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Abstract

We show that one can compute the least non-negative solution (a.k.a., least fixed point) for a
system of probabilistic min (max) polynomial equations, to any desired accuracy ε > 0, in time
polynomial in both the encoding size of the system and in log(1/ε).

These are Bellman optimality equations for important classes of infinite-state Markov Deci-
sion Processes (MDPs), including Branching MDPs (BMDPs), which generalize classic multi-
type branching stochastic processes. We thus obtain the first polynomial time algorithm for
computing, to any desired precision, optimal (maximum and minimum) extinction probabilities
for BMDPs. Our algorithms are based on a novel generalization of Newton’s method which
employs linear programming in each iteration.

We also provide P-time algorithms for computing an ε-optimal policy for both maximizing
and minimizing extinction probabilities in a BMDP, whereas we note a hardness result for
computing an exact optimal policy. Furthermore, improving on prior results, we provide more
efficient P-time algorithms for qualitative analysis of BMDPs, i.e., for determining whether
the maximum or minimum extinction probability is 1, and, if so, computing a policy that
achieves this. We also observe some complexity consequences of our results for branching simple
stochastic games, which generalize BMDPs.

1 Introduction

Markov Decision Processes (MDPs) are a fundamental model for stochastic dynamic optimization,
with applications in many fields (see, e.g., [29, 20]). They extend purely stochastic processes (Markov
chains) with a controller (an agent) who can partially affect the evolution of the process, and seeks
to optimize some objective. For many important classes of MDPs, the task of computing the optimal
value of the objective, starting at any state of the MDP, can be rephrased as the problem of solving
the associated Bellman optimality equations for that MDP model. In particular, for finite-state
MDPs where, e.g., the objective is to maximize (or minimize) the probability of eventually reaching
some target state, the associated Bellman equations are max-(min-)linear equations, and we know
∗A preliminary extended abstract for this paper, [14], appeared in the Proceedings of the 39th International

Colloquium on Automata, Languages, and Programming (ICALP’12), 2012 (Fuller preprint on ArXiv:1202.4789).
Research partially supported by the Royal Society and by NSF Grants CCF-1320654, CCF-1703925.
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how to solve such equations in P-time using linear programming (see, e.g., [29]). The same holds
for a number of other classes of finite-state MDPs.

In many important settings however, the state space of the processes of interest, both for purely
stochastic processes, as well as for controlled ones (MDPs), is not finite, even though the processes
can be specified in a finite way. For example, consider multi-type branching processes (BPs) [25, 22],
a classic probabilistic model with applications in many areas. A BP models the stochastic evolution
of a population of entities of distinct types. In each generation, every entity of each type T produces
a set of entities of various types in the next generation according to a given probability distribution
on offsprings for the type T . In a Branching Markov Decision Process (BMDP) (e.g., [27, 31]), there
is a controller who can take actions that affect the probability distribution for the sets of offsprings
for each entity of each type.

Branching processes have been used to model phenomena in many fields, including biology (see
e.g. [24]), population genetics ([21]), physics and chemistry (e.g. particle systems, nuclear chain
reactions), medicine (e.g. cancer growth), marketing, and others. In many cases, the process is not
purely stochastic but there is the possibility of taking actions (for example, adjusting the conditions
of reactions, applying drug treatments in medicine, advertising in marketing, etc.) which can
influence the probabilistic evolution of the process to bias it towards achieving desirable objectives.
Branching Markov decision processes are a useful model in such settings. For both BPs and BMDPs,
the state space consists of all possible populations, given by the number of entities of the various
types, so there are an infinite number of states. From the computational point of view, the usefulness
of such infinite-state models hinges on whether their analysis remains tractable.

In recent years there has been a body of research aimed at studying the computational complex-
ity of key analysis problems associated with MDP extensions (and, more general stochastic game
extensions) of important classes of finitely-presented but countably infinite-state stochastic processes,
including controlled extensions of classic multi-type branching processes (i.e., BMDPs), stochastic
context-free grammars, and discrete-time quasi-birth-death processes. In [19] a model called recursive
Markov decision processes (RMDP) was studied that is in a precise sense more general than all of
these, and forms the MDP extension of recursive Markov chains [18] (and equivalently, probabilistic
pushdown systems [11]), or it can be viewed alternatively as the extension of finite-state MDPs
with recursion. RMDPs consist of a set of MDPs that can call each other recursively, in the same
way as recursive procedures do. These models arise in various areas, e.g. performance evaluation,
computational biology, and program analysis and verification.

A central analysis problem for all of these models, which forms the key to a number of other
analyses, is the problem of computing their optimal termination (extinction) probability. For exam-
ple, in the setting of multi-type Branching MDPs (BMDPs), these key quantities are the maximum
(minimum) probabilities, over all control strategies (or policies), that starting from a single entity of
a given type, the process will eventually reach extinction (i.e., the state where no entities have sur-
vived). From these quantities, one can compute the optimum probability for any initial population,
as well as other quantities of interest.

One can indeed form Bellman optimality equations for the optimal extinction probabilities of
BMDPs, and for a number of related important infinite-state MDP models. However, it turns out
that these optimality equations are no longer max/min linear but rather are max/min polynomial
equations ([19]). Specifically, the Bellman equations for BMDPs with the objective of maximizing (or
minimizing) extinction probability are multivariate systems of monotone probabilistic max (or min)
polynomial equations, which we call max/minPPSs, of the form xi = Pi(x1, . . . , xn), i = 1, . . . , n,
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where each Pi(x) ≡ maxj qi,j(x) (respectively Pi(x) ≡ minj qi,j(x)) is the max (min) over a finite
number of probabilistic polynomials, qi,j(x). A probabilistic polynomial, q(x), is a multi-variate
polynomial where the monomial coefficients and constant term of q(x) are all non-negative and
sum to ≤ 1. We write these equations in vector form as x = P (x). Then P (x) defines a mapping
P : [0, 1]n → [0, 1]n that is monotone, and thus (by Tarski’s theorem) has a least fixed point in
[0, 1]n. The equations x = P (x), can have more than one solution, but it turns out that the optimal
value vector for extinction probabilities in the corresponding BMDP is precisely the least fixed point
(LFP) solution vector q∗ ∈ [0, 1]n, i.e., the (coordinate-wise) least non-negative solution ([19]).
Intuitively, the reason that the optimal extinction probabilities are given by the least fixed point
(as opposed to any other fixed point) is the following. For any integer t ≥ 0, let p(t) denote the
vector of optimal probabilities of extinction by time t. Clearly, p(t) converges monotonically from
below to the optimal extinction probabilities as t goes to infinity, meaning limt→∞ p(t) is the vector
of optimal extinction probabilities. For a max/minPPS x = P (x), and for an integer t ≥ 0, define
the vector P t(0) ∈ [0, 1]n inductively by P 0(0) := 0, and P t+1(0) := P (P t(0)). It is not hard to
show that P t(0) = p(t) for all t. Due to the monotonicity of P (·), the LFP solution of x = P (x) is
given by limt→∞ P

t(0). Thus limt→∞ P
t(0) = q∗ = limt→∞ p(t), so the LFP is indeed the vector of

optimal extinction probabilities.
The same class of equations (max/minPPS) also models other stochastic processes besides

BMDPs, including, controlled stochastic context-free grammars, and 1-exit Recursive Markov De-
cision Processes (1-RMDP), i.e. RMDPs where the component MDPs have one exit (terminating
state). These models arise in various areas. For example, RMDPs are a natural model for recursive
probabilistic programs, where the component MDPs of the RMDP correspond to the procedures
of the program. There has been an extensive body of work over many years that has developed
the theory, algorithms, and tools for the analysis and verification of non-recursive probabilistic pro-
grams, which are modeled abstractly by ordinary finite-state Markov decision processes. Extending
the scope of the work to handle recursive probabilistic programs requires the analysis of RMDPs.
A central problem for this is the termination problem, computing the worst-case (or best-case)
probability of termination of the RMDP; this is essential for the analysis and verification of more
complex temporal properties. The termination probabilities of 1-exit RMDPs can be captured by
max/minPPS, i.e. for every 1-RMDP one can construct efficiently a maxPPS (or minPPS), whose
LFP gives the maximum (or minimum) termination probability of the 1-RMDP.

Already for pure stochastic multi-type branching processes (BPs), the extinction probabilities
may be irrational values. The problem of deciding whether the extinction probability of a BP is ≥ p,
for a given probability p is in PSPACE ([18]), and likewise, deciding whether the optimal extinction
probability of a BMDP is ≥ p is in PSPACE ([19]). These PSPACE upper bounds appeal to decision
procedures for the existential theory of reals for solving the associated (max/min)PPS equations.
However, already for BPs, it was shown in [18] that this quantitative decision problem is already
at least as hard as the square-root sum (Sqrt-Sum) problem, as well as a (much) harder and more
fundamental problem called PosSLP, which captures the power of unit-cost exact rational arithmetic.
It is a long-standing open problem whether either of these decision problems is in NP, or even in
the polynomial time hierarchy (see [1, 18] for more information on these problems). Thus, such
quantitative decision problems are unlikely to have P-time algorithms in the standard Turing model,
even in the purely stochastic setting, so we can certainly not expect to find P-time algorithms for
the extension of these models to the MDP setting.1 On the other hand, it was shown in [18] and

1Let us mention however that, more recently in [13] we have also shown that the quantitative decision problem
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[19], that for both BPs and BMDPs the qualitative decision problem of deciding whether the optimal
extinction probability q∗i = 0 or whether q∗i = 1, can be solved in polynomial time.

The hardness of the quantitative decision problem does not however rule out the possibility of
efficiently approximating the optimal extinction probabilities to any desired precision. A simple
approach for approximation is to apply Value Iteration: Starting with x = 0, repeatedly apply P ,
to compute P (0), P 2(0), . . . , P k(0), . . .. As k → ∞, P k(0) converges (monotonically) to the LFP
q∗. However, the convergence can be very slow, even for some simple examples of pure branching
processes, specifically it can be double-exponential both in the number of types and in the number
of bits of precision. The extinction probabilities of pure BPs are the LFP of a system of probabilistic
polynomial equations (PPS), without max or min. Consider the equation x = 0.5x2 + 0.5, which
corresponds to a simple BP with one type; the LFP is 1 but, as shown in [18], Value Iteration
needs 2k−3 iterations to approximate it with k bits of precision. Furthermore, there are pure
multi-type BPs, based on “nesting” this example, namely the system with n+ 1 variables given by
x0 = 0.5x20 + 0.5 and xi = 0.5x2i + 0.5xi−1, for i = 1, . . . , n, where approximating the extinction
probability within less than 1/2 (i.e. getting one bit of precision) using value iteration, starting
from the 0 vector, requires double-exponential number of iterations in n, specifically at least 22

n−3

iterations (see, [10, 30]); for example, if n = 10, the value of x10 remains close to 0 (i.e. very far
from the LFP value 1) even after 21000 iterations. It is also known that for ordinary finite-state
MDPs, value iteration (as well as policy iteration) requires in some cases an exponential number of
iterations.

Despite decades of theoretical and practical work on computational problems like extinction
relating to multi-type branching processes, and equivalent termination problems related to stochastic
context-free grammars, until recently it was not even known whether one could obtain any non-trivial
approximation of the extinction probability of a purely stochastic multi-type branching processes
(BP) in P-time. In recent work [12, 13], we provided the first polynomial time algorithm for
computing (i.e., approximating) to within any desired additive error ε > 0 the LFP of a given PPS,
and hence the extinction probability vector q∗ for a given purely stochastic BP, in time polynomial
in both the encoding size of the PPS (or the BP) and in log(1/ε). The algorithm works in the
standard Turing model of computation. Our algorithm was based on an approach using Newton’s
method that was first introduced and studied in [18]. In [18] the approach was studied for more
general systems of monotone polynomial equations (MPSs), and it was subsequently further studied
in [10]. The algorithm of [12, 13] for PPS first identifies and removes the variables that have value
0 or 1 in the LFP and then applies Newton’s method in the resulting system (the removal of the
variables with value 0 or 1 is critical for the correctness and efficiency of the algorithm).

Note that unlike PPSs and MPSs, the min/maxPPSs that define the Bellman equations for
BMDPs are no longer differentiable functions (they are only piecewise differentiable). Thus, a
priori, it is not even clear how one could apply a Newton-type method toward solving them.

Our Results
(1) In this paper we provide the first polynomial time algorithms for approximating the LFP of both
maxPPSs and minPPSs, and thus the first polynomial time algorithm for computing (to within any
desired additive error) the optimal value vector for BMDPs with the objective of maximizing or
minimizing their extinction probability.

Our approach is based on a generalized Newton’s method (GNM), that extends Newton’s method
in a natural way to the (non-differentiable) setting of max/minPPSs. The method is again iterative

for the extinction probability of BPs, and for the LFP of PPSs, is in fact polynomial-time equivalent to PosSLP.
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where each iteration involves the computation of the least (greatest) solution of a max- (min-) linear
system of equations, both of which we show can be solved using linear programming. Our algorithms
based on GNM have the nice feature that they are relatively simple, although the analysis of their
correctness and time complexity is rather involved. We show that, if we first identify and remove
the variables that have value 0 or 1 in the LFP, and then apply GNM with a suitable rounding
of the computed points along the way, the algorithm computes the LFP of a maxPPS or minPPS
within any desired number j of bits of precision (i.e., within additive error 2−j) in polynomial time
in the encoding size of the system and the number j of bits of precision. We note that the two
cases of maxPPS and minPPS are not symmetric, and separate analysis is required for them (and
this holds also for the other results below). The reason for the asymmetry is that we seek a specific
fixed point, the least one, and this behaves differently with respect to max and min.

(2) We furthermore show that we can compute ε-optimal (pure) strategies (policies) for both
maxPPSs and minPPSs (and max/min BMDPs), for any given desired ε > 0, in time polynomial
in both the encoding size of the max/minPPS and in log(1/ε). This result is at first glance rather
surprising, because there are only a bounded number of distinct pure policies for a max/minPPS,
and computing an optimal policy is PosSLP-hard, as we show, thus it is very unlikely that an optimal
policy can be computed in P-time [12].

(3) We provide new algorithms for the qualitative analysis of max/minPPS and BMDPs (i.e.,
identifying the variables that have value 0 or 1 in the LFP), which improve significantly on the
running time of the previous P-time qualitative algorithms given in [19]. This is important for the
practical efficiency of our quantitative algorithms for the approximation of the LFP, which make
crucial use of a preprocessing step that identifies and removes the variables with value 0 or 1 in
the LFP. Polynomial time algorithms for the qualitative analysis were first established in [19], but
the running time was rather high, especially in the case of maxPPS, which involved the solution of
linear programs (LPs) with a cubic number of variables. This is improved substantially in our new
qualitative algorithms which solve LPs with a linear number of variables and constraints.

(4) Finally, we consider Branching simple stochastic games (BSSGs), which are two-player turn-
based stochastic games, where one player wants to maximize, and the other wants to minimize, the
extinction probability. The value of these games (which are determined) is characterized by the
LFP solution of associated min-maxPPSs which combine both min and max operators (see [19]).
We observe that our results easily imply a TFNP upper bound for ε-approximating the value of
BSSGs and computing ε-optimal strategies for them.

Related work: We have already mentioned some of the important relevant results. BMDPs and
related processes have been studied previously in both the operations research (e.g. [27, 31, 8])
and computer science literature (e.g. [19, 9, 5]), but no efficient algorithms were known for the
(approximate) computation of the relevant optimal probabilities and policies; the best known upper
bound was PSPACE [19].

In [19] we introduced Recursive Markov Decision Processes (RMDPs), a recursive extension of
MDPs. We showed that for general RMDPs, the problem of computing the optimal termination
probabilities, even within any nontrivial approximation, is undecidable. However, we showed for the
important class of 1-exit RMDPs (1-RMDP), the optimal probabilities can be expressed by min (or
max) PPSs, and in fact the problems of computing (approximately) the LFP of a min/maxPPS and
the termination probabilities of a max/min 1-RMDP, or BMDP, are all polynomially equivalent.
We furthermore showed in [19] that there are always pure, memoryless (and “stackless”) optimal
policies for both maximizing and minimizing termination probability for 1-RMDPs, and likewise
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pure memoryless “static” optimal policies for extinction probabilities of BMDPs, as well as for the
more general turn-based simple stochastic games (1-RSSGs and BSSGs) which generalize 1-RMDPs
and BMDPs.

In [16], 1-RMDPs (and 1-RSSGs) with a different objective were studied, namely optimizing the
total expected reward in a setting with positive rewards. In that setting, things are much simpler:
the Bellman equations turn out to be max/min-linear, the optimal values are rational, and they can
be computed exactly in P-time using linear programming.

A work that is more closely related to this paper is [9] by Esparza, Gawlitza, Kiefer, and
Seidl. They studied more general monotone min-maxMPSs, i.e., systems of monotone polynomial
equations that include both min and max operators, and they presented two different iterative
analogs of Newton’s methods for approximating the LFP of a min-maxMPS, x = P (x). Their
methods are related to ours, but differ in key respects. Both of their methods use certain piecewise
linear functions to approximate the min-maxMPS in each iteration, which is also what one does
to solve each iteration of our generalized Newton’s method. However, the precise nature of their
piecewise linearizations, as well as how they solve them, differ in important ways from ours, even
when they are applied in the specific context of maxPPSs or minPPSs. They showed, working in
the unit-cost exact arithmetic model, that using their methods one can compute j “valid bits” of
the LFP (i.e., compute the LFP within relative error at most 2−j) in kP + cP · j iterations, where
kP and cP are terms that depend in some way on the input system, x = P (x). However, they give
no upper bounds on kP , and their upper bounds on cP are exponential in the number n of variables
of x = P (x). Note that MPSs are more difficult to solve: even without the min and max operators,
we know that it is PosSLP-hard to approximate their LFP within any nontrivial constant additive
error c < 1/2, even for pure MPSs that arise from Recursive Markov Chains [18].

Another subclass of RMDPs, called one-counter MDPs (a controlled extension of one-counter
Markov chains and Quasi-Birth-Death processes [17]) has been studied, and the approximation of
their optimal termination probabilities was recently shown to be computable, but only in expo-
nential time ([4]). This subclass is incomparable with 1-RMDPs and BMDPs, and does not have
min/maxPPSs as Bellman equations.

Organization of the paper: Section 2 gives formal definitions and background on branching
Markov decision processes, and max and min probabilistic polynomial systems. In Section 3, we
define the Generalized Newton method for maxPPS and minPPS, we analyze the method, and show
how to compute the LFP of a maxPPS or a minPPS to desired precision in polynomial time in the
encoding size of the system and the desired number of bits of precision. In Section 4 we observe that
computing an optimal policy is PosSLP-hard (thus probably intractable), and show how to compute
an ε-optimal policy (for any given ε > 0) of a maxPPS or minPPS in polynomial time in the size of
the system and log(1/ε). In Section 5 we show that the approximate computation problems of the
value of, and ε-optimal strategies for, Branching Simple Stochastic Games (BSSGs) are in TFNP.
Our improved polynomial-time algorithms for the qualitative analysis of maxPPSs and minPPSs
(and BMDPs) are presented in Appendix A. Proofs for some of the supporting lemmas from the
main body are deferred to Appendix B.

2 Definitions and Background

Throughout this paper, it will be convenient to compare a vector or matrix to the all 0, or all
1, vector/matrix. For a given vector/matrix z, we will use the notation z ≥ 0 , z < 1, . . .,
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to denote that every entry of z is, respectively, ≥ 0, < 1, . . . The l∞ norm of a vector z is
‖z‖∞ := maxi |zi|, and its associated matrix norm ‖A‖∞ is the maximum absolute-value row sum
of A, i.e., ‖A‖∞ := maxi

∑
j |Ai,j |.

For an n-vector of variables x = (x1, . . . , xn), and a vector v ∈ Nn, we use the shorthand notation
xv to denote the monomial xv11 . . . xvnn . Let 〈αr ∈ Nn | r ∈ R〉 be a multi-set of n-vectors of natural
numbers, indexed by the set R. Consider a multi-variate polynomial Pi(x) =

∑
r∈R prx

αr , for some
rational-valued coefficients pr, r ∈ R. We shall call Pi(x) a monotone polynomial if pr ≥ 0
for all r ∈ R. If in addition, we also have

∑
r∈R pr ≤ 1, then we shall call Pi(x) a probabilistic

polynomial.

Definition 2.1. A probabilistic (respectively, monotone) polynomial system of equations,
x = P (x), which we shall call a PPS (respectively, a MPS), is a system of n equations, xi = Pi(x),
in n variables x = (x1, x2, ..., xn), where for all i ∈ {1, 2, ...n}, Pi(x) is a probabilistic (respectively,
monotone) polynomial.

A maximum-minimum probabilistic polynomial system of equations, x = P (x), called
a max-minPPS is a system of n equations in n variables x = (x1, x2, . . . , xn), where for all
i ∈ {1, 2, . . . , n}, either:

• Max-polynomial: Pi(x) = max{qi,j(x) : j ∈ {1, ...,mi}}, Or:

• Min-polynomial: Pi(x) = min{qi,j(x) : j ∈ {1, ...,mi}}

where each qi,j(x) is a probabilistic polynomial, for every j ∈ {1, . . . ,mi}.
We shall call such a system a maxPPS (respectively, a minPPS) if for every i ∈ {1, . . . , n},

Pi(x) is a Max-polynomial (respectively, a Min-polynomial).
Note that we can view a PPS in n variables as a maxPPS, or as a minPPS, where mi = 1 for

every i ∈ {1, . . . , n}.

For computational purposes we assume that all the coefficients are rational. We assume that
the polynomials in a system are given in sparse form, i.e., by listing only the nonzero monomial
terms, with the coefficient and the nonzero exponents of each variable in the term given in binary.
We let |P | denote the total bit encoding length of a system x = P (x) under this representation.

We use max/minPPS to refer to a system of equations, x = P (x), that is either a maxPPS or
a minPPS. While [19] also considered systems of equations containing both max and min equations
(which we refer to as max-minPPSs), our primary focus will be on systems that contain just one
or the other. (But we shall also obtain results about max-minPPSs as a corollary.)

As was shown in [19], any max-minPPS, x = P (x), has a least fixed point (LFP) solution,
q∗ ∈ [0, 1]n, i.e., q∗ = P (q∗) and if q = P (q) for some q ∈ [0, 1]n then q∗ ≤ q (coordinate-wise
inequality). As observed in [18, 19], q∗ may in general contain irrational values, even in the case
of PPSs. The central results of this paper yield P-time algorithms for computing q∗ to within
arbitrary precision, both in the case of maxPPSs and minPPSs. As we shall explain, our P-time
upper bounds for computing (to within any desired accuracy) the least fixed point of maxPPSs and
minPPSs will also yield, as corollaries, FNP upper bounds for computing approximately the LFP
of max-minPPSs.

Definition 2.2. We define a policy for a max/minPPS, x = P (x), to be a function σ : {1, ...n} →
N such that 1 ≤ σ(i) ≤ mi.
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Intuitively, for each variable, xi, a policy selects one of the probabilistic polynomials, qi,σ(i)(x),
that appear on the RHS of the equation xi = Pi(x), and which Pi(x) is the maximum/minimum
over.

Definition 2.3. Given a max/minPPS x = P (x) over n variables, and a policy σ for x = P (x),
we define the PPS x = Pσ(x) by:

(Pσ)i(x) = qi,σ(i)(x)

for all i ∈ {1, . . . , n}.

Obviously, since a PPS is a special case of a max/minPPS, every PPS also has a unique LFP
solution (this was established earlier in [18]). Given a max/minPPS, x = P (x), and a policy, σ, we
use q∗σ to denote the LFP solution vector for the PPS x = Pσ(x).

