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Abstract

The Whittle index, which characterizes optimal policies for controlling certain single restless bandit
projects (a Markov decision process with two actions: active and passive) is the basis for a widely used
heuristic index policy for the intractable restless multiarmed bandit problem. Yet two roadblocks need to
be overcome to apply such a policy: the individual projects in the model at hand must be shown to be
indexable, so that they possess a Whittle index; and the index must be evaluated. Such roadblocks can be
especially vexing when project state spaces are real intervals, as in recent sensor scheduling applications.
This paper presents sufficient conditions for indexability (relative to a generalized Whittle index) of general
real-state discrete-time restless bandits under the discounted criterion, which are not based on elucidating
properties of the optimal value function and do not require proving beforehand optimality of threshold
policies as in prevailing approaches. The main contribution is a verification theorem establishing that, if
project performance metrics under threshold policies and an explicitly defined marginal productivity (MP)
index satisfy three conditions, then the project is indexable with its generalized Whittle index being given
by the MP index, and threshold policies are optimal for dynamic project control.

Keywords: Markov decision processes; discounted criterion; discrete time; Whittle index; index policies;
indexability; threshold policies
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1 Introduction.

1.1 RMABP and Whittle’s index policy.

In the restless multiarmed bandit problem (RMABP), introduced by Whittle (1988), a decision maker aims
to maximize the expected reward earned from a finite set of projects. These are modeled as restless bandits
(throughout, the terms project and bandit are used interchangeably), i.e., infinite-horizon Markov decision
processes (MDPs) —see Puterman (1994)— that can be operated in two modes, active and passive. In the
RMABP, a fixed number of projects are selected to be active at each time. Note that projects are restless in
that they can change state while passive.

The RMABP extends the classic MABP, where projects are nonrestless and one project is engaged at each
time, which is a rare example of a multidimensional MDP for which a tractable policy is available. Thus, one
can define for each project a scalar function of its state, the Gittins index, so that the resulting priority-index
policy, which engages at each time a project of largest index, is optimal. See, e.g., Gittins (1979), Whittle
(1980), and Katehakis and Veinott (1987). Cowan and Katehakis (2015) have extended the scope of such a
landmark result to a broader MABP setting, which allows real-state projects and non-uniform discounting,
among other features. In contrast, index policies are generally suboptimal for the RMABP, as this is known to
be PSPACE-hard. See Papadimitriou and Tsitsiklis (1999).

However, Whittle (1988) extended in part the index-based solution approach to the RMABP. He defined an
index for restless bandits —the Whittle index— and proposed as a heuristic the resulting priority-index policy,
which engages at each time the required number of projects with larger indices. He conjectured the asymptotic
optimality of such a policy as both the number of active projects and their total number grow to infinity in
fixed ratio, which has been proved by Weber and Weiss (1990), Ouyang et al. (2016) and Verloop (2016) under
certain conditions.

Being an intuitive practical heuristic, researchers have deployed Whittle’s policy over the last two decades
in diverse applications, providing a growing body of evidence that its performance is often nearly optimal.
Examples include, e.g., machine maintenance (Whittle (1996, Ch. 14.6)), scheduling multiclass queues (Ansell
et al. (2003), Veatch and Wein (1996), Niño-Mora (2006)), admission and routing to queues (Niño-Mora (2002,
2012, 2019)), projects with response delays (Caro and Yoo (2010)), dynamic spectrum access (Liu and Zhao
(2010), Ouyang et al. (2015)), demand response (Taylor and Mathieu (2014)), and web crawling (Avrachenkov
and Borkar (2018)).

1.2 Indexability.

Yet, to apply Whittle’s index policy to a given RMABP model researchers need to overcome two roadblocks: (1)
establish indexability (existence of the index) for the projects in the model at hand; and (2) devise an efficient
index-computing scheme.

Indeed, unlike the Gittins index, which is defined for any classic bandit, the Whittle index is defined only for
a limited class of restless bandits, called indexable. Whittle (1988, p. 292) pointed out that “Indexability cannot
be taken for granted . . . One would very much like to have simple sufficient conditions for indexability; at the
moment, none are known.” Liu and Zhao (2010, p. 5547) further noted that “indexability . . . is often difficult
to establish . . . and computing Whittle’s index can be complex.”

We next outline the concepts of indexability and Whittle index as considered herein, which apply to a single
project. Consider a project evolving in discrete time that consumes a generic resource. At the start of each
time period, the controller observes the project state and then chooses an action (active or passive). Then the
project (i) consumes an amount of resource and yields a reward, discounted over time; and (ii) moves to the
next state according to a Markov transition law.

Action choice is governed by a policy π from the class Π of nonanticipative policies. Suppose that the
resource is charged at a unit price λ, and let Vλ(x, π) be the resulting net project value starting from state x
under π, giving the expected total discounted value of rewards earned minus resource charges incurred. Now,
consider the parametric collection of λ-price problems {Pλ : λ ∈ R}, with

Pλ : find π∗
λ ∈ Π such that Vλ(x, π∗

λ) = V ∗
λ (x) , sup

π∈Π
Vλ(x, π) for every state x. (1)
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Thus, a Pλ-optimal policy achieves an optimal tradeoff between rewards and resource usage costs.
We shall call the project indexable if there exists a scalar map λ∗(x) on X (the project’s Whittle index)

characterizing Pλ-optimal policies for any price λ, as follows: when the project is in state x, it is Pλ-optimal to
take the active (resp. passive) action if and only if λ∗(x) > λ (resp. λ∗(x) 6 λ).

1.3 Real-state projects: prevailing approaches to indexability based on optimal
thresholds.

While most work on the RMABP has considered discrete-state projects, models with real-state projects have
drawn growing attention since the last decade, motivated by partially observed MDP (POMDP) formulations
of sensor scheduling applications. See, e.g., Krishnamurthy (2016, Ch. 8) and the surveys Washburn (2008) and
Kuhn and Nazarathy (2017).

In such applications, a set of sensors are to be dynamically allocated to sense a larger set of objects,
e.g., moving targets (in multitarget tracking, where the sensors are radars) or communication channels (in
multichannel access, where sensors probe channel transmission availability). Due to the limited number of
sensors and, possibly, their providing noisy measurements, true object states are unknown at decision times.
Instead, under a POMDP model sensor allocation decisions are based on the belief state of each object, which
gives the posterior state distribution and is updated by a Bayesian filter depending on whether the object is
sensed. Belief states can take a continuum of values, being scalar in certain models. Thus, identifying objects
with projects, the active and passive actions with sensing and not sensing an object, and using belief states as
project states, when the latter are scalar we obtain special cases of the RMABP with real-state projects.

La Scala and Moran (2006) first formulated the problem of dynamic radar scheduling to minimize the track
error variance of two moving targets as an RMABP, where projects follow deterministic Kalman filter dynamics.
They proved optimality of the greedy policy in the symmetric case.

More recent work has addressed indexability in POMDP models with real-state projects, including, e.g.,
multisite tracking (Le Ny et al. (2008)), dynamic multichannel access (Liu and Zhao (2010) and Ouyang et al.
(2015)), continuous-time (Le Ny et al. (2011)) and discrete-time (Dance and Silander (2015)) multitarget track-
ing, demand response (Taylor and Mathieu (2014)), web crawling (Avrachenkov and Borkar (2018)), and hidden
Markov bandits (Meshram et al. (2018)).

Such work follows a common pattern, based on elucidating and exploiting properties of the optimal value
function V ∗

λ (x) of λ-price problems (1) for the model at hand through dynamic programming (DP) arguments,
to prove optimality of threshold policies. Such policies, also known as control limit policies, make the project
active when its state is (at or) above a given threshold, and make it passive otherwise. They are widely used in
applications due to their simplicity and ease of implementation.

A typical analysis proceeds in two stages. The first is to identify and exploit properties of V ∗
λ (x) to prove

existence of an optimal threshold policy for each λ-price problem, with the optimal threshold z∗(λ) being unique
for a certain interval of λ’s. In the second stage, it is claimed that to establish indexability it suffices to show
that z∗(λ) is increasing (or, in some papers, nondecreasing) in λ. The Whittle index λ∗(x) is then obtained by
inverting z∗(λ), i.e., solving the equation z∗(λ) = x in λ.

Yet such analyses, while insightful and useful, are often incomplete, due to: (1) as proving optimality of
threshold policies may be elusive, it is sometimes only conjectured (as in Le Ny et al. (2011) and Dance and
Silander (2015)), or the arguments provided are sketchy and not fully rigorous; and (2) showing increasingness
(in the strict sense) of z∗(λ) does not suffice to establish indexability; continuity of z∗(λ) needs also be proven
(see Proposition 3).

Indeed, proving optimality of threshold policies can be far from trivial. It can be formulated in terms of

V
〈a,∗〉

λ (x), the optimal value with initial action a. Thus, it needs to be shown that, for λ in a certain interval,

the equation ∆a=1
a=0V

〈a,∗〉
λ (x) , V

〈1,∗〉
λ (x) − V

〈0,∗〉
λ (x) = 0 in state variable x has a unique root z∗(λ), with

∆a=1
a=0V

〈a,∗〉
λ (x) < 0 for x < z∗(λ) and ∆a=1

a=0V
〈a,∗〉

λ (x) > 0 for x > z∗(λ).

Such a result follows if the difference V
〈1,∗〉

λ (x) − V
〈0,∗〉

λ (x) is concave in x and changes sign at the endpoints

of the state space, as in Le Ny et al. (2008) and Liu and Zhao (2010), where V
〈1,∗〉

λ (x) is affine and V
〈0,∗〉

λ (x)

convex. Yet, in the model extension in Ouyang et al. (2015), while the V
〈a,∗〉

λ (x) are convex in x, it is no longer
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ensured that ∆a=1
a=0V

〈a,∗〉
λ (x) is concave, as V

〈1,∗〉
λ (x) may not be affine. Hence, existence of a z∗(λ) as above

cannot be concluded from ∆a=1
a=0V

〈a,∗〉
λ (x) changing sign.

The most widely used approach for proving optimality of threshold policies draws on the theory of super-
modularity. See, e.g., Topkis (1998), Heyman and Sobel (1984, Ch. 8.2), Puterman (1994, Ch. 6.11.2), Altman

and Stidham (1995), and Krishnamurthy (2016, Ch. 9). Thus, if V
〈a,∗〉

λ (x) is strictly supermodular in (x, a),

so ∆a=1
a=0V

〈a,∗〉
λ (x) is increasing in x, being negative for small x and positive for large x, existence of a unique

threshold z∗(λ) satisfying the required properties follows.
Yet, in the setting of a Kalman filter target tracking model, Dance and Silander (2019) identify an instance

demonstrating that efforts to prove optimality of threshold policies in such a model through the above approaches
are doomed to failure. Using the notation in Section 2, their instance has rewards r(x, a) = −x, passive dynamics
Xt+1 = Xt + 1, active dynamics Xt+1 = 1/(α + 1/(Xt + 1)) with α = 0.1, and discount factor β = 0.95. Figure

1 in their paper shows that, for λ = 0.7647, ∆a=1
a=0V

〈a,∗〉
λ (x) is neither concave nor monotonic over x ∈ [0, 0.25].

