approximate the cone of positive definite forms arbitrarily
well (with certain basic properties), then one can produce a converging hierarchy
of lower bounds for POPs with compact feasible sets (Theorem 2.4). This relies
on a reduction (Theorem 2.1) that reduces the problem of certifying a strict lower
bound on a POP to that of proving positivity of a certain form. In Section 3, we
see how this result can be used to derive semidefinite programming-based converging
hierarchies (Theorems 3.2 and 3.4) from the Positivstellensätze by Artin (Theorem
1.4) and Reznick (Theorem 1.5). In Section 4, we derive an optimization-free hierarchy
(Theorem 4.1) from the Positivstellensatz of Polyá (Theorem 1.6) as well as LP and
SOCP-based hierarchies which rely on dsos/sdsos polynomials (Corollary 4.8). We
conclude with a few open problems in Section 5.

1.2. Notation and basic definitions. We use the standard notation A � 0
to denote that a symmetric matrix A is positive semidefinite. Recall that a form is
a homogeneous polynomial, i.e., a polynomial whose monomials all have the same
degree. We denote the degree of a form f by deg(f). We say that a form f is
nonnegative (or positive semidefinite) if f(x) ≥ 0, for all x ∈ R

n (we write f ≥ 0). A
form f is positive definite (pd) if f(x) > 0, for all nonzero x in R

n (we write f > 0).
Throughout the paper, we denote the set of forms (resp. the set of nonnegative
forms) in n variables and of degree d by Hn,d (resp Pn,d). We denote the ball of
radius R and centered at the origin by B(0, R) and the unit sphere in x-space, i.e.,
{x ∈ R

n | ||x||2 = 1}, by Sx. We use the shorthand f(y2 − z2) for y, z ∈ R
n to

denote f(y21 − z21 , . . . , y
2
n − z2n). We say that a scalar γ is a strict lower bound on (1)

if p(x) > γ, ∀x ∈ S. Finally, we ask the reader to carefully read Remark 2.3 which
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contains the details of a notational overwriting occurring before Theorem 2.4 and
valid from then on throughout the paper. This overwriting makes the paper much
simpler to parse.

2. Constructing converging hierarchies for POP using global certifi-

cates of positivity. Consider the polynomial optimization problem in (1) and de-
note its optimal value by p∗. Let d be such that 2d is the smallest even integer larger
than or equal to the maximum degree of p, gi, i = 1, . . . ,m. We denote the feasible
set of our optimization problem by

S = {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . ,m}

and assume that S is contained within a ball of radius R. From this, it is easy to
provide (possibly very loose) upper bounds on gi(x) over the set S: as S is contained
in a ball of radius R, we have |xi| ≤ R, for all i = 1, . . . , n. We then use this to
upper bound each monomial in gi and consequently gi itself. We use the notation ηi
to denote these upper bounds, i.e., gi(x) ≤ ηi, for all i = 1, . . . ,m and for all x ∈ S.
Similarly, we can provide an upperbound on −p(x). We denote such a bound by β,
i.e., −p(x) ≤ β, ∀x ∈ S.

The goal of this section is to produce a method for constructing converging hi-
erarchies of lower bounds for POPs if we have access to arbitrarily accurate inner
approximations of the set of positive definite forms. The first theorem (Theorem 2.1)
connects lower bounds on (1) to positive definiteness of a related form. The second
theorem (Theorem 2.4) shows how this can be used to derive a hierarchy for POPs.

Theorem 2.1. Consider the general polynomial optimization problem in (1) and
recall that d is such that 2d is the smallest even integer larger than or equal to the
maximum degree of p, gi, i = 1, . . . ,m. Suppose S ⊆ B(0, R) for some positive scalar
R. Let ηi, i = 1, . . . ,m (resp. β) be any finite upper bounds on gi(x), i = 1, . . . ,m
(resp. −p(x)).

Then, a scalar γ is a strict lower bound on (1) if and only if the homogeneous
sum of squares polynomial

fγ(x, s, y) :=
(

γy2d − y2dp(x/y)− s20y
2d−2

)2
+

m
∑

i=1

(

y2dgi(x/y)− s2i y
2d−2

)2
(3)

+

(

(R +

m
∑

i=1

ηi + β + γ)dy2d − (

n
∑

i=1

x2
i +

m
∑

i=0

s2i )
d − s2dm+1

)2

of degree 4d and in n + m + 3 variables (x1, . . . , xn, s0, . . . , sm, sm+1, y) is positive
definite.3

Proof. It is easy to see that γ is a strict lower bound on (1) if and only if the set

T := {x ∈ R
n | γ − p(x) ≥ 0; gi(x) ≥ 0, i = 1, . . . ,m;

∑

i

x2
i ≤ R}

is empty. Indeed, if T is nonempty, then there exists a point x ∈ S such that p(x) ≤ γ.
This implies that γ cannot be a strict lower bound on (1). Conversely, if T is empty,
the intersection of S with {x | γ − p(x) ≥ 0} is empty, which implies that ∀x ∈ S,
p(x) > γ.

3The reader will observe in the proof that the variables (s0, . . . , sm+1) will serve as slack variables
and the variable y will be used for homogenization.
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We now define the set:

(4)

Ts = {(x, s) ∈ R
n+m+2 | γ − p(x) = s20; gi(x) = s2i , i = 1, . . . ,m;

(R+

m
∑

i=1

ηi + β + γ)d − (

n
∑

i=1

x2
i +

m
∑

i=0

s2i )
d − s2dm+1 = 0}.