Definition 2.4. For a maxPPS, x = P (x), a policy σ∗ is called optimal if for all other policies
σ, q∗σ∗ ≥ q∗σ. For a minPPS x = P (x) a policy σ∗ is optimal if for all other policies σ, q∗σ∗ ≤ q∗σ. A
policy σ is ε-optimal for ε > 0 if ||q∗σ − q∗||∞ ≤ ε.

A non-trivial theorem, established in [19], is that optimal policies always exist, and furthermore
that they actually attain the LFP q∗ of the max/minPPS:

Theorem 2.5 ([19], Theorem 2). For any max/minPPS, x = P (x), there always exists an optimal
policy σ∗, and furthermore q∗ = q∗σ∗.2

Probabilistic polynomial systems can be used to capture central probabilities of interest for sev-
eral basic stochastic models, including Multi-type Branching Processes (BP), Stochastic Context-
Free Grammars (SCFG) and the class of 1-exit Recursive Markov Chains (1-RMC) [18]. Max-
and minPPSs can be similarly used to capture the central optimum probabilities of correspond-
ing stochastic optimization models: (Multi-type) Branching Markov Decision processes (BMDP),
Context-Free MDPs (CF-MDP), and 1-exit Recursive Markov Decision Processes (1-RMDP) [19].
We now define BMDPs and 1-RMDPs.

A Branching Markov Decision Process (BMDP) consists of a finite set V = {T1, . . . , Tn}
of types, a finite set Ai of actions for each type, and a finite set R(Ti, a) of probabilistic rules for
each type Ti and action a ∈ Ai. Each rule r ∈ R(Ti, a) has the form Ti

pr→ αr, where αr is a finite
multi-set whose elements are in V , pr ∈ (0, 1] is the probability of the rule, and the sum of the
probabilities of all the rules in R(Ti, a) is equal to 1:

∑
r∈R(Ti,a)

pr = 1.
Intuitively, a BMDP describes the stochastic evolution of entities of given types in the presence

of a controller that can influence the evolution. A population X is a finite set of entities of given
types, and it can be represented by a vector v(X) ∈ Nn, where vi(X) is the number of entities of X
of type Ti. Starting from an initial population X0 at time (generation) 0, a sequence of populations
X1, X2, . . . is generated, where Xk is obtained from Xk−1 as follows. First the controller selects for
each entity of Xk−1 an available action for the type of the entity; then a rule is chosen independently
and simultaneously for every entity of Xk−1 probabilistically according to the probabilities of the
rules for the type of the entity and the selected action, and the entity is replaced by a new set of
entities with the types specified by the right-hand side of the rule. The process is repeated as long

2Theorem 2 of [19] is stated in the more general context of 1-exit Recursive Simple Stochastic Games and shows
that also for max-minPPSs, both the max player and the min player have optimal policies that attain the LFP q∗.
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as the current population Xk is nonempty, and terminates if and when Xk becomes empty. The
objective of the controller is either to minimize the probability of termination (i.e., extinction of the
population), in which case the process is a minBMDP, or to maximize the termination probability,
in which case it is a maxBMDP. At each stage, k, the controller is allowed in principle to select
the actions for the entities of Xk based on the whole past history, may use randomization (a mixed
strategy) and may make different choices for entities of the same type. However, it turns out
that these flexibilities do not increase the controller’s power, and there is always an optimal pure,
memoryless strategy that always chooses the same action for all entities of the same type ([19]).

For each type Ti of a minBMDP (respectively, maxBMDP), let q∗i be the minimum (resp.
maximum) probability of termination if the initial population consists of a single entity of type Ti.
From the given minBMDP (maxBMDP) we can construct a minPPS (resp. maxPPS) x = P (x)
whose LFP is precisely the vector q∗ of optimal termination (extinction) probabilities (see Theorem
20 of [19]): The min/max polynomial Pi(x) for each type Ti contains one polynomial qi,j(x) for each
action j ∈ Ai, with qi,j(x) =

∑
r∈R(Ti,j)

prx
αr .

Example 2.1. Suppose there are two types of entities (for example, bacteria), T1, T2. For type
T1 we have three available actions a1, a2, a3. Under a1, a type-T1 entity dies with probability
0.3 and produces two T1 offspring with probability 0.7. We can write these rules succinctly as
R(T1, a1) = {T1

0.3→ ∅, T1
0.7→ T1T1}, where T1T1 denotes the multi-set {T1, T1}. Action a2 increases

the probability of death to 0.4 but also introduces the possibility that one of the offspring is mutated
to the more resilient type T2 with probability 0.1, i.e., R(T1, a2) = {T1

0.4→ ∅, T1
0.1→ T1T2, T1

0.5→
T1T1}. Action a3 has rules R(T1, a3) = {T1

0.5→ ∅, T1
0.3→ T1T2, T1

0.2→ T1T1}. For type T2 we have
two actions available b1, b2. The rules are R(T2, b1) = {T2

0.2→ ∅, T2
0.5→ T1T2, T2

0.3→ T2T2}, and
R(T2, b2) = {T2

0.3→ ∅, T2
0.2→ T1T2, T2

0.5→ T2T2}. The goal is to choose a strategy that maximizes
the probability of extinction.

The corresponding maxPPS has two variables x1, x2 for the optimal extinction probabilities of
the two types T1, T2, and has equations x1 = max{0.7x21+0.3, 0.5x21+0.1x1x2+0.4, 0.2x21+0.3x1x2+
0.5}, and x2 = max{0.5x1x2 + 0.3x22 + 0.2, 0.2x1x2 + 0.5x22 + 0.3}. To see the justification for these
Bellman equations, suppose for example that we select action a1 for T1. Then with probability
0.3 the process becomes extinct at this point, and with probability 0.7 there are two offspring of
type T1 and the process will become extinct iff both processes originating from the two offspring
become extinct. Hence in the case of a1 the extinction probability x1 satisfies x1 = 0.7x21 + 0.3.
The expressions for the other actions a2, a3 are derived similarly, and naturally we want to select
the action that yields the maximum value among them. The intuitive reason why the true optimal
extinction probabilities are given by the least fixed point of the equations was explained in the
introduction. The LFP of the system in this example, and the vector of maximum extinction
probabilities, is q∗ ≈ (0.7, 0.486). The optimal strategy is to use action a3 for T1 and b2 for T2. �

A 1-exit Recursive Markov Decision Process (1-RMDP) consists of a finite set of compo-
nents A1, . . . , Ak, where each component Ai is essentially a finite-state MDP augmented with the
ability to make recursive calls to itself and other components. Formally, each component Ai has a
finite set Ni of nodes, which are partitioned into probabilistic nodes and controlled nodes, and a
finite set Bi of "boxes" (or supernodes), where each box is mapped to some component. One node
eni is specified as the entry of the component Ai and one node exi as the exit of Ai.3 The exit

3The restriction to having only one entry node is not important; any multi-entry RMDP can be efficiently trans-
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node has no outgoing edges. All other nodes and the boxes have outgoing edges; the edges out of
the probabilistic nodes and boxes are labeled with probabilities, where the sum of the probabilities
out of the same node or box is equal to 1.

1-RMDP serve as a natural model for a class of recursive probabilistic programs. The components
correspond to the recursive procedures, probabilistic nodes correspond to the probabilistic steps,
controlled nodes correspond to the nonprobabilistic steps (e.g. branching steps), and the boxes
correspond to the recursive calls. Execution of a 1-RMDP starts at some node, for example, the
entry en1 of component A1. When the execution is at a probabilistic node v, then an edge out of
v is chosen randomly according to the probabilities of the edges out of v. At a controlled node v,
an edge out of v is chosen by a controller who seeks to optimize his objective. When the execution
reaches a box b of Ai mapped to some component Aj , then the current component is suspended
and a recursive call to Aj is initiated at its entry node enj ; if the call to Aj terminates, i.e. reaches
eventually its exit node exj , then the execution of component Ai resumes from box b following an
edge out of b chosen according to the probability distribution of the outgoing edges of b. Note that
a call to a component can make further recursive calls, thus, at any point there is in general a stack
of suspended recursive calls, and there can be an arbitrary number of such suspended calls; thus,
a 1-RMDP induces generally an infinite-state MDP. The process terminates when the execution
reaches the exit of the component of the initial node and there are no suspended recursive calls.

There are two types of 1-RMDPs with a termination objective: In a min 1-RMDP (resp. max
1-RMDP) the objective of the controller is to minimize (resp. maximize) the probability of ter-
mination. In principle, a controller can use the complete past history of the process and also use
randomization (i.e. a mixed strategy) to select at each point when the execution reaches a controlled
node which edge to select out of the node. As shown in [19] however, there is always an optimal
strategy that is pure, stackless and memoryless, i.e., selects deterministically one edge out of each
controlled node, the same one every time, independent of the stack of suspended calls and of the
past history (including the starting node). From a given min or max 1-RMDP we can construct
efficiently a minPPS or maxPPS, whose LFP yields the minimum or maximum termination proba-
bilities for all the different possible starting vertices of the 1-RMDP [19]: There is one variable xu
for each node u, corresponding to the optimal termination probability starting at node u and two
variables xb, x′b for each box b, corresponding to the optimal termination probabilities respectively
when the recursive call for b is made (is initiated) and when it returns. The exit nodes exi have value
xexi = 1. The equation for each probabilistic node u whose outgoing edges (u, v) have probabilities
puv is xu =

∑
v puvxv; the equation for the variable x′b of a box b is x′b =

∑
v pbvxv; the equation

for the variable xb of a box b mapped to component Ai with entry eni is xb = xenix
′
b; the equation

for a controlled node u in a min 1-RMDP (resp. max 1-RMDP) is xu = min{xv|(u, v) ∈ E} (resp.,
xu = max{xv|(u, v) ∈ E}. Conversely, from any given max/minPPS, we can efficiently construct a
1-RMDP whose optimal termination probabilities yield the LFP of the max/minPPS. The system
of equations for a 1-RMDP has a particularly simple form. All max/minPPSs can be put in that
form.

It is convenient to put max/minPPSs in the following simple form.

Definition 2.6. A maxPPS in simple normal form (SNF), x = P (x), is a system of n equations
in n variables x1, x2, ...xn where each Pi(x) for i = 1, 2, ...n is in one of three forms:

• Form L: P (x)i = ai,0 +
∑n

j=1 ai,jxj, where ai,j ≥ 0 for all j, and such that
∑n

j=0 ai,j ≤ 1

formed to an 1-entry RMDP. The restriction to 1-exit is very important: multi-exit RMDPs lead to undecidable
termination problems, even for any non-trivial approximation of the optimal values [19].
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• Form Q: P (x)i = xjxk for some j, k

• Form M: P (x)i = max{xj , xk} for some j, k

We define SNF form for minPPSs analogously: only the definition of “Form M” changes, replacing
max with min.

In the setting of a max/minPPS in SNF form, for simplicity in notation, when we talk about
a policy, if Pi(x) has form M , say Pi(x) ≡ max{xj , xk}, then when it is clear from the context we
will use σ(i) = k to mean that the policy σ chooses xk among the two choices xj and xk available
in Pi(x) ≡ max{xj , xk}.

Using similar techniques as in [18], it is easy to show that every max/minPPS can be transformed
efficiently to one in SNF form; see the Appendix for the proof.

Proposition 2.7 (cf. Proposition 7.3 [18]). Every max/minPPS, x = P (x), can be transformed
in P-time to an “equivalent” max/minPPS, y = Q(y) in SNF form, such that |Q| ∈ O(|P |). More
precisely, the variables x are a subset of the variables y, the LFP of x = P (x) is the projection of
the LFP of y = Q(y), and an optimal policy (respectively, ε-optimal policy) for x = P (x) can be
obtained in P-time from an optimal (resp., ε-optimal) policy of y = Q(y).

Thus from now on, and for the rest of this paper we assume, without loss of generality, that all
max/minPPSs are in SNF normal form.

The dependency graph of a max/minPPS x = P (x) is a directed graph G that has one node
for every variable, and has an edge xi → xj iff the variable xj appears in Pi(x). We say that the
system x = P (x) is strongly connected if its dependency graph is strongly connected, i.e., if every
node has a directed path to every other node.

We now summarize some of the main previous results on PPSs and max/minPPSs.

Proposition 2.8 (see [19]; and see the Appendix of this paper for more efficient P-time algorithms).
There is a P-time algorithm that, given a minPPS or maxPPS, x = P (x), over n variables, with
LFP q∗ ∈ Rn≥0, determines for every i = 1, . . . , n whether q∗i = 0 or q∗i = 1 or 0 < q∗i < 1.

Thus, given a max/minPPS we can find in P-time all the variables xi such that q∗i = 0 or q∗i = 1,
remove them and their corresponding equations xi = Pi(x), and substitute their values on the RHS
of the remaining equations. This yields a new max/minPPS, x′ = P ′(x′), where its LFP solution,
q′∗, is 0 < q′∗ < 1, which corresponds to the remaining coordinates of q∗. Thus, it suffices to focus
our attention to systems whose LFP is strictly between 0 and 1.

The decision problem of determining whether a coordinate q∗i of the LFP is ≥ 1/2 (or whether
q∗i ≥ r for any other given bound r ∈ (0, 1)) is at least as hard as the sqrt-sum and the PosSLP
problems even for PPS (without the min and max operator) [18] and hence it is highly unlikely that
it can be solved in P.

The problem of approximating efficiently the LFP of a PPS was solved recently in [12, 13], by
using Newton’s method after elimination of the variables with value 0 and 1.

Definition 2.9. For a PPS x = P (x) we use P ′(x) to denote the Jacobian matrix of partial
derivatives of P (x), i.e., P ′(x)i,j := ∂Pi(x)

∂xj
. For a point x ∈ Rn, if (I −P ′(x)) is non-singular, then

we define one Newton iteration at x via the operator:

N (x) = x+ (I − P ′(x))−1(P (x)− x)
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Given a max/minPPS, x=P(x), and a policy σ, we use Nσ(x) to denote the Newton operator of the
PPS x = Pσ(x); i.e., if (I − P ′σ(x)) is non-singular at a point x ∈ Rn, then Nσ(x) = x + (I −
P ′σ(x))−1(Pσ(x)− x).

Theorem 2.10 (Theorem 3.2 and Corollary 4.5 of [13]). Let x = P (x) be a PPS with rational
coefficients in SNF form which has least fixed point 0 < q∗ < 1. If we conduct iterations of Newton’s
method as follows: x(0) := 0, and for k ≥ 0: x(k+1) := N (x(k)), then the Newton operator N (x(k))
is defined for all k ≥ 0, and for any j > 0:

‖q∗ − x(j+4|P |)‖∞ ≤ 2−j

where |P | is the total bit encoding length of the system x = P (x).
Furthermore, there is an algorithm (based on suitable rounding of Newton iterations) which,

given a PPS, x = P (x), and given a positive integer j, computes a rational vector v ∈ [0, 1]n, such
that ||q∗−v||∞ ≤ 2−j, and which runs in time polynomial in |P | and j in the standard Turing model
of computation.

The proof of the theorem involves a number of technical lemmas on PPSs and Newton’s method,
several of which we will also need in this paper, some of them in strengthened form, and which we
include in the appendix. The following lemma summarizes key properties of the Newton operator
for PPS that are crucial for the correctness and the polynomial running time.

Lemma 2.11 (Combining Lemmas 3.9, 3.5 and Theorem 3.7 of [13]). Let x = P (x) be a PPS in
SNF with 0 < q∗ < 1. For any 0 ≤ x ≤ q∗ and λ > 0, the operator N (x) is defined (i.e. the matrix
I − P ′(x) is non-singular), N (x) ≤ q∗, and if q∗ − x ≤ λ(1− q∗) then q∗ −N (x) ≤ λ

2 (1− q∗).

If we knew an optimal policy τ for a max/minPPS, x = P (x), then we would be able to solve the
problem of computing the LFP for a max/minPPS using the algorithm in [13] for approximating
q∗τ , because we know q∗τ = q∗. Unfortunately, we do not know which policy is optimal. There are
exponentially many policies, so it would be inefficient to run this algorithm using every policy. (And
even if we did do so for each possible policy, we would only be able to ε-approximate the values q∗σ
for each policy σ using the results of [13], for say, ε = 2−j for some chosen j, and therefore we could
only be sure that a particular policy that yields the best result is, say, (2ε)-optimal, but it may not
not necessarily be optimal.) In fact, as we will see, it is probably impossible to identify an optimal
policy in polynomial time.

Our goal instead will be to find an iteration I(x) for max/minPPS, that has similar properties to
the Newton operator for PPS, i.e., that can be computed efficiently for a given x and for which we can
prove a similar property to Lemma 2.11, i.e. such that if q∗−x ≤ λ(1−q∗), then q∗−I(x) ≤ λ

2 (1−q∗).
Once we do so, we will be able to adapt and extend results from [13] to get a polynomial time
algorithm for the problem of approximating the LFP q∗ of a max/minPPS.

3 Generalizing Newton’s method using linear programming

If a max/minPPS, x = P (x), has no equations of form Q, then it amounts to precisely the Bell-
man equations for an ordinary finite-state Markov Decision Process with the objective of maximiz-
ing/minimizing reachability probabilities. It is well known that we can compute the exact (rational)
optimal values for such finite-state MDPs, and thus the exact LFP, q∗, for such a max(min)-linear
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systems, using linear programming (see, e.g., [29, 7]). Computing the LFP of max/minPPSs is
clearly a generalization of this finite-state MDP problem to the infinite-state setting of branching
and recursive MDPs.

If we have no equations of form M, we have a PPS, which we can solve in P-time, as shown
recently in [13]. The algorithm first preprocesses the system to identify the variables that have
value 0 or 1 in the LFP, removes them from the system, and then applies Newton’s method on the
remaining system. Recall that an iteration of Newton’s method works by approximating the system
of equations by a linear system, which is a linearization of the system around the current point, and
solving this linear system to obtain the new point.

For maxPPS(or minPPS) we employ a similar approach. We first identify the variables that have
value 0 or 1 in the LFP using the algorithms of [19] or the improved algorithms in the Appendix.
We remove these variables, substituting their value, and thereby obtain a reduced system on the
remaining variables whose LFP q∗ satisfies 0 < q∗ < 1. We compute (approximately) the LFP of
the remaining maxPPS (or minPPS) by an iterative algorithm, which we call Generalized Newton’s
Method (GNM). For this purpose, we define an analogous “approximate” system of equations at the
current point, which has both linear equations and equations involving the max (or min) function.
We show that we can solve the equations that arise from each iteration of GNM using linear
programming. We then show that a polynomial (in fact, linear) number of iterations are enough
to approximate the desired LFP solution, and that it suffices to carry out the computations with
polynomial precision.

We begin by defining formally the max/min linear equations that should be solved by one
iteration of “Generalized Newton’s Method” (GNM), applied at a point y. Recall that we assume
w.l.o.g. throughout that max/minPPSs and PPSs are in SNF.

Definition 3.1. For a max/minPPS, x = P (x), with n variables, the linearization of P (x) at a
point y ∈ Rn, is a system of max/min linear functions denoted by P y(x), which has the following
form:

if Pi(x) has form L or M, then P yi (x) = Pi(x), and
if Pi(x) has form Q, i.e., Pi(x) = xjxk for some j,k, then

P yi (x) = yjxk + xjyk − yjyk
Example 3.1. Consider the following minPPS x = P (x):

x1 = 0.2x2 + 0.3x3 + 0.5; x2 = 0.4x1 + 0.1x3 + 0.5x4; x3 = min(x2, x5); x4 = x1x3; x5 = x21

Its linearization x = P y(x) at the point y = (0.8, 0.3, 0.4, 0.2, 0.5) is

x1 = 0.2x2 + 0.3x3 + 0.5; x2 = 0.4x1 + 0.1x3 + 0.5x4; x3 = min(x2, x5);

x4 = 0.4x1 + 0.8x3 − 0.32; x5 = 1.6x1 − 0.64.

We define distinct iteration operators for a maxPPS and a minPPS, both of which we shall
refer to with the overloaded notation I(y). These operators will serve as the basis for a Generalized
Newton’s Method to be applied to maxPPSs and minPPSs, respectively.

Definition 3.2. For a maxPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, and for a real vector
y such that 0 ≤ y ≤ q∗, we define the operator I(y) to be the unique optimal solution, a ∈ Rn, to
the following mathematical program4: Minimize:

∑
i ai ; Subject to: P y(a) ≤ a.

4Note that we do not constrain the variables a to be non-negative in the mathematical programs corresponding
to the operator I(y) for both maxPPSs and minPPSs.
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For a minPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, and for a real vector y such that
0 ≤ y ≤ q∗, we define the operator I(y) to be the unique optimal solution a ∈ Rn to the following
mathematical program: Maximize:

∑
i ai ; Subject to: P y(a) ≥ a.

A priori, it is not obvious that the above definitions of I(y) for maxPPSs and minPPSs are well-
defined, i.e., that the mathematical programs are feasible and have a unique optimal solution. We
will show in the following subsections that this is indeed the case. We will also show that the
mathematical programs can be expressed as linear programs, and thus can be solved in polynomial
time.
Example 3.2. For the minPPS x = P (x) of the previous example, and the vector
y = (0.8, 0.3, 0.4, 0.2, 0.5), the corresponding mathematical program is:
Maximize:

∑5
i=1 ai ; Subject to:

a1 ≤ 0.2a2 + 0.3a3 + 0.5; a2 ≤ 0.4a1 + 0.1a3 + 0.5a4; a3 ≤ min(a2, a5);

a4 ≤ 0.4a1 + 0.8a3 − 0.32; a5 ≤ 1.6a1 − 0.64

The third constraint can be written equivalently as the conjunction of the inequalities a3 ≤ a2 and
a3 ≤ a5, which yields a Linear Program. The LP has a unique optimal solution (0.85, 0.7, 0.7, 0.58, 0.72),
and this vector is I(y). Note that this vector satisfies a = P y(a). �

Now we can give a polynomial time algorithm, in the Turing model of computation, for approx-
imating the LFP for a max/minPPS, to within any desired precision. First, compute the set of
variables that have value 0 or 1 in the LFP using the algorithms of [19], or the improved algorithms
of the Appendix; remove these variables from the system, yielding a remaining system whose LFP
q∗ satisfies 0 < q∗ < 1. Then apply the following algorithm to compute iteratively a sequence of
points x(k), k = 0, 1, 2 . . ., starting from x(0) := 0, rounding down every point along the computation
to h bits of precision. The number of iterations and the rounding parameter h depend on the desired
number of bits of precision in the approximation of the LFP.

Algorithm (Generalized Newton’s Method with rounding)
Start with x(0) := 0;
For each k ≥ 0 compute x(k+1) from x(k) as follows:

1. Calculate I(x(k)) by solving the following LP:
Minimize:

∑
i xi ; Subject to: P x(k)(x) ≤ x, if x = P (x) is a maxPPS,

or:
Maximize:

∑
i xi ; Subject to: P x(k)(x) ≥ x, if x = P (x) is a minPPS.

2. For each coordinate i = 1, 2, ...n, set x(k+1)
i to be the maximum (non-negative) multiple of

2−h which is ≤ max{0, I(x(k))i}. (In other words, we round I(x(k)) down to the nearest 2−h

and ensure it is non-negative.)

Example 3.3. Consider the minPPS of the previous Examples. Applying the algorithm of [19]
or of the Appendix yields that all variables have value strictly between 0 and 1 in the LFP, thus
no variable is eliminated. We start the Generalized Newton’s method with x(0) := 0. The LP is
the same as that of Example 3.2 except for the last two constraints (corresponding to the form-
Q equations of the minPPS), which are a4 ≤ 0 and a5 ≤ 0. Solving the LP yields the next
point x(1) ≈ (0.54, 0.22, 0, 0, 0). The LP in the next iteration changes again only in the last two
constraints and yields the next point x(2) ≈ (0.73, 0.47, 0.47, 0.25, 0.50). After a few more iterations
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we get x(5) ≈ (0.897, 0.795, 0.795, 0.713, 0.805) and x(6) ≈ (0.8999, 0.7999, 0.7999, 0.7198, 0.8099).
The actual LFP is q∗ = (0.9, 0.8, 0.8, 0.72, 0.81). In this example, Value Iteration takes about 200
iterations to reach the accuracy of x(5) and 400 iterations for x(6) (of course the iterations themselves
are simpler). �

We shall prove the following theorem:

Theorem 3.3. Given any max/minPPS, x = P (x), with LFP 0 < q∗ < 1, if we use the above
algorithm with rounding parameter h = j + 2 + 4|P |, then the iterations are all defined, and for
every k ≥ 0 we have 0 ≤ x(k) ≤ q∗, and furthermore after h− 1 = j + 1 + 4|P | iterations we have:

‖q∗ − x(j+1+4|P |)‖∞ ≤ 2−j

.