The author has independently verified such a result, which highlights a limitation of the scope of prevailing
approaches to optimality of threshold policies and indexability, raising the need for different approaches with a
wider scope.

1.4 PCL-based sufficient indexability conditions.

An alternative to prevailing approaches to indexability for discrete-state restless bandits was introduced and
developed in Niño-Mora (2001, 2002, 2006, 2007) based on two sufficient conditions, which can be verified ana-
lytically or numerically, along with an index algorithm. The validity of such conditions stems from satisfaction
by project metrics of partial conservation laws (PCLs), whence we shall refer to PCL-indexability conditions.
PCLs extend earlier types of conservation laws in stochastic scheduling, which have been used to prove opti-
mality of index policies through achievable performance region analyses. See, e.g., Coffman and Mitrani (1980),
Shanthikumar and Yao (1992), ?, and Niño-Mora (2011). Yet, the proof techniques used in the aforementioned
work rely critically on the discreteness of the project state space, so their extension to real-state projects is
nontrivial.

Niño-Mora (2008) first outlined, without proving its validity, an extension to real-state projects of such
PCL-indexability conditions, which roughly correspond to (PCLI1) and (PCLI2) in this paper (see Definition
7). Yet condition (PCLI3) herein was not considered, nor was the continuity requirement in (PCLI2). That
paper further illustrated application of the conditions in the model in Le Ny et al. (2008) and Liu and Zhao
(2010), sketching an incomplete analysis.

Later work exploring use of such an approach includes Niño-Mora (2009, 2016) and the PhD thesis of Villar
(2012). The latter, supervised by the author, deepened the study of the models in Niño-Mora and Villar (2009,
2011), including the multitarget Kalman filter tracking model in La Scala and Moran (2006). While such work
did not establish validity of the conditions, it presented partial analyses as well as numerical evidence supporting
the practical value of the proposed approach: the Whittle index could be efficiently computed and the index
policy was found to be nearly optimal.

In the first arXiv version of this paper, Niño-Mora (2015) modified the PCL-indexability conditions in
Niño-Mora (2008) by adding a continuity requirement in (PCLI2), as well as the new condition (PCLI3) in
Definition 7. Niño-Mora (2015) gave a proof that conditions (PCLI1–PCLI3) imply indexability and optimality
of threshold policies for the λ-price problems. The proof relied on analysis of an infinite-dimensional linear
programming (LP) formulation of such problems.

Based on Niño-Mora (2015), Dance and Silander (2019) have applied the PCL-indexability conditions herein
to establish for the first time indexability, along with optimality of threshold policies, of an extension of the
aforementioned Kalman filter target tracking model. To prove (PCLI1–PCLI3) they deploy a novel analysis of
action trajectories under threshold policies drawing on the theory of combinatorics on words. In a preliminary
arXiv version of such work, further outline a short proof of the validity of such conditions for their model,
which motivated the author to develop the simpler proof presented here for the general case that avoids the
infinite-dimensional LP analysis in Niño-Mora (2015).
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1.5 Goal and main results.

The major goal of this paper is to develop a rigorous PCL-based approach to establish indexability and evaluate
the Whittle index of real-state discounted restless bandits in a form consistent with optimality of threshold
policies for their λ-price problems.

The main result is a verification theorem (Theorem 1) which, under three PCL-indexability conditions,
ensures in one fell swoop both indexability of a real-state restless bandit and optimality of threshold policies
for its λ-price problems (1). This differs from prevailing approaches (see Section 1.3), where first optimality of
threshold policies is proved, and then indexability is established.

Under the proposed conditions, the Whittle index is given by a marginal productivity (MP) index that is
explicitly defined in terms of project metrics under threshold policies. This is in contrast both to the Whittle
index definition, which characterizes it implicitly, and to the way in which the index is determined in prevailing
approaches, by inverting an optimal threshold function.

The conditions are formulated as properties of project metrics under threshold policies. Thus, we consider
the reward and resource (usage) metrics denoted respectively by F (x, z) and G(x, z), with x the initial state and
z shorthand for the z-policy (see Section 2.4). We also consider marginal reward and marginal resource metrics,
denoted respectively by f(x, z) , F (x, 〈1, z〉)−F (x, 〈0, z〉) and g(x, z) , G(x, 〈1, z〉)−G(x, 〈0, z〉), where policy
〈a, z〉 first takes action a and then follows the z-policy. We further consider the marginal productivity (MP)
metric m(x, z) , f(x, z)/g(x, z), which is defined when g(x, z) 6= 0, and the MP index, given by m(x) , m(x, x)
for every state x.

The PCL-indexability conditions are: (PCLI1) the marginal resource metric g(x, z) is positive for any state
x and threshold z; (PCLI2) the MP index m(x) is monotone nondecreasing and continuous; and (PCLI3) the
reward and resource metrics and the MP index are linked by

F (x, z2) − F (x, z1) =

∫

(z1,z2]

m(z) G(x, dz), −∞ < z1 < z2 < ∞, (2)

so, for each x, and viewed as functions of the threshold z, F (x, z) is an indefinite Lebesgue–Stieltjes (LS) integral
(see, e.g., Carter and van Brunt (2000)) of the MP index m(z) with respect to G(x, z). Proposition 4 shows
that (PCLI3) characterizes the index as a Radon–Nikodym derivative.

Theorem 1 ensures that a project satisfying conditions (PCLI1–PCLI3) is indexable with m(x) being its
Whittle index. Furthermore, as the latter is nondecreasing and continuous, the optimality of threshold policies
for the project’s λ-price problems (1) follows. See Lemma 2.

This result reduces the task of establishing a project’s indexability to that of proving certain properties of
project metrics under threshold policies, and provides an explicit expression for the index. Such an approach is
in contrast to prevailing approaches, based on exploiting properties of the optimal value function, which require
establishing beforehand optimality of threshold policies.

Lemma 2 and Proposition 2 show that conditions (PCLI2, PCLI3) are necessary for threshold-indexability
(see Definition 4), and that the Whittle index matches the MP index under (PCLI1). See Proposition 1(c).
Proposition 7 gives an index-computing recursion.

Note that the PCL-indexability conditions for discrete-state projects referred to in Section 1.4 roughly
correspond to (PCLI1, PCLI2), as in such a setting they imply (PCLI3). In the present real-state setting, since
(PCLI3) may be hard to verify, we give Propositions 5 and 6, which ensure that (PCLI3) holds under (PCLI1,
PCLI2) and some additional simpler conditions.

1.6 Organization of the paper.

The remainder of the paper is organized as follows. Section 2 sets up notation and presents concepts to
formulate the main result in Section 2.6. Section 3 motivates the PCL-indexability conditions. Section 4
presents results for the indexability analysis of strongly thresholdable projects (see Definition 3), which are
relevant for complementing the approaches reviewed in Section 1.3. Section 5 reformulates the λ-price problem
Pλ as an LP problem over a space of measures. Section 6 presents a key result on decomposition of project
metrics. Section 7 establishes required properties of project metrics as functions of the threshold, including that
they are càdlàg (“continue à droite, limite à gauche,” i.e., right-continuous with left limits), and characterizes
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the MP index as a Radon–Nikodym derivative. Section 8 derives further required relations between project
metrics. Section 9 gives the proof of Theorem 1. Section 10 presents tools to establish that condition (PCLI3)
holds. Section 11 addresses index and metrics computation. Section 12 illustrates application of the proposed
approach in two models. Section 13 concludes.

An online companion containing two appendices provides relevant ancillary material. Section A motivates
the interest of indexability through a general resource-constrained RMABP. Section B presents geometric and
economic interpretations of the MP index under PCL-indexability, showing in particular that it can be charac-
terized as a resource shadow price.

2 Preliminaries and formulation of the main result.

We next set up notation, describe the single-project model, and present required concepts to formulate the main
result.

2.1 Notation.

We denote by X , {x ∈ R : ℓ 6 x 6 u} the project state space, which is a closed (possibly unbounded) interval
of R with endpoints −∞ 6 ℓ < u 6 ∞, and by K , X × {0, 1} its state-action space. For S ∈ B(X), the Borel
σ-algebra of X, we write the complement of S in X as Sc , X \ S, and denote by 1S(·) its indicator function.
All subsets of R and functions referred to are assumed to be Borel measurable. We write functions as, e.g.,
J(·), and denote by |J |(·) the corresponding absolute value, so |J |(x) = |J(x)|. We denote by C(X) the space
of real-valued continuous functions on X.

Throughout, x and y denote project states, and we use z ∈ R , R ∪ {−∞, ∞} to denote thresholds. For a
given threshold z, we use shorthands such as, e.g., {x > z} to mean {x ∈ X : x > z}.

We write as
∫

B
J dα or

∫
B

J(x) α(dx) the LS integral (see Carter and van Brunt (2000)) of a function J(·)
with respect to a function α(·) over B. When B is the domain of J(·) we write

∫
J dα.

We use the terms “increasing” and “decreasing” in the strict sense, and “iff” to mean “if and only if.”

2.2 Project model, performance metrics, and λ-price problems.

We consider a general restless bandit model of optimal dynamic resource allocation to a project, whose state
Xt moves in discrete time over an infinite horizon across the state space X.

At the start of period t = 0, 1, . . ., a controller observes the project state Xt and then chooses action
At ∈ {0, 1}, where At = 1 (resp. At = 0) codes the project being active (resp. passive). When (Xt, At) = (x, a):
(i) the project consumes c(x, a) units of a generic resource and yields a reward r(x, a), discounted with factor
β ∈ [0, 1); and (ii) its state moves to Xt+1 according to a Markov transition kernel κa(·, ·), so P{Xt+1 ∈
B | (Xt, At) = (x, a)} = κa(x, B) for B ∈ B(X).

We make the following standing assumption.

Assumption 1. For each action a ∈ {0, 1}:

(i) r(·, a), c(·, a) ∈ C(X), with c(·, a) satisfying 0 6 c(x, 0) < c(x, 1) for x ∈ X;

(ii) there is a function w : X → [1, ∞) and M > 0, β 6 γ < 1 such that, for any state x,

(ii.a) max{|r|(x, a), c(x, a)} 6 M w(x); and

(ii.b) βw̃(x, a) 6 γ w(x), where w̃(x, a) ,
∫

w(y) κa(x, dy);

Remark 1. (i) Assumption 1(ii) corresponds to the weighted sup-norm framework for discounted MDPs (see,
e.g., Lippman (1975); Wessels (1977) and Hernández-Lerma and Lasserre (1999, assumption 8.3.2)), which
allows functions r(·, a) and c(·, a) to be unbounded.