Note that Ts is empty if and only if T is empty. Indeed, if Ts is nonempty, then there
exists x ∈ R

n and s ∈ R
m+2 such that the three sets of equations are satisfied. This

obviously implies that γ− p(x) ≥ 0 and that gi(x) ≥ 0, for all i = 1, . . . ,m. It further
implies that

∑

i x
2
i ≤ R as by assumption, if x ∈ S, then x is in a ball of radius R.

Conversely, suppose now that T is nonempty. There exists x such that γ − p(x) ≥ 0,
gi(x) ≥ 0 for i = 1, . . . ,m, and

∑

i x
2
i ≤ R. Hence, there exist s0, . . . , sm such that

γ − p(x) = s20 and gi(x) = si
2, i = 1, . . . ,m.

Combining the fact that
∑

i xi
2 ≤ R and the fact that ηi, i = 1, . . . ,m (resp. γ + β)

are upperbounds on gi (resp. γ − p(x)), we obtain:

R+

m
∑

i=1

ηi + β + γ ≥
n
∑

i=1

xi
2 +

m
∑

i=0

si
2.

By raising both sides of the inequality to the power d, we show the existence of sm+1.
We now show that Ts is empty if and only if fγ(x, s, y) is positive definite. Suppose

that Ts is nonempty, i.e., there exists (x, s) ∈ R
n+m+2 such that the equalities given

in (4) hold. Note then that fγ(x, s, 1) = 0. As (x, s, 1) is nonzero, this implies that
fγ(x, s, y) is not positive definite.

For the converse, assume that fγ(x, s, y) is not positive definite. As fγ(x, s, y) is
a sum of squares and hence nonnegative, this means that there exists nonzero (x, s, y)
such that f(x, s, y) = 0. We proceed in two cases. If y 6= 0, it is easy to see that
(x/y, s/y) ∈ Ts and Ts is nonempty. Consider now the case where y = 0. The third
square in fγ being equal to zero gives us:

−(
∑

i

x2
i +

m
∑

i=0

s2i )
d = s2dm+1.

This implies that sm+1 = 0 and that x1 = . . . = xm = s0 = . . . = sm = 0 which
contradicts the fact that (x, s, y) is nonzero.

Remark 2.2. Note that Theorem 2.1 implies that testing feasibility of a set of
polynomial inequalities is no harder than checking whether a homogeneous polynomial
that is sos has a zero. Indeed, as mentioned before, the basic semialgebraic set

{x | g1(x) ≥ 0, . . . , gm(x) ≥ 0}

is empty if and only if γ = 0 is a strict lower bound on the POP

inf
x

− g1(x)

s.t. g2(x) ≥ 0, . . . , gm(x) ≥ 0.

In principle, this reduction can open up new possibilities for algorithms for testing
feasibility of a basic semialgebraic set. For example, the work in [1] shows that positive
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definiteness of a form f is equivalent to global asymptotic stability of the polynomial
vector field ẋ = −∇f(x). One could as a consequence search for Lyapunov functions,
as is done in [1, Example 2.1.], to certify positivity of forms. Conversely, simulating
trajectories of the above vector field can be used to minimize f and potentially find its
nontrivial zeros, which, by our reduction, can be turned into a point that belongs to
the basic semialgebraic set at hand.

We further remark that one can always take the degree of the sos form fγ in
(3) whose positivity is under consideration to be equal to four. This can be done by
changing the general POP in (1) to only have quadratic constraints and a quadratic
objective via an iterative introduction of new variables and new constraints in the
following fashion: xij = xixj .

Remark 2.3 (Notational remark). As a consequence of Theorem 2.1, we now
know that certifying lower bounds on (1) is equivalent to proving positivity of the form
fγ that appears in (3). To simplify notation, we define

N := n+m+ 3 and D = 2d,

where n is the dimension of the decision variable of problem (1), d is such that 2d is
the smallest even integer larger than or equal to the maximum degree of gi and p in
(1), and m is the number of constraints of problem (1). Note now that the form fγ is
a polynomial in N variables and of degree 2D.

Our next theorem shows that, modulo some technical assumptions, if one can
inner approximate the set of positive definite forms arbitrarily well (conditions (a)
and (b)), then one can construct a converging hierarchy for POPs.

Theorem 2.4. Let Kr
n,2d be a sequence of sets (indexed by r) of homogeneous

polynomials in n variables and of degree 2d with the following properties:
(a) Kr

n,2d ⊆ Pn,2d, ∀r, and there exists a pd form sn,2d ∈ K0
n,2d.

(b) If p > 0, then ∃r ∈ N such that p ∈ Kr
n,2d.

(c) Kr
n,2d ⊆ Kr+1

n,2d, ∀r.
(d) If p ∈ Kr

n,2d, then ∀ǫ ∈ [0, 1], p+ ǫsn,d ∈ Kr
n,2d.

Recall the definition of fγ(z) given in (3). Consider the hierarchy of optimization
problems indexed by r:

(5)

lr := sup
γ

γ

s.t. fγ(z)−
1

r
sN,2D(z) ∈ Kr

N,2D.

Then, lr ≤ p∗ for all r, {lr} is nondecreasing, and limr→∞ lr = p∗.

Proof. We first show that the sequence {lr} is upperbounded by p∗. Suppose that
a scalar γ satisfies

fγ(z)−
1

r
sN,2D(z) ∈ Kr

N,2D.