Corollary 3.4. Given any max/minPPS, x = P (x), with LFP q∗, and given any integer j > 0, there
is an algorithm that computes a rational vector v ≤ q∗ with ‖q∗− v‖∞ ≤ 2−j, in time polynomial in
|P | and j.

The rest of this Section is devoted to proving Theorem 3.3 and the corollary. The Section
is organized as follows. In Section 3.1 we give some basic properties of the linearization of a
max/minPPS (their proofs are given in the Appendix). In 3.2 we state the key properties of the
operator I(·) for an iteration of the Generalized Newton’s method. In Section 3.3 we analyze the
operator for maxPPS and in Section 3.4 for minPPS and prove its key properties. Finally in Section
3.5 we put everything together and prove Theorem 3.3 and Corollary 3.4, showing that the algorithm
approximates the LFP within any desired precision in polynomial time in the Turing model.

3.1 Linearizations of max/minPPSs and their properties

Let x = P (x) be a maxPPS or minPPS. For any policy σ, we can consider the linearization of the
corresponding PPS, x = Pσ(x).

Definition 3.5. P yσ (x) := (Pσ)y(x).

Note that the linearization P y(x) only changes equations of form Q, and using a policy σ only
changes equations of form M, so these operations are independent in terms of the effects they have
on the underlying equations, and thus P yσ (x) ≡ (Pσ)y(x) = (P y)σ(x).

We first state some basic properties of linearizations of PPS (without max or min); see the
Appendix for the proofs.

Lemma 3.6. Let x = P (x) be any PPS. For any y ∈ Rn, let (P y)′(x) denote the Jacobian matrix
of P y(x). Then for any x ∈ Rn, we have (P y)′(x) = P ′(y).

Lemma 3.7. If x = P (x) is any PPS, then for any x, y ∈ Rn, P y(x) = P (y) + P ′(y)(x− y).

An iteration of Newton’s method on x = Pσ(x) at a point y solves a system of linear equations
that can be expressed in terms of P yσ (x). The next lemma establishes this basic fact in part (i). In
part (ii) it provides us with conditions under which we are guaranteed to be doing “at least as well”
as one such Newton iteration. (See the Appendix for the proof.)

Lemma 3.8. Let x = P (x) be any max/minPPS. Suppose that the matrix inverse (I − P ′σ(y))−1

exists and is non-negative, for some policy σ, and some y ∈ Rn. Then
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(i) Nσ(y) is defined, and is equal to the unique point a ∈ Rn such that P yσ (a) = a.

(ii) For any vector x ∈ Rn:
If P yσ (x) ≥ x, then x ≤ Nσ(y).
If P yσ (x) ≤ x, then x ≥ Nσ(y).

3.2 Key properties of the iteration operator of GNM

Definition 3.2 defines the iteration operator I(y) as the unique optimal solution of a mathematical
program. We first observe that this mathematical program can be expressed as a linear program,
for both maxPPSs and minPPSs.

Proposition 3.9. Given a max/minPPS, x = P (x), with LFP q∗, and given a rational vector y,
0 ≤ y ≤ q∗, the constrained optimization problem (i.e., mathematical program) defining I(y) can be
described by a LP whose encoding size is polynomial (in fact, linear) in both |P | and the encoding
size of the rational vector y. Thus, we can compute the (unique) optimal solution I(y) to such an
LP (assuming it exists, and is unique) in P-time.

Proof. For a maxPPS (minPPS), the definition of I(y) asks us to maximize (minimize) a linear
objective,

∑
i ai, subject to the constraints P y(a) ≤ a (P y(a) ≥ a, respectively). All of these

constraints are linear, except the constraints of form M. For a maxPPS, if (P y(a))i is of form M,
then the corresponding constraint is an inequality of the form max{aj , ak} ≤ ai. Such an inequality
is equivalent to, and can be replaced by, the two linear inequalities: aj ≤ ai and ak ≤ ai. Likewise,
for a minPPS, if (P y(a))i is of form M, then the corresponding constraint is an inequality of the
form min{aj , ak} ≥ ai. Again, such an inequality is equivalent to, and can be replaced by, two
linear inequalities: aj ≥ ai and ak ≥ ai.

Thus, for a rational vector y whose encoding length is size(y), the operator I(y) can be formu-
lated (for both maxPPSs and minPPSs) as a problem of computing the unique optimal solution to
a linear program whose encoding size is polynomial (in fact, linear) in |P | and in size(y).

The following proposition lists key properties of the operator I(y). In particular (part 1), the
operator is well-defined if 0 < y < q∗, i.e. the mathematical program is feasible and has a unique
optimal solution. Furthermore (part 2), the iteration makes in some sense good progress towards
the LFP q∗; this part is useful in establishing the speed of convergence of GNM.

Proposition 3.10. Let x = P (x) be a max/minPPS, with LFP q∗, such that 0 < q∗ < 1. For any
0 ≤ y ≤ q∗:

1. I(y) is well-defined, and I(y) ≤ q∗, and:

2. For any λ > 0, if q∗ − y ≤ λ(1− q∗) then q∗ − I(y) ≤ λ
2 (1− q∗).

We shall prove the proposition separately for maxPPSs and minPPSs in the following two
subsections.

3.3 An iteration of Generalized Newton’s Method (GNM) for maxPPSs

In this subsection we will analyze the operator I(y) for a maxPPS and prove its key properties
given in Proposition 3.10. For a maxPPS, x = P (x), we know by Theorem 2.5 that there exists
an optimal policy, τ , such that q∗ = q∗τ ≥ q∗σ for any policy σ. The next lemma implies part 1 of
Proposition 3.10 for maxPPS:
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Lemma 3.11. If x = P (x) is a maxPPS, with LFP solution 0 < q∗ < 1, and y is a real vector
with 0 ≤ y ≤ q∗, then x = P y(x) has a least fixed point solution, denoted µP y, with µP y ≤ q∗.
Furthermore, the operator I(y) is well-defined, I(y) = µP y ≤ q∗, and for any optimal policy τ ,
I(y) = µP y ≥ Nτ (y).

Proof. Recall that (by Proposition 3.9) the mathematical program that “defines” I(y) can be written
equivalently as an LP:

Minimize:
∑
i

ai ; Subject to: P y(a) ≤ a (1)

Firstly, we show that the LP constraints P y(a) ≤ a in the definition of I(y) are feasible. We
do so by showing that actually P y(q∗) ≤ q∗. At any coordinate i, if Pi(x) has form M or L, then
P yi (q∗) = Pi(q

∗) = q∗i . Otherwise, Pi(x) has form Q, i.e., Pi(x) = xjxk, and then

P yi (q∗) = q∗j yk + yjq
∗
k − yjyk

= q∗j q
∗
k − (q∗j − yj)(q∗k − yk)

≤ q∗i (since y ≤ q∗)

Next we show that the LP (1) defining I(y) is bounded. Recall that, by Theorem 2.5, there is
always an optimal policy for any maxPPS, x = P (x).

Claim 3.12. Let x = P (x) be any maxPPS, with 0 < q∗ < 1, and let τ be any optimal policy for
x = P (x). For any y such that 0 ≤ y ≤ q∗, we have that Nτ (y) is defined, and for any vector a, if
P y(a) ≤ a then Nτ (y) ≤ a. In particular, Nτ (y) ≤ q∗.

Proof. Recall, from our definition of an optimal policy, that q∗ = q∗τ is also the least non-negative
solution to x = Pτ (x). So we can apply Lemma B.3 (in the Appendix) using x = Pτ (x) and y ≤ q∗
to deduce that (I − P ′τ (y))−1 exists and is non-negative. Thus Nτ (y) is defined. Now, by applying
Lemma 3.8 (ii), to show that a ≥ Nτ (y) all we need to show is that P yτ (a) ≤ a. But recalling that
x = P (x) is a maxPPS, by the definition of P y(x) and P yτ (x), we have that P yτ (a) ≤ P y(a) ≤ a.
We have just shown before this Claim that P y(q∗) ≤ q∗, and thus Nτ (y) ≤ q∗.

Thus the LP (1) defining I(y) is both feasible and bounded, hence it has an optimal solution.
To show that I(y) is well-defined, all that remains is to show that this optimal solution is unique. In
the process, we will also show that I(y) defines precisely the least fixed point solution of x = P y(x),
which we denote by µP y.

Firstly, we claim that for any optimal solution b to the LP (1), it must be the case that P y(b) = b.
Suppose not. Then there exists i such that P y(b)i < bi, then we can define a new vector b′, such
that b′i = P y(b)i and b′j = bj for all j 6= i. By monotonicity of P y(x), it is clear that P y(b′) ≤ b′, and
thus that b′ is a feasible solution to the LP (1). But

∑
i b
′
i <

∑
i bi, contradicting the assumption

that b is an optimal solution to the LP (1).
Secondly, we claim that there is a unique optimal solution. Suppose not: suppose b and c are

two distinct optimal solution to the LP (1). Define a new vector d by di = min{bi, ci}, for all i.
Clearly, d ≤ b and d ≤ c. Thus by the monotonicity of P y(x), for all i P y(d)i ≤ P y(b)i = bi, and
likewise P y(d)i ≤ P y(c)i = ci. Thus P y(d) ≤ d, and d is a feasible solution to the LP. But since b
and c are distinct, and yet

∑
i bi =

∑
i ci, we have that

∑
i di <

∑
i bi =

∑
i ci, contradicting the

optimality of both b and c.
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We have thus established that I(y) defines the unique least fixed point solution of x = P y(x),
which we denote also by µP y. Since q∗ is also a solution of the LP, we have µP y ≤ q∗.

Finally, by Claim 3.12, it must be the case that I(y) = µP y ≥ Nτ (y), where τ is any optimal
policy for x = P (x).

We next establish part 2 of Proposition 3.10 for maxPPS.

Lemma 3.13. Let x = P (x) be a maxPPS with 0 < q∗ < 1. For any 0 ≤ y ≤ q∗ and λ > 0, we
have I(y) ≤ q∗, and furthermore if:

q∗ − y ≤ λ(1− q∗)

then
q∗ − I(y) ≤ λ

2
(1− q∗)

Proof. Let τ be an optimal policy (which exists by Theorem 2.5). The least fixed point solution of
the PPS x = Pτ (x) is q∗. From our assumptions, Lemma 2.11 gives that q∗ − Nτ (y) ≤ λ

2 (1 − q∗).
But by Lemma 3.11 Nτ (y) ≤ I(y) ≤ q∗. The claim follows.

Proposition 3.10 for maxPPSs follows from Lemmas 3.11 and 3.13.

3.4 An iteration of GNM for minPPSs

In this subsection we will prove the key properties of the operator I(y) for minPPS (Proposition
3.10). Our proof of the minPPS version will be somewhat different, because it turns out we can not
use the same argument as for maxPPS, based on LPs, to prove that I(y) is well-defined. Fortunately,
in the case of minPPSs, we can show that (I − Pσ(y))−1 exists and is non-negative for any policies
σ, at those points y that are of interest. And we can use this to show that there is some policy, σ,
such that I(y) is equivalent to an iteration of Newton’s method at y after fixing the policy σ. We
shall establish the existence of such a policy using a policy improvement argument, instead of just
using the LP, as we did for maxPPSs. (Note that the policy improvement algorithm may not be an
efficient (P-time) way to compute it, and we do not claim it is. We only use policy improvement as
an argument in the proof of existence of a suitable policy σ.)

Lemma 3.14. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, for any 0 ≤ y ≤ q∗ and any policy
σ, (I − Pσ(y))−1 exists and is non-negative. Thus Nσ(y) is defined.

Proof. We show first that the LFP of x = Pσ(x), denoted q∗σ, satisfies q∗ ≤ q∗σ. To see this, note
that by Theorem 2.5, there is an optimal policy τ with q∗τ = q∗. But we defined an optimal policy
for a minPPS as one with q∗τ ≤ q∗υ for any policies υ. Therefore q∗ = q∗τ ≤ q∗σ.

Since 0 < q∗ < 1, and 0 ≤ y ≤ q∗ ≤ q∗σ, we have q∗σ > 0, 0 ≤ y ≤ q∗σ, and y < 1. It follows
from Lemma B.3 of the Appendix, applied to the PPS x = Pσ(x), that (I − Pσ(y))−1 exists and is
non-negative, and hence Nσ(y) is defined.

Lemma 3.15. Given a minPPS, x = P (x), with LFP 0 < q∗ < 1, and a vector y with 0 ≤ y ≤ q∗,
there is a policy σ such that P y(Nσ(y)) = Nσ(y).

Proof. We use a policy (strategy) improvement “algorithm” to prove this. Start with any policy σ1.
At step i, suppose we have a policy σi.
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For notational simplicity, in the following we use the abbreviation: z = Nσi(y). By Lemma 3.8,
P yσi(z) = z. So we have P y(z) ≤ z. If P y(z) = z, then stop: we are done.

Otherwise, to construct the next strategy σi+1, take the smallest j such that (P y(z))j < zj .
Note that Pj(x) has form M, because otherwise (P (x))j = (Pσi(x))j . Thus, there is some variable
xk with Pj(x) = min {xk, xσi(j)} and zk < zσi(j). Define σi+1 to be:

σi+1(l) =

{
σi(l) if l 6= j

k if l = j

Then (P yσi+1(z))j < zj , but for every other coordinate l 6= j, (P yσi+1(z))l = (P yσi(z))l = zl. Thus

P yσi+1
(z) ≤ z (2)

By Lemma 3.14, Nσi+1(y) is defined. Moreover, the inequality (2), together with Lemma 3.8 (ii),
yields that Nσi+1(y) ≤ z. But Nσi+1(y) 6= z because P yσi+1(z) 6= z whereas, by Lemma 3.8 (i), we
have P yσi+1(Nσi+1(y)) = Nσi+1(y).

Thus this algorithm gives us a sequence of policies σ1, σ2... with Nσ1(y) ≥ Nσ2(y) ≥ Nσ3(y) ≥ ...,
where furthermore each step must strictly decrease at least one coordinate of Nσi(y). It follows that
σi 6= σj , unless i = j. There are only finitely many policies. So the sequence must be finite, and the
algorithm terminates. But it only terminates when we reach a σi with P y(Nσi(y)) = Nσi(y).

We note that the analogous policy improvement algorithm might fail to work for maxPPSs, as we
might reach a policy σi where (I − Pσi(x))−1 does not exist, or has a negative entry.

The next Lemma shows that this policy improvement algorithm always produces a coordinate-
wise minimal Newton iterate over all policies.

Lemma 3.16. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, if 0 ≤ y ≤ q∗ and σ is a policy
such that P y(Nσ(y)) = Nσ(y), then:

(i) For any policy σ′, Nσ′(y) ≥ Nσ(y).

(ii) For any x ∈ Rn with P y(x) ≥ x, we have x ≤ Nσ(y).

(iii) For any x ∈ Rn with P y(x) ≤ x, we have x ≥ Nσ(y).

(iv) Nσ(y) is the unique fixed point of x = P y(x).

(v) Nσ(y) ≤ q∗.

Proof. Note firstly that by Lemma 3.14, for any policy σ, (I −P ′σ(y))−1 exists and is non-negative,
and Nσ(y) is defined.

(i) Consider P yσ′(Nσ(y)). Note that P yσ′(Nσ(y)) ≥ P y(Nσ(y)) = Nσ(y) by assumption. Thus, by
Lemma 3.8 (ii), Nσ(y) ≤ Nσ′(y).

(ii) P yσ (x) ≥ P y(x) ≥ x, so by Lemma 3.8 (ii), x ≤ Nσ(y).

(iii) If P y(x) ≤ x, then there a policy σ′ with P yσ′(x) ≤ x, and by Lemma 3.8 (ii), x ≥ Nσ′(y). So
using part (i) of this Lemma, x ≥ Nσ′(y) ≥ Nσ(y).

(iv) By assumption, Nσ(y) is a fixed point of x = P y(x). We just need uniqueness. If P y(q) = q,
then by parts (ii) and (iii) of this Lemma, q ≤ Nσ(y) and q ≥ Nσ(y), i.e., q = Nσ(y).
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(v) Consider an optimal policy τ , for the minPPS, x = P (x). From Lemma 2.11, if follows that
Nτ (y) ≤ q∗τ = q∗. And then part (i) of this Lemma, gives us that Nσ(y) ≤ Nτ (y) ≤ q∗.

We can show now part 1 of Proposition 3.10. Recall the LP that “defines” I(y), for a minPPS:

Maximize:
∑
i

ai ; Subject to: P y(a) ≥ a (3)

Lemma 3.17. For a minPPS, x = P (x), with LFP 0 < q∗ < 1, and for 0 ≤ y ≤ q∗, there is a
unique optimal solution, which we call I(y), to the LP (3), and furthermore I(y) = Nσ(y) for some
policy σ, P y(I(y)) = I(y), and I(y) ≤ q∗.

Proof. By Lemma 3.15, there is a σ such that P y(Nσ(y)) = Nσ(y). So Nσ(y) is a feasible solution
of P y(a) ≥ a. Let a by any solution of P y(a) ≥ a. By Lemma 3.16 (ii), a ≤ Nσ(y). Consequently∑n

i=1 ai ≤
∑n

i=1(Nσ(y))i with equality only if a = Nσ(y). So Nσ(y) is the unique optimal solution
of the LP (3) and I(y) = Nσ(y). By Lemma 3.16 (iv), I(y) ≤ q∗.

In the maxPPS case, we had an iteration that was at least as good as iterating with the optimal
policy. Here we have an iteration that is at least as bad! Nevertheless, we shall see that it is good
enough. In the maxPPS case, the analog of Lemma 2.11, Lemma 3.13, thus followed from Lemma
2.11. Here we crucially need the following stronger result for PPS than Lemma 2.11; its proof is
given in the Appendix.

Lemma 3.18. If x = P (x) is a PPS and we are given x, y ∈ Rn with 0 ≤ x ≤ y ≤ P (y) ≤ 1, and
if the following conditions hold:

λ > 0 and y − x ≤ λ(1− y) and (I − P ′(x))−1 exists and is non-negative, (4)

then y −N (x) ≤ λ
2 (1− y).

(Note that we cannot conclude that y −N (x) ≥ 0.)
We can show now part 2 of Proposition 3.10.

Lemma 3.19. Let x = P (x) be a minPPS, with LFP 0 < q∗ < 1. For any 0 ≤ x ≤ q∗ and λ > 0,
if:

q∗ − x ≤ λ(1− q∗)

then
q∗ − I(x) ≤ λ

2
(1− q∗)

Proof. By Lemma 3.17, there is a policy σ with I(x) = Nσ(x). We then apply Lemma 3.18 to
x = Pσ(x), x, and q∗ instead of y. Observe that Pσ(q∗) ≥ P (q∗) = q∗ and that (I − P ′σ(x))−1

exists and is non-negative. Thus the conditions of Lemma 3.18 hold, and we can conclude that
q∗ −Nσ(x) ≤ λ

2 (1− q∗).

Proposition 3.10 for minPPSs follows from Lemmas 3.17 and 3.19.
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3.5 Putting it Together

In this subsection we use the properties shown in the previous subsections to analyze the algorithm
and show Theorem 3.3 and Corollary 3.4. We show first that all iterations are well-defined.

Lemma 3.20. If we run the rounded-down-GNM starting with x(0) := 0 on a max/minPPS, x =
P (x), with LFP q∗, 0 < q∗ < 1, then for all k ≥ 0, x(k) is well-defined and 0 ≤ x(k) ≤ q∗.

Proof. The base case x(0) = 0 is immediate for both claims.
For the induction step, suppose the claims hold for k and thus 0 ≤ x(k) ≤ q∗. From Proposition

3.10, I(x(k)) is well-defined and I(x(k)) ≤ q∗. Furthermore, since x(k+1) is obtained from I(x(k))
by rounding down all coordinates, except setting to 0 any that are negative, and since obviously
q∗ > 0, we have that 0 ≤ x(k+1) ≤ q∗.

We analyze now the running time.
In [13] we gave a polynomial time algorithm, in the standard Turing model of computation,

for approximating the LFP of a PPS, x = P (x), using Newton’s method. The proof in [13] uses
induction based on the “halving lemma”, Lemma 2.11. We of course now have suitable “halving
lemmas” for maxPPSs and minPPSs, namely, Lemmas 3.13 and 3.19. In [13], the following bound
was used for the base case of the induction:

Lemma 3.21 (Theorem 3.14 from [13]). If 0 < q∗ < 1 is the LFP of a PPS, x = P (x), in n
variables, then for all i ∈ {1, . . . , n}:

1− q∗i ≥ 2−4|P |

In other words, 0 < q∗i ≤ 1− 2−4|P | , for all i ∈ {1, . . . , n}.

We can easily derive from this an analogous Lemma for the setting of max/minPPSs:

Lemma 3.22. If 0 < q∗ < 1 is the LFP of a max/minPPS, x = P (x), in n variables, then for all
i ∈ {1, . . . , n}:

1− q∗i ≥ 2−4|P |

In other words, 0 < q∗i ≤ 1− 2−4|P |, for all i ∈ {1, . . . , n}.

Proof. Let τ be any optimal policy for x = P (x). We know it exists, by Theorem 2.5. Lemma 3.21
gives that 1 − q∗i ≥ 2−4|Pτ |. All we need to note is that |P | ≥ |Pτ |, which clearly holds using any
sensible encoding for P and Pτ , in the sense that we should need no more bits needed to encode
xi = xj than to encode xi = max{xj , xk} or xi = min{xj , xk}.

For a vector v > 0, we will use the notation vmin to denote its minimum entry. Thus, the lemma
says that if q∗ < 1 then (1− q∗)min ≥ 2−4|P |.

We bound now the distance of the iterates x(k) of GNM from the LFP q∗.

Lemma 3.23. For a max/minPPS, x = P (x), with LFP q∗, such that 0 < q∗ < 1, if we apply
rounded-down-GNM with parameter h, starting at x(0) := 0, then for all k ≥ 0, we have:

‖q∗ − x(k)‖∞ ≤ (2−k + 2−h+1)24|P |
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Proof. Since x(0) := 0:

q∗ − x(0) = q∗ ≤ 1 ≤ 1

(1− q∗)min
(1− q∗) (5)

For any k > 0, if q∗ − x(k−1) ≤ λ(1 − q∗), then by Proposition 3.10 (which was proved separately
for maxPPSs and minPPSs, in Lemmas 3.13 and 3.19, respectively), we have:

q∗ − I(x(k−1)) ≤ (
λ

2
)(1− q∗) (6)

Observe that after every iteration k > 0, in every coordinate i we have:

x
(k)
i ≥ I(x(k−1))i − 2−h (7)

This holds simply because we are rounding down I(x(k−1))i by at most 2−h, unless it is negative in
which case x(k)i = 0 > I(x(k−1))i. Combining the two inequalities (6) and (7) yields the following
inequality:

q∗ − x(k) ≤ (
λ

2
)(1− q∗) + 2−h1 ≤ (

λ

2
+

2−h

(1− q∗)min
)(1− q∗)

Taking inequality (5) as the base case (with λ = 1
(1−q∗)min

), it follows by induction on k, for all
k ≥ 0:

q∗ − x(k) ≤ (2−k +

k−1∑
i=0

2−(h+i))
1

(1− q∗)min
(1− q∗)

But
∑k−1

i=0 2−(h+i) ≤ 2−h+1 and ‖1−q∗‖∞
(1−q∗)min

≤ 1
(1−q∗)min

≤ 24|P |, by Lemma 3.22. Thus:

q∗ − x(k) ≤ (2−k + 2−h+1)24|P |

Clearly, we have q∗ − x(k) ≥ 0 for all k. Thus we have shown that for all k ≥ 0:

‖q∗ − x(k)‖∞ ≤ (2−k + 2−h+1)24|P |.