(ii) If w̃(x, a) 6 w(x), Assumption 1(ii.b) holds for any β by taking γ , β.
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Actions are selected through a policy π = (πt)
∞
t=0 from the class Π of nonanticipative policies, which at time

t selects action At = a with probability πt(a | Ht), a measurable function of the history Ht ,
(
(Xs, As)t−1

s=0; Xt

)
.

We shall further refer to the class ΠSR of stationary randomized policies, where πt(a | Ht) = q(a | Xt) for some
q(· | ·) > 0 with

∑
a q(a | x) = 1, and to the class ΠSD of stationary deterministic policies, where At = 1B(Xt)

for some active region B ∈ B(X), in which case we shall refer to the B-policy, writing π = B.
For a policy π ∈ Π and an initial-state probability measure ν0 on B(X) (written X0 ∼ ν0), let P

π
ν0

be the
probability measure determined (by Ionescu-Tulcea’s extension theorem; see Hernández-Lerma and Lasserre
(1996, proposition C.10)) on the space K

∞ of state-action paths with the product σ-algebra, with expectation
E

π
ν0

. We write P
π
x and E

π
x when ν0 = δx, the Dirac measure at x.

We evaluate a policy π starting from an initial state drawn from ν0 by the reward and resource (usage)
performance metrics

F (ν0, π) , E
π
ν0

[
∞∑

t=0

βtr(Xt, At)

]
and G(ν0, π) , E

π
ν0

[
∞∑

t=0

βtc(Xt, At)

]
, (3)

which we write as F (x, π) and G(x, π) when ν0 = δx, and as F (ν0, B) and G(ν0, B) when π = B.
If resource usage is charged at a price λ per unit, denote by Vλ(ν0, π) , F (ν0, π)−λG(ν0, π) the (net) project

value, and by V ∗
λ (ν0) , supπ∈Π Vλ(ν0, π) the optimal project value.

For any resource price λ consider the λ-price problem

Pλ : find π∗
λ ∈ Π such that Vλ(x, π∗

λ) = V ∗
λ (x) for every x ∈ X. (4)

We call a policy π∗
λ solving (4) Pλ-optimal. Consider the parametric problem collection

P , {Pλ : λ ∈ R}. (5)

We next review results from the weighted sup-norm framework that are needed in the sequel. Let Bw(K)
and Bw(X) be the Banach spaces (see Hernández-Lerma and Lasserre (1999, proposition 7.2.1)) of w-bounded
functions u : K → R and v : X → R, respectively, having finite w-norms

‖u‖w , sup
(x,a)∈K

|u|(x, a)

w(x)
and ‖v‖w , sup

x∈X

|v|(x)

w(x)
, (6)

and write as Pw(X) the space of probability measures ν0 on B(X) with finite w-norm

‖ν0‖w ,

∫
w dν0 = Eν0 [w(X0)]. (7)

Let further Cw(K) , C(K)∩Bw(K) and Cw(X) , C(X)∩Bw(X) denote the corresponding subspaces of w-bounded
continuous functions on K and X.

Henceforth, F (·, π), G(·, π) and Vλ(·, π) denote the reward, resource and net value project metrics viewed as
functions of the initial state x for a fixed policy π.

Remark 2. Under Assumption 1 (cf. Hernández-Lerma and Lasserre (1999, theorem 8.3.6)):

(i) For any action a, r(·, a), c(·, a) ∈ Cw(X); r(·, ·), c(·, ·) ∈ Cw(K); and κa(x, ·) ∈ Pw(X).

(ii) For any π ∈ Π and λ ∈ R, F (·, π), G(·, π), Vλ(·, π) ∈ Bw(X); and, with Mγ , M/(1 − γ),

max{‖F (·, π)‖w, ‖G(·, π)‖w} 6 Mγ and ‖Vλ(·, π)‖w 6 (1 + |λ|)Mγ . (8)

(iii) For π ∈ Π, ν0 ∈ Pw(X) and λ ∈ R, F (ν0, π), G(ν0, π) and Vλ(ν0, π) are well defined and finite, being equal
to

∫
F (x, π) ν0(dx),

∫
G(x, π) ν0(dx) and

∫
Vλ(x, π) ν0(dx), respectively, and satisfy

max{|F |(ν0, π), G(ν0, π)} 6 Mγ‖ν0‖w and |Vλ|(ν0, π) 6 (1 + |λ|)Mγ‖ν0‖w. (9)
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(iv) For any active region B ∈ B(X), F (·, B) and G(·, B) are characterized (cf. Hernández-Lerma and Lasserre
(1999, remark 8.3.10)) as the unique solutions in Bw(X) to the fixed-point equations

F (x, B) = r(x, 1B(x)) + β

∫
F (y, B) κ1B(x)(x, dy), x ∈ X,

G(x, B) = c(x, 1B(x)) + β

∫
G(y, B) κ1B(x)(x, dy), x ∈ X.

(10)

Later (see Section 6) we will find it convenient to use the reformulation of (10) in terms of the bounded
linear operator L ⋆ : Bw(X) → Bw(K) mapping v(·) to

L
⋆v(x, a) , v(x) − β

∫
v(y) κa(x, dy), (x, a) ∈ K, (11)

namely,

L
⋆F (·, B)(x, 1B(x)) = r(x, 1B(x)), x ∈ X,

L
⋆G(·, B)(x, 1B(x)) = c(x, 1B(x)), x ∈ X.

(12)

(v) For any price λ ∈ R, the Bellman operator Tλ : Bw(X) → Bw(X) defined by

Tλv(x) , max
a∈{0,1}

T
a

λ v(x), where T
a

λ v(x) , r(x, a) − λc(x, a) + β

∫
v(y) κa(x, dy), (13)

is a contraction mapping with modulus γ (see Assumption 1(ii)) and the Bellman equation (BE)

v = Tλv, (14)

has the optimal value function V ∗
λ (·) as its unique fixed point in Bw(X), which satisfies

‖V ∗
λ ‖w 6 (1 + |λ|)Mγ . (15)

(vi) For any price λ ∈ R there is a Pλ-optimal stationary deterministic policy; a policy in ΠSD is Pλ-optimal
iff it selects in each state x an action a with T a

λ V ∗
λ (x) > T

1−a
λ V ∗

λ (x).

We denote the optimal net project value starting from X0 = x with initial action A0 = a by

V
〈a,∗〉

λ (x) , T
a

λ V ∗
λ (x) = r(x, a) − λc(x, a) + β

∫
V ∗

λ (y) κa(x, dy). (16)

We say that action a is Pλ-optimal in state x if V
〈a,∗〉

λ (x) > V
〈1−a,∗〉

λ (x). It is convenient to reformulate

such a definition in terms of the sign of ∆a=1
a=0V

〈a,∗〉
λ (x) , V

〈1,∗〉
λ (x) − V

〈0,∗〉
λ (x), the marginal value of engaging

the project in state x. Thus, action a = 1 is Pλ-optimal in x if ∆a=1
a=0V

〈a,∗〉
λ (x) > 0; action a = 0 is Pλ-optimal

in x if ∆a=1
a=0V

〈a,∗〉
λ (x) 6 0; and both actions are Pλ-optimal in x if

∆a=1
a=0V

〈a,∗〉
λ (x) = 0. (17)

2.3 Indexability.

We will address the parametric problem collection P in (4) through the concept of indexability, extended by
Whittle (1988) from classic to restless bandits with resource consumption c(x, a) , a, and further extended by
Niño-Mora (2002) to general c(x, a).

For a given resource price λ, the Pλ-optimal active and passive regions are given by

S∗,1
λ ,

{
x ∈ X : ∆a=1

a=0V
〈a,∗〉

λ (x) > 0
}

and S∗,0
λ ,

{
x ∈ X : ∆a=1

a=0V
〈a,∗〉

λ (x) 6 0
}

, (18)

respectively. Under indexability, such regions are characterized by an index attached to project states. Note
that the definition below refers to the sign function sgn: R → {−1, 0, 1}.
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Definition 1 (Indexability). The project is indexable if there is a map λ∗ : X → R with

sgn ∆a=1
a=0V

〈a,∗〉
λ (x) = sgn(λ∗(x) − λ), for x ∈ X and λ ∈ R. (19)

We call λ∗(·) the project’s Whittle index (Gittins index if the project is nonrestless).

Remark 3.

(i) Whittle (1988) defined indexability when c(x, a) , a through an equivalent problem collection P ′ ,
{P ′

λ : λ ∈ R} differing from P (see (4)) in the net rewards, which are r(x, a) + λ(1 − a) for P ′
λ (so

λ represents a subsidy for passivity) and r(x, a) − λa for Pλ (so λ is a price of activity). Yet, their
equivalence is not ensured for projects with general c(x, a), where net rewards for P ′

λ and Pλ would
be r(x, a) + λc(x, 1 − a) and r(x, a) − λc(x, a), respectively. In such a general case, Niño-Mora (2002)
introduced a definition of indexability through the problem collection P as herein. The resulting index
is a generalized Whittle index, or a generalized Gittins index if projects are nonrestless.

(ii) Whittle (1988, p. 291) defined indexability as a property of the family of P ′
λ-optimal passive sets D(λ), in

that D(λ) “increases monotonically from ∅ to X as ν (his notation for our λ) increases from −∞ to +∞.”
He defined the index as the root (assumed to be unique) in λ of (17).

(iii) The project is indexable with index λ∗(·) if the Pλ-optimal action in each state x is nonincreasing in λ
with both actions being Pλ-optimal only for λ = λ∗(x); thus, for λ < λ∗(x) (resp. λ > λ∗(x)), a = 1 (resp.
a = 0) is the only Pλ-optimal action (cf. Niño-Mora (2014, section 2.3)); equivalently, for each x, equation

(17) in λ has the unique root λ∗(x), and ∆a=1
a=0V

〈a,∗〉
λ (x) > 0 for λ < λ∗(x) and ∆a=1

a=0V
〈a,∗〉

λ (x) < 0 for
λ > λ∗(x).

2.4 Thresholdability and threshold-indexability: weak and strong versions.

We address indexability in the case that it holds along with optimality of threshold policies. For any threshold
z we define the z-policy, with active and passive regions S1(z) , {x ∈ X : x > z} and S0(z) , {x ∈ X : x 6 z};
and the z−-policy, with active and passive regions S1(z−) , {x ∈ X : x > z} and S0(z−) , {x ∈ X : x < z}. We
write their metrics as F (ν0, z), G(ν0, z), F (ν0, z−) and G(ν0, z−).