We then have fγ(z)− 1
r sN,2D(z) ∈ PN,2D using (a). This implies that fγ(z) ≥ 1

r sN,2D(z),
and hence fγ is pd as sN,2D is pd. From Theorem 2.1, it follows that γ has to be a
strict lower bound on the optimal value of (1). As γ < p∗, we have that lr ≤ p∗ for all r.

We now show monotonicity of the sequence {lr}. Let γ be such that

fγ(z)−
1

r
sN,2D(z) ∈ Kr

N,2D.
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We have the following identity:

fγ(z)−
1

r + 1
sN,2D(z) = fγ(z)−

1

r
sN,2D(z) +

1

r(r + 1)
sN,2D(z).

Now, using the assumption and properties (c) and (d), we conclude that

fγ(z)−
1

r + 1
sN,2D(z) ∈ Kr+1

N,2D.

This implies that

{γ | fγ(z)−
1

r
sN,2D(z) ∈ Kr

N,2D} ⊆ {γ | fγ(z)−
1

r + 1
sN,2D(z) ∈ Kr+1

N,2D}

and that lr ≤ lr+1.

Note that as the sequence {lr} is upper bounded and nondecreasing, it converges.
Let us show that the limit of this sequence is p∗. To do this, we show that for any strict
lower bound γ on (1), there exists a positive integer r such that fγ(z)− 1

r sN,2D(z) ∈
Kr

N,2D. By Theorem 2.1, as γ is a strict lower bound, fγ(z) is positive definite. As a
form is positive definite if and only if it is positive on the unit sphere, by continuity,
there exists a positive integer r′ such that fγ(z)− 1

r′ sN,2D(z) is positive definite. Using
(b), this implies that there exists a positive integer r′′ such that

(6) fγ(z)−
1

r′
sN,2D(z) ∈ Kr′′

N,2D.

We now proceed in two cases. If r′′ ≤ r′, we take r = r′ and use property (c) to
conclude. If r′ ≤ r′′, we have

fγ(z)−
1

r′′
sN,2D(z) = fγ(z)−

1

r′
sN,2D(z) +

r′′ − r′

r′ · r′′ sN,2D(z).

We take r = r′′ and use (6) and properties (c) and (d) to conclude.

Remark 2.5. Note that condition (d) is subsumed by the more natural condition
that Kr

n,d be a convex cone for any n, d, and r. However, there are interesting and rel-
evant cones which we cannot prove to be convex though they trivially satisfy condition
(d) (see Theorem 3.2 for an example).

3. Semidefinite programming-based hierarchies obtained from Artin’s

and Reznick’s Positivstellensätze. In this section, we construct two different
semidefinite programming-based hierarchies for POPs using Positivstellensätze de-
rived by Artin (Theorem 1.4) and Reznick (Theorem 1.5). To do this, we introduce
two sets of cones that we call the Artin and Reznick cones.

Definition 3.1. We define the Reznick cone of level r to be

Rr
n,2d := {p ∈ Hn,2d | p(x) ·

(

n
∑

i=1

x2
i

)r

is sos}.

Similarly, we define the Artin cone of level r to be

Ar
n,2d := {p ∈ Hn,2d | p(x) · q(x) is sos for some nonzero sos form q of degree 2r}.
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We show that both of these cones produce hierarchies of the type discussed in
Theorem 2.4. Recall that p∗ is the optimal value of problem (1) and that fγ is a
polynomial in N variables and of degree 2D as defined in (3) and Remark 2.3.

Theorem 3.2. Consider the hierarchy of optimization problems indexed by r:

(7)

lr := sup
γ

γ

s.t. fγ(z)−
1

r
(

N
∑

i=1

z2i )
D ∈ Rr

N,2D.

Then, lr ≤ p∗ for all r, {lr} is nondecreasing, and limr→∞ lr = p∗.

Proof. It suffices to show that the Reznick cones Rr
n,2d satisfy properties (a)-(d)

in Theorem 2.4. The result will then follow from that theorem. For property (a),
it is clear that, as (

∑

i x
2
i )

r > 0 and p(x) · (∑i x
2
i )

r is a sum of squares and hence
nonnegative, p(x) must be nonnegative, so Rr

n,2d ⊆ Pn,2d. Furthermore, the form

sn,2d := (
∑

i x
2
i )

d belongs to R0
n,2d and is positive definite. Property (b) is verified

as a consequence of Theorem 1.5. For (c), note that if p(x) · (∑i x
2
i )

r is sos, then
p(x) · (∑i x

2
i )

r+1 is sos since the product of two sos polynomials is sos. Finally, for
property (d), note that Rr

n,2d is a convex cone. Indeed, for any λ ∈ [0, 1],

(λp(x) + (1 − λ)q(x)) · (
∑

i

x2
i )

r = λp(x)(
∑

i

x2
i )

r + (1− λ)q(x)(
∑

i

x2
i )

r

is sos if p and q are in Rr
n,2d. Combining the fact that Rr

n,2d is a convex cone and the

fact that (
∑

i x
2
i )

d ∈ Rr
n,d, we obtain (d).

Remark 3.3. To solve a fixed level r of the hierarchy given in Theorem 3.2, one
must proceed by bisection on γ (since the parameter γ appears with a power in the
definition of fγ in (3)). Bisection here would produce a sequence of upper bounds {Uk}
and lower bounds {Lk} on lr as follows. At iteration k, we test whether γ = Uk+Lk

2

is feasible for (7). If it is, then we take Lk+1 = Uk+Lk

2 and Uk+1 = Uk. If it is not,

we take Uk+1 = Uk+Lk

2 and Lk+1 = Lk. We stop when |Ukǫ
− Lkǫ

| < ǫ, where ǫ is a
prescribed accuracy, and the algorithm returns lr,ǫ = Lkǫ

. Note that lr − ǫ ≤ lr,ǫ ≤ lr
and that to obtain lr,ǫ, one needs to take a logarithmic (in 1

ǫ ) number of steps using
this method.