Combining Lemmas 3.20 and 3.23, we can prove Theorem 3.3.

Proof of Theorem 3.3. In Lemma 3.23 let k := j + 4|P | + 1 and h := j + 2 + 4|P |. We have:
‖q∗ − x(j+1+4|P |)‖∞ ≤ 2−(j+1) + 2−(j+1) = 2−j .

Corollary 3.4 follows readily:

Proof of Corollary 3.4. First, we use the algorithms given in [19] (Theorems 11 and 13), or the
faster algorithms in the Appendix of this paper, to identify those variables xi with q∗i = 0 or q∗i = 1
in time polynomial in |P |. Then we remove these variables from the max/minPPS by substituting
their known values into the equations for other variables. This gives us a max/minPPS with LFP
0 < q∗ < 1 and does not increase |P |. Then we use the iterated GNM, with rounding down, as
outlined earlier in this section. In each iteration of GNM we solve an LP. Each LP has at most
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n ≤ |P | variables, at most 2n constraints and the numerators and denominators of each rational
coefficient are no larger than 2j+2+4|P |, so it can be solved in time polynomial in |P | and j using
standard algorithms. We need only 1 + 2 + 4|P | iterations involving one LP each. Putting back the
removed 0 and 1 values into the resulting vector gives us the full result q∗. This can all be done in
polynomial time.

4 Computing an ε-optimal policy in P-time

First let us note that we can not hope to compute an optimal policy in P-time, without a major
breakthrough:

Theorem 4.1. Computing an optimal policy for a max/minPPS is PosSLP-hard.

Proof. Recall from [18, 13] that the termination (extinction) probability vector q∗ of a Branching
Process (or of a 1-exit Recursive Markov Chain (1-RMC)) can be equivalently viewed as the LFP
of a purely probabilistic PPS, and vice-versa.

It was shown in [18] (Theorem 5.3), that given a PPS (or equivalently, a BP or 1-RMC), and
given a rational probability p, it is PosSLP-hard to decide whether the LFP q∗1 > p, for a given
rational p, as well as to decide whether q∗1 < p. (In fact, these hardness results hold already even if
p = 1/2.)

The fact that computing an optimal policy for max/minPPSs is PosSLP-hard follows easily from
this: For the case of maxPPSs (minPPS, respectively), given a PPS, x = P (x), and given p, we
simply add a new variable x0 to the PPS, and a corresponding equation:

x0 = max{p, x1} (resp. , x0 = min{p, x1}) (8)

It is clear that q∗1 > p (q∗1 < p, respectively) holds for the original PPS if and only if in any
optimal policy σ, for the augmented maxPPS (minPPS, respectively), the policy picks x1 rather
than p on the RHS of equation (8). So, if we could compute an optimal policy for a maxPPS
(minPPS), we would be able to decide whether q∗1 > p (whether q∗1 < p, respectively).

Since we can not hope to compute an optimal policy for max/minPPSs in P-time without a
major breakthrough, we will instead seek to find a policy σ such that ‖q∗σ − q∗‖∞ ≤ ε for a given
desired ε > 0, in time poly(|P |, log(1/ε)). We have an algorithm for approximating q∗. Can we
use a sufficiently close approximation, q, to q∗ to find such an ε-optimal strategy? Once we have
an approximation q, it seems natural to consider policies σ such that Pσ(q) = P (q). For minPPSs,
this means choosing for each type-M variable xi with equation of the form xi = min{xj , xk}, the
variable xj or xk that has the lowest value in the approximate vector q and for maxPPSs choosing
the variable that has the highest value in q. It turns out that this works for minPPSs (provided
that q is sufficiently close to q∗), while for maxPPSs we need to select the policy σ more carefully.

Before getting into the details, we outline the basic approach for the algorithm and the proof.
For most of this section we focus on the case when the LFP q∗ satisfies 0 < q∗ < 1; at the end of the
section we will extend the policy to the variables that have value 0 or 1 in the LFP. We compute a
sufficiently close approximation q of the LFP q∗ of the given max/minPPS x = P (x), and let σ be
a policy such that Pσ(q) = P (q). We would like to show that the corresponding LFP q∗σ of the PPS
x = Pσ(x) is within distance ε of the LFP q∗ of the given max/minPPS. We know that q is close to
q∗, hence it suffices to show that q is sufficiently close also to q∗σ. Toward this purpose, in the first
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part of the proof, we bound the distance ‖q∗σ− q‖∞ by the norm of (I−P ′σ(x))−1 for a certain value
of x and ‖q∗ − q‖∞ (Lemma 4.4 below). In the second part of the proof we then use a result from
[13] for PPS in order to bound the norm of the matrix (I − P ′σ(x))−1. For minPPS we show that
the hypothesis of this result of [13] is satisfied by any policy σ such that Pσ(q) = P (q), if q is close
enough to q∗. For maxPPS more effort is required and we give an algorithm that chooses carefully
a policy σ so that the hypothesis is satisfied.

We start with a lemma on PPS, which will then be applied in our case to the PPS x = Pσ(x)
for an appropriate policy σ. The proof is given in the appendix.

Lemma 4.2. If x = P (x) is a PPS, with LFP q∗, and the matrix (I−P ′(12(q∗+y)))−1 exists, then:

q∗ − y = (I − P ′(1

2
(q∗ + y)))−1(P (y)− y) (9)

The norm of the left-hand side ‖q∗ − y‖ of the equation (9) of Lemma 4.2 is bounded by the
product of the norms of the matrix and the vector P (y)− y on the right-hand side. We can bound
the norm of P (y)− y for a PPS, and more generally for a max/minPPS, in terms of the distance of
y from the LFP (see the Appendix for the proof).

Lemma 4.3. If x = P (x) is a max/minPPS with LFP q∗, and if 0 ≤ y ≤ q∗, then ‖P (y)− y‖∞ ≤
2‖q∗ − y‖∞.

From the previous two lemmas we can derive the bound in the following lemma (see the Appendix
for the proof). For a square matrix A, ρ(A) denotes its spectral radius. A basic property is
that, if A is a non-negative matrix and ρ(A) < 1, then the matrix I − A is nonsingular and
(I −A)−1 =

∑∞
k=0A

k is non-negative (see e.g. [23]).

Lemma 4.4. For a max/minPPS, x = P (x), given 0 ≤ q ≤ q∗, such that q < 1, and a policy σ
such that P (q) = Pσ(q), and such that ρ(P ′σ(12(q∗+q∗σ))) < 1, and thus (I−P ′σ(12(q∗+q∗σ)))−1 exists
and is non-negative, then

‖q∗σ − q∗‖∞ ≤ (2‖(I − P ′σ(
1

2
(q∗σ + q∗)))−1‖∞ + 1)‖q∗ − q‖∞

To apply Lemma 4.4 we need to show the existence of the matrix (I − P ′σ(12(q∗σ + q∗)))−1 and
bound its norm. For this, we use the following fact for PPS, which is proved in [13].

Lemma 4.5. ([13], Theorem 5.1) If x = P (x) is a PPS with LFP q∗ > 0 then
(i) If q∗ < 1 and 0 ≤ y < 1, then ρ(P ′(12(y + q∗))) < 1, thus (I − P ′(12(y + q∗)))−1 exists and is
non-negative, and

‖(I − P ′(1

2
(y + q∗)))−1‖∞ ≤ 210|P |max{2(1− y)−1min, 2

|P |}

(ii) If q∗ = 1 and x = P (x) is strongly connected (i.e. every variable depends directly or indirectly on
every other) and 0 ≤ y < 1 = q∗, then ρ(P ′(y)) < 1, thus (I − P ′(y))−1 exists and is non-negative,
and

‖(I − P ′(y))−1‖∞ ≤ 24|P |
1

(1− y)min
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To apply Lemma 4.5(i) on the PPS x = Pσ(x) and complete the proof has some complications
due to the following fact: Although we assume that 0 < q∗ < 1, it need not be true for an arbitrary
policy σ that 0 < q∗σ < 1.
Example 4.1. Consider the following maxPPS x = P (x):

x1 = max(x2, x4); x2 = max(x1, x3); x3 = max(x2, x5); x4 = 0.25x3 + 0.5x5 + 0.25; x5 = x1x4;

The LFP is q∗ = (0.5, 0.5, 0.5, 0.5, 0.25), and it is achieved by the optimal policy τ which se-
lects τ(x1) = x4, τ(x2) = x1, τ(x3) = x2. Consider however the policy σ which selects σ(x1) =
x2, σ(x2) = x3, σ(x3) = x2. The induced PPS x = Pσ(x) is:

x1 = x2; x2 = x3; x3 = x2; x4 = 0.25x3 + 0.5x5 + 0.25; x5 = x1x4

Note that Pσ(q∗) = q∗. However, the LFP of the PPS x = Pσ(x) is q∗σ = (0, 0, 0, 0.25, 0). �
But the following obviously does hold:

Proposition 4.6. Given a max/minPPS, x = P (x), with LFP q∗ such that 0 < q∗ < 1, for any
policy σ:
(i) If x = P (x) is a maxPPS then q∗σ < 1.
(ii) If x = P (x) is a minPPS, then q∗σ > 0.

Proof. If x = P (x) is a maxPPS, then clearly q∗σ ≤ q∗ < 1, because σ can be no better than an
optimal strategy. Likewise, if x = P (x) is a minPPS, then 0 < q∗ ≤ q∗σ, for the same reason.

For maxPPSs, we may have that some coordinate of q∗σ is equal to 0 and for minPPSs we may
have that some coordinate of q∗σ is equal to 1, even when 0 < q∗ < 1. This is the source of different
complications for the max and the min case, and we give separate proofs for the two cases.

MinPPS
For minPPSs we shall show that if y is a sufficiently close approximation to q∗, then any policy

σ with P (y) = Pσ(y) is ε-optimal. The maxPPS case will not be so simple: the analogous statement
is false for maxPPSs.

Theorem 4.7. If x = P (x) is a minPPS, with LFP 0 < q∗ < 1, and 0 ≤ ε ≤ 1, and 0 ≤ y ≤ q∗,
such that ‖q∗ − y‖∞ ≤ 2−14|P |−3ε, then for any policy σ with Pσ(y) = P (y), ‖q∗ − q∗σ‖∞ ≤ ε.

Proof. By Proposition 4.6, q∗σ ≥ q∗, and so q∗σ > 0. Suppose for now that q∗σ < 1 (we will show this
later). Then applying Lemma 4.5 (i), for the case where we set y := q∗ and the PPS is x = Pσ(x),
yields that

‖(I − P ′σ(
1

2
(q∗ + q∗σ)))−1‖∞ ≤ 210|Pσ |max { 2

(1− q∗)min
, 2|Pσ |}

Note that |Pσ| ≤ |P |. From Lemma 3.22, (1− q∗)min ≥ 2−4|P |. Thus

‖(I − P ′σ(
1

2
(q∗ + q∗σ)))−1‖∞ ≤ 214|P |+1

Lemma 4.4 now gives that

‖q∗ − q∗σ‖∞ ≤ (214|P |+2 + 1)‖q∗ − y‖∞ ≤ ε
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Thus, under the assumption that q∗σ < 1, we are done.
To complete the proof, we now show that q∗σ < 1. Suppose, for a contradiction, that for some

i, (q∗σ)i = 1. Then by results in [18], x = Pσ(x) (i.e., its dependency graph) has a bottom strongly
connected component S with q∗S = 1. If xi is in S then only variables in S appear in (Pσ)i(x), so
we write xS = PS(x) for the PPS which is formed by such equations. We also have that P ′S(1) is
irreducible and that the least fixed point solution of xS = PS(xS) is q∗S = 1. Take yS to be the
subvector of y with coordinates in S. Now if we apply Lemma 4.5 (ii) to the PPS xS = PS(x), by
taking the y in its statement to be 1

2(yS + 1), it gives that

‖(I − P ′S(
1

2
(yS + 1)))−1‖∞ ≤ 24|PS |

1
1
2(1− yS)min

But |PS | ≤ |P | and (1− yS)min ≥ (1− q∗)min ≥ 2−4|P |. Thus

‖(I − P ′S(
1

2
(yS + 1)))−1‖∞ ≤ 28|P |+1

Lemma 4.2 gives that

1− yS = (I − P ′S(
1

2
(1 + yS)))−1(PS(yS)− yS)

Taking norms and re-arranging gives:

‖PS(yS)− yS)‖∞ ≥
‖1− yS‖∞

‖(I − P ′S(12(yS + 1)))−1‖∞
≥ 2−4|P |

28|P |+1
≥ 2−12|P |−1

However ‖PS(yS) − yS)‖∞ ≤ ‖Pσ(y) − y‖∞ and Pσ(y) = P (y). We deduce that ‖P (y) − y‖∞ ≥
2−12|P |−1. Lemma 4.3 states that ‖P (y)−y‖∞ ≤ 2‖q∗−y‖∞. We thus have ‖q∗−y‖∞ ≥ 2−12|P |−2.
This contradicts our assumption that ‖q∗ − y‖∞ ≤ 2−14|P |−3ε for some ε ≤ 1.

MaxPPS
Now we proceed to the harder case of maxPPSs. The main theorem in this case is the following.

Theorem 4.8. If x = P (x) is a maxPPS with 0 < q∗ < 1 and given 0 ≤ ε ≤ 1 and a vector y,
with 0 ≤ y ≤ q∗, such that ‖q∗ − y‖∞ ≤ 2−14|P |−3ε, then we can compute a policy σ such that
‖q∗ − q∗σ‖∞ ≤ ε in time polynomial in |P | and log(1/ε).

We need a policy σ such that we can apply Lemma 4.5 to x = Pσ(x), and for which we can
get good bounds on ‖Pσ(y) − y‖∞. Firstly we show that such policies exist. In fact, any optimal
policy will do: for an optimal policy τ , q∗τ > 0 and Lemma 4.3 applied to x = Pτ (x) gives that
‖Pτ (y)− y‖∞ ≤ 2−14|P |−2ε. Unfortunately the optimal policy might be hard to find (Theorem 4.1).
Furthermore, if we select any policy σ such that P (y) = Pσ(y), it is possible that the corresponding
LFP q∗σ of the PPS x = Pσ(x) has some coordinates equal to 0, and thus we cannot apply directly
Lemma 4.5. To prove the theorem, we will give below an algorithm that computes a suitable policy
σ such that q∗σ > 0.

First, note that given a policy σ and the PPS x = Pσ(x), we can easily test in polynomial time
whether the LFP q∗σ > 0 (see, e.g., Theorem 2.2 of [18]). We shall make use of the following easy
fact, shown in the Appendix:
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Lemma 4.9. If x = P (x) is a PPS with n variables, and with LFP q∗, then for any variable index
i ∈ {1, . . . , n} the following are equivalent:
(i) q∗i > 0.
(ii) there is a k > 0 such that (P k(0))i > 0.
(iii) (Pn(0))i > 0.

Given the maxPPS, x = P (x), with 0 < q∗ < 1, and given a vector y that satisfies the conditions
of Theorem 4.8, we shall use the following algorithm to obtain the policy we need:

1. Initialize the policy σ to any policy such that Pσ(y) = P (y).

2. Calculate for which variables xi in x = Pσ(x) we have (q∗σ)i = 0. Let S0 denote this set of
variables. (We can do this in P-time; see e.g., Theorem 2.2 of [18].)

3. If for all i we have (q∗σ)i > 0, i.e., if S0 = ∅, then terminate and output the policy σ.

4. Otherwise, look for a variable xi, where Pi(x) is of form M, with Pi(x) = max {xj , xk}, and
where (q∗σ)i = 0 but one of xj , xk, say xj , has (q∗σ)j > 0 and where furthermore ‖yi − yj‖ ≤
2−14|P |−2ε. (We shall establish that such a pair xi and xj will always exist when we are at
this step of the algorithm.)

Let σ′ be the policy that chooses xj at xi but is otherwise identical to σ. Set σ := σ′ and
return to step 2.

Example 4.2. Consider the maxPPS of Example 4.1.

x1 = max(x2, x4); x2 = max(x1, x3); x3 = max(x2, x5); x4 = 0.25x3 + 0.5x5 + 0.25; x5 = x1x4

Let y be a sufficiently close approximation to the LFP q∗ = (0.5, 0.5, 0.5, 0.5, 0.25) and suppose
that y2 > y4 and y3 > y1. The policy σ that satisfies Pσ(y) = P (y) selects σ(x1) = x2, σ(x2) =
x3, σ(x3) = x2. As in Example 4.1, the LFP of the PPS x = Pσ(x) is q∗σ = (0, 0, 0, 0.25, 0); the
algorithm will only compute the set S0 = {x1, x2, x3, x5} of variables with value 0 in q∗σ, not q∗σ itself.
In Step 4 the algorithm will switch the choice for variable x1 since (q∗σ)4 > 0 and y1 ≈ y4 ≈ 0.5,
and will set σ′(x1) = x4. The new induced PPS x = Pσ′(x) is

x1 = x4; x2 = x3; x3 = x2; x4 = 0.25x3 + 0.5x5 + 0.25; x5 = x1x4

It has LFP q∗σ′ ≈ (0.29, 0, 0, 0.29, 0.085) and the new S0 = {x2, x3}. Even though x3 has a successor,
x5, with (q∗σ′)5 > 0, the algorithm will not switch the choice for x3 because y5 ≈ q∗5 = 0.25� y3 ≈
0.5. Rather, it will switch the choice for variable x2 and will set σ′′(x2) = x1, since (q∗σ′)1 > 0 and
y1 ≈ 0.5 ≈ y2. The new induced PPS x = Pσ′′(x) is

x1 = x4; x2 = x1; x3 = x2; x4 = 0.25x3 + 0.5x5 + 0.25; x5 = x1x4

and has LFP q∗σ′′ = (0.5, 0.5, 0.5, 0.5, 0.25), thus the new S0 = ∅. So the algorithm will terminate
and output σ′′, which in this case is the optimal policy. �

Lemma 4.10. The steps of the above algorithm are always well-defined, and the algorithm always
terminates in at most n iterations with a policy σ such that q∗σ > 0 and ‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε.
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Proof. Firstly, to show that the steps of the algorithm are always well-defined, we need to show
that if q∗σ has some coordinate equal to 0, then step 4 will find a pair of variables xi, xj that satisfy
the condition of step 4 to switch the policy at xi.

Suppose that q∗σ has some coordinate equal to 0. Let τ be an optimal policy; then q∗τ = q∗ > 0.
So by Lemma 4.9, Pnτ (0) > 0. For any variable xj with (Pτ (0))j > 0, the equation xj = Pj(x)
must have form L and not M so (Pσ(0))j > 0 and so (q∗σ)j > 0. There must be a least k, kmin with
1 < kmin ≤ n, such that there is a variable xj with (P kτ (0))j > 0 but (q∗σ)j = 0. Let xi be a variable
such that (P kmin

τ (0))i > 0 but (q∗σ)i = 0. We claim that xi is of type M.
Suppose that xi = Pi(x) has form Q. Then Pi(x) = xjxl for some variables xj , xl. We have

0 < (P kmin
τ (0))i = (P kmin−1

τ (0))j(P
kmin−1
τ (0))l. So (P kmin−1

τ (0))j > 0 and (P kmin−1
τ (0))l > 0. The

minimality of kmin now gives us that (q∗σ)j > 0 and (q∗σ)l > 0. So (q∗σ)i = (q∗σ)j(q
∗
σ)l > 0. This is a

contradiction. Thus, xi = Pi(x) does not have form Q.
Similarly, xi = Pi(x) does not have form L. So xi = Pi(x) has form M. There are variables xj ,

xl with Pi(x) = max {xj , xl}. Suppose, w.l.o.g. that (Pτ (x))i = xj . We have P kmin
τ (0))i > 0 and so

(P kmin−1(0))j > 0. By minimality of kmin, we have that (q∗σ)j > 0. We have that (q∗σ)i = 0 and so
(Pσ(x))i = xl.

Lemma 4.3 applied to the system x = Pτ (x) gives that ‖Pτ (y)−y‖∞ ≤ 2−14|P |−2ε. So |yi−yj | =
|yi − (Pτ (y))i| ≤ 2−14|P |−2ε. Thus, step 4 could use xi and change the policy σ at xi (i.e., switch
σ(i)) from xl to xj .
Next, we need to show that the algorithm terminates:

Claim 4.11. If step 4 switches the variable xi with Pi(x) = max {xj , xk} from (Pσ(x))i = xk to
(Pσ′(x))i = xj, then
(i) q∗σ′ ≥ q∗σ,
(ii) (q∗σ′)i > 0,
(iii) The set of variables xl with (q∗σ′)l > 0 is a strict superset of the set of variables xl with (q∗σ)l > 0.

Proof. Recall that step 4 will only switch if (q∗σ)i = 0 and (q∗σ)j > 0.

(i) We show that, for any t > 0, P tσ′(0) ≥ P tσ(0). We use induction on t.
The base case t = 1, is clear, because the only indices i where Pi(0) 6= 0 are when Pi(0) has
form L, in which case Pi(0) = (Pσ′(0))i = (Pσ(0))i.

For the inductive case: note firstly that Pσ(x) and Pσ′(x) only differ on the ith coordi-
nate. (q∗σ)i = 0, so for any t, (P tσ(0))i = 0. Suppose that P tσ′(0) ≥ P tσ(0). Then by
monotonicity P t+1

σ′ (0) ≥ Pσ′(P
t
σ(0)). But (Pσ′(P

t
σ(0)))r = (P t+1

σ (0))r when r 6= i. Fur-
thermore, (Pσ′(P

t
σ(0)))i ≥ 0 = (P t+1

σ (0))i. So Pσ′(P kσ (0)) ≥ P k+1
σ (0). We thus have that

P t+1
σ′ (0) ≥ P t+1

σ (0).

We know that as t→∞, P tσ′(0)→ q∗σ′ and P
t
σ(0)→ q∗σ. So q∗σ′ ≥ q∗σ.

(ii) We have (q∗σ′)i = (q∗σ′)j . By (i) (q∗σ′)j ≥ (q∗σ)j . We chose xj such that (q∗σ)j > 0. So (q∗σ′)i > 0.

(iii) If (q∗σ)l > 0, then by (i) (q∗σ′)l > 0. Also (q∗σ)i = 0 and by (ii) (q∗σ′)i > 0.

Thus, if at some stage of the algorithm we do not yet have q∗σ > 0, then step 4 always gives us
a new σ′ with more coordinates having (q∗σ′)i > 0. This can happen at most n times. Furthermore,
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note that if ‖Pσ(y) − y‖∞ ≤ 2−14|P |−2ε then ‖Pσ′(y) − y‖∞ ≤ 2−14|P |−2ε. Our starting policy has
‖Pσ(y)− y‖∞ = ‖P (y)− y‖∞ ≤ 2−14|P |−2ε. The algorithm terminates in at most n iterations and
gives a σ with q∗σ > 0 and ‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε.