The notation F (ν0, ·) and G(ν0, ·) refers to metrics F (ν0, z) and G(ν0, z) as functions of the threshold z on
R. The ambiguity of the notation F (ν0, z−) and G(ν0, z−) is resolved in Lemma 10(a), ensuring that the latter
metrics are also the left limits at z of F (ν0, ·) and G(ν0, ·), respectively.

To formalize the idea of optimality of threshold policies, we distinguish between weak and strong versions
of such a concept. The following weak version corresponds to the case that Pλ-optimal actions are partially
characterized by a threshold. Note that the term thresholdability has been used in a similar sense in the
literature. See, e.g., Ouyang et al. (2015).

Definition 2 (Thresholdability). We call the project thresholdable if there is a map z∗ : R → R such that, for
every project state x ∈ X and price λ ∈ R:

if x 6 z∗(λ) then ∆a=1
a=0V

〈a,∗〉
λ (x) 6 0; and

if x > z∗(λ) then ∆a=1
a=0V

〈a,∗〉
λ (x) > 0.

(20)

We call any such z∗(·) an optimal threshold map.

Remark 4. (i) If the project is thresholdable with z∗(·) satisfying (20), the optimal value function is V ∗
λ (x) =

Vλ(x, z∗(λ)) = Vλ(x, z∗(λ)−) for every x and λ.

(ii) The project is thresholdable if for every price λ ∈ R there is a threshold z ∈ R (not necessarily unique)
such that both the z-policy and the z−-policy are Pλ-optimal.

(iii) A sufficient condition for thresholdability is that, for every price λ ∈ R, V
〈a,∗〉

λ (x) is supermodular in (x, a),

i.e., ∆a=1
a=0V

〈a,∗〉
λ (x) is nondecreasing in x.
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(iv) Suppose a project is thresholdable. Could we use such information to establish its indexability, using only
intrinsic properties of its optimal threshold maps z∗(·)? Clearly the answer is negative, since (20) does
not fully characterize when each action is optimal, whereas (19) does.

Motivated by Remark 4(iv), we will further consider the following strong version of the thresholdability
property, under which the Pλ-optimal actions are fully characterized by a threshold.

Definition 3 (Strong thresholdability). We call the project strongly thresholdable if there is a map z∗ : R → R

such that
sgn ∆a=1

a=0V
〈a,∗〉

λ (x) = sgn(x − z∗(λ)), for x ∈ X and λ ∈ R. (21)

Remark 5.

(i) There can only be one optimal threshold map z∗(·) satisfying (21).

(ii) The project is strongly thresholdable with optimal threshold map z∗(·) if the Pλ-optimal action is non-
decreasing in the state x, with both actions being Pλ-optimal only for x = z∗(λ); thus, for x < z∗(λ)
(resp. x > z∗(λ)), a = 0 (resp. a = 1) is the only Pλ-optimal action (cf. Remark 3(iii)); equivalently, for

each λ, equation (17) in x has z∗(λ) as its unique root and, further, ∆a=1
a=0V

〈a,∗〉
λ (x) < 0 for x < z∗(λ) and

∆a=1
a=0V

〈a,∗〉
λ (x) > 0 for x > z∗(λ); or, for every λ, the Pλ-optimal active and passive regions are given by

S∗,1
λ = {x ∈ X : x > z∗(λ)} and S∗,0

λ = {x ∈ X : x 6 z∗(λ)}. (22)

The following definition formalizes the concept of indexability holding consistently with optimality of thresh-
old policies.

Definition 4 (Threshold-indexability). We call the project threshold-indexable if it is thresholdable and index-
able.

Our main aim is to identify sufficient conditions for threshold-indexability. We will further consider the
corresponding strong version of the latter property.

Definition 5 (Strong threshold-indexability). We call the project strongly threshold-indexable if it is strongly
thresholdable and indexable.

2.5 Marginal metrics and the MP index.

As key tools in our indexability analyses, we will use the concepts of marginal metrics and marginal productivity
(MP) index, introduced in Niño-Mora (2002) for the analysis of discrete-state projects.

For an action a and policy π, let 〈a, π〉 be the policy that takes action a in period t = 0 and adopts π
afterwards. We measure the changes in reward earned and in resource expended, respectively, resulting from a
change from 〈0, π〉 to 〈1, π〉 starting from x, by the marginal reward metric

f(x, π) ,
a=1

∆
a=0

F (x, 〈a, π〉) = F (x, 〈1, π〉) − F (x, 〈0, π〉) (23)

and the marginal resource (usage) metric

g(x, π) ,
a=1

∆
a=0

G(x, 〈a, π〉). (24)

Remark 6. (i) It follows from Remark 2(ii) and (23, 24) that, for any policy π ∈ Π,

f(·, π), g(·, π) ∈ Bw(X), with max{‖f(·, π)‖w, ‖g(·, π)‖w} 6 2Mγ. (25)
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(ii) For a given active region B, the functions f(·, B) and g(·, B) can be evaluated by

f(x, B) =





F (x, B) − r(x, 0) − β

∫
F (y, B) κ0(x, dy), x ∈ B

r(x, 1) + β

∫
F (y, B) κ1(x, dy) − F (x, B), x ∈ Bc,

g(x, B) =





G(x, B) − c(x, 0) − β

∫
G(y, B) κ0(x, dy), x ∈ B

c(x, 1) + β

∫
G(y, B) κ1(x, dy) − G(x, B), x ∈ Bc;

or, in terms of the linear operator L ⋆ in (11),

f(x, B) =

{
L

⋆F (·, B)(x, 0) − r(x, 0), x ∈ B

r(x, 1) − L
⋆F (·, B)(x, 1), x ∈ Bc,

(26)

g(x, B) =

{
L

⋆G(·, B)(x, 0) − c(x, 0), x ∈ B

c(x, 1) − L
⋆G(·, B)(x, 1), x ∈ Bc.

(27)

(iii) For a given project state x and policy π, f(x, π) and g(x, π) can be represented as

f(x, π) =
a=1

∆
a=0

{r(x, a) + βF (κa(x, ·), π)} and g(x, π) =
a=1

∆
a=0

{c(x, a) + βG(κa(x, ·), π)}. (28)

If g(x, B) 6= 0 for a given x and B, we measure the MP of engaging the project in state x at time t = 0,
given that the B-policy is adopted thereafter, by the MP metric

m(x, B) ,
f(x, B)

g(x, B)
. (29)

We shall further write as f(x, z), g(x, z), m(x, z) and f(x, z−), g(x, z−), m(x, z−) the marginal metrics for
the z-policy and the z−-policy, respectively (see Section 2.4).

We next use the MP metric to define the MP index.

Definition 6 (MP index). Suppose g(x, x) 6= 0 for any state x. The project’s MP index is the map m : X → R

given by

m(x) , m(x, x) =
f(x, x)

g(x, x)
, x ∈ X. (30)

Note the abuse of notation in (30), since m is used both for the MP index and the MP metric.

2.6 Main result: a verification theorem for threshold-indexability.

We next present our main result, giving sufficient conditions for threshold-indexability. The conditions corre-
spond to the concept of PCL-indexability, which is extended here to the real-state setting.

Definition 7 (PCL-indexability). We call the project PCL-indexable (with respect to threshold policies) if the
following PCL-indexability conditions hold:

(PCLI1) the marginal resource metric satisfies g(x, z) > 0 for every x ∈ X and z ∈ R;

(PCLI2) the MP index m(·) is nondecreasing and continuous on X;

(PCLI3) for each state x, the metrics F (x, ·), G(x, ·) and m(·) are related by (2).

Remark 7. (i) Conditions (PCLI1, PCLI2) match those given for discrete-state projects in Niño-Mora (2001,
2002, 2006), except for the continuity in (PCLI2).
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(ii) Under (PCLI1), the MP metric m(x, z) (see (29)) is well defined for every x and z.

(iii) Under (PCLI1, PCLI2), we extend the MP index domain to R by m(z) , m(ℓ) for z < ℓ if ℓ > −∞,
m(z) , m(u) for z > u if u < ∞, m(−∞) , limz→−∞ m(z), and m(∞) , limx→∞ m(x).

(iv) Under (PCLI1, PCLI2), it follows immediately that the range m(X) of m(·) is an interval.

(v) (PCLI3) requires that, for each state x, F (x, ·) be an indefinite LS integral of the MP index m(·) with
respect to G(x, ·). The existence of such integrals is justified in Lemma 12.

(vi) For discrete-state projects, (PCLI1) implies (PCLI3). See Niño-Mora (2002, theorem 6.4(b)) for the
finite-state case and Niño-Mora (2006, lemma 5.5.(a)) for the denumerable-state case.

(vii) For any initial-state distribution ν0 ∈ Pw(X), (PCLI3) yields (cf. Remark 2(iii))

F (ν0, z2) − F (ν0, z1) =

∫

(z1,z2]

m(z) G(ν0, dz), −∞ < z1 < z2 < ∞. (31)

For a project satisfying (PCLI1, PCLI2), define for any price λ ∈ R the threshold set

Zλ ,






{z ∈ R : m(z) = λ} if {x ∈ X : m(x) = λ} 6= ∅

{z ∈ R : z < ℓ} if ℓ > −∞ and λ < m(x) for every x ∈ X

{−∞} if ℓ = −∞ and λ < m(x) for every x ∈ X

{z ∈ R : z > u} if u < ∞ and λ > m(x) for every x ∈ X

{∞} if u = ∞ and λ > m(x) for every x ∈ X.

(32)

Under (PCLI1, PCLI2), we shall refer to the generalized inverse (cf. Falkner and Teschl (2012, p. 413)) of
the MP index. We shall call a threshold map ζ : R → R a generalized inverse of m(·) if

ζ(λ) ∈ Zλ, λ ∈ R. (33)

The following result gives two key properties of such generalized inverses of the MP index.

Lemma 1. Assume (PCLI1, PCLI2) hold and let ζ(·) be a generalized inverse of m(·). For any project state x
and resource price λ the following holds:

(a) if x 6 ζ(λ) then m(x) 6 λ; and if x > ζ(λ) then m(x) > λ;

(b) ζ(·) is increasing on the interval m(X).

Proof. (a) This part follows follows straightforwardly from (32) and (33).
(b) Let ζ(·) be a generalized inverse of m(·) and suppose ζ(·) were not increasing on m(X), which is an interval

by (PCLI2). Then there would exist m(x1) = λ1 < λ2 = m(x2) with x1, x2 ∈ X and ζ(λ1) > ζ(λ2). Now, from
ζ(λk) ∈ Zλk

, (32), (33) and nondecreasingness of m(·) it would follow that λ1 = m(ζ(λ1)) > m(ζ(λ2)) = λ2, a
contradiction. Hence ζ(·) must be increasing on m(X).