Hence, solving the rth level of this hierarchy using bisection can be done by
semidefinite programming. Indeed, for a fixed r and γ given by the bisection algo-
rithm, one simply needs to test membership of

(

fγ(z)−
1

r
(
∑

i

z2i )
D

)

· (
∑

i

z2i )
r

to the set of sum of squares polynomials. This amounts to solving a semidefinite
program. We remark that all semidefinite programming-based hierarchies available
only produce an approximate solution to the optimal value of the SDP solved at level
r in polynomial time. This is independent of whether they use bisection (e.g., such as
the hierarchy given in Theorem 3.2 or the one based on Stengle’s Positivstellensatz)
or not (e.g., the Lasserre hierarchy).

Our next theorem improves on our previous hierarchy by freeing the multiplier
(
∑N

i=1 z
2
i )

r and taking advantage of our ability to search for an optimal multiplier
using semidefinite programming.
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Theorem 3.4. Recall the definition of Artin cones from Definition 3.1. Consider
the hierarchy of optimization problems indexed by r:

(8)

lr := sup
γ,q

γ

s.t. fγ(z)−
1

r
(

N
∑

i=1

z2i )
D ∈ Ar

N,2D.

Then, lr ≤ p∗ for all r, {lr} is nondecreasing, and limr→∞ lr = p∗.

Proof. Just as the previous theorem, it suffices to show that the Artin cones Ar
n,2d

satisfy properties (a)-(d) of Theorem 2.4. The proof of property (a) follows the proof
given for Theorem 3.2. Property (b) is satisfied as a (weaker) consequence of Artin’s
result (see Theorem 1.4). For (c), we have that if p(x) · q(x) is sos for some nonzero
sos polynomial q of degree 2r, then p(x) · q(x) · (∑i x

2
i ) is sos, and q(x) · (∑i x

2
i ) has

degree 2(r + 1). Finally, for (d), suppose that p ∈ Ar
n,2d. Then there exists an sos

form q such that p(x) · q(x) is sos. We have
(

p(x) + ǫ(
∑

i

x2
i )

d

)

· q(x) = p(x) · q(x) + ǫ(
∑

i

x2
i )

d · q(x),

which is sos as the product (resp. sum) of two sos polynomials is sos.

Note that again, for any fixed r, the level r of the hierarchy can be solved using
bisection which leads to a sequence of semidefinite programs.

Our developments in the past two sections can be phrased in terms of a Posi-
tivstellensatz.

Corollary 3.5 (A new Positivstellensatz). Consider the basic semialgebraic
set

S := {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . ,m}

and a polynomial p := p(x). Suppose that S is contained within a ball of radius R.
Let ηi and β be any finite upperbounds on gi(x) and, respectively, −p(x) over the set
S.4 Let d be such that 2d is the smallest integer larger than or equal to the maximum
degree of p, gi, i = 1, . . . ,m. Then, p(x) > 0 for all x ∈ S if and only if there exists a
positive integer r such that






h(x, s, y)− 1

r





n
∑

i=1

x2
i +

m+1
∑

j=0

s2j + y2





2d





·





n
∑

i=1

x2
i +

m+1
∑

j=0

s2j + y2





r

is a sum of squares, where the form h in variables (x1, . . . , xn, s0, . . . , sm+1, y) is as
follows:

h(x, s, y) :=
(

y2dp(x/y) + s20y
2d−2

)2
+

m
∑

i=1

(

y2dgi(x/y)− s2i y
2d−2

)2

+

(

(R+

m
∑

i=1

ηi + β)dy2d − (

n
∑

i=1

x2
i +

m
∑

i=0

s2i )
d − s2dm+1

)2

.

Proof. This is an immediate corollary of arguments given in the proof of Theorem
2.1 and in the proof of Theorem 3.2 for the case where γ = 0.

4As discussed at the beginning of Section 2, such bounds are very easily computable.
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4. Polyá’s theorem and hierarchies for POPs that are optimization-

free, LP-based, and SOCP-based. In this section, we use a result by Polyá on
global positivity of even forms to obtain new hierarchies for polynomial optimization
problems. In Section 4.1, we present a hierarchy that is optimization-free, in the sense
that each level of the hierarchy only requires multiplication of two polynomials and
checking if the coefficients of the resulting polynomial are nonnegative. In Section 4.2,
we use the previous hierarchy to derive linear programming and second-order cone
programming-based (converging) hierarchies that in each level produce a lower bound
on the POP whose quality is at least as good as that of the optimization-free hierarchy.
These rely on the recently developed concepts of dsos and sdsos polynomials (see
Definition 4.7 and [3]), which are alternatives to sos polynomials that have been used
in diverse applications to improve scalability; see [3, Section 4].

4.1. An optimization-free hierarchy of lower bounds for POPs. The
main theorem in this section presents an optimization-free hierarchy of lower bounds
for general POPs with compact feasible sets:

Theorem 4.1. Recall the definition of fγ(z) as given in (3), with z ∈ R
N and

deg(fγ) = 2D. Let (v, w) ∈ R
2n and define

(9)

Polrn,2d := {p ∈ Hn,2d |



p(v2 − w2) +
1

2r

(

n
∑

i=1

(v4i + w4
i )

)d


 ·
(

∑

i

v2i +
∑

i

w2
i

)r2

has nonnegative coefficients }.