We can now complete the proof of Theorem 4.8:

Proof of Theorem 4.8. Using the algorithm, we find a σ with ‖y−Pσ(y)‖∞ ≤ 2−14|P |−2ε and q∗σ > 0.
By Proposition 4.6, q∗σ < 1. Also, y < 1 since y ≤ q∗ and q∗ < 1. Applying Lemma 4.5 (i) to the
PPS x = Pσ(x) and point y gives that (I − P ′σ(12(y + q∗σ)))−1 exists and

‖(I − P ′σ(
1

2
(y + q∗σ)))−1‖∞ ≤ 210|Pσ |max { 2

(1− y)min
, 2|Pσ |}

We have |Pσ| ≤ |P |. From the fact that there always exists an optimal policy and from Lemma
3.22 (Theorem 3.14 of [13]), it follows that (1 − q∗)min ≥ 2−4|P |, and since y ≤ q∗, we have
(1− y)min ≥ 2−4|P |. So

‖(I − P ′σ(
1

2
(y + q∗σ)))−1‖∞ ≤ 214|P |+1 (10)

We can not use Lemma 4.4 as stated because we need not have P (y) = Pσ(y). We will use Lemma
4.2 instead. As observed above, the matrix (I − P ′σ(12(y + q∗σ)))−1 exists. Applying Lemma 4.2 to
the PPS x = Pσ(x), and taking norms, we get the inequality

‖q∗σ − y‖∞ ≤ ‖(I − P ′σ(
1

2
(q∗σ + y)))−1‖∞‖Pσ(y)− y‖∞ (11)

From Lemma 4.10 we have
‖Pσ(y)− y‖∞ ≤ 2−14|P |−2ε (12)

Combining (10), (12) and (11) yields:

‖q∗σ − y‖∞ ≤
1

2
ε

so ‖q∗σ − q∗‖∞ ≤ ‖q∗σ − y‖∞ + ‖q∗ − y‖∞ ≤ 1
2ε+ 2−14|P |−3ε ≤ ε.

We can extend the policy to the variables that have value 0 or 1 in the LFP and get an ε-optimal
policy for any maxPPS or min PPS:

Theorem 4.12. Given a max/minPPS, x = P (x), and given ε > 0, we can compute an ε-optimal
policy for x = P (x) in time poly(|P |, log(1/ε))

Proof. First we use the algorithms from [19] or the Appendix to detect variables xi with q∗i = 0 or
q∗i = 1 in time polynomial in |P |. Then we can remove these from the max/minPPS by substituting
the known values into the equations for other variables. This gives us a max/minPPS with least
fixed point 0 < q∗ < 1 and does not increase |P |. To use either Theorem 4.8 or Theorem 4.7, it
suffices to have a y with y ≤ q∗ with q∗ − y ≤ 2−14|P |−3ε. Theorem 3.3 says that we can find
such a y in time polynomial in |P | and 14|P | − log (ε), which is polynomial in |P | and log (1/ε) as
required. Now depending on whether we have a maxPPS or minPPS, Theorem 4.8 or Theorem 4.7
show that from this y, we can find an ε-optimal policy for the max/minPPS with 0 < q∗ < 1 in
time polynomial in |P | and log (1/ε). All that is left to show is that we can extend this policy to
the removed variables xi where q∗i = 0 or q∗i = 1 while still remaining ε-optimal.
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We next show how this can be done.
For a minPPS, if q∗i = 1 then for any policy σ, (q∗σ)i = 1 so the choice made at such variables xi

is irrelevant. Similarly, for maxPPSs, when q∗i = 0, any choice at xi is optimal.
For a minPPS with q∗i = 0, if Pi(x) has form M, we can choose any variable xj with q∗j = 0.

There is such a variable: if Pi(x) = min{xj , xk} and q∗i = 0 then either q∗j = 0 or q∗k = 0. Let σ be
a policy such that for each variable xi with q∗i = 0, (q∗)σ(i) = 0. We need to show that (q∗σ)i = 0

for all such variables. Suppose that, for some k ≥ 0, (P kσ (0))i = 0 for all xi such that q∗i = 0. Then
P (P kσ (0))i = 0 for all xi with q∗i = 0.

To see why this is so, note that whether or not Pi(z) = 0 depends only on which coordinates of
z are 0, and furthermore if Pi(z) = 0 when the set of 0 coordinates of z is S, then for any vector z′

where the 0 coordinates of z′ are S′ ⊇ S, we have Pi(z′) = 0. Since the coordinates S that are 0
in q∗ are a subset of the coordinates S′ that are 0 in P kσ (0), and we have Pi(q∗) = q∗i = 0, we thus
have P (P kσ (0))i = 0.

If Pi(x) = min{xj , xk} and q∗i = 0 then either q∗j = 0 or q∗k = 0. Suppose w.l.o.g. that
(Pσ(x))i = xj . Then q∗j = 0, so by assumption (P kσ (0))j = 0 and so (Pσ(P kσ (0)))i = 0. We now
have enough for (P k+1

σ (0))i = 0 for each variable xi with q∗i = 0. P 0
σ (0) = 0, so by induction for all

k ≥ 0, (P kσ (0))i = 0 for all xi with q∗i = 0. From this, for each variable xi with q∗i = 0, (q∗σ)i = 0.
The case of a maxPPS that have variables with q∗i = 1 is not so simple. Although it is again

the case that if a variable xi of type M with Pi(x) = max{xj , xk} has value q∗i = 1 in the LFP, then
at least one of the variables xj , xk has also value 1 (i.e. q∗j = 1 or q∗k = 1), but if both variables are
1 in q∗, the policy σ cannot choose arbitrarily one of them for xi, because then it is possible that
in the resulting LFP q∗σ the variable xi does not have value 1 (it can get value 0 in fact). Thus,
for maxPPS more care is needed to choose the policy for the variables with value q∗i = 1. The
P-time algorithm given in [19] to compute the variables with q∗i = 1, produces also a randomized
policy for these variables (Lemma 12 in [19]). In Section A of the Appendix we give an improved
algorithm that produces a pure (non-randomized) policy for these variables (and much faster than
the previous algorithm of [19]).

5 Approximating the value of BSSGs in FNP

In this section we briefly note that, as an easy corollary of our results for BMDPs, we can obtain
a TFNP (total NP search problem) upper bound for computing (approximately), the value of
Branching simple stochastic games (BSSG), where the objective of the two players is to maximize,
and minimize, the extinction probability. For relevant definitions and background results about these
games see [19]. It suffices for our purposes here to point out that, as shown in [19], the value of these
games (which are determined) is characterized by the LFP solution of associated min-maxPPSs,
x = P (x), where both min and max operators can occur in the equations for different variables.
Furthermore, both players have optimal policies (i.e. optimal pure, memoryless strategies) in these
games (see [19]).

Corollary 5.1. Given a max-minPPS, x = P (x), and given a rational ε > 0, the problem of
approximating the LFP q∗ of x = P (x), i.e., computing a vector v such that ‖q∗ − v‖∞ ≤ ε, is
in TFNP, as is the problem of computing ε-optimal policies for both players. (And thus also, the
problem of approximating the value, and computing ε-optimal strategies, for BSSGs is in FNP.)
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Proof. Let x = P (x) be the max-minPPS whose LFP, q∗, we wish to compute. First guess pure
policies σ and τ for the max and min players, respectively. Then, fix σ as max’s strategy, and
for the resulting minPPS (with LFP q∗σ) use our algorithm to compute in P-time an approximate
value vector vσ ≤ q∗σ, such that ‖vσ − q∗σ‖∞ ≤ ε/2. Next, fix τ as min’s strategy, and for the
resulting maxPPS (with LFP q∗τ ), use our algorithm to compute in P-time an approximate value
vector vτ ≤ q∗τ , such that ‖vτ − q∗τ‖∞ ≤ ε/2. Finally, check whether ‖vσ − vτ‖∞ ≤ ε/2. If not, then
reject this “guess”. If so, then output σ and τ as ε-optimal policies for max and min, respectively,
and output v := vσ as an ε-approximation of the LFP, q∗.

We show the correctness of the algorithm. First, we need to show that an output is produced for
at least one guess. Indeed, consider the guess where σ, τ are optimal strategies for the two players.
Then q∗σ = q∗ = q∗τ , and both vσ, vτ are ≤ q∗ and within ε/2 of q∗. Hence ‖vσ − vτ‖∞ ≤ ε/2 and
the algorithm will output σ, τ and vσ.

Second, we need to show that for every guess of the algorithm that results in an output, the
output is correct, i.e. σ, τ are ε-optimal policies and the value vσ that is output is within ε of q∗.
First, note that q∗σ ≤ q∗ ≤ q∗τ . Since vσ ≤ q∗σ ≤ q∗, we have

‖q∗ − q∗σ‖∞ ≤ ‖q∗ − vσ‖∞ ≤ ‖q∗τ − vσ‖∞
≤ ‖q∗τ − vτ‖∞ + ‖v∗τ − vσ‖∞
≤ ε

2
+
ε

2
= ε

Hence σ is an ε-optimal policy for the max player and vσ is within ε of q∗. Since vσ ≤ q∗ ≤ q∗τ
and ‖q∗τ − vσ‖∞ ≤ ε, it follows also that ‖q∗τ − q∗‖∞ ≤ ε, i.e. τ is an ε-optimal policy for the min
player.

It is worth noting that the problem of approximating the value of a BSSG game, to within a
desired ε > 0, when ε is given as part of the input, is already at least as hard as computing the
exact value of Condon’s finite-state simple stochastic games (SSGs) [6], and thus one can not hope
for a P-time upper bound without a breakthrough. In fact, it was shown in [19] that even the
qualitative problem of deciding whether the value q∗i = 1 for a given BSSG (or max-minPPS), which
was shown there to be in NP∩coNP, is already at least as hard as Condon’s quantitative decision
problem for finite-state simple stochastic games. (Whereas for finite-state SSGs the qualitative
problem of deciding whether the value is 1 is in P-time.)

6 Conclusions

We have provided the first polynomial time algorithms for computing optimal (maximum and min-
imum) extinction probabilities of Branching MDPs, to arbitrary desired accuracy ε > 0, as well as
for computing ε-optimal policies for extinction. We have done so by providing a P-time algorithm
for computing the least fixed point (LFP) solution for systems of probabilistic max/min polynomial
Bellman equations (max/minPPSs) to within desired accuracy ε > 0. Our algorithms are based on
a novel generalization of Newton’s method, applied to max/minPPSs.

Extinction probabilities are important quantities for the analysis of multi-type branching pro-
cesses, and they play a key role in various other analyses of such stochastic processes (see, e.g., [22]).
It may thus be expected that efficient algorithms for other analyses of BMDPs may be facilitated by
the algorithms we have developed in this paper. Indeed, in a more recent work ([15]) which builds

31



directly on this paper5, we have shown that computing optimal reachability probabilities for BMDPs
can be computed in P-time, to desired precision. (By reachability probability in a BMDP we mean
the (optimal) probability that, starting from a given population, the population will eventually
contain an object of a designated type.) We have done so by showing that optimal non-reachability
probabilities constitute the Greatest Fixed Point (GFP) of (different) max/minPPSs that we can
associate with a BMDP, and by showing that a modification of the generalized Newton’s method
(GNM) developed in this paper can be used to compute the GFP of max/minPPSs, to desired
precision, in P-time. It would be interesting to find other classes of infinite-state MDPs, and other
systems of max/min polynomial equations (perhaps even some non-monotone ones), where variants
of GNM are applicable and yield efficient algorithms.

Finally, our focus in this paper has been on establishing provably polynomial time algorithms
for optimal extinction probabilities for BMDPs. Our algorithms are relatively simple to implement,
and it will be interesting to empirically evaluate their practical performance. For many MDP
models, value iteration and policy iteration provide practically efficient iterative methods, although
their worst-case behavior is (in some cases) known to be poor or is not adequately understood. It is
indeed possible, and natural, to consider both value iteration and (suitable approximate versions of)
policy iteration for BMDPs by exploiting their max/minPPS Bellman equations. It can be shown
that both methods converge to the optimal extinction probabilities for BMDPs. Theoretically,
these methods inherit worst-case lower bounds from finite-state MDPs with reachability objectives,
as well as worst-case lower bounds which arise already for value iteration for multi-type branching
processes [18], as explained in the Introduction. More detailed (theoretical and practical) analysis
of the behavior of value and policy iteration methods for BMDPs, and comparison of their practical
performance with our P-time algorithms, could be interesting.
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Appendix

A Improved algorithms for qualitative analysis of max/minPPSs

In [19] polynomial time algorithms were provided for all qualitative decision problems associated
with the LFP q∗ of a max/minPPS (equivalently, the optimal termination probabilities of a BMDP
or an 1-RMDP). Specifically, it was shown that given a maxPPS or a minPPS, x = P (x), we can
decide for all variables xi whether q∗i = 1 (and whether q∗i = 0) in P-time. The algorithm for
determining whether q∗i = 0 is easy and runs in linear time, by reducing the problem to AND-OR
graph reachability on the dependency graph of variables in x = P (x) (we outline it below).

However, deciding q∗i = 1 is substantially more involved. Unlike the case of checking q∗i = 0,
deciding q∗i = 1 depends on the actual coefficients in x = P (x), not just on the “structure” of
x = P (x). (By “structure” of x = P (x) we mean simply the sets of monomials with non-zero
coefficients on the right hand side of each equation xi = Pi(x) in x = P (x).)

The algorithms given in [19] for deciding q∗i = 1 are iterative; there are at most n iterations,
where n is the number of variables of the max/minPPS x = P (x), and each iteration involves solving
a certain linear programming problem. The number of variables of the linear program in the case
of minPPSs is O(n) (and its encoding size is linear in that of the given minPPS), but for maxPPSs
the LP has O(n3) variables. (The cubic growth is caused by certain multi-commodity flow variables
fi,j,k that were used in those linear programs.)

The upper bounds we establish in this paper for GNM applied to max/minPPSs require pre-
processing the max/minPPS to eliminate those variables xi where q∗i = 1 (and where q∗i = 0),
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before applying GNM. Thus, especially in the case of maxPPSs, the large number of variables in
the LPs used by the P-time algorithm in [19] for deciding q∗i = 1 make the preprocessing step a
bottleneck for practical implementation of these algorithms, including the algorithm we give in this
paper for approximating the LFP q∗ for max/minPPSs. (Indeed, an attempted implementation of
these algorithms ([26]) made clear that checking q∗i = 1 using the algorithms of [19] is a bottleneck.)

In this section, we give significantly improved, more practical, algorithms for deciding q∗i = 1
for max/minPPSs. In particular, for minPPSs we show how to identify all the variables that have
value q∗i = 1 in the time required to solve one LP with O(n) variables and constraints (and linear
encoding size in the size of the minPPS). For maxPPSs our algorithm involves the solution of at
most n LPs, but all the LPs have O(n) variables and constraints (and again linear encoding size).
We show furthermore how to compute with the same complexity an optimal pure policy for all
variables that have value 1.

Before proceeding, let us first recall from [19] that for any max-minPPS, x = P (x), we can easily
(in linear time) determine the set Z0 of variables xi for which q∗i = 0 in the LFP q∗ of x = P (x),
using AND-OR graph reachability. In the AND-OR graph reachability problem we are given a
directed graph G, and a partition of its set of nodes into three subsets: a subset of type AND nodes,
a subset of type OR nodes, and a subset T of target nodes. The problem is to compute the (unique)
minimal set S of nodes that satisfies the following properties: (i) T ⊆ S, (ii) a type AND node v
is in S iff all its (immediate) successors are in S, (iii) a type OR node v is in S iff at least one of
its (immediate) successors is in S. There is a unique minimal such set S (i.e. every other set S′

that satisfies these properties, satisfies S ⊆ S′). This is the set of nodes that can and-or reach the
set T . (The standard graph reachability problem corresponds to the case where there are no AND
nodes.) This set S can be computed by a simple iterative algorithm, which initializes S to the set T ,
and then repeatedly adds any other node v to S if either v is of type AND and all its (immediate)
successors are in S, or v is of type OR and some (immediate) successor of v is in S, until no more
nodes can be added to S. The algorithm can be implemented to run in linear time in the size of
the graph G (its number of nodes and edges).

Suppose a given max-minPPS, x = P (x) in SNF has variables {x1, . . . , xn}. Let G be the
dependency graph of the system x = P (x). In other words, G = (V,→) has nodes V = {x1, . . . , xn},
and it has an edge xi → xj if and only if xj appears in Pi(x). Call a type-L variable xi leaky if
Pi(0) = ai,0 > 0 and let L>0 denote the set of leaky variables. To determine the set Z0, we view
G as an AND-OR graph. The set T of target nodes is L>0. View node xi of G as an AND node
if xi is either of type Q, or of type M-min (i.e., Pi(x) = min(xj , xj)). View node xi /∈ L>0 of G as
an OR node if xi is either of type L or of type M-max (i.e., Pi(x) = max(xj , xk)). It is then easily
seen that the set L>0 is AND-OR reachable from xi in this and-or graph if and only if q∗i > 0 for
this max-minPPS. That is, the set Z0 of variables with value 0 in the LFP q∗ is the remaining set
of nodes that cannot and-or reach L>0 in G.

If the given max-minPPS x = P (x) is in general form (i.e., each Pi(x) = maxj{pij(x)} or
Pi(x) = minj{pij(x)} for some probabilistic polynomials pij ), we could transform it to SNF form
and apply the above algorithm. Alternatively (and simpler), we can construct the following graph
Gr, which we call the refined graph of the given (general form) max-minPPS. The graph Gr has
one type-M (max or min) node for each variable xi of the given system, a type-L node for each
polynomial pij , and a type-Q node for each monomial. The graph contains edges from each type-
M node xi to all the type-L nodes pij in Pi(x), edges from each type-L node pij to the type-Q
nodes corresponding to the monomials of pij , and edges from each type-Q node to the nodes for
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the variables of the monomial. A type-L node corresponding to pij(x) = aij,0 +
∑

r∈R(i,j) aij,rx
αr

is leaky if the constant term aij,0 > 0. The set Z0 of variables with value 0 in the LFP q∗ is the
set of nodes that cannot and-or reach the set L>0 of leaky nodes in Gr, where the type Q and type
M-max nodes are AND nodes and the type L and type M-min nodes are OR nodes.

A.1 Qualitative classification for minPPSs

We assume without loss of generality that the given minPPS is in simple normal form. At the end
of the subsection, we will discuss the case of minPPSs in general form and how the complexity is
affected. We first determine the set Z0 of variables that have value 0 in the LFP and eliminate them
from the system. As discussed already, this can be done easily in linear time. So assume henceforth
that the LFP q∗ of the remaining system x = P (x) satisfies q∗ > 0. Let G be the dependency graph
of the system x = P (x).

We wish to partition the set of (remaining) variables into the sets Z1 = {xi | q∗i = 1} and
Zb = {xi | 0 < q∗i < 1}. We observe first that all the variables in the same strongly connected
component (SCC) of G belong to the same set of the partition. To prove this, we need the following
simple lemma.

Lemma A.1. For a minPPS x = P (x), if the vector y ≤ 1 has yj < 1 and xj appears in Pi(x),
then Pi(y) < 1.

Proof. It is straightforward to verify the conclusion for all three types for variable xi. For example,
for a variable xi of type M, Pi(x) has the form Pi(x) = min(xj , xk) for some xk, and we have
Pi(y) = min(yj , yk) ≤ yj < 1. The cases of type L and Q are similar.

A consequence of the lemma is that if any variable xj that appears in Pi(x) has q∗j < 1, then also
q∗i = Pi(q

∗) < 1. In other words, if the dependency graph G contains an edge xi → xj and q∗j < 1
then also q∗i < 1. By a simple induction it follows that the same property holds if the dependency
graph has a path from xi to xj .

Corollary A.2. 1. For a minPPS x = P (x), if a variable xi can reach in the dependency graph a
variable xj with q∗j < 1, then q∗i < 1.
2. In every strongly connected component of the dependency graph, either all variables have value
< 1 in the LFP or all variables have value = 1.

To classify the variables in the remaining system (after removing the variables of Z0), we decom-
pose the dependency graph into strongly connected components, and process the SCC’s bottom-up,
one at a time. Consider an SCC C and the set of equations {xi = Pi(x)} for the variables xi ∈ C.

First, suppose that a variable xi of type L has Pi(x) = ai,0 +
∑n

j=1 ai,jxj where the sum of
the coefficients

∑n
j=0 ai,j < 1; we call such a variable deficient. Clearly then Pi(x) < 1 for any

x ∈ [0, 1]n, hence q∗i = Pi(q
∗) < 1. Thus, if C contains a deficient variable, then all the variables of

C have value < 1 and can be assigned to Zb.
Second, suppose that for some xi ∈ C, the function Pi(x) contains a variable xj from a lower

SCC that is in Zb, i.e., q∗j < 1. Then q∗i < 1 by Corollary A.2, and hence all the variables of C have
value < 1 and can be assigned to Zb.

Thus, we may assume that C does not contain any deficient variable and that all variables from
lower SCCs that appear in Pi(x) for xi ∈ C have value 1 in the LFP (belong to Z1). Substitute
1 in their place in the functions Pi(x). Since C does not contain any deficient variables, we have

36



Pi(1) = 1 for all xi ∈ C. Also q∗i > 0 for all xi ∈ C since we have eliminated the variables with
value 0 in the LFP.

Thus, it remains to show how to classify a single (bottom) SCC C, whose equations x = P (x)
have LFP q∗ > 0 and which satisfy P (1) = 1.

In the algorithm and the analysis, it will be convenient to use another function Q : Rn → Rn
derived from P . We will use this function also in the next section for the case of maxPPSs, so we
define it in general for all max-minPPSs (not necessarily strongly connected).

Definition A.3. For a max-minPPS x = P (x), define the function Q : Rn → Rn as follows. For
each variable xi, we define Qi(x) according to the type of xi:

• Type L: If Pi(x) = ai,0 +
∑n

j=1 ai,jxj then Qi(x) =
∑n

j=1 ai,jxj.

• Type Q: If Pi(x) = xjxk, then Qi(x) = xj + xk.

• Type Min: If Pi(x) = min(xj , xk) then Qi(x) = max(xj , xk).

• Type Max: If Pi(x) = max(xj , xk) then Qi(x) = min(xj , xk).

Example A.1 Consider the minPPS of Example 3.1:

P (x) = (0.2x2 + 0.3x3 + 0.5, 0.4x1 + 0.1x3 + 0.5x4, min(x2, x5), x1x3, x
2
1).

Then,
Q(x) = (0.2x2 + 0.3x3, 0.4x1 + 0.1x3 + 0.5x4, max(x2, x5), x1 + x3, 2x1).

�
Note that the function Q(x) is homogeneous: for any scalar α > 0 and any x ≥ 0, we have

Q(αx) = αQ(x). For a minPPS, Q(x) is a mixture of max expressions and linear expressions with
no constant term and non-negative coefficients. Similarly, for a maxPPS, Q(x) is a mixture of min
expressions and linear expressions with no constant term. If x = P (x) is a PPS, then we have
Q(x) = P ′(1)x, where P ′(1) is the moment matrix of P .

We will use the following simple lemma several times.

Lemma A.4. For a minPPS x = P (x), if the vector v ≥ 0 has vj > 0 and xj appears in Pi(x)
then Qi(v) > 0.

Proof. If xi is of type Min, i.e., Pi(x) = min(xj , xk) for some xk, then Qi(v) = max(vj , vk) ≥ vj > 0.
The cases of type-L and type-Q variables xi are also immediate from the definition of Q.

To classify an SCC with LFP > 0 and no deficient variables, we use the following algorithm:
Algorithm Qual-SCC
Input: A strongly-connected minPPS x = P (x) with q∗ > 0 and P (1) = 1.
Output: Decision whether q∗ = 1 or q∗ < 1.
Find an optimal solution to the linear program: maximize

∑
i vi subject to Q(v) ≤ v and 0 ≤ v ≤ 1

for v ∈ Rn.
If the optimal solution v is v > 0 then output ‘q∗ = 1’.
If the optimal solution v = 0, then output ‘q∗ < 1’.

For example, if we apply the algorithm to the minPPS of Example A.1 (it is strongly connected),
we see that the optimal solution of the LP is 0, hence q∗ < 1.
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First we note that the above optimization problem is indeed a linear program: for a type L
or type Q variable xi, the function Qi(v) is linear, and for a type Min variable, the constraint
Qi(v) = max(vj , vk) ≤ vi is equivalent to the linear constraints vj ≤ vi and vk ≤ vi.