We next state the verification theorem.

Theorem 1. Under (PCLI1–PCLI3), the project is threshold-indexable with Whittle index m(·), and its optimal
threshold maps are the generalized inverses ζ(·) of m(·).

The proof of Theorem 1, given in Section 9, builds on a number of implications of PCL-indexability conditions
(PCLI1–PCLI3), which are developed in Section 5–8.
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3 Motivation of the PCL-indexability conditions.

This section presents results motivating the PCL-indexability conditions.
We start by characterizing thresholdability for an indexable project, in its weak and strong versions (see

Definitions 2 and 3), in terms of properties of the Whittle index. The following result shows that condition
(PCLI2) is necessary for threshold-indexability, and further characterizes optimal threshold maps as generalized
inverses of the Whittle index (cf. Theorem 1).

Lemma 2. Suppose the project is indexable with Whittle index λ∗(·). Then it is thresholdable iff λ∗(·) is non-
decreasing and continuous, in which case its optimal threshold maps z∗(·) are the generalized inverses of λ∗(·),
which are increasing on λ∗(X).

Proof. Suppose the project is thresholdable. To obtain a contradiction, suppose λ∗(·) were not nondecreasing.
Then there would be states x < y with λ∗(y) < λ∗(x) and, for any price λ∗(y) < λ < λ∗(x), indexability would
imply (see Remark 3(iii)) that a = 0 and a = 1 are the only Pλ-optimal actions in y and x, respectively, which
would rule out Pλ-optimality of a threshold policy. Hence λ∗(·) must be nondecreasing. It further follows that
λ∗(·) can only have jump discontinuities, so the left and right limits λ∗(x−) and λ∗(x+) exist at states x > ℓ
and x < u, respectively.

To show that λ∗(·) is left-continuous, suppose λ∗(y−) < λ∗(y) for some y > ℓ. Then for any λ∗(y−) < λ <
λ∗(y) and x1 < y < x2, it would be λ∗(x1) 6 λ∗(y−) < λ < λ∗(y) < λ∗(x2) by nondecreasingness of λ∗(·).
Hence, indexability (cf. Remark 3(iii)) would imply that the only Pλ-optimal threshold policy would be the
y−-policy, contradicting thresholdability (cf. Remark 4(i)).

As for right-continuity of λ∗(·), if there were a state y < u with λ∗(y) < λ∗(y+), then for any λ∗(y) < λ <
λ∗(y+) and states x1 < y < x2 it would be λ∗(x1) 6 λ∗(y) < λ < λ∗(y+) 6 λ∗(x2). Hence by indexability the
y-policy would be the only Pλ-optimal threshold policy, again a contradiction.

As for the reverse implication, suppose λ∗(·) is nondecreasing and continuous, and fix λ ∈ R. Then, it is
immediate from the assumptions that for the following choices of z both the z-policy and the z−-policy are
Pλ-optimal: if λ∗(x) < λ for every state x, take any z > u if u < ∞, and z = ∞ if u = ∞; if λ∗(x) > λ for every
state x, take any z < ℓ if ℓ > −∞, and z = −∞ if ℓ = −∞; and, otherwise, take as z any state with λ∗(z) = λ,
whose existence is ensured by (PCLI2). This shows both that the project is thresholdable (see Remark 4(i)),
and that its optimal threshold maps z∗(·) are the generalized inverses of λ∗(·). It further follows as in the proof
of Lemma 1(b) that any such z∗(·) must be increasing on λ∗(X).

The next result characterizes via marginal metrics the optimal regions S∗,a
λ in (18). Let λ ∈ R.

Lemma 3. Let policy π∗ be Pλ-optimal. Then

S∗,1
λ = {x ∈ X : f(x, π∗) − λg(x, π∗) > 0} and S∗,0

λ = {x ∈ X : f(x, π∗) − λg(x, π∗) 6 0}.

Proof. Since π∗ is Pλ-optimal, we can reformulate (18) as

S∗,a
λ =

{
x ∈ X : Vλ(x, 〈a, π∗〉) > Vλ(x, 〈1 − a, π∗〉)

}
, a ∈ {0, 1}. (34)

Now, it immediately follows that

a=1

∆
a=0

Vλ(x, 〈a, π∗〉) = f(x, π∗) − λg(x, π∗), (35)

which, along with (34), yields the result.

The next result justifies using the MP index m(·) as a candidate for the project’s Whittle index.

Proposition 1. Let the project be threshold-indexable with Whittle index λ∗(·). Then

(a) f(x, x) − λ∗(x)g(x, x) = 0 = f(x, x−) − λ∗(x)g(x, x−) for every state x;

(b) λ∗(x) = m(x) for any state x with g(x, x) 6= 0;

14



(c) under (PCLI1), λ∗(·) = m(·).

Proof. (a) Since the project is threshold-indexable, λ∗(·) is nondecreasing by Lemma 2. It follows from this and
Definition 1 that both the x-policy and the x−-policy are Pλ-optimal for λ = λ∗(x). Hence, Lemma 3 implies
that f(x, x) − λ∗(x)g(x, x) = f(x, x−) − λ∗(x)g(x, x−) = 0.

(b) This part follows from the first identity in (a) and (30).
(c) This part follows from (b) and (PCLI1).

The following two lemmas will be used to establish in Proposition 2 the necessity of (PCLI3) for threshold-
indexability. Note that, for any x, the map λ 7→ V ∗

λ (x) is convex on R, as V ∗
λ (x) is the supremum of linear maps

in λ. Hence, it is differentiable almost everywhere and has a nonempty set of subgradients (see, e.g., Niculescu
and Persson (2006, §1.5)) at every λ, which we denote by ∂V ∗

λ (x). The following result shows how to obtain
subgradients of such a map. Let x ∈ X and λ ∈ R.

Lemma 4. If π∗ is a Pλ-optimal policy, then −G(x, π∗) ∈ ∂V ∗
λ (x).

Proof. Let δ > 0. Using that V ∗
λ (x) = F (x, π∗) − λG(x, π∗), we have

V ∗
λ (x) − δG(x, π∗) = F (x, π∗) − (λ + δ)G(x, π∗) = Vλ+δ(x, π∗) 6 V ∗

λ+δ(x)

and
V ∗

λ (x) + δG(x, π∗) = F (x, π∗) − (λ − δ)G(x, π∗) = Vλ−δ(x, π∗) 6 V ∗
λ−δ(x),

whence
V ∗

λ (x) − V ∗
λ−δ(x) 6 −δG(x, π∗) 6 V ∗

λ+δ(x) − V ∗
λ (x).

This shows that −G(x, π∗) is a subgradient of V ∗
λ (x).

Lemma 5. Suppose the project is thresholdable and let z∗(·) be an optimal threshold map. Then for any state
x and prices λ1 < λ2,

(a) V ∗
λ1

(x) − V ∗
λ2

(x) =
∫

(λ1,λ2]
G(x, z∗(λ)) dλ;

(b) ∆a=1
a=0V

〈a,∗〉
λ1

(x) − ∆a=1
a=0V

〈a,∗〉
λ2

(x) =
∫

(λ1,λ2]
g(x, z∗(λ)) dλ.

Proof. (a) This follows from the integral representation of convex functions (see Niculescu and Persson (2006,
proposition 1.6.1)) and Lemma 4, as −G(x, z∗(λ)) ∈ ∂V ∗

λ (x).
(b) We have

V
〈a,∗〉

λ1
(x) − V

〈a,∗〉
λ2

(x) = (λ2 − λ1)c(x, a) + β

∫ [
V ∗

λ1
(y) − V ∗

λ2
(y)

]
κa(x, dy)

= (λ2 − λ1)c(x, a) + β

∫ ∫

(λ1,λ2]

G(y, z∗(λ)) dλ κa(x, dy)

=

∫

(λ1,λ2]

[
c(x, a) + β

∫
G(y, z∗(λ)) κa(x, dy)

]
dλ,

where we have used that V
〈a,∗〉

λ (x) = r(x, a) − λc(x, a) + β
∫

V ∗
λ (y) κa(x, dy), part (a), and Fubini’s theorem

(using that G(x, π) > 0). Therefore we obtain, as required,

∆a=1
a=0

[
V

〈a,∗〉
λ1

(x) − V
〈a,∗〉

λ2
(x)

]
=

∫

(λ1,λ2]

g(x, z∗(λ)) dλ.

The following result shows that condition (PCLI3) in (2) is necessary for threshold-indexability. Its proof
relies on G(x, ·) being a right-continuous function of bounded variation on finite intervals, to ensure the validity
of identities (36) and (37). This is proved in Lemmas 10 and 11.
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Proposition 2. Suppose the project is threshold-indexable with index λ∗(·). Then for any x,

F (x, z2) − F (x, z1) =

∫

(z1,z2]

λ∗(z) G(x, dz), −∞ < z1 < z2 < ∞.

Proof. Assume with no loss of generality that z1, z2 ∈ X. Let z∗(·) be an optimal threshold map. By Lemma 2,
z∗(·) is a generalized inverse of the nondecreasing continuous map λ∗(·), and hence we can apply the change of
variable formula in Falkner and Teschl (2012, Eq. (1)) to obtain

∫

(z1,z2]

G(x, z) λ∗(dz) =

∫

(λ1,λ2]

G(x, z∗(λ)) dλ, (36)

where λk = λ∗(zk) for k = 1, 2.
On the other hand, integration by parts (see Carter and van Brunt (2000, theorem 6.2.2)) gives

∫

(z1,z2]

G(x, z) λ∗(dz) = λ2G(x, z2) − λ1G(x, z1) −

∫

(z1,z2]

λ∗(z) G(x, dz). (37)

Furthermore, we can write

V ∗
λ1

(x) − V ∗
λ2

(x) = F (x, z1) − λ1G(x, z1) − F (x, z2) + λ2G(x, z2). (38)

Now, we use in turn (38), Lemma 5(a), (37) and (36) to obtain

F (x, z2) − F (x, z1) = λ2G(x, z2) − λ1G(x, z1) − V ∗
λ1

(x) + V ∗
λ2

(x)

=

∫

(z1,z2]

G(x, z) λ∗(dz) +

∫

(z1,z2]

λ∗(z) G(x, dz) −

∫

(λ1,λ2]

G(x, z∗(λ)) dλ

=

∫

(z1,z2]

λ∗(z) G(x, dz).

4 Indexability of strongly thresholdable projects.

We next present results relevant to prevailing approaches to indexability (see Section 1.3), which rely on first
establishing strong thresholdability.

Lemma 6. An indexable project is strongly thresholdable iff its index λ∗(·) is increasing and continuous, in
which case its optimal threshold map z∗(·) is increasing and continuous on λ∗(X).