Consider the hierarchy of optimization problems indexed by r:

(10)

lr := sup
γ

γ

s.t. fγ(z)−
1

r
(

N
∑

i=1

z2i )
D ∈ PolrN,2D.

Let mr = maxi=1,...,r li. Then mr ≤ p∗ for all r, {mr} is nondecreasing, and
limr→∞ mr = p∗.

As before, we use bisection to obtain the optimal value lr of the rth level of the
hierarchy up to a fixed precision ǫ (see Remark 3.3). At each step of the bisection
algorithm, one simply needs to multiply two polynomials together and check nonneg-
ativity of the coefficients of the resulting polynomial to proceed to the next step. As
a consequence, this hierarchy is optimization-free as we do not need to solve (convex)
optimization problems at each step of the bisection algorithm. To the best of our
knowledge, no other converging hierarchy of lower bounds for general POPs (whose
feasible sets are contained within a ball of known radius) dispenses altogether with the
need to solve convex subprograms. We also provide a Positivstellensatz counterpart
to the hierarchy given above (see Corollary 4.5). This corollary implies in particular
that one can always certify infeasibility of a basic semialgebraic set by recursively mul-
tiplying polynomials together and simply checking nonnegativity of the coefficients of
the resulting polynomial.

We now make a few remarks regarding the techniques used in the proof of Theo-
rem 4.1. Unlike Theorems 3.2 and 3.4, we do not show that Polrn,d satisfies properties
(a)-(d) as given in Theorem 2.4 due to some technical difficulties. It turns out how-
ever that we can avoid showing properties (c) and (d) by using a result by Reznick
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and Powers [23] that we present below. Regarding properties (a) and (b), we show
that a slightly modified version of (a) holds and that (b), which is the key property
in Theorem 2.4, goes through as is. We note though that obtaining (b) from Polyá’s
result (Theorem 1.6) is not as immediate as obtaining (b) from Artin’s and Reznick’s
results. Indeed, unlike the theorems by Artin and Reznick (see Theorems 1.4 and
1.5) which certify global positivity of any form, Polyá’s result only certifies global
positivity of even forms. To make this latter result a statement about general forms,
we work in an appropriate lifted space. We make the simple observation that any
scalar x can be written as x = v2 − w2 with vw = 0 (take v =

√

max{x, 0} and

w =
√

max{−x, 0}). We then replace the form p(z) in variables z ∈ R
n by the even

form p(v2 − w2) in variables (v, w) ∈ R
2n. This lifting operation preserves nonnega-

tivity, but unfortunately it does not preserve positivity: even if p(z) is pd, p(v2 −w2)
always has zeros (e.g., when v = w). Hence, though we now have access to an even
form, we still cannot use Polyá’s property as p(v2 − w2) is not positive. This is what
leads us to consider the slightly more complicated form p(v2 −w2)+ 1

2r (
∑

i v
4
i +w4

i )
d

in (9).

Theorem 4.2 (Powers and Reznick [23]). Let α = (α1, . . . , αn) ∈ N
n, xα =

xα1

1 . . . xαn
n , and write |α| = α1 + . . . + αn. Denote the standard simplex by ∆n, i.e.,

∆n = {(x1, . . . , xn) ∈ R
n| xi ≥ 0, i = 1, . . . , n, and x1 + . . .+ xn = 1}. Assume that

f is a form of degree 2d that is positive on ∆n and let

λ = λ(f) := min
x∈∆n

f(x).

Define c(α) = (2d)!
α1!...αn!

. We have:

f(x) =
∑

|α|=2d

aαx
α =

∑

|α|=2d

bαc(α)x
α.

Let ||f || := max|α|=2d |bα|.5
Then, the coefficients of

f(x1, . . . , xn) · (x1 + . . .+ xn)
N̄

are nonnegative for N̄ > d(2d− 1) ||f ||λ − 2d.

Note that here the bound is given in the case where one considers the alternative
(but equivalent) formulation of Polyá’s Positivstellensatz to the one given in Theorem
1.6, i.e., when one is concerned with positivity of a form over the simplex. The result
can easily be adapted to the formulation where one considers global positivity of an
even form as shown below.

Lemma 4.3. Let p := p(x) be an even form of degree 2d that is positive definite
and let β > 0 be its minimum on Sx. Define q(x1, . . . , xn) := p(

√
x1, . . . ,

√
xn). Then,

p(x1, . . . , xn) · (
∑

i

x2
i )

N̄

has nonnegative coefficients for N̄ > d(2d− 1) ||q||β − 2d.

5As defined, ||f || is a submultiplicative norm; see [29].
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Proof. Recall that q(x1, . . . , xn) = p(
√
x1, . . . ,

√
xn). Since p(x) ≥ β on Sx, then

q(x) ≥ β on ∆n. Indeed, by contradiction, suppose that there exists x̂ ∈ ∆n such
that q(x̂) = β − ǫ (where ǫ > 0) and let y =

√
x̂. Note that as

∑

i x̂i = 1, we have
∑

i y
2
i = 1. Furthermore, p(y) = q(x̂) = β − ǫ which contradicts the assumption.

Hence, using Theorem 4.2, we have that when N̄ > d(2d− 1) ||q||β − 2d,

q(x)(
∑

i

xi)
N̄

has nonnegative coefficients. Hence,

q(y2)(
∑

i

y2i )
N̄ = p(y)(

∑

i

y2i )
N̄

also has nonnegative coefficients.