Second, we note that the LP is feasible: The point 0 is a feasible solution since P (0) = 0. The
objective function is bounded from above by n, hence the LP has an optimal solution.

Next we show that for every feasible solution v, either v > 0 or v = 0. To see this, suppose that
v 6= 0, and let vj be any coordinate with vj > 0. If xj appears in Pi(x), then, from Lemma A.4 we
have vi ≥ Qi(v) > 0, i.e. if xi has an edge to xj in the dependency graph then also vi > 0. Hence,
by induction, the same is true for any variable xi that can reach xj . Since the system is strongly
connected, this means that all vi > 0, i.e. v > 0. In particular any optimal solution v to the LP
satisfies either v > 0 or v = 0, so the algorithm always gives an output.

It remains to show that the algorithm’s output is correct. The following lemma gives the key
properties of Q. It shows that the operator Q plays for minPPSs (and branching Min MDPs) a role
analogous to that played by the moment matrix P ′(1) for PPSs (and branching processes). Note
that if x = P (x) is a strongly-connected PPS, then the lemma reduces to the well-known spectral
radius test on P ′(1).

Lemma A.5. For a strongly connected minPPS x = P (x) with q∗ > 0 and P (1) = 1, the function
Q(v) satisfies:

(i) There exists λ > 0 and v > 0 with Q(v) = λv

(ii) q∗ = 1 if and only if there is a non-zero v ≥ 0 with Q(v) ≤ v.

(iii) q∗ < 1 if and only if there is a v ≥ 0 with Q(v) > v.

Proof. Part (i). Firstly, we show that if v ≥ 0 but v 6= 0, then Q(v) ≥ 0 but Q(v) 6= 0. From the
definition of Q, clearly v ≥ 0 implies Q(v) ≥ 0. Furthermore, if vj > 0, by strong connectivity,
there is an xi such that xj appears in Pi(x), so Qi(v) > 0 by Lemma A.4.

Consider the function F (v) = Q(v)
‖Q(v)‖1 on the points of the unit simplex ∆ = {v|v ≥ 0, ‖v‖1 = 1}.

For all points v ∈ ∆, we have that v ≥ 0 and v 6= 0, therefore Q(v) ≥ 0 and Q(v) 6= 0; hence
‖Q(v)‖1 > 0 and the function F is well-defined. Furthermore, F is clearly a continuous function
and ‖F (v)‖1 = 1, thus F maps ∆ to itself. So by Brouwer’s fixed point theorem, there is a v ∈ ∆

with v = Q(v)
‖Q(v)‖1 . The fixed point v satisfies Q(v) = λv for λ = ‖Q(v)‖1 > 0. Clearly v ≥ 0 and

v 6= 0. If vj > 0 and xj appears in Pi(x) then, by Lemma A.4, Qi(v) > 0, hence vi = Qi(v)
‖Q(v)‖1 > 0.

Since the system is strongly connected, it follows by transitivity that all coordinates of v are positive,
i.e. v > 0. This establishes part (i).

We will next show the (if) directions of parts (ii) and (iii), and then we will use them to deduce
the (only if) directions.

Part (ii), if direction. Suppose that there is a non-zero v ≥ 0 with Q(v) ≤ v. We assume
without loss of generality (by scaling) that v ≤ 1. Let vj be a positive coordinate of v. If xj appears
in Pi(x), then by Lemma A.4, Qi(v) > 0, hence also vi ≥ Qi(v) > 0. Since the system is strongly
connected, it follows again by transitivity that v > 0.

Consider any policy σ. Let x = Pσ(x) be the induced PPS, and Qσ the corresponding function.
For every variable xi of type L or Q, we have (Qσ)i(v) = Qi(v), and for every variable xi of type M
with function Pi(x) = min(xj , xk), we have Qi(v) = max(vj , vk) ≥ vσ(i) = (Qσ)i(v). Consequently,
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Q(v) ≥ Qσ(v) = P ′σ(1)v. Since Q(v) ≤ v, we have that P ′σ(1)v ≤ v. Since v > 0, by Perron-
Frobenius theory (see Theorem 2.1.11 of [3]), it follows that ρ(P ′σ(1)) ≤ 1.

The assumption that q∗ > 0 implies in particular that the LFP of the PPS x = Pσ(x) for the
policy σ also satisfies q∗σ > 0. We know that if the LFP of a PPS is > 0, then a variable xi has value
1 in the LFP iff the moment matrix of the subsystem induced by the variables reachable from xi
has spectral radius ≤ 1 [18]. This is true for all the variables of the system x = Pσ(x), since q∗σ > 0
and the spectral radius of the whole moment matrix ρ(P ′σ(1)) ≤ 1. Therefore, q∗σ = 1. Thus we
have shown that q∗σ = 1 for any policy σ. This holds in particular for an optimal policy σ, hence
q∗ = q∗σ = 1.

Part (iii), if direction. Suppose that there is a v ≥ 0 with Q(v) > v. Note that then v has
to be nonzero because Q(0) = 0. Let σ be a policy with Qσ(v) = Q(v); that is, for each type-M
variable xi with corresponding function Pi(x) = min(xj , xk), thus Qi(v) = max(vj , vk), the policy
σ sets σ(i) = j if vj ≥ vk, and σ(i) = k otherwise. Then, Q(v) = Qσ(v) = P ′σ(1)v. Since Q(v) > v,
it follows that P ′σ(1)v > v. Noting again that v ≥ 0 and v 6= 0, by Perron-Frobenius theory (see
again Theorem 2.1.11 of [3]), this implies that ρ(P ′σ(1)) > 1. There is thus a principal irreducible
submatrix (P ′σ(1))S of P ′σ(1) with ρ((P ′σ(1))S) = ρ(P ′σ(1)) > 1. Then S is an SCC of x = Pσ(x)
which has (q∗σ)S < 1. Thus q∗S ≤ (q∗σ)S < 1. Since x = P (x) is a strongly connected minPPS, we
have that q∗ < 1.

Part (ii), only if direction. Suppose that q∗ = 1. By part (i) we know that there exists a λ > 0
and a v > 0 such that Q(v) = λv. If λ > 1, then Q(v) > v, which by the (if) direction of part (iii)
implies that q∗ < 1, a contradiction. Therefore, λ ≤ 1. Hence, v satisfies Q(v) ≤ v.

Part (iii), only if direction. The argument is similar. Suppose that q∗ < 1. By part (i) we know
that there exists a λ > 0 and a v > 0 such that Q(v) = λv. If λ ≤ 1, then Q(v) ≤ v, which by the
(if) direction of part (ii) implies that q∗ = 1, a contradiction. Therefore, λ > 1. Hence, v satisfies
Q(v) > v.

We can show now the correctness of Algorithm Qual-SCC.

Lemma A.6. Algorithm Qual-SCC classifies correctly a strongly connected minPPS x = P (x) that
has LFP q∗ > 0 and satisfies P (1) = 1.

Proof. We argued already that the algorithm always produces an output, either ‘q∗ = 1’ or ‘q∗ < 1’.
It remains to show that it produces the correct output, i.e., it outputs ‘q∗ = 1’ if and only if indeed
the LFP q∗ = 1.

(only if). Suppose that the algorithm outputs ‘q∗ = 1’, i.e. finds an optimal solution v > 0.
Since Q(v) ≤ v, Lemma A.5 (ii) implies q∗ = 1.

(if). Suppose that q∗ = 1. Then by part (ii) of Lemma A.5, there is a non-zero v ≥ 0 with
Q(v) ≤ v. Since for a scalar α > 0 and any v ≥ 0, we have Q(αv) = αQ(v), we may assume wlog
that ‖v‖∞ = 1. Then v ≤ 1. Since also Q(v) ≤ v, the point v is a feasible solution of the LP. Since
v 6= 0, the value of the objective function for v is greater than 0 and hence 0 is not an optimal
solution to the LP. Since any feasible solution to the LP satisfies either v = 0 or v > 0, any optimal
solution has v > 0. So the algorithm outputs ‘q∗ = 1’.

Summarizing, the algorithm for a general minPPS is as follows.
Algorithm Qual-minPPS
1. Compute the set Z0 of variables that have value 0 in the LFP, and remove them from the system.
2. Partition the dependency graph of the remaining system into strongly connected components
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and process the SCCs bottom-up in topological order.
3. For each SCC C, do the following:
3a. If some variable of C is deficient or depends on a variable that has been assigned already to Zb
then add all the variables of C to Zb
3b. Else, apply algorithm Qual-SCC to the subsystem for the variables of C, substituting 1 for all
variables from lower SCCs that appear on the right-hand side. If the LFP is 1, then add all the
variables of C to Z1, else add them to Zb.

Let n be the number of variables of the given minPPS x = P (x), let m be the total number
of monomial terms in P (x), and let L be the total number of bits needed to write down the given
system. Let TLP (n,m,L) be the time needed to solve a Linear Program with n variables, m
constraints and total bit-size L. For example, the Ellipsoid algorithm runs in O(n4L) time, and
Karmakar’s algorithm runs in O(n3.5L) time. Note that it is in general better to solve several small
individual LPs rather than one large LP that combines the sizes of all the small LPs. Formally,
we assume that TLP is superadditive, i.e. TLP (n1,m1, L1) + TLP (n2,m2, L2) ≤ TLP (n1 + n2,m1 +
m2, L1 + L2); this is certainly the case with all the existing algorithms (they run in superlinear
time).

Theorem A.7. Algorithm Qual-minPPS classifies correctly all the variables of a minPPS (in SNF)
and runs in polynomial time, specifically in time at most TLP (O(n), O(n), O(L)), where n is the
number of variables and L the bit-size of the minPPS.

Proof. Correctness follows from our previous analysis. As for the running time, steps 1, 2 take time
O(n+m). Step 3a over all SCCs also takes time O(n+m). For some SCCs C, the algorithm may
execute step 3b and solve an LP with O(nC) variables and constraints and total bit-size O(LC),
where nC is the number of variables in C, and LC is the bit-size of the subsystem for C. Since∑

C nC ≤ n and
∑

C LC ≤ L, by superadditivity of TLP , the total time spent in step 3b over all
SCCs is TLP (O(n), O(n), O(L)). This dominates clearly the O(n+m) time of the other steps (since
L ≥ n+m). Thus, the total time is TLP (O(n), O(n), O(L)).

It is worth mentioning that the dual of the LPs we have used in the Qual-minPPS algorithm are
closely related (but not identical) to the linear system of inequalities that were used in the algorithm
of [19] for deciding q∗i = 1 for min-PPSs. Furthermore, the dual LP can be used in order to compute
a (deterministic) policy σ for the minimizing player which forces (q∗σ)i < 1 whenever q∗i < 1.

An alternative approach for computing such a policy σ is to use repeated calls to the Qual-
minPPS algorithm, as follows. First, call Qual-minPPS on the entire minPPS, x = P (x). Let Zb
be the output of the algorithms. Pick some xi ∈ Zb which has type-M (if none exists, then the
algorithm is finished). Suppose Pi(x) ≡ min(xj , xk). Tentatively fix the “action” at xi to be → xj ,
by setting Pi(x) := xj . Re-run Qual-minPPS on this revised min-PPS, computing a new set Zb. If
xi remains in Zb, then fix the action choice xj permanently, i.e., leave Pi(x) := xj . Otherwise, fix
action → xk instead, i.e., let Pi(x) := xj . Do this repeatedly, until there are no remaining type-M
variables in Zb. The algorithm terminates after at most n calls to Qual-minPPS. It can be shown
that the action choices produced by this algorithm define a deterministic policy σ (in which we can
let the action choice at type-M nodes in Z1 be arbitrary) such that (q∗σ)i < 1 if and only if q∗i < 1,
for all variables xi.

General form minPPSs.
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If the given minPPS x = P (x) is in general form, we could transform it to SNF and apply the
above algorithm. The transformation changes the encoding size of the system linearly, however it
can increase substantially the number of variables. For this reason, it is better to deal directly
with the given system. The algorithm is essentially the same as the one for the SNF case. The
only difference is that we have to define the operator Q for general systems, and define the term
‘deficient’ in this context.

Given a max-minPPS x = P (x) in general form, we define the operator Q as follows: If Pi(x) =
min{pij(x)|j ∈ {1, . . . ,mi}}, where pij(x) = aij,0+

∑
r∈R(i,j) aij,rx

αij,r , thenQi(v) = max{p̂ij(v)|j ∈
{1, . . . ,mi}} where p̂ij(v) =

∑
r∈R(i,j) aij,rαij,r · v. If Pi(x) = max{pij(x)|j ∈ {1, . . . ,mi}}, then

Qi(v) = min{p̂ij(v)|j ∈ {1, . . . ,mi}}. Note that the polynomials p̂ij(v) are homogeneous (the
constant term is 0). For example, if pij(x) = 0.2 + 0.3x21x

3
2 + 0.5x31x2x

4
3, then p̂ij(v) = 2.1v1 +

1.4v2 + 2v3. If x = P (x) is a PPS (in general form) then Q(v) = P ′(1) · v, where P ′(1) is the
moment matrix of P .

Call a polynomial pij(x) deficient if the sum of its coefficients is < 1; a variable xi of type Min
is deficient if some polynomial in Pi(x) is deficient. (For variables of type Max, xi is deficient if all
the polynomials in Pi(x) are deficient.)

Given these definitions, we apply the same Algorithm Qual-minPPS to a general form minPPS
to classify its variables into Z0, Zb and Z1. The proof of correctness is exactly the same as in the
SNF case. Steps 1, 2, and 3a take time O(L) where L = |P | is the encoding size of the given system.
In Step 3b, we solve LPs of the form maximize

∑
i vi subject to Q(v) ≤ v and 0 ≤ v ≤ 1 for some

SCCs C of the dependency graph. The LP for an SCC C has one variable for every variable xi of
C, and has constraints p̂ij(v) ≤ vi for each j = 1, . . . ,mi. Thus, the number of variables of the LP
for C is nC = |C|, the number of constraints is mC =

∑
xi∈C mi, and its size is O(LC), linear in

the encoding size of the subsystem for C. By the superadditivity of the time TLP needed to solve
LP’s we have:

Theorem A.8. We can classify qualitatively the variables of a minPPS x = P (x) (in general form)
in time TLP (O(n), O(m), O(L)), where n is the number of variables, m is the number of polynomials
and L is the encoding size of the minPPS.

A.2 Qualitative classification for maxPPSs

We are given a maxPPS x = P (x), without loss of generality, in simple normal form. (We will
discuss again at the end of the subsection the case of maxPPS in general form.) Let q∗ be its LFP.
We want to partition the variables into the sets Z0 = {xi | q∗i = 0}, Zb = {xi | 0 < q∗i < 1}, and
Z1 = {xi | q∗i = 1}. Let L<1 be the set of deficient variables, i.e., the set of type-L variables xi
whose function Pi(x) = ai,0 +

∑n
j=1 ai,jxj has Pi(1) =

∑n
j=0 ai,j < 1. Recall, a type-L variable xi

is called leaky if Pi(0) = ai,0 > 0 and we let L>0 be the set of all leaky variables. Let G be the
dependency graph of the system x = P (x).

The algorithm has two phases. In the first phase we identify and remove the set Z0 and a
subset of Zb. The remaining system on the rest of the variables is not quantitatively equivalent
to the original system, i.e. it does not have the same LFP on the remaining variables, but it is
qualitatively equivalent, i.e. it has the same partition into Zb and Z1. The reduced system does
not contain any deficient variables and has LFP > 0. Phase 2, which is the heart of the algorithm,
processes the remaining system and partitions its variables into Zb and Z1.

Phase 1 Algorithm
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Input: A maxPPS x = P (x)
Output: Assignment of a subset of variables to Z0 and Zb and a reduced maxPPS on the remaining
variables

1. Compute the set Z0 of variables that have value 0 in the LFP and remove them from the
system.

2. Compute the set of variables that are deficient or that can reach the set L<1 of deficient
variables by and-or reachability on G, where type L and type Q variables are "or" nodes and
type M variables are "and" nodes. Add the variables thus found to Zb and remove them from
the system (both from the left- and right-hand sides).

3. Compute the set of variables that can reach in G the set L>0 of leaky variables by and-or
reachability where type L and type M variables are "or" nodes and type Q variables are "and"
nodes. Add all other variables (i.e., those that cannot reach L>0) to Zb and remove them from
the system (from both sides).

4. If there was a change in step 3, go back to step 2, else terminate this phase.

In step 1 we identify and remove the set Z0 of variables that have value 0 in the LFP. The
remaining variables belong to Zb or Z1. If a variable xi is deficient, then clearly q∗i = Pi(q

∗) ≤
Pi(1) < 1 and therefore xi belongs to Zb. In the case of maxPPS, Corollary A.2 does not hold for
ordinary graph reachability, but the analogous property holds for and-or reachability as in step 2.

Lemma A.9. 1. If xi is a type L or type Q variable and Pi(x) contains a variable xj with q∗j < 1
then q∗i < 1. The same is true if xi is of type M and all variables xj in Pi(x) have q∗j < 1.
2. If S ⊆ Zb ∪ Z0 and xi can reach S via and-or reachability where type L and type Q variables are
"or" nodes and type M variables are "and" nodes, then also xi ∈ Zb ∪ Z0.

Proof. It is straightforward to verify part 1. Part 2 follows by induction.

Thus, step 2 of the Phase 1 algorithm correctly assigns the variables computed in the and-or
reachability to Zb. When we remove these variables from the right-hand sides of the equations for
the remaining variables, we get a new system which in general does not have the same fixed point.
Note that if a variable xj is removed in step 2 and xj appeared in Pi(x), if xi is of type L or Q,
then also xi is removed, but if xi is of type M with corresponding function Pi(x) = max(xj , xk) and
xk is not removed, then xi is not removed either and its function is changed to Pi(x) = xk. This in
effect forces the policy to select xk for the variable xi which may not be the optimal choice, and as
a consequence, the LFP of the reduced system may give a lower value to some variables than the
LFP of the original system. However, the variables that had value 1 will keep their value:

Lemma A.10. Let x = P (x) be a maxPPS and S ⊆ Zb ∪Z0. If we remove the variables in S from
the system setting them to 0, the reduced system has the same set of variables with value 1 in the
LFP as the original system.

Proof. Let σ be an optimal policy for the original system. Then the LFP q∗σ of the system x = Pσ(x)
satisfies q∗σ = q∗. Consider the dependency graph Gσ of x = Pσ(x). By Corollary A.2, the variables
of Z1 can reach in Gσ only variables of Z1. Hence, σ, restricted to Z1, is a valid policy in the
reduced system for the variables of Z1, which will assign value 1 to all these variables.
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After removing the variables computed in step 2, the LFP of the reduced system may give
value 0 to some variables. Consider for example a system with equations x1 = max(x2, x3), x2 =
max(x1, x3), x3 = 0.3 + 0.5x1. Variable x3 is deficient, thus Step 2 will remove it and reduce the
system to x1 = x2, x2 = x1, whose LFP gives value 0 to both variables. Step 3 computes the set of
variables that have value 0 in the LFP of the new system. It assigns them to Zb correctly because
we know that their value in the LFP of the original system is not 0 (otherwise they would have
been assigned in Step 1) and is not 1 (otherwise it would be also 1 in the current system by Lemma
A.10). Step 3 removes them from the system, which does not affect the set Z1 by Lemma A.10.
Their removal may create new deficient variables. For example, consider the above system along
with an additional equation x4 = 0.5x1 + 0.5. After removing x1, the variable x4 becomes deficient.
Thus, if some variables are removed in step 3, the algorithm returns to step 2 to test if there are
more deficient variables to remove them along with possibly more variables.

When the Phase 1 algorithm terminates, the reduced system has the properties given in the
following lemma. Let n be the number of variables, m the total number of terms in P (x) and L the
bit-size of the system.

Lemma A.11. 1. The Phase 1 algorithm runs in polynomial time, specifically in time O(n(n+m)).
2. Every variable xi assigned by it to Z0 has value q∗i = 0 in the LFP and every variable assigned
to Zb has value 0 < q∗i < 1.
3. The reduced system x = P̂ (x) at the end of the Phase 1 algorithm has LFP q̂∗ > 0 and satisfies
P̂ (1) = 1. Furthermore, Z1 = {xi|q∗i = 1} = {xi|q̂∗i = 1}.

Proof. 1. Step 1 takes linear time, O(n + m). Also every execution of Step 2 or 3 takes linear
time, and all of the executions, except for the last one, remove some variables, hence there are O(n)
executions. Thus, the total time is at most O(n(n+m)).

2. Step 1 computes all the variables of Z0, and as we argued earlier, all the variables identified
and removed in Steps 2 and 3 belong to Zb.

3. After Step 2, the current system has no deficient variables and thus satisfies P (1) = 1, and
after Step 3, the LFP of the current system is > 0. Thus, if in an iteration, Step 3 does not remove
any more variables and the algorithm terminates, then the system satisfies both properties. The set
of variables that have value 1 in the LFP does not change in any step by Lemma A.10, therefore
this set in the final system is the same as in the original system.

We proceed now to Phase 2. The algorithm in this phase repeatedly computes subsets of variables
that have value 1 in the LFP and reduces the system, substituting 1 for their value, until it cannot
find any more such variables, at which point the remaining variables are assigned to Zb, and the
algorithm terminates. Recall the function Q defined from the function P in Definition A.3.

Phase 2 Algorithm
Input: A maxPPS x = P (x) in SNF with P (1) = 1 and q∗ > 0.
Output: Partition of the variables into Z1 and Zb according as their value in the LFP q∗ is = 1 or
< 1.

Let X be the set of all variables.

1. Find an optimal solution of the LP: maximize
∑

i vi subject to Q(v) ≥ v and 0 ≤ v ≤ 1. Call
this optimal solution v.
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2. Add all variables xi with vi = 0 to Z1. Eliminate all variables added to Z1 from the maxPPS
by substituting 1.

3. Set Y = X \ Z1. Then eliminate from Y all variables xi that have Qi(v) > vi.

4. Eliminate from Y all variables xi that can reach inG the setX\(Z1∪Y ) via and-or reachability
with type M being "and" and types Q and L being "or".

5. Eliminate from Y all variables xi which are not leaky and cannot reach the set L>0 of leaky
variables via and-or reachability in the subgraph G[Y ] of G induced by Y , with type Q being
"and" and types L and M being "or", and where for each variable xi of type M we can only
use choices xj ∈ Y with vj = vi for this reachability.

6. If any variables were removed from Y in step 5, return to step 4

7. Add all variables that remain in Y to Z1. If any variables were added to Z1, eliminate all such
variables from the maxPPS by substituting 1.

8. If any variables were added to Z1 in steps 2 or 7, return to 1.

9. Add all remaining variables to Zb.

Note that the optimization problem in Step 1 is indeed a Linear Program: the function Q(v)
for a type L or a type Q variable is linear; for a type M variable xi, the constraint Qi(v) ≥ vi has
the form min(vj , vk) ≥ vi, which is equivalent to the conjunction of the constraints vj ≥ vi and
vk ≥ vi. Furthermore, the LP is feasible: the point 0 is a feasible solution since Q(0) = 0. Since
the objective function is bounded from above by n, there is an optimal solution.

Lemma A.12. The Phase 2 algorithm runs in polynomial time. Specifically, for a system with n
variables, m terms on the right-hand side and bit-size L, the time is bounded by O(n2(n + m) +
nTLP (O(n), O(n), O(L))).

Proof. The algorithm consists of the outer loop of steps 1-8 and the nested inner loop of steps 4-6.
Every execution of the outer loop, except for the last one, adds some more variables to Z1, hence
there are at most n+ 1 executions. In every execution of the outer loop, the inner loop starts with
an initial set Y and keeps removing variables from Y in every iteration, except for the last one,
hence there are at most n+1 iterations of the inner loop in every execution of the outer loop. Thus,
there is a total of at most (n + 1)2 executions of the inner loop and of each step throughout the
algorithm.