Proof. Suppose the project is strongly thresholdable. Then, by Lemma 2, λ∗(·) is nondecreasing and continuous.
To show that its Whittle index λ∗(·) must be increasing note that, from Definitions 1 and 3, its unique (see
Remark 5(i)) optimal threshold map z∗(·) and Whittle index satisfy

sgn(x − z∗(λ)) = sgn(λ∗(x) − λ), for x ∈ X and λ ∈ R. (39)

Take states x1 < x2. Then, writing λk , λ∗(xk), (39) yields z∗(λk) = xk for k = 1, 2. We now use again (39)
to obtain, as required,

sgn(λ1 − λ2) = sgn(λ∗(x1) − λ2) = sgn(x1 − z∗(λ2)) = sgn(x1 − x2) < 0.

Consider now the reverse implication, so λ∗(·) is assumed increasing and continuous. Then it has a unique
inverse z∗(·) , λ∗,−1(·) on the interval λ∗(X), which is also increasing and continuous, and satisfies the identity
in (39) for x ∈ X and λ ∈ λ∗(X). If λ∗(X) 6= R, it is immediate to extend the domain of such a z∗(·) to R

consistently with (39). This yields strong thresholdability.
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The next result shows that to establish indexability of a strongly thresholdable project it does not suffice to
prove that its optimal threshold map is increasing. It needs also to be proved that the optimal threshold map
is continuous. Note that z∗,−1(X) , {λ : z∗(λ) ∈ X}.

Proposition 3. Assume the project is strongly thresholdable with optimal threshold map z∗(·). Then it is
indexable iff z∗(·) is increasing and continuous on z∗,−1(X), in which case its Whittle index is also increasing
and continuous, being λ∗(x) = z∗,−1(x) for x ∈ X.

Proof. If the project is indexable, the stated properties of z∗(·) follow by Lemma 2.
As for the reverse implication, suppose the project is strongly thresholdable with z∗(·) increasing and con-

tinuous on z∗,−1(X). Then the restriction of z∗(·) on the domain z∗,−1(X) has a unique inverse λ∗(·) , z∗,−1(·),
which is also increasing and continuous, and satisfies (39). This implies that the project is indexable with
Whittle index λ∗(·), which completes the proof.

5 LP reformulation of the λ-price problem starting from X0 ∼ ν0.

This section lays down further groundwork for proving Theorem 1. It draws upon standard results to reformulate
the problem

Pλ(ν0) : maximize
π∈Π

Vλ(ν0, π), (40)

which is the λ-price problem Pλ in (4) starting from X0 ∼ ν0 ∈ Pw(X), as an LP problem.
For any policy π ∈ Π, consider the state-action occupation measure µπ

ν0
defined by

µπ
ν0

(Γ) , E
π
ν0

[
∞∑

t=0

βt1Γ(Xt, At)

]
=

∞∑

t=0

βt
P

π
ν0

{(Xt, At) ∈ Γ}, Γ ∈ B(K). (41)

Since the objective of problem Pλ(ν0) can be represented in terms of µπ
ν0

as

Vλ(ν0, π) =

∫
(r − λc) dµπ

ν0
=

∫
{r(y, a) − λc(y, a)} µπ

ν0
(d(y, a)),

we can reformulate the dynamic optimization problem Pλ(ν0) as the static optimization problem

Lλ(ν0) : maximize
µ∈Mν0

∫
(r − λc) dµ, (42)

where Mν0 , {µπ
ν0

: π ∈ Π}, which is characterized by linear constraints (see, e.g., Heilmann (1979) and
Hernández-Lerma and Lasserre (1996, §6.3)) as outlined below.

The µπ
ν0

belong (see Hernández-Lerma and Lasserre (1999, proposition 7.2.2)) to the Banach space Mw(K)
of finite signed measures µ on B(K) with finite w-norm (with |µ| the total variation of µ)

‖µ‖w , sup
h∈Bw(K),‖h‖w61

∣∣∣∣
∫

h dµ

∣∣∣∣ =

∫
w d|µ| =

∫
w(y) |µ|(d(y, a)). (43)

For any µ ∈ Mw(K) consider the marginal signed measures on B(X) defined by µ̃a(S) , µ(S × {a}) for
a ∈ {0, 1}, and µ̃(S) , µ(S × {0, 1}) =

∑
a∈{0,1} µ̃a(S), which belong to the Banach space Mw(X) of finite

signed measures ν on B(X) with finite w-norm (cf. (7))

‖ν‖w , sup
v∈Bw(X),‖v‖w61

∣∣∣∣
∫

v dν

∣∣∣∣ =

∫
w d|ν| =

∫
w(y) |ν|(dy). (44)

In particular, the marginal action/state-occupation measures for µπ
ν0

, µ̃π,a
ν0

and µ̃π
ν0

, are in Mw(X).
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Both (Mw(K),Bw(K)) and (Mw(X),Bw(X)) are known to be dual pairs of vector spaces (see Hernández-Lerma
and Lasserre (1999, §12.2.A)) with respect to the bilinear forms

〈µ, h〉 ,

∫
h dµ =

∫
h(y, a) µ(d(y, a)), µ ∈ Mw(K), h ∈ Bw(K), (45)

〈ν, v〉 ,

∫
v dν =

∫
v(y) ν(dy), ν ∈ Mw(X), v ∈ Bw(X). (46)

Consider now the linear operators L a : Mw(K) → Mw(X) for a ∈ {0, 1}, mapping µ to

L
aµ(S) , µ̃a(S) − β

∫
κa(y, S) µ̃a(dy), S ∈ B(X), (47)

and the linear operator L , L 0 + L 1. Note that

L µ(S) , µ̃(S) − β

∫
κa(y, S) µ(d(y, a)), S ∈ B

(
X

)
. (48)

Such operators are bounded (cf. Hernández-Lerma and Lasserre (1999, §7.2.B)).
It is known (cf. Heilmann (1977, theorem 8) and Hernández-Lerma and Lasserre (1996, theorem 6.3.7)) that

Mν0 in (42) is a compact and convex region of Mw(K), which is spanned by stationary randomized policies and
is characterized by linear constraints as

Mν0 = {µπ
ν0

: π ∈ ΠSR} = {µ ∈ M
+

w(K) : L µ = ν0}, (49)

where M+
w(K) , {µ ∈ Mw(K) : µ > 0} is the cone of measures in Mw(K).

We can thus explicitly formulate problem Lλ(ν0) in (42) as the infinite-dimensional LP problem

Lλ(ν0) : maximize 〈µ, r − λc〉

subject to : L µ = ν0, µ ∈ M
+

w(K).
(50)

6 Decomposition of performance metrics.

We present in this section a key decomposition of project performance metrics, which will be used in subsequent
analyses.

We need a preliminary result. Note that the linear operator L ⋆ in (11) is (cf. Hernández-Lerma and Lasserre
(1996, p. 139)) the adjoint of L in (48), as it satisfies the basic adjoint relation

〈L µ, v〉 = 〈µ, L ⋆v〉, µ ∈ Mw(K), v ∈ Bw(X), (51)

or, in terms of the operators L a in (47),
∑

a∈{0,1}

〈L aµ, v〉 = 〈µ, L ⋆v〉. (52)

The next result (which the author has not found in the literature) gives a decomposition of (52).

Lemma 7. For any a ∈ {0, 1}, µ ∈ Mw(K) and v ∈ Bw(X),

〈L aµ, v〉 = 〈µ̃a, L ⋆v(·, a)〉.

Proof. Let a ∈ {0, 1} and µ ∈ Mw(K). For any S ∈ B(X) we have

〈L aµ, 1S〉 = L
aµ(S) =

∫ {
1S(x) − β

∫
1S(y) κa(x, dy)

}
µ̃a(dx)

=

∫
L

⋆1S(x, a) µ̃a(dx) = 〈µ̃a, L ⋆1S(·, a)〉,

where we have used (46), (47), (11), and (45). By standard arguments, it follows from the above that 〈L aµ, v〉 =
〈µ̃a, L ⋆v(·, a)〉 for any v ∈ Bw(X).
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We next give the main result of this section, consisting of two parts. Part (a) decomposes the reward metric
F (ν0, π) as the sum of F (ν0, B) for a given active region B and a linear combination of µ̃π,a

ν0
. Part (b) similarly

decomposes the resource metric G(ν0, π). This result extends to real-state projects corresponding results for the
discrete-state case in Niño-Mora (2001, theorem 3), Niño-Mora (2002, proposition 6.1) and Niño-Mora (2006,
lemma 5.4). Let ν0 ∈ Pw(X).

Lemma 8. For any policy π ∈ Π and active region B,

(a) F (ν0, π) = F (ν0, B) −
∫

B
f(y, B) µ̃π,0

ν0
(dy) +

∫
Bc f(y, B) µ̃π,1

ν0
(dy), viz.,

F (ν0, π) = F (ν0, B) + E
π
ν0

[
∞∑

t=0

βt{At − 1B(Xt)} f(Xt, B)

]
; (53)

(b) G(ν0, π) = G(ν0, B) −
∫

B
g(y, B) µ̃π,0

ν0
(dy) +

∫
Bc g(y, B) µ̃π,1

ν0
(dy), viz.,

G(ν0, π) = G(ν0, B) + E
π
ν0

[
∞∑

t=0

βt{At − 1B(Xt)} g(Xt, B)

]
. (54)

Proof. (a) Using in turn Lemma 7, (46), (26) and (12), we can write

〈L 0µπ
ν0

, F (·, B)〉 =
〈
µ̃π,0

ν0
, L ⋆F (·, B)(·, 0)

〉
=

∫
L

⋆F (·, B)(y, 0) µ̃π,0
ν0

(dy)

=

∫

B

L
⋆F (·, B)(y, 0) µ̃π,0

ν0
(dy) +

∫

Bc

L
⋆F (·, B)(y, 0) µ̃π,0

ν0
(dy)

=

∫

B

{r(y, 0) + f(y, B)} µ̃π,0
ν0

(dy) +

∫

Bc

r(y, 0) µ̃π,0
ν0

(dy)

=

∫
r(y, 0) µ̃π,0

ν0
(dy) +

∫

B

f(y, B) µ̃π,0
ν0

(dy)

and

〈L 1µπ
ν0

, F (·, B)〉 =
〈
µ̃π,1

ν0
, L ⋆F (·, B)(·, 1)

〉
=

∫
L

⋆F (·, B)(y, 1) µ̃π,1
ν0

(dy)

=

∫

B

L
⋆F (·, B)(y, 1) µ̃π,1

ν0
(dy) +

∫

Bc

L
⋆F (·, B)(y, 1) µ̃π,1

ν0
(y)

=

∫

B

r(y, 1) µ̃π,1
ν0

(dy) +

∫

Bc

{r(y, 1) − f(y, B)} µ̃π,1
ν0

(dy)

=

∫
r(y, 1) µ̃π,1

ν0
(dy) −

∫

Bc

f(y, B) µ̃π,1
ν0

(dy).