Before we proceed with the proof of Theorem 4.1, we need the following lemma.

Lemma 4.4. Let

(11) pγ,r(v, w) := fγ(v
2 − w2)− 1

r

(

N
∑

i=1

(

v2i − w2
i

)2

)D

+
1

2r

(

N
∑

i=1

(v4i + w4
i )

)D

,

where fγ is defined as in (3), let qγ,r(v, w) := pγ,r(
√
v,
√
w) and let

N̄(r) = D(2D − 1) · ||qγ,r||
minSv,w

pγ,r(v, w)
− 2D.

If fγ(z) is positive definite, there exists r̂ such that r2 ≥ N̄(r), for all r ≥ r̂.

Proof. As fγ(z) is positive definite, there exists a positive integer r0 such that
fγ(z)− 1

r (
∑

i z
2
i )

D is positive definite for all r ≥ r0 and hence

(12) fγ(v
2 − w2)− 1

r
(
∑

i

(v2i − w2
i )

2)D

is nonnegative for all r ≥ r0. Recall now that ||x||p = (
∑n

i=1 x
p
i )

1/p is a norm for
p ≥ 1 and that

||x||2 ≤ n1/4||x||4.
This implies that

(
∑

i

v4i +
∑

i

w4
i )

D ≥ 1

(2N)D
(
∑

i

v2i +
∑

i

w2
i )

2D

and hence in view of (12) and the definition of pγ,r, we have

pγ,r(v, w) ≥
1

2D+1NDr
(
∑

i

v2i +
∑

i

w2
i )

2D, ∀r ≥ r0.

This enables us to conclude that

min
Sv,w

pγ,r(v, w) ≥
1

2D+1NDr
, for any r ≥ r0.(13)



CONVERGING HIERARCHIES FOR POLYNOMIAL OPTIMIZATION 15

Further, notice that if we define f̄γ(v, w) := fγ(v − w), then using properties of the
norm, we have the following chain of inequalities for any positive integer r:

||qγ,r|| ≤ ||f̄γ ||+
1

r
||(
∑

i

(vi − wi)
2)D||+ 1

2r
||(
∑

i

(v2i + w2
i ))

D||

≤ ||f̄γ ||+ ||(
∑

i

(vi − wi)
2)D||+ ||(

∑

i

v2i + w2
i )

D|| =: cγ .

As a consequence, combining this with the definition of N̄(r) and (13), we have

N̄(r) ≤ D(2D − 1)2D+1rNDcγ , ∀r ≥ r0.

Now taking r̂ = max(r0, ⌈D(2D − 1)2D+1NDcγ⌉), we have r2 ≥ N̄(r), ∀r ≥ r̂.

We now proceed with the proof of Theorem 4.1.

Proof of Theorem 4.1. By definition, the sequence {mr} is nondecreasing. We
show that it is upperbounded by p∗ by showing that if γ is such that

fγ(z)−
1

r
(
∑

i

z2i )
D ∈ PolrN,2D,

for some r, then fγ must be positive definite. Then Theorem 2.1 gives us that γ is
a strict lower bound on (1). As p∗ > γ for any such γ, we have that lr ≤ p∗, ∀r and
hence mr ≤ p∗, ∀r.

Assume that γ is such that

fγ(z)−
1

r
(
∑

i

z2i )
D ∈ PolrN,2D

for some r. By definition of PolrN,2D and as (
∑

i v
2
i +

∑

i w
2
i )

r2 is nonnegative, we get
that the form

fγ(v
2 − w2)− 1

r
(
∑

i

(v2i − w2
i )

2)D +
1

2r
(
∑

i

v4i + w4
i )

D

is nonnegative. This implies that

fγ(v
2 − w2)− 1

r
(
∑

i

(v2i − w2
i )

2)D ≥ − 1

2r
for (v, w) ∈ {(v, w) |

∑

i

v4i +
∑

i

w4
i = 1},

(14)

which gives

fγ(z)−
1

r
(
∑

i

z2i )
D ≥ − 1

2r
, ∀z ∈ Sz .(15)

Indeed, suppose that there exists ẑ ∈ Sz such that (15) does not hold. Then, let
ẑ+ = max(ẑ, 0) and ẑ− = max(−ẑ, 0). Note that both ẑ+ and ẑ− are nonnegative so
we can take v̂ =

√
ẑ+ and ŵ =

√
ẑ−. We further have that as ẑ ∈ Sz and ẑ = v̂2− ŵ2,

∑

i v̂
4
i +

∑

i ŵ
4
i = 1. Substituting ẑ by v̂2 − ŵ2 in (15) then violates (14). Using (15),

we conclude that

fγ(z) ≥
1

2r
, ∀z ∈ Sz
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and that fγ is positive definite.
We now show that the hierarchy converges, i.e., that limr→∞ mr = p∗. To do

this, we show that if γ is a strict lower bound on (1), or equivalently from Theorem
2.1, if fγ(z) is positive definite, then there exists r′ such that

fγ(z)−
1

r′
(
∑

i

z2i )
D ∈ Polr

′

N,2D.