Step 1 involves solving an LP with O(n) variables and constraints and of bit-size linear in the
size L of the given maxPPS, and takes time TLP (O(n), O(n), O(L)). This step is executed at most
n+ 1 times. Each and-or reachability step takes time O(n+m), and is executed at most (n+ 1)2

times. Therefore, the algorithm runs in polynomial time, specifically in the time indicated in the
lemma.

The following two lemmas show now the correctness of the Phase 2 algorithm, i.e. that all
variables xi added to Z1 have indeed value q∗i = 1, and conversely, all variables with value q∗i = 1
are eventually added to Z1.

Lemma A.13. Every variable xi that is added by the Phase 2 algorithm to Z1 has value q∗i = 1 in
the LFP.

44



Proof. We use induction on the time of the addition to Z1. Suppose that all variables that have
been added so far to Z1 have indeed value 1 in the LFP. Then the current reduced system on the
remaining variables is (quantitatively) equivalent to the given input system of the Phase 2 algorithm.
To simplify notation, we will still use x = P (x) for the current system and q∗ for its LFP. Note
that substituting 1 for some variables in Z1 does not affect the properties q∗ > 0 and P (1) = 1. We
consider separately the variables added to Z1 in steps 2 and 7.

Variables added to Z1 in step 2.
We claim that 1 − q∗ is a feasible solution of the LP in step 1. For a variable xi of type L

we have, Qi(1 − q∗) =
∑n

j=1 ai,j(1 − q∗j ) =
∑n

j=1 ai,j −
∑n

j=1 ai,jq
∗
j = 1 − ai,0 −

∑n
j=1 ai,jq

∗
j =

1−Pi(q∗) = 1− q∗i , where we have used the property that P (1) = 1. For a variable xi of type M we
have Pi(x) = max(xj , xk) for some xj , xk, and Qi(1− q∗) = min(1− q∗j , 1− q∗k) = 1−max(q∗j , q

∗
k) =

1 − Pi(q
∗) = 1 − q∗i . For a variable xi of type Q, we have Pi(x) = xjxk for some xj , xk and

Qi(1 − q∗) = (1 − q∗j ) + (1 − q∗k) = 1 + (1 − q∗j )(1 − q∗k) − q∗j q
∗
k ≥ 1 − q∗j q

∗
k = 1 − q∗i . Hence,

Q(1− q∗) ≥ 1− q∗, and so 1− q∗ is a feasible solution to the LP.
Next we claim that the LP has a unique optimal solution v and v ≥ 1 − q∗. Note that Q(v)

is monotone, i.e. if 0 ≤ v1 ≤ v2 ≤ 1 then Q(v1) ≤ Q(v2). For any two feasible solutions of the
LP v1,v2, let v3 be the coordinate-wise maximum of v1,v2. Then Q(v3) ≥ Q(v1) ≥ v1. Similarly
Q(v3) ≥ v2 and so Q(v3) ≥ v3. It follows that the set of feasible solutions has a coordinate-wise
maximum that is the unique optimal solution v. Since 1− q∗ is feasible, we have that the optimal
solution v satisfies v ≥ 1− q∗. Thus if vi = 0 then q∗i = 1. So all variables xi added to Z1 in step 2
have q∗i = 1.

Variables added to Z1 in step 7.
Consider the final iteration of the inner loop of steps 4-6 before proceeding to step 7. After step

3, all variables xi in Y have Qi(v) = vi. After step 4, if a variable xi with type L or Q is in Y then
all variables in Pi(x) are also in Y , and if xi is of type M then at least one variable of Pi(x) is also in
Y . The same is true when we complete the final iteration of the inner loop and continue past step
6 because then the set Y has not been modified in steps 5 and 6.

After step 5, every variable in Y can reach L>0 via and-or reachability in G[Y ], with type Q
being "and" and types L and M being "or", and using for type-M variables xi only a successor
xj ∈ Pi(x) with vi = vj . Thus, for each variable xt ∈ Y there is a reachability ‘proof’ in the form of
a DAG (directed acyclic graph) D(xt) that is a subgraph of G[Y ], and which has xt as the (unique)
source node, all the sinks are leaky nodes, every type-Q node xi ∈ D(xt) has both its outgoing
edges present in the DAG, every internal type-L or type-M node xi ∈ D(xt) has one outgoing edge
xi → xj in D(t) and if xi is of type M then vi = vj . Measure the ‘height’ of the proof by the height
of the DAG. Fix a shortest (minimum height) such reachability ‘proof’ for each variable in Y , and
let σ be a policy for the type-M variables of Y that selects for each type-M variable xi its successor
xj in the shortest reachability proof for xi. Note that vi = vj , and the shortest reachability proof
for xj does not involve xi.

Consider the system x = Pσ(x) with 1 substituted for the variables already in Z1, and its
subsystem xY = (Pσ(x))Y consisting of the equations for the variables in Y . For every xi ∈ Y , all
variables of (Pσ(x))i are in Y ; note that the equation for a type-M variable xi ∈ Y has become
xi = xj in x = Pσ(x), where j = σ(i) and vi = vj . Thus the subsystem xY = (Pσ(x))Y is a PPS
on the set of variables xY , which we denote by xY = Pσ(xY ). From step 5 and our choice of σ,
all variables of Y can reach L>0 via and-or reachability on the dependency graph of xY = Pσ(xY ),
with variables of type Q being "and" and variables of type L being "or". It follows that (q∗σ)Y > 0.
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For all variables xi ∈ Y , we have (Qσ(v))i = vi, thus (Qσ(v))Y = vY . Let (P ′σ(1))Y be the
moment matrix of xY = Pσ(xY ). We have (P ′σ(1))Y vY = (Qσ(v))Y = vY . That is, the positive
vector vY is an eigenvector of the non-negative (but not necessarily irreducible) matrix (P ′σ(1))Y
with eigenvalue 1. It follows from standard facts of Perron-Frobenius theory (see Corollary 2.1.12
of [3]) that ρ((P ′σ(1))Y ) = 1. Since the LFP (q∗σ)Y > 0, it follows from [18]6 that (q∗σ)i = 1 for all
xi ∈ Y . Therefore, all variables xi added to Z1 in step 7 have q∗i = 1.

We show the converse now.

Lemma A.14. Every variable with value 1 in the LFP is eventually added to Z1 by the Phase 2
algorithm. Furthermore, every variable xj that is added to Zb has value in the LFP strictly between
0 and 1.

Proof. We need to show that if in some iteration of the outer loop there is still an xi /∈ Z1 with
q∗i = 1, then some variable is added to Z1 in either step 2 or step 7. If the optimal solution v to the
LP has vk = 0 for some k, then xk is added to Z1 in step 2. So assume henceforth that vk > 0 for
all k, and that q∗i = 1.

We consider the current maxPPS obtained by eliminating all those variables already in Z1 by
substituting 1. Let σ be an optimal policy. We have (q∗σ)i = 1 and all variables xj that xi depends
on in x = Pσ(x) also have (q∗σ)j = 1. Thus there is some bottom SCC S of x = Pσ(x) that has
(q∗σ)S = 1. Then we must have (by [18], Section 8.1, Lemma 8.4) that ρ((P ′σ(1))S) ≤ 1.

From the definition of Q, we have that Qσ(v) = P ′σ(1)v ≥ Q(v) (for any policy σ), and we
know that Q(v) ≥ v. Therefore, P ′σ(1)v ≥ v. Restricted to S, we still have (P ′σ(1))SvS ≥ vS . Since
(P ′σ(1))S is a non-negative and irreducible matrix and vS > 0, by standard facts of Perron-Frobenius
theory (again, see Theorem 2.1.11 of [3]), ρ((P ′σ(1))S) ≥ 1. Therefore, ρ((P ′σ(1))S) = 1.

We know that (P ′σ(1))SvS ≥ vS , where (P ′σ(1))S is irreducible and vS > 0. It follows by standard
facts of Perron-Frobenius theory that we must have (P ′σ(1))SvS = vS , because otherwise, if there
was strict inequality for any coordinate then it would imply ρ((P ′σ(1))S) > 1 (again, see the last
part of Theorem 2.1.11 of [3]). Since (Qσ(v))S = (P ′σ(1))SvS = vS , we still have S ⊆ Y after step 3.

All successors of the type-L and type-Q variables of S are also in S and the same is true of the
σ-successors of type M variables, since S is a bottom SCC of x = Pσ(x). Therefore, S ⊆ Y after
step 4.

Consider step 5. Since (q∗σ)S = 1 > 0, for any xi in S, either xi is itself a leaky variable or xi can
reach the set L>0 of leaky variables via and-or reachability in G[Y ] with type Q being "and" and
type L being "or", and with every xt of type M in S using the choice xj ∈ S where j = σ(t); note
that vt = (Qσ(v))t = vj . So we still have S ⊆ Y after step 5 as well. The inner loop of steps 4-6
may be executed several times, but the set S will always remain in Y through all the iterations, as
we have argued. Thus, once there are no more changes in step 5, the algorithm will exit the inner
loop with S ⊆ Y and all variables in S will be added to Z1 in step 7.

Thus, we have shown that if at the beginning of an execution of the outer loop, there is an
xi /∈ Z1 with q∗i = 1, then some variable is added to Z1 in either step 2 or step 7. Since we
only add variables to Z1 and we only have a finite number of variables, eventually the algorithm
will terminate. During the last execution of the outer loop, no more variables are added to Z1,
which implies that the set Z1 at this point contains all the variables xi with q∗i = 1. Therefore, all

6See, in [18], the algorithm in Figure 7, and the last paragraph of Section 8.1 which establishes its correctness.
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the remaining variables xj that are added at the end to Zb must have q∗j < 1, and q∗j > 0 since
q∗ > 0.

Combining Lemmas A.11, A.12, A.13, A.14, we have:

Theorem A.15. The algorithm consisting of phases 1 and 2 classifies correctly all the variables of a
maxPPS (in SNF) in polynomial time, specifically in time O(n2(n+m)+nTLP (O(n), O(n), O(L))).

We will show next that we can compute within the same time bounds a (partial) policy σ under
which all variables in Z1 get value 1 in the LFP. For the variables that are added to Z1 in step 7 of
the Phase 2 Algorithm, we know that they can reach the set L>0 of leaky variables in step 5. We
compute their σ-successors in O(n + m) time as we perform and-or reachability in step 5 to find
the set R of variables that can reach the set L>0 of leaky variables. The algorithm works in rounds.
Initially, we set R = L>0 ∩ Y . In each round we add to R all the variables xi of Y − R that are
either (i) of type L and have an edge to some variable xj ∈ R, or (ii) of type Q and both its edges
go to variables in R, or (iii) of type M and at least one edge goes to a variable xj ∈ R with vj = vi;
in the last case, set σ(i) = j (if both edges of xi go to such nodes in R then pick arbitrarily one of
them). It is shown in the proof of Lemma A.13 that this policy ensures that all variables xi ∈ Y
get value 1 in the LFP (provided that the variables assigned earlier to Z1 get value 1).

It remains to show how to pick a policy for the variables added to Z1 in step 2. Let DLP be
the dual LP to the LP of step 1. The variables of DLP are as follows. For each variable xi of the
maxPPS, there is a variable zi in the dual LP that is complementary to the constraint vi ≤ 1 of the
primal; for each variable xi of type L or type Q there is a dual variable yi that is complementary
to the constraint Qi(v) ≥ vi; for each xi of type M, where Pi(x) = max(xj , xk), there are two dual
variables yij , yik complementary to the constraints vj ≥ vi and vk ≥ vi.

Let VL, VQ, VM be respectively the sets of type-L, type-Q, and type-M variables. For a variable
xi, we let Γ−1(xi) be the set of variables that have an edge to xi in the dependency graph. The
dual LP is as follows.

minimize
∑

i zi subject to:

• For all xi ∈ VL ∪ VQ: zi + yi ≥ 1 +
∑
{atiyt|xt ∈ VL ∩ Γ−1(xi)}+

∑
{yt|xt ∈ VQ ∩ Γ−1(xi)}+∑

{yti|xt ∈ VM ∩ Γ−1(xi)}

• For all xi ∈ VM : zi + yij + yik ≥ 1 +
∑
{atiyt|xt ∈ VL ∩Γ−1(xi)}+

∑
{yt|xt ∈ VQ ∩Γ−1(xi)}+∑

{yti|xt ∈ VM ∩ Γ−1(xi)}

• All variables zi, yi, yij ≥ 0

Let v be the optimal solution of the primal LP of step 1, and let S = {xi|vi = 0}. From the
primal constraints, if xi ∈ S is of type L or Q, then all its (immediate) successors xj must have
vj = 0, i.e. xj ∈ S, because otherwise we can raise the value of vi and improve the objective
function. If xi ∈ S is of type M, then at least one successor must be in S for the same reason.

Let LPS be the primal LP restricted to the variables vi and constraints for xi ∈ S: If xi is of
type L or Q, or if it of type M and both successors are in S, then the corresponding constraint
Q(v)i ≥ vi is the same as in the full primal LP (because all successors of xi are in S). If xi is of
type M and only one successor xj is in S then the corresponding constraint in LPS is only vj ≥ vi;
that is, the other constraint vk ≥ vi of the full LP is not included in LPS because the variable vk
is missing since xk /∈ S. Note that LPS is the same as the primal LP for the maxPPS obtained by
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restricting the given maxPPS x = P (x) to the subset S, where the variables xi of type M with only
one successor xj in S become type-L variables with equation xi = xj (this corresponds essentially
to fixing the policy for such a variable xi to the successor xj).

Let DLPS be the dual LP to LPS . This is the same as the LP obtained by restricting the full
dual DLP to the constraints corresponding to the variables xi ∈ S and including only the variables
zi, yi for xi ∈ S and the variables yij if both xi, xj ∈ S.

Lemma A.16. The optimal value of the restricted linear programs LPS, DLPS is 0.

Proof. Let v be the optimal solution for the full primal LP and consider any optimal solution (y, z)
for the full dual DLP . By the complementary slackness conditions we have zi = 0 for all xi ∈ S,
since vi = 0 < 1.

We claim that the restriction (yS , zS) of (y, z) to the variables of DLPS is a feasible solution
for DLPS . To see this, note that the constraints of DLPS are a subset of the constraints of DLP ,
with some of the variables removed. The only removed variables that appear on the left-hand side
of the inequalities are the variables yik where xi is a type-M variable in S and xk is not in S. Then
vi = 0 < vk, and hence by complementary slackness we must have yik = 0. Thus, all the removed
variables that appear on the left-hand sides of the inequalities have value 0. All the other removed
variables appear on the right-hand sides of the inequalities with a positive coefficient, and hence
after their removal, the inequalities continue to be satisfied by the restricted solution.

Thus, (yS , zS) is a feasible solution to DLPS and its value is 0 since zi = 0 for all xi ∈ S. The
restricted primal LPS has obviously a feasible solution vS = 0 with value 0, hence the optimal value
for the two LPs is 0, and both vS , (yS , zS) are optimal solutions for them.

To compute an optimal policy for the type-M variables in S, we construct the restricted dual
DLPS and compute an optimal basic feasible solution. Let (y, z) be this solution. Since it is optimal,
zi = 0 for all i. From the dual constraints, for all type-L or type-Q variables xi we have zi + yi ≥ 1,
hence at least one of the two variables zi, yi is positive, and since zi = 0, we have yi > 0. For all
type-M variables xi, we have zi + yij + yik ≥ 1, and since zi = 0, at least one of the variables yij , yik
is positive. Since (y, z) is a basic feasible solution, it has at most |S| positive variables, hence it
must have exactly one positive variable for each xi. Therefore, for each xi ∈ VM ∩ S, exactly one
of yij or yik is positive; let σ be the policy that selects for each type-M variable of S the (unique)
successor with a positive y value for the edge, i.e. xj if yij > 0, else xk. (If xi is a type-M variable
in S that has only one successor xj in S, then obviously σ assigns to xi this successor.)

Lemma A.17. Under the policy σ, all the variables in S get value 1 in the LFP.

Proof. Let xS = Pσ(xS) be the PPS on the set S of variables induced by the policy σ, let Gσ be
its dependency graph, P ′σ(1) the moment matrix, and q∗σ its LFP. Let ŷ be the vector, indexed
by S, that is derived from the optimal basic feasible solution (y, z) of DLPS , by letting ŷi = yi
for all type-L and type-Q variables xi in S and letting ŷi = yi,σ(i) for all type-M variables in S.
Then ŷ > 0. Furthermore, the constraints of DLPS imply that ŷ ≥ 1 + [P ′σ(1)]T · ŷ. Therefore,
ρ([P ′σ(1)]T ) = ρ(P ′σ(1)) < 1 (again, see Theorem 2.1.11 of [3]). This implies that q∗σ = 1. Let us see
why. We first claim that q∗σ > 0. If not, then the set W of variables that cannot reach in Gσ the set
of leaky variables via and-or reachability, with type L as ’or’ nodes and type Q as ’and’ nodes, is a
nonempty set. Every type-L variable of W is not leaky and has all its successors in W , and every
type Q variable of W has at least one successor in W . This implies that in the submatrix [P ′σ(1)]W
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induced by the rows and columns of W , the sum of the entries in every row is at least 1. Hence
[P ′σ(1)]W · 1 ≥ 1, and thus ρ([P ′σ(1)]W ) ≥ 1 (again, by Theorem 2.1.11 of [3]), contradicting the fact
that ρ(P ′σ(1)) < 1. Therefore, q∗σ > 0. Since we also have ρ(P ′σ(1)) < 1, it follows (see [18], Section
8.1), that q∗σ = 1.

The LPDLPS hasO(|S|) variables and constraints and can be solved in time TLP (O(|S|), O(|S|), O(LS))
where LS is its bit-size. Note that even if an LP solver outputs an optimal solution that is not
a basic feasible solution (bfs), it is known that one can easily convert it to an optimal bfs using
standard methods, by suitable pivoting steps that drive nonbasic variables to 07. The time to solve
all the dual programs DLPS for all the executions of step 2 that add variables to Z1 is at most
TLP (O(n), O(n), O(L)), by the superadditivity of TLP . Thus, we have.

Theorem A.18. We can compute an optimal policy for all the variables of a maxPPS (in SNF) that
have value 1 in the LFP within the same time bounds as given in Theorem A.15 for the classification
of the variables.

General form maxPPS.
For maxPPS x = P (x) in general form it is again more efficient to apply the algorithms directly

to the given system, without transforming it first to SNF. The algorithms are essentially the same
as in the SNF case. In Phase 1, we identify first the set Z0 of variables that have value 0 in the
LFP and eliminate them. Then we construct the refined graph Gr for the remaining system and
apply repeatedly steps 2 and 3 (where “variables" there should be read as “nodes") until there is
no more change. The set L<1 of deficient nodes in step 2 are the type L nodes that correspond to
deficient polynomials pij(x) in P (x). The set L>0 of leaky nodes in step 3 are the type L nodes
that correspond to polynomials pij(x) with a positive constant term. When we remove type L
nodes (variables) in the algorithm, we remove the corresponding polynomials from the functions
Pi(x) where they appear. At the end of Phase 1, we get a reduced maxPPS with the property that
pij(1) = 1 for every remaining polynomial. With a more careful analysis of Phase 1, it is easy to
show that it converges in at most n + 1 iterations where n is the number of type M nodes in Gr,
i.e. the number of variables in the given maxPPS. To see this, suppose that an iteration of steps
2-3 does not remove any type M node. Since the type Q nodes have edges only to type M nodes,
and type L nodes have edges only to type Q nodes, step 3 does not remove any type Q or L nodes
either, and the algorithm terminates. Thus, Phase 1 takes O(nL) time, where L is the encoding
size of the given maxPPS.

Then we apply the Phase 2 algorithm using the definition of the operator Q for systems in
general form, given at the end of the subsection on minPPS. The LP in Step 1 has at most n
variables, m+ 2n constraints (where m =

∑
imi is the total number of polynomials), and encoding

size L = |P |. Steps 4-6 use the refined graph of the remaining system, where we consider each type
L node corresponding to a polynomial pij(x) as having an associated value p̂ij(v), where v is the
optimal solution computed in step 1. Thus, in step 5, we can use for a type M node xi only the
edges xi → pij such that vi = p̂ij(v). As in the case of Phase 1, it can be shown that the inner

7This is standard: Suppose that q is an optimal solution to an LP max{cx|Ax = b, x ≥ 0}, such that the set of
columns Ai of A corresponding to the index set S = {i|qi > 0} is linearly dependent, i.e.,

∑
i∈S αiAi = 0 for some

αi not all 0. We can assume wlog that some αi > 0, let t = min{qi/αi|i ∈ S, αi > 0}, and define the point q′ where
q′i = qi − tαi for i ∈ S, and q′i = qi for i /∈ S. Then q′ is also an optimal feasible solution with (at least) one more 0
coordinate. Repeating this process leads to an optimal bfs.
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loop of steps 4-6 will be executed at most O(n) times. The outer loop 1-8 is also executed at most
n times. Thus, the whole algorithm takes time O(n2L + nTLP (O(n), O(m), O(L))). The proof of
correctness is along the same lines as the SNF case.

The algorithm for computing an optimal policy for the variables with value 1 in the LFP is
again similar to that of the SNF case. The dual LPs now have at most m+ n ≤ 2m variables, and
n constraints in addition to non-negativity. Thus, we have the following.

Theorem A.19. We can classify qualitatively the variables of a maxPPS in general form with
n variables, m polynomials and encoding size L in time O(n2L + nTLP (O(n), O(m), O(L))). We
can compute an optimal policy for the variables that have value 1 in the LFP in time O(n2L +
nTLP (O(m), O(m), O(L))).

Remark: Observe that for both maxPPSs and minPPSs, the P-time algorithms given in this
section, and those given in [19], for deciding whether q∗i = 1 involve linear programming. Thus they
do not run in strongly polynomial time. We remark that a strongly polynomial time algorithm for
these problems would already imply a substantial advance in the quantitative analysis of finite-state
MDPs. Specifically, in [19] (Section 7), we showed that there is a simple P-time reduction from the
quantitative problem for deciding whether the value of a finite-state simple stochastic game (SSG)
is ≥ 1/2 (known as Condon’s problem), to the qualitative termination decision problem of deciding
whether q∗i = 1 for 1-RSSGs (equivalently, for BSSGs). In fact, an examination of that reduction
shows that it also implies a simple algebraic (and hence strongly) P-time reduction from the problem
of deciding whether a finite-state MDP with reachability objective has optimal probability value
≥ 1/2, to the problem of deciding whether in a given BMDP we have optimal extinction probability
q∗i = 1. The only known provably P-time algorithms for computing the optimal value, and solving
the quantitative reachability decision problem, for finite-state MDPs (as well as finite-state MDPs
with other objectives), involve linear programming (see, e.g., [29, 7]), and are thus not strongly
polynomial time.8 Hence, a strongly polynomial time algorithm for the qualitative q∗i = 1 decision
problem for BMDPs would already entail a significant advance for the analysis of finite-state MDPs.

B Omitted material from Sections 2 - 4.

B.1 Omitted material from Section 2.

Proof of Proposition 2.7
We can easily convert, in P-time, any max/minPPS into SNF form, using the following procedure.

• For each equation xi = Pi(x) = max {p1(x), . . . , pm(x)}, for each pj(x) on the right-hand-side
that is not a variable, add a new variable xk, replace pj(x) with xk in Pi(x), and add the new
equation xk = pj(x). Do similarly if Pi(x) = min{p1(x), . . . , pm(x)}.

• If Pi(x) = max {xj1 , ..., xjm} with m > 2, then add m − 2 new variables xi1 , . . . , xim−2 , set
Pi(x) = max {xj1 , xi1}, and add the equations xi1 = max {xj2 , xi2}, xi2 = max {xj3 , xi3}, . . .,
xim−2 = max {xjm−1 , xjm}. Do similarly if Pi(x) = min{xj1 , ..., xjm} with m > 2.