Further, using that L =
∑

a∈{0,1} L a, (49) and (46), we obtain

∑

a∈{0,1}

〈L aµπ
ν0

, F (·, B)〉 = 〈L µπ
ν0

, F (·, B)〉 = 〈ν0, F (·, B)〉 = F (ν0, B).

Combining the above identities with

F (ν0, π) =

∫
r dµπ

ν0
=

∑

a∈{0,1}

∫
r(y, a) µ̃π,a

ν0
(dy).

we readily obtain the stated decomposition identity

F (ν0, π) = F (ν0, B) −

∫

B

f(y, B) µ̃π,0
ν0

(dy) +

∫

Bc

f(y, B) µ̃π,1
ν0

(dy). (55)
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As for (53), it follows by reformulating (55) using that

∫

B

f(y, B) µ̃π,0
ν0

(dy) = E
π
ν0

[
∞∑

t=0

βt1B×{0}(Xt, At) f(Xt, B)

]

and ∫

Bc

f(y, B) µ̃π,1
ν0

(dy) = E
π
ν0

[
∞∑

t=0

βt1Bc×{1}(Xt, At) f(Xt, B)

]

as

F (ν0, π) + E
π
ν0

[
∞∑

t=0

βt1B×{0}(Xt, At) f(Xt, B)

]
= F (ν0, B) + E

π
ν0

[
∞∑

t=0

βt1Bc×{1}(Xt, At) f(Xt, B)

]
,

and then reformulating the latter identity as (53) noting that, for any state x and action a,

1Bc×{1}(x, a) − 1B×{0}(x, a) = a − 1B(x).

Part (b) follows along the same lines as part (a).

We will use Lemma 8 as a powerful tool to generate useful identities.

7 Analysis of metrics as functions of the threshold.

This section presents properties of metrics under threshold policies as functions of the threshold. Throughout,
ν0 ∈ Pw(X) and x ∈ X.

7.1 Càdlàg property.

Lemma 10 shows that F (ν0, z), G(ν0, z), f(x, z) and g(x, z) are càdlàg in z ∈ R. We need the following result,
referring to the extension to R of the state-occupation measures µ̃π

ν0
, viz., µ̃π

ν0
(S) , µ̃π

ν0
(S ∩ X) for S ∈ B(R).

We abuse notation by letting, e.g., [z1, z2] mean {z ∈ R : z1 6 z 6 z2}, even when z1 = −∞ or z2 = ∞, and
similarly with other intervals.

Lemma 9. For any thresholds −∞ 6 z1 < z2 6 ∞,

(a) F (ν0, z1) − F (ν0, z2) =
∫

(z1,z2]
f(y, z2) µ̃z1

ν0
(dy) =

∫
(z1,z2]

f(y, z1) µ̃z2
ν0

(dy);

(b) G(ν0, z1) − G(ν0, z2) =
∫

(z1,z2] g(y, z2) µ̃z1
ν0

(dy) =
∫

(z1,z2] g(y, z1) µ̃z2
ν0

(dy);

(c) F (ν0, z1) − F (ν0, z−

2 ) =
∫

(z1,z2)
f(y, z−

2 ) µ̃z1
ν0

(dy) =
∫

(z1,z2)
f(y, z1) µ̃

z
−
2

ν0 (dy);

(d) G(ν0, z1) − G(ν0, z−

2 ) =
∫

(z1,z2)
g(y, z−

2 ) µ̃z1
ν0

(dy) =
∫

(z1,z2)
g(y, z1) µ̃

z
−
2

ν0 (dy).

(e) F (ν0, z−

1 ) − F (ν0, z2) =
∫

[z1,z2]
f(y, z2) µ̃

z−
1

ν0 (dy) =
∫

[z1,z2]
f(y, z−

1 ) µ̃z2
ν0

(dy);

(f) G(ν0, z−

1 ) − G(ν0, z2) =
∫

[z1,z2] g(y, z−

2 ) µ̃
z

−
1

ν0 (dy) =
∫

[z1,z2] g(y, z−

1 ) µ̃z2
ν0

(dy).

Proof. (a, b) For the first identity take π = z1 and B = (z2, u] in Lemma 8(a, b), using that µ̃z1,0
ν0

(z1, u] =
µ̃z1,1

ν0
[ℓ, z1] = 0 and µ̃z1,1

ν0
= µ̃z1

ν0
on B(z1, z2]. For the second identity take π = z2 and B = (z1, u], using that

µ̃z2,0
ν0

(z2, u] = µ̃z2,1
ν0

[ℓ, z1] = 0 and µ̃z2,0
ν0

= µ̃z2
ν0

on B(z1, z2].
(c, d) For the first identity take π = z1 and B = [z2, u] in Lemma 8(a, b), using that µ̃z1,0

ν0
[z2, u] =

µ̃z1,1
ν0

[ℓ, z1] = 0 and µ̃z1,1
ν0

= µ̃z1
ν0

on B(z1, z2). For the second identity take π = z−
2 and B = (z1, u], using that

µ̃
z

−
2 ,0

ν0 [z2, u] = µ̃
z

−
2 ,1

ν0 [ℓ, z1] = 0 and µ̃
z

−
2 ,0

ν0 = µ̃
z

−
2

ν0 on B(z1, z2).
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(e, f) For the first identity take π = z−
1 and B = (z2, u] in Lemma 8(a, b), using that µ̃

z
−
1 ,0

ν0 (z2, u] =

µ̃
z

−
1 ,1

ν0 (X̄c
z1

) = 0 and µ̃
z

−
1 ,1

ν0 = µ̃
z

−
1

ν0 on B[z1, z2]. For the second identity take π = z2 and B = [z1, u], using that
µ̃z2,0

ν0
(z2, u] = µ̃z2,1

ν0
[ℓ, z1) = 0 and µ̃z2,0

ν0
= µ̃z2

ν0
on B[z1, z2].

Recall from Section 2.4 that the notation F (ν0, z−) (for this and other metrics) refers to F (ν0, π) under
the z−-policy. The next result ensures the consistency of such notation with the standard one where F (ν0, z−)
denotes the left limit at z of function F (ν0, ·). The result further shows the consistency of the notation F (ν0, −∞)
and F (ν0, ∞), where the second argument refers to the threshold policies −∞ (“always active”) and ∞ (“never
active”) with the standard notation where F (ν0, −∞) and F (ν0, ∞) are the limits of F (ν0, z) as z → −∞ and
as z → ∞, respectively.

Lemma 10. The following holds:

(a) F (ν0, ·), G(ν0, ·), f(x, ·) and g(x, ·) are bounded càdlàg functions with left limits at z ∈ R given by F (ν0, z−),
G(ν0, z−), f(x, z−) and g(x, z−);

(b) limz→−∞ (F (ν0, z), G(ν0, z), f(x, z), g(x, z)) = (F (ν0, −∞), G(ν0, −∞), f(x, −∞), g(x, −∞));

(c) limz→∞ (F (ν0, z), G(ν0, z), f(x, z), g(x, z)) = (F (ν0, ∞), G(ν0, ∞), f(x, ∞), g(x, ∞)).

Proof. (a) We first show that F (ν0, ·) is right-continuous at z. From Lemma 9(a) we obtain (with Mγ as in
(8)), for δ > 0,

∣∣F (ν0, z + δ) − F (ν0, z)
∣∣ 6

∫

(z,z+δ]

|f |(y, z + δ) µ̃z
ν0

(dy) 6 2Mγ

∫

(z,z+δ]

w(y) µ̃z
ν0

(dy) → 0 as δ ց 0,

where the second inequality follows from (25), and the limit follows by the dominated convergence theorem,
since µ̃z

ν0
∈ Mw(X) (see Section 5). The result for G(ν0, ·) follows similarly. Furthermore,

lim
δց0

f(x, z + δ) = lim
δց0

a=1

∆
a=0

{
r(x, a) + β

∫
F (y, z + δ) κa(x, dy)

}

=
a=1

∆
a=0

{
r(x, a) + β

∫
F (y, z) κa(x, dy)

}
= f(x, z),

where the interchange of limit and integral is justified by the dominated convergence theorem, using (8) and
the right-continuity of F (y, ·). The result for g(x, ·) follows similarly.

Consider now the left limits. From Lemma 9(c) and arguing as above we obtain

∣∣F (ν0, z − δ) − F (ν0, z−)
∣∣ 6

∫

(z−δ,z)

|f |(y, z − δ) µ̃z−

ν0
(dy) 6 2Mγ

∫

(z−δ,z)

w(y) µ̃z−

ν0
(dy) → 0 as δ ց 0,

and similarly for the left limits of G(ν0, ·), f(x, ·) and g(x, ·) at z.
(b) The result is trivial if ℓ is finite, so suppose ℓ = −∞. For any finite z, taking z1 = −∞ and z2 = z in

the first identity in Lemma 9(a) yields

F (ν0, −∞) = F (ν0, z) +

∫

(−∞,z]

f(y, z) µ̃−∞
ν0

(dy). (56)

The result that limz→−∞ F (ν0, z) = F (ν0, −∞) now follows from (56) by the dominated convergence theorem,
arguing as in part (a). The results for G(ν0, −∞), f(x, −∞) and g(x, −∞) follow similarly.

(c) The result is trivial if u is finite, so suppose u = ∞. For any finite z, taking z1 = z and z2 = ∞ in the
second identity in Lemma 9(a) yields

F (ν0, ∞) = F (ν0, z) −

∫

(z,∞)

f(y, z) µ̃∞
ν0

(dy). (57)

The result that limz→∞ F (ν0, z) = F (ν0, ∞) follows from (57) by the dominated convergence theorem, arguing
as in part (a). The results for G(ν0, ∞), f(x, ∞) and g(x, ∞) follow similarly.

21



7.2 Monotonicity of resource metric.

The next result shows that, under (PCLI1), the resource metric G(ν0, z) is, as intuition would suggest, monotone
nonincreasing in the threshold z.

Lemma 11. Let (PCLI1) hold. Then

(a) G(ν0, z) is nonincreasing in z on R;

(b) if ν0 has full support X then G(ν0, z) is decreasing in z on X.

Proof. (a) For finite z1 < z2, Lemma 9(b) and (PCLI1) yield G(ν0, z1) > G(ν0, z2).
(b) Lemma 9(b) further implies that, for any finite thresholds z1 < z2 in X,

G(ν0, z1) − G(ν0, z2) =

∫

(z1,z2]

g(y, z2) µ̃z1
ν0

(dy) > 0, (58)

where the inequality follows from (PCLI1) and µ̃z1
ν0

(z1, z2] > ν0(z1, z2] > 0.