Since fγ is pd, there exists a positive integer r0 such that fγ(z)− 1
r (
∑N

i=1 z
2
i )

D is pd
for any r ≥ r0. This implies that fγ(v

2 −w2)− 1
r (
∑

i(v
2
i −w2

i )
2)D is nonnegative and

fγ(v
2 − w2)− 1

r
(
∑

i

(v2i − w2
i )

2)D +
1

2r
(
∑

i

(v4i + w4
i ))

D

is positive definite for r ≥ r0. Since this form is even, using Lemma 4.3 and the
definition of N̄(r) in Lemma 4.4, for any r ≥ r0, we have that the polynomial

(

fγ(v
2 − w2)− 1

r
(
∑

i

(v2i − w2
i )

2)D +
1

2r
(
∑

i

(v4i + w4
i ))

D

)

· (
∑

i

v2i +
∑

i

w2
i )

⌈N̄(r)⌉

has nonnegative coefficients. From Lemma 4.4, there exists r̂ such that r ≥ r̂ implies
r2 ≥ N̄(r). Taking r′ = max{r0, r̂} and considering pγ,r′ as defined in (11), we get
that

pγ,r′(v, w)(
∑

i

v2i +
∑

i

w2
i )

r′2

= pγ,r′(v, w)(
∑

i

v2i +
∑

i

w2
i )

⌈N̄(r′)⌉ · (
∑

i

v2i +
∑

i

w2
i )

r′2−⌈N̄(r′)⌉

has nonnegative coefficients, which is the desired result. This is because

pγ,r′(v, w)(
∑

i

v2i +
∑

i

w2
i )

⌈N̄(r′)⌉

has nonnegative coefficients as r′ ≥ r0, and

(
∑

i

v2i +
∑

i

w2
i )

r′2−⌈N̄(r′)⌉

has nonnegative coefficients as r′ ≥ r̂, and that the product of two polynomials with
nonnegative coefficients has nonnegative coefficients.

Corollary 4.5 (An optimization-free Positivstellensatz). Consider the closed
basic semialgebraic set

S := {x ∈ R
n | gi(x) ≥ 0, i = 1, . . . ,m}

and a polynomial p := p(x). Suppose that S is contained within a ball of radius R. Let
ηi and β be any finite upperbounds on gi(x) and, respectively, −p(x) over the set S.6

Let d be such that 2d is the smallest even integer larger than or equal to the maximum

6Once again, as discussed at the beginning of Section 2, such bounds are very easily computable.



CONVERGING HIERARCHIES FOR POLYNOMIAL OPTIMIZATION 17

degree of p, gi, i = 1, . . . ,m. Then, p(x) > 0 for all x ∈ S if and only if there exists a
positive integer r such that

(

h(v2 − w2)− 1

r
(

n+m+3
∑

i=1

(v2i − w2
i )

2)d +
1

2r
(

n+m+3
∑

i=1

(v4i + w4
i ))

d

)

·
(

n+m+3
∑

i=1

v2i +

n+m+3
∑

i=1

w2
i

)r2

has nonnegative coefficients, where the form h := h(z) in variables

(z1, . . . , zn+m+3) := (x1, . . . , xn, s0, . . . , sm+1, y)

is as follows:

h(x, s, y) :=
(

y2dp(x/y) + s20y
2d−2

)2
+

m
∑

i=1

(

y2dgi(x/y)− s2i y
2d−2

)2

+

(

(R+

m
∑

i=1

ηi + β)dy2d − (

n
∑

i=1

x2
i +

m
∑

i=0

s2i )
d − s2dm+1

)2

.

Proof. This is an immediate corollary of arguments given in the proof of Theo-
rem 2.1 and in the proof of Theorem 4.1 for the case where γ = 0.

4.2. Linear programming and second-order cone programming-based

hierarchies for POPs. In this section, we present a linear programming and a
second-order cone programming-based hierarchy for general POPs which by construc-
tion converge faster than the hierarchy presented in Section 4.1. These hierarchies are
based on the recently-introduced concepts of dsos and sdsos polynomials [3] which we
briefly revisit below to keep the presentation self-contained.

Definition 4.6. A symmetric matrix M is said to be
• diagonally dominant (dd) if Mii ≥

∑

j 6=i |Mij | for all i.
• scaled diagonally dominant (sdd) if there exists a diagonal matrix D, with

positive diagonal entries, such that DMD is dd.

We have the following implications as a consequence of Gershgorin’s circle theorem:

M dd ⇒ M sdd ⇒ M � 0.(16)

Requiring M to be dd (resp. sdd) can be encoded via a linear program (resp. a
second-order cone program) (see [3] for more details). These notions give rise to the
concepts of dsos and sdsos polynomials.

Definition 4.7 ([3]). Let z(x) = (xd
1, x

d−1
1 x2, . . . , x

d
n)

T be the vector of mono-
mials in (x1, . . . , xn) of degree d. A form p ∈ Hn,2d is said to be

• diagonally-dominant-sum-of-squares (dsos) if it admits a representation

p(x) = zT (x)Qz(x), where Q is a dd matrix.

• scaled-diagonally-dominant-sum-of-squares (sdsos) if it admits a representa-
tion

p(x) = zT (x)Qz(x), where Q is a sdd matrix.
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The following implications are a consequence of (16):

p(x) dsos ⇒ p(x) sdsos ⇒ p(x) sos ⇒ p(x) nonnegative.(17)

Given the fact that our Gram matrices and polynomials are related to each other via
linear equalities, it should be clear that optimizing over the set of dsos (resp. sdsos)
polynomials is an LP (resp. SOCP).

We now present our LP and SOCP-based hierarchies for POPs.