8Strongly-polynomial time algorithms are known for computing the value of finite-state MDPs with restricted
objectives, e.g., with a discounted reward objective and a fixed discount β < 1 (see [32]), or for so-called deterministic
MDPs ([28]). However, the reachability objective and other objectives, like the richer mean-payoff objective, are not
known to be (algebraically) strongly polynomial time reducible to these objectives.
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• For each equation xi = Pi(x) =
∑m

j=1 pjx
αj , where Pi(x) is a probabilistic polynomial that is

not just a constant or a single monomial, replace every monomial xαj on the right-hand-side
that is not a single variable by a new variable xij and add the equation xij = xαj .

• For each variable xi that occurs in some polynomial with exponent higher than 1, introduce
new variables xi1 , . . . , xik where k is the logarithm of the highest exponent of xi that occurs in
P (x), and add equations xi1 = x2i , xi2 = x2i1 , . . ., xik = x2ik−1

. For every occurrence of a higher
power xli, l > 1, of xi in P (x), if the binary representation of the exponent l is ak . . . a2a1a0,
then we replace xli by the product of the variables xij such that the corresponding bit aj is
1, and xi if a0 = 1. After we perform this replacement for all the higher powers of all the
variables, every polynomial of total degree >2 is just a product of variables.

• If a polynomial Pi(x) = xj1 · · ·xjm in the current system is the product of m > 2 variables,
then add m − 2 new variables xi1 , . . . , xim−2 , set Pi(x) = xj1xi1 , and add the equations
xi1 = xj2xi2 , xi2 = xj3xi3 , . . ., xim−2 = xjm−1xjm .

Now all equations are of the form L, Q, or M.
The above procedure allows us to convert any max/minPPS into one in SNF form by introducing

O(|P |) new variables and blowing up the size of P by a constant factor O(1). Furthermore, there is
an obvious (and easy to compute) bijection between policies for the resulting SNF form max/minPPS
and the original max/minPPS. �

We will give in the rest of this section some lemmas on PPS which we will need in this paper.
As usual, we always assume, w.l.o.g., that PPS are in SNF form.

Lemma B.1. (cf. Lemma 3.3 of [13]) For any PPS x = P (x) in SNF with n variables, and any
pair of vectors a, b ∈ Rn, P (a)− P (b) = P ′(a+b2 )(a− b).

Lemma B.2. Given a PPS, x = P (x), with LFP q∗ > 0, if 0 ≤ y ≤ q∗, and if (I − P ′(y))−1 exists
and is non-negative (in which case clearly N (y) is defined), then N (y) ≤ q∗ holds.9

Proof. In Lemma 3.4 of [13] it was established that when (I−P ′(y)) is non-singular, i.e., (I−P ′(y))−1

is defined, and thus N (y) is defined, then

q∗ −N (y) = (I − P ′(y))−1
P ′(q∗)− P ′(y)

2
(q∗ − y) (13)

Now, since all polynomials in P (x) have non-negative coefficients, it follows that the Jacobian P ′(x)
is monotone in x, and thus since y ≤ q∗, we have that P ′(q∗) ≥ P ′(y). Thus (P ′(q∗)− P ′(y)) ≥ 0,
and by assumption (q∗ − y) ≥ 0. Thus, by the assumption that (I − P ′(y))−1 ≥ 0, we have by
equation (13) that q∗ −N (y) ≥ 0, i.e., that q∗ ≥ N (y).

We also will need the following, which is a less immediate consequence of results in [13]. Recall
that for a square matrix A, ρ(A) denotes its spectral radius.

Lemma B.3. Given a PPS, x = P (x), with LFP q∗ > 0, if 0 ≤ y ≤ q∗, and y < 1, then
ρ(P ′(y)) < 1, and (I − P ′(y))−1 exists and is non-negative.

9Note that the Lemma does not claim that N (y) ≥ 0 holds. Indeed, it may not.
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The proof of this lemma is more involved. We first recall several closely related results established
in our previous papers. Recall that a PPS, x = P (x), is called strongly connected, if its variable
dependency graph H is strongly connected.

Lemma B.4. (Lemma 6.5 of [18])10 Let x = P (x) be a strongly connected PPS, in n variables,
with LFP q∗ > 0. For any vector 0 ≤ y < q∗, ρ(P ′(y)) < 1, and thus (I − P ′(y))−1 exists and is
nonnegative.

Lemma B.5. (Theorem 3.7 of [13]) For any PPS, x = P (x), in SNF form, which has LFP
0 < q∗ < 1, for all 0 ≤ y ≤ q∗, ρ(P ′(y)) < 1 and (I − P ′(y))−1 exists and is nonnegative.

Proof of Lemma B.3. Consider a PPS, x = P (x), with LFP q∗ > 0, and a vector 0 ≤ y ≤ q∗, such
that y < 1. Note that all we need to establish is that ρ(P ′(y)) < 1, because it then follows by
standard facts (see, e.g., [23]) that (I − P ′(y))−1 exists and is equal to

∑∞
i=0(P

′(y))i ≥ 0.
Let us first show that if x = P (x) is strongly connected, then ρ(P ′(y)) < 1. To see this, note

that if x = P (x) is strongly connected, then every variable depends on every other, and thus if there
exists any i ∈ {1, . . . , n} such that q∗i < 1, then it must be the case that for all j ∈ {1, . . . , n}, we
have q∗j < 1. Thus, either q∗ = 1, or else 0 < q∗ < 1. If q∗ = 1, then since y < 1, we have y < q∗,
and thus, by Lemma B.4, we have ρ(P ′(y)) < 1. If, on the other hand, 0 < q∗ < 1, then since
0 ≤ y ≤ q∗, by Lemma B.5, we have ρ(P ′(y)) < 1.

Next, consider an arbitrary PPS, x = P (x), that is not necessarily strongly connected. Recall
the variable dependency graph H of x = P (x). We can partition the variables into sets S1, . . . , Sk
which form the SCCs of H. Consider the DAG, D, of SCCs, whose nodes are the sets Si, and for
which there is an edge from Si to Sj iff in the dependency graph H there is a node i′ ∈ Si with an
edge to a node in j′ ∈ Sj .

Consider the matrix P ′(y). Our aim is to show that ρ(P ′(y)) < 1. Since we assume q∗ > 0,
0 ≤ y ≤ q∗, and y < 1, it clearly suffices to show that ρ(P ′(y)) < 1 holds in the case where we
additionally insist that y > 0, because then for any other z such that 0 ≤ z ≤ y, we would have
ρ(P ′(z)) ≤ ρ(P ′(y)) < 1.

So, assuming also that y > 0, consider the n × n-matrix P ′(y). To keep notation clean, we
let A := P ′(y)). For the n × n matrix A, we can consider its underlying dependency graph, H =
({1, . . . , n}, EH), whose nodes are {1, . . . , n}, and where there is an edge from i to j iff Ai,j > 0.
Notice however that, since y > 0, this graph is precisely the same graph as the dependency graph
H of x = P (x), and thus it has the same SCCs, and the same DAG of SCCs, D. Let us sort the
SCCs, so that we can assume S1, . . . , Sk are topologically sorted with respect to the partial ordering
defined by the DAG D. In other words, for any variable indices i ∈ Sa and j ∈ Sb if (i, j) ∈ EH ,
then a ≤ b.

Let S ⊆ {1, . . . , n} be any non-empty subset of indices, and let A[S] denote the principle
submatrix of A defined by indices in S. It is a well known fact that 0 ≤ ρ(A[S]) ≤ ρ(A). (See, e.g,
Corollary 8.1.20 of [23].)

Since A ≥ 0, ρ(A) is an eigenvalue of A, and has an associated non-negative eigenvector v ≥ 0,
v 6= 0 (again see, e.g., Chapter 8 of [23]). In other words,

Av = ρ(A)v

10Lemma 6.5 of [18] is actually a more general result, relating to strongly connected MPSs that arise from more
general RMCs.
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Firstly, if ρ(A) = 0, then we are of course trivially done. So we can assume w.l.o.g. that ρ(A) > 0.
Now, if vi > 0, then for every j such that (j, i) ∈ EH , we have (Av)j > 0, and thus since (Av)j =
ρ(A)vj , we have vj > 0. Hence, repeating this argument, if vi > 0 then for every j that has a path
to i in the dependency graph H, we have vj > 0.

Since v 6= 0, it must be the case that there is exists some SCC, Sc, of H such that for every
variable index i ∈ Sc, vi > 0, and furthermore, such that c is the maximum index for such an SCC
in the topologically sorted list S1, . . . , Sk, i.e., such that for all d > c, and for all j ∈ Sd, we have
vj = 0.

First, let us note that it must be the case that Sc is a non-trivial SCC. Specifically, let us call
an SCC, Sr of H trivial if Sr = {i} consists of only a single variable index, i, and furthermore, such
that 0 = (A)i = (P ′(y))i, i.e., that row i of the matrix A is all zero. This can not be the case for
Sc, because for any variable i ∈ Sc, we have vi > 0, and thus (Av)i = ρ(A)vi > 0.

Let us consider the principal submatrix A[Sc] of A. We claim that ρ(A[Sc]) = ρ(A). To see why
this is the case, note that Av = ρ(A)v, and for every i ∈ Sc, we have (Av)i =

∑
j ai,jvj = ρ(A)vi.

But vj = 0 for every j ∈ Sd such that d > c, and furthermore ai,j = 0 for every j ∈ Sd′ such that
d′ < c.

Thus, if we let vSc denote the subvector of v corresponding to the indices in Sc, then we have just
established that A[Sc]vSc = ρ(A)vSc , and thus that ρ(A[Sc]) ≥ ρ(A). But since A[Sc] is a principal
submatrix of A, we also know easily (see, e.g, Corollary 8.1.20 of [23]), that ρ(A[Sc]) ≤ ρ(A), so
ρ(A[Sc]) = ρ(A).

We are almost done. Given the original PPS, x = P (x), for any subset S ⊆ {1, . . . , n} of variable
indices, let xS = PS(xS , xDS ) denote the subsystem of x = P (x) associated with the vector xS of
variables in set S, where xDS denotes the variables not in S.

Now, note that xSc = PSc(xSc , yDSc ) is itself a PPS. Furthermore, it is a strongly connected PPS,
precisely because Sc is a strongly connected component of the dependency graph H, and because
y > 0. Moreover, the Jacobian matrix of PSc(xSc , yDSc )), evaluated at ySc , which we denote by
P ′Sc(y), is precisely the principal submatrix A[Sc] of A. Since xSc = PSc(xSc , yDSc ) is a strongly
connected PPS, we have already argued that it must be the case that ρ(P ′Sc(y)) < 1. Thus since
P ′Sc(y) = A[Sc], we have ρ(A[Sc]) = ρ(A) < 1. This completes the proof.

B.2 Omitted material from Section 3.

Proof of Lemma 3.6.
We need to show that the Jacobian (P y)′(x) of P y(x), evaluated anywhere, is equal to P ′(y). If
xi = Pi(x) is not of form Q, then, for any x ∈ Rn, Pi(x) = P yi (x). So for any xj ,

∂P yi (x)
∂xj

= ∂Pi(x)
∂xj

.
Otherwise, xi = Pi(x) has form Q, that is Pi(x) = xjxk for some variables xj ,xk. Then P yi (x) =

yjxk + xjyk − yjyk. In this case ∂P yi (x)
∂xj

= yk and ∂P yi (x)
∂xk

= yj . But when x = y, ∂Pi(x)
∂xj

= yk and
∂Pi(x)
∂xk

= yj . Furthermore, clearly for any xl, with l 6= j and l 6= k, ∂Pi(x)∂xl
= 0 and ∂P yi (x)

∂xl
= 0. We

have thus established that (P y)′(x) = P ′(y) for any x ∈ Rn. �

Proof of Lemma 3.7.
Firstly, note that P y(x) = P y(y) + (P y)′(x)(x − y), since the functions P yi (x) are all linear in x.
Next, observe that Pi(y) = P yi (y), for all i, and thus that P (y) = P y(y). Thus, to show that
P y(x) = P y(y) + P ′(y)(x − y) = P (y) + P ′(y)(x − y), all we need to show is that the Jacobian
(P y)′(x) of P y(x), evaluated anywhere, is equal to P ′(y). But this was established in Lemma 3.6.
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Proof of Lemma 3.8.
(i): We define:

a = y + (I − P ′σ(y))−1(Pσ(y)− y) ≡ Nσ(y)

Then we can re-arrange this expression, reversibly, yielding:

a = y + (I − P ′σ(y))−1(Pσ(y)− y) ⇔ Pσ(y)− y − (I − P ′σ(y))(a− y) = 0

⇔ Pσ(y) + P ′σ(y)(a− y) = a

⇔ P yσ (a) = a (by Lemma 3.7)

Uniqueness follows from the reversibility of these transformations.

(ii): Firstly, we shall observe that the result of applying Newton’s method to solve x = P yσ (x)
with any initial point x gives us Nσ(y) = a in a single iteration. Recalling from Lemma 3.6 that
the following equality holds between the Jacobians: (P yσ )′(x) = P ′σ(y), one iteration of Newton’s
method applied to x = P yσ (x) can be equivalently defined as:

x+ (I − P ′σ(y))−1(P yσ (x)− x) = x+ (I − P ′σ(y))−1(Pσ(y) + P ′σ(y)(x− y)− x)

= (I − P ′σ(y))−1(x− P ′σ(y)x+ Pσ(y) + P ′σ(y)(x− y)− x)

= (I − P ′σ(y))−1(Pσ(y)− P ′σ(y)y)

= (I − P ′σ(y))−1((I − P ′σ(y))y + Pσ(y)− y)

= y + (I − P ′σ(y))−1(Pσ(y)− y)

= Nσ(y).

We thus have Nσ(y) = x+(I−P ′σ(y))−1(P yσ (x)−x). By assumption, (I−P ′σ(y))−1 is a non-negative
matrix. So if P yσ (x)− x ≥ 0 then Nσ(y) ≥ x, whereas if P yσ (x)− x ≤ 0 then Nσ(y) ≤ x. �

Proof of Lemma 3.18.
Firstly, we show that P ′(y)(1 − y) ≤ (1 − y). Clearly, for any PPS, P (1) ≤ 1. Note that since by
assumption y ≤ P (y), we have (1− y) ≥ (1−P (y)) ≥ (P (1)−P (y)). Then by Lemma B.1 (Lemma
3.3 of [13]):

(1− y) ≥ P (1)− P (y) = P ′(
1 + y

2
)(1− y) (14)

≥ P ′(y)(1− y) (15)

Again by Lemma B.1: P (y)− P (x) = 1
2(P ′(x) + P ′(y))(y − x), and thus:

P (x) = P (y)− 1

2
(P ′(x) + P ′(y))(y − x) (16)
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Thus:

y −N (x) = y − x− (I − P ′(x))−1(P (x)− x)

= y − x− (I − P ′(x))−1(P (y)− x− 1

2
(P ′(x) + P ′(y))(y − x)) (by (16))

≤ y − x− (I − P ′(x))−1(y − x− 1

2
(P ′(x) + P ′(y))(y − x))

= (y − x)− (I − P ′(x))−1((y − x)− 1

2
(P ′(x) + P ′(y))(y − x))

= (I − (I − P ′(x))−1(I − 1

2
(P ′(x) + P ′(y))))(y − x)

= ((I − P ′(x))−1(I − P ′(x))− (I − P ′(x))−1(I − 1

2
(P ′(x) + P ′(y))))(y − x)

= (I − P ′(x))−1(I − P ′(x)− (I − 1

2
(P ′(x) + P ′(y))))(y − x)

= (I − P ′(x))−1(−P ′(x) +
1

2
(P ′(x) + P ′(y)))(y − x)

= (I − P ′(x))−1
1

2
(P ′(y)− P ′(x))(y − x)

≤ λ

2
(I − P ′(x))−1(P ′(y)− P ′(x))(1− y) (by (4), and because (P ′(y)− P ′(x)) ≥ 0)

≤ λ

2
(I − P ′(x))−1(I − P ′(x))(1− y) (because by (15), P ′(y)(1− y) ≤ (1− y))

=
λ

2
(1− y)

�

B.3 Omitted material from Section 4

Proof of Lemma 4.2.
Lemma B.1 tells us that for any PPS, x = P (x), (assumed to be in SNF form), and any pair of
vectors a, b ∈ Rn, we have P (a) − P (b) = P ′((a + b)/2)(a − b). Applying this lemma with a = q∗

and b = y, we have that
q∗ − P (y) = P ′((1/2)(q∗ + y))(q∗ − y)

Subtracting both sides from q∗ − y, we have that:

P (y)− y = (I − P ′((1/2)(q∗ + y)))(q∗ − y) (17)

Multiplying both sides of equation (17) by (I − P ′((1/2)(q∗ + y)))−1, we obtain:

q∗ − y = (I − P ′(1/2(q∗ + y)))−1(P (y)− y)

as required. �

Proof of Lemma 4.3.
We show first the lemma for PPS, and then extend it to max/minPPS. Suppose that x = P (x) is
a PPS (recall, in SNF). By Lemma B.1, we have that q∗ − P (y) = P ′(12(y + q∗))(q∗ − y). Since
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1
2(y + q∗) ≤ 1, ‖P ′(12(y + q∗))‖∞ ≤ 2: If the ith row has xi = Pi(x) of type L then

∑n
j=1 |pi,j | ≤ 1

and if xi = Pi(x) has type Q, i.e., Pi(x) = xjxk for some j, k, then
∑n

j=1 |
∂Pi(x)
∂xj

(12(y + q∗))| =
1
2(yj+q

∗
j )+

1
2(yk+q∗k) ≤ 2. So we have that ‖q∗−P (y)‖∞ ≤ ‖P ′(12(y+q∗))‖∞‖q∗−y‖∞ ≤ 2‖q∗−y‖∞.

Since y ≤ q∗, we know also that P (y) ≤ q∗ = P (q∗) since P (x) is monotone. If (P (y))i ≤ yi, then
yi−P (y)i ≤ q∗i −P (y)i ≤ ‖q∗−P (y)‖∞ ≤ 2‖q∗−y‖∞. If Pi(y) ≥ yi, Pi(y)−yi ≤ q∗i −yi ≤ ‖q∗−y‖∞.
So ‖P (y)− y‖∞ ≤ 2‖q∗ − y‖∞ as required.

Suppose now that x = P (x) is a max/minPPS. Then it has some optimal policy, τ , and from the
above, ‖Pτ (y)− y‖∞ ≤ 2‖q∗ − y‖∞. For type L and type Q variable xi, we have (Pτ )i(y) = Pi(y).
It thus only remains to show that |Pi(y)− yi| ≤ 2‖q∗ − y‖∞ when xi is of type M.

If Pi(y) ≥ yi, then this follows easily: as before we have that Pi(y)− yi ≤ q∗i − yi ≤ ‖q∗ − y‖∞.
Suppose that instead we have Pi(y) ≤ yi. Then we consider the two cases (min and max) separately
to bound |Pi(y)− yi| = yi − Pi(y):

Suppose x = P (x) is a minPPS, and that Pi(x) = min {xj , xk}. Since q∗ = P (q∗), we have:

0 ≤ yi − Pi(y) ≤ q∗i − Pi(y) = min{q∗j , q∗k} − Pi(y) (18)

We can assume, w.l.o.g., that Pi(y) ≡ min{yj , yk} = yj . (The case where Pi(y) = yk is entirely
analogous.) Then, by (18), we have:

0 ≤ yi − P (y)i ≤ min{q∗j , q∗k} − yj ≤ q∗j − yj ≤ ‖q∗ − y‖∞

Suppose now that x = P (x) is a maxPPS, and that Pi(x) ≡ max {xj , xk}. Again, we are already
assuming that Pi(y) ≤ yi. Since q∗ = P (q∗), we have:

0 ≤ yi − Pi(y) ≤ q∗i − Pi(y) = Pi(q
∗)−max{yj , yk} (19)

We can assume, w.l.o.g., that Pi(q∗) ≡ max{q∗j , q∗k} = q∗j . (Again, the case when Pi(q∗) = q∗k is
entirely analogous.) Then, by (19), we have:

0 ≤ yi − Pi(y) ≤ q∗j −max{yj , yk} ≤ q∗j − yj ≤ ‖q∗ − y‖∞
This completes the proof of the Lemma for all max/minPPSs. �

Proof of Lemma 4.4.
We will apply Lemma 4.2 to the PPS x = Pσ(x) (which has LFP q∗σ), with q in place of y; for
this we need to show that (I − P ′σ(12(q∗σ + q)))−1 exists. Note that since 0 ≤ q ≤ q∗, we have
0 ≤ P ′σ(12(q∗σ + q)) ≤ P ′σ(12(q∗σ + q∗)), and thus 0 ≤ ρ(P ′σ(12(q∗σ + q))) ≤ ρ(P ′σ(12(q∗σ + q∗)) < 1.
Therefore, (I − (P ′σ(12(q∗σ + q)))−1 also exists and is non-negative. Lemma 4.2 gives q∗σ − q =
(I − P ′σ(12(q∗σ + q)))−1(Pσ(q)− q). Taking norms, we obtain the following inequality:

‖q∗σ − q‖∞ ≤ ‖(I − P ′σ(
1

2
(q∗σ + q)))−1‖∞‖Pσ(q)− q‖∞ (20)
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Using the fact that Pσ(q) = P (q) and Lemma 4.3, we have:

‖q∗ − q∗σ‖∞ ≤ ‖q∗ − q‖∞ + ‖q∗σ − q‖∞

≤ ‖q∗ − q‖∞ + ‖(I − P ′σ(
1

2
(q∗σ + q)))−1‖∞‖Pσ(q)− q‖∞

= ‖q∗ − q‖∞ + ‖(I − P ′σ(
1

2
(q∗σ + q)))−1‖∞‖P (q)− q‖∞

≤ ‖q∗ − q‖∞ + ‖(I − P ′σ(
1

2
(q∗σ + q)))−1‖∞2‖q∗ − q‖∞

= (2‖(I − P ′σ(
1

2
(q∗σ + q)))−1‖∞ + 1)‖q∗ − q‖∞

≤ (2‖(I − P ′σ(
1

2
(q∗σ + q∗)))−1‖∞ + 1)‖q∗ − q‖∞

The last inequality follows because q ≤ q∗, and

0 ≤ (I − P ′σ(q∗σ + q))−1 =
∞∑
i=0

(P ′σ(q∗σ + q))i ≤
∞∑
i=0

(P ′σ(q∗σ + q∗))i = (I − P ′σ(q∗σ + q∗))−1.

�

Proof of Lemma 4.9.
(i) =⇒ (ii): From [18], P k(0)→ q∗ as k →∞. It follows that if (P k(0))i = 0 for all k, then q∗i = 0.
(ii) =⇒ (iii): From [18], P k(0) is monotonically non-decreasing in k, i.e., if m ≥ l > 0 then
Pm(0) ≥ P l(0). Thus, if (P k(0))i > 0 for some k ≤ n, then (Pn(0))i > 0.

Whether Pi(x) > 0 depends only on whether each xj > 0 or not and not on the value of
xj . So, for any k, whether (P k+1(0))i > 0 depends only on the set Sk = {xj |(P k(0))j > 0}.
Since P k+1(0) ≥ P k(0), we have Sk+1 ⊇ Sk. If ever we have that Sk+1 = Sk, then for any j,
(P k+2(0))j > 0 whenever (P k+1(0))j > 0 so Sk+2 = Sk+1 = Sk. Sk+1 ⊃ Sk can only occur for n
values of k as there are only n variables to add. Consequently Sn+1 = Sn and so Sm = Sn whenever
m > n. So if we have a k > n with (P k(0))i > 0, then (Pn(0))i > 0.
(iii) =⇒ (i): By monotonicity and an easy induction, q∗ ≥ P k(0) for all k > 0. In particular
q∗ ≥ Pn(0). So q∗i ≥ (Pn(0))i > 0. �

57