Corollary 4.8. Recall the definition of fγ(z) as given in (3), with z ∈ R
N and

deg(fγ) = 2D, and let pγ,r be as in (11). Consider the hierarchy of optimization
problems indexed by r:

(18)

lr := sup
γ,q

γ

s.t. pγ,r(v, w) · q(v, w) is s/dsos

q(v, w) is s/dsos and of degree 2r2.

Let mr = maxi=1,...,r li. Then, mr ≤ p∗ for all r, {mr} is nondecreasing, and we have
limr→∞ mr = p∗.

Proof. This is an immediate consequence of the fact that any even form p ∈ Hn,2d

with nonnegative coefficients can be written as p(x) = z(x)TQz(x) where Q is diagonal
and has nonnegative (diagonal) entries. As such a Q is dd (and also sdd), we conclude
that p is dsos (and also sdsos). The corollary then follows from Theorem 4.1.

Note that similarly to our previous hierarchies, one must proceed by bisection on
γ to solve the level r of the hierarchy. At each step of the hierarchy, we solve a linear
program (resp. second-order cone program) that searches for the coefficients of q that
make q dsos (resp. sdsos) and pγ,r · q dsos (resp. sdsos).

There is a trade-off between the hierarchies developed in this subsection and the
one developed in the previous subsection: the hierarchy of Section 4.1 is optimization-
free whereas those of Section 4.2 use linear or second-order cone programming. Hence
the former hierarchy is faster to run at each step. However, the latter hierarchies could
potentially take fewer levels to converge. This is similar to the trade-off observed
between the hierarchies presented in Theorems 3.2 and 3.4.

5. Future research directions and open problems. To conclude, we present
some interesting directions for future research and some open problems.

A first research direction of interest relates to the computational performance
of the methods described in this paper. As they stand, we do not believe that our
hierarchies are as practically efficient as other hierarchies (e.g., those due to Lasserre
and Parrilo). This is mainly because all our hierarchies require the use of bisection
and increase the number of variables (from n to n+m+ 3) and the degree (from 2d
to 4d) of the polynomials involved. Though this blow-up is linear, one can expect
that it could be problematic in practice. Out of our hierarchies, the optimization-
free one may be tempting to consider for very large-scale problems as each step of it
only requires polynomial multiplication. However, the caveat that one should keep in
mind is that the level r required to obtain a good-quality lower bound to the POP
would probably be very large. To counter-balance this, one would have to invest
considerable effort in a proper implementation of the arithmetic involved in each
level of the hierarchy. Such an implementation should involve among other things: (i)
automation of the computation of the coefficients of fγ , (ii) exploiting the very specific
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structure of the polynomial in (9) (with p replaced by fγ(z)− 1
r (
∑N

i=1 z
2
i )

D) to compute
its coefficients explicitly, (iii) efficient multiplication of two multivariate polynomials
(e.g., by evaluating the product on random samples and obtaining its coefficients by
solving a linear system, or by pursuing the ideas in [12]), and (iv) thinking about ways
of parallelizing all these computations. We are unsure as to whether the optimization-
free hierarchy would provide useful bounds on relevant examples—even after careful
implementation—but it may be an interesting research direction to investigate.

Another interesting research direction lies in the comparison of our hierarchies to
existing ones. One way to do this would be to determine the convergence rates of the
hierarchies presented in this paper and compare them with those of other hierarchies.
The main difficulty in obtaining such rates is the absence of a quantitative version of
Theorem 2.1, which would link the quality of the lower bound on the optimal value of
the POP (i.e., the value of the gap p∗−γ) to the minimum of fγ on the unit sphere in z-
space. If such a result were available, one could have hopes, e.g., to obtain convergence
rates for our optimization-free hierarchy by applying Theorem 4.2 and Lemma 4.3 to
fγ . (A similar approach was undertaken by de Klerk, Laurent, and Parrilo in [9] to
provide convergence rates for an analogous hierarchy for the problem of minimizing a
polynomial on the simplex.) Likewise, one could hope to relate Lasserre’s hierarchy
(for example) to the Reznick or Artin hierarchies presented in this paper and derive
convergence rates for them by using previously known results on the complexity of
the Lasserre hierarchy [18]. As it stands, we are unable to show that if level r of
Lasserre’s hierarchy certifies positivity of p(x) − γ on the feasible set, then so does a
level r′ of our Reznick or Artin hierarchies. This is due to the fact that, from a sum
of squares certificate of positivity of p(x)− γ, one does not a priori know how to pick
r′ in such a way that fγ(z)− 1

r′ (
∑

i z
2
i )

2d becomes positive definite (let alone admits a
particular certificate of positivity). This question would again be answered if we had
a quantitative version of Theorem 2.1.

Finally, we present two more concrete open problems spawned by the writing of
this paper. The first one concerns the assumptions needed to construct our hierarchies.

Open problem 1. Theorems 2.1 and 2.4 require that the feasible set S of the POP
given in (1) be contained in a ball of radius R. Can these theorems be extended to
the case where there is no compactness assumption on S?

The second open problem is linked to the Artin and Reznick cones presented in
Definition 3.1.

Open problem 2. As mentioned before, Reznick cones Rr
n,2d are convex for all r.

We are unable to prove however that Artin cones Ar
n,2d are convex (even though they

satisfy properties (a)-(d) of Theorem 2.4 like Reznick cones do). Are Artin cones
convex for all r? We know that they are convex for r = 0 and for r large enough as
they give respectively the sos and psd cones (see [17] for the latter claim). However,
we do not know the answer already for r = 1. Our preliminary attempts to find forms
that would disprove convexity of these cones have failed so far.
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