We next establish existence and finiteness of the LS integrals in condition (PCLI3).

Lemma 12. Under (PCLI1, PCLI2),
∫

(z1,z2]
m(z) G(ν0, dz) exists and is finite for finite z1 < z2.

Proof. By Lemmas 10 and 11(a), G(ν0, ·) is bounded, càdlàg and nonincreasing. Since m(·) is continuous,∫
(z1,z2]

m(z) G(ν0, dz) exists and is finite by standard results on LS integration.

7.3 Analysis of discontinuities.

Being càdlàg, functions F (ν0, ·), G(ν0, ·), f(x, ·) and g(x, ·) have at most countably many discontinuities, which
are of jump type. We analyze below such discontinuities. The following result gives simple formulae for their
jumps. We denote by ∆2F (ν0, z) , F (ν0, z) − F (ν0, z−) the jump of F (ν0, ·) at z, and similarly for ∆2G(ν0, z),
∆2f(x, z) and ∆2g(x, z).

Lemma 13. For any threshold z ∈ X,

(a) ∆2F (ν0, z) = −f(z, z−) µ̃z
ν0

{z} = −f(z, z) µ̃z−

ν0
{z};

(b) ∆2G(ν0, z) = −g(z, z−) µ̃z
ν0

{z} = −g(z, z) µ̃z−

ν0
{z}.

Proof. (a) Taking π = z and B = {y ∈ X : y > z} in Lemma 8(a) gives

F (ν0, z) +

∫

y>z

f(y, z−) µ̃z,0
ν0

(dy) = F (ν0, z−) +

∫

y<z

f(y, z−) µ̃z,1
ν0

(dy),

so ∆2F (ν0, z) + f(z, z−)µ̃z
ν0

{z} = 0, as µ̃z,0
ν0

{z} = µ̃z
ν0

{z} and µ̃z,0
ν0

{y > z} = µ̃z,1
ν0

{y < z} = 0.
Further, taking π = z− and B = {y ∈ X : y > z} in Lemma 8(a) gives

F (ν0, z−) +

∫

y>z

f(y, z) µ̃z−,0
ν0

(dy) = F (ν0, z) +

∫

y6z

f(y, z) µ̃z−,1
ν0

(dy),

so ∆2F (ν0, z) + f(z, z) µ̃z−

ν0
{z} = 0, as µ̃z−,1

ν0
{z} = µ̃z−

ν0
{z} and µ̃z−,0

ν0
{y > z} = µ̃z−,1

ν0
{y < z} = 0.

Part (b) follows along the same lines as part (a).

Recall that PCL-indexability condition (PCLI1) requires g(x, z) to be positive for any state x and threshold
z. The following result shows that it further implies g(x, x−) > 0.

Lemma 14. Under (PCLI1), g(x, x−) > 0 and ∆2G(x, x) < 0.
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Proof. Taking ν0 = δx and z = x in Lemma 13(b) and using (PCLI1) and µ̃x−

x {x} > 1 gives

g(x, x−) µ̃x
x{x} = g(x, x) µ̃x−

x {x} > g(x, x) > 0,

whence g(x, x−) > 0 and ∆2G(x, x) < 0.

The next result characterizes the discontinuities of G(ν0, ·) in terms of Tz , min{t > 0: Xt = z}, the first
hitting time to z of state process {Xt}∞

t=0 under the z-policy, with Tz , ∞ if z is never hit.

Lemma 15. Under (PCLI1), G(ν0, ·) is discontinuous at z iff P
z
ν0

{Tz < ∞} > 0.

Proof. It follows from Lemmas 13(b) and 14 that G(ν0, ·) is discontinuous at z iff µ̃z
ν0

{z} > 0, which happens
iff P

z
ν0

{Tz < ∞} > 0.

The next result relates the jumps of F (ν0, ·) and G(ν0, ·), gives a corresponding result for f(x, ·) and g(x, ·),
and ensures that the MP metric m(x, ·) (see (29)) is continuous at z = x.

Lemma 16. Let (PCLI1) hold. Then, for any threshold z ∈ X,

(a) ∆2F (ν0, z) = m(z) ∆2G(ν0, z);

(b) ∆2f(x, z) = m(z) ∆2g(x, z);

(c) m(x, ·) is continuous at x, viz., m(x, x−) = m(x, x) = m(x).

Proof. (a) Lemma 13(a, b) and g(z, z) > 0 yield

∆2F (ν0, z) = −f(z, z) µ̃z−

ν0
{z} = −m(z) g(z, z) µz−

ν0
{z} = m(z)∆2G(ν0, z).

(b) Using in turn (23), part (a) and (24), gives

∆2f(x, z) = β
a=1

∆
a=0

∫
∆2F (y, z) κa(x, dy) = m(z)β

a=1

∆
a=0

∫
∆2G(y, z)κa(x, dy) = m(z)∆2g(x, z).

(c) Taking z = x in part (b) and noting that m(x) = f(x, x)/g(x, x), we obtain

f(x, x−) − f(x, x) = m(x)[g(x, x−) − g(x, x)] = m(x)g(x, x−) − f(x, x).

whence f(x, x−) = m(x)g(x, x−) and, by Lemma 14, m(x) = m(x, x−).

Lemma 16(a) yields an alternate characterization of the MP index under (PCLI1) in terms of jumps
∆2F (x, x) = F (x, x) − F (x, x−) and ∆2G(x, x) = G(x, x) − G(x, x−) (cf. Lemma 14).

Corollary 1. Under (PCLI1), m(x) = ∆2F (x, x)/∆2G(x, x).

Further, Lemma 16(a, b) immediately implies the following result relating the continuity points of functions
F (x, ·) and G(x, ·), and of f(x, ·) and g(x, ·).

Corollary 2. Under (PCLI1),

(a) if G(ν0, ·) is continuous at z, so is F (ν0, ·);

(b) if g(x, ·) is continuous at z, so is f(x, ·).
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7.4 Bounded variation and MP index as Radon–Nikodym derivative.

We next show that the metrics of a PCL-indexable project, as functions of the threshold, belong to the linear
space V(R) of functions of bounded variation on R (see Carter and van Brunt (2000, §2.7)). We further build
on that result to characterize the MP index as a Radon–Nikodym derivative.

We start with the resource metrics, for which condition (PCLI1) suffices.

Lemma 17. Under (PCLI1), G(ν0, ·), g(x, ·) ∈ V(R).

Proof. G(ν0, ·) ∈ V(R) follows from G(ν0, ·) being bounded (see (8)) and nonincreasing on R (see Lemma 11(a)).
Since g(x, z) = ∆a=1

a=0[c(x, a)+βG(κa(x, ·), z)], g(x, ·) is a difference of bounded nonincreasing functions, whence
(see Carter and van Brunt (2000, theorem 2.7.2)) g(x, ·) ∈ V(R).

Remark 8. Since the function G(ν0, ·) is bounded, càdlàg and nonincreasing, by Carathéodory’s extension
theorem it induces a unique finite LS measure νG(ν0,·) on B(R) satisfying

νG(ν0,·)(z1, z2] = G(ν0, z1) − G(ν0, z2), −∞ < z1 < z2 < ∞.

In light of Remark 8, we have by standard results that the LS integral
∫

|m|(z) G(ν0, dz) = −

∫
|m| dνG(ν0,·)

is well defined. The following result shows that such an integral is finite, even when X is unbounded.

Lemma 18. Under PCL-indexability, m(·) is νG(ν0,·)-integrable.

Proof. Consider first the case that m(·) > 0 over R. Then,

∫
|m| dνG(ν0,·) =

∫
m νG(ν0,·) = lim

n→∞

∫

(−n,n]

m νG(ν0,·)

= lim
n→∞

{F (ν0, −n) − F (ν0, n)} = F (ν0, −∞) − F (ν0, ∞) < ∞,

where we have used the monotone convergence theorem, condition (PCLI3) and Lemma 10(b, c). A similar
argument yields the result in the case that m 6 0 over R.

Otherwise, (PCLI2) implies that there is a state b with m(b) = 0 such that |m| = −m on (−∞, b] and
|m| = m on (b, ∞). Arguing along the same lines as above yields

∫
|m| νG(ν0,·) =

∫

(−∞,b]

−m dνG(ν0,·) +

∫

(b,∞)

m νG(ν0,·) = lim
n→∞

∫

(−n,b]

−m dνG(ν0,·) + lim
n→∞

∫

(b,n]

m νG(ν0,·)

= lim
n→∞

{F (ν0, b) − F (ν0, −n)} + lim
n→∞

{F (ν0, b) − F (ν0, n)}

= 2F (ν0, b) − F (ν0, −∞) − F (ν0, ∞) < ∞.

The following result shows that, under PCL-indexability, the identity (31) —and, in particular condition
(PCLI3)— extends to infinite intervals.

Lemma 19. Under PCL-indexability,

F (ν0, z2) − F (ν0, z1) =

∫

z1<z6z2

m(z) G(ν0, dz), −∞ 6 z1 < z2 6 ∞. (59)

Proof. The result follows from (31), Lemmas 10(b) and 18, and dominated convergence.

We next present the counterpart of Lemma 17 for reward measures.

Lemma 20. Under PCL-indexability, F (ν0, ·), f(x, ·) ∈ V(R).
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Proof. Since νG(ν0,·) (see Remark 8) is a finite measure, Lemma 18 ensures that ν̃ν0 (S) ,
∫

S
m dνG(ν0,·) is a finite

signed measure, and hence admits a Jordan decomposition ν̃ν0 = ν̃+
ν0

− ν̃−
ν0

with ν̃+
ν0

and ν̃−
ν0

finite measures.
On the other hand, (PCLI3) and Lemma 10(b) yield ν̃ν0 (−∞, z] = F (ν0, −∞) − F (ν0, z) for z ∈ R, whence
F (ν0, z) = F (ν0, −∞) + ν̃−

ν0
(−∞, z] − ν̃+

ν0
(−∞, z]. Hence, F (ν0, ·) ∈ V(R), being a difference of bounded

nondecreasing functions. Further, it follows that function z 7→ F (κa(ν0, ·), z) is in V(R). Thus, the identity
f(x, z) = ∆a=1

a=0[r(x, a) + βF (κa(x, ·), z)] represents f(x, ·) as the difference of two functions in V(R), whence
f(x, ·) ∈ V(R).

Remark 9. In light of Lemma 20 and F (ν0, ·) being bounded càdlàg under PCL-indexability (see (9) and Lemma
10), Carathéodory’s theorem for signed measures (cf. Doob (1994, section X.6)) ensures existence of a unique
finite LS signed measure νF (ν0,·) on B(R) satisfying

νF (ν0,·)(z1, z2] , F (ν0, z1) − F (ν0, z2), −∞ < z1 < z2 < ∞.

The next result shows that the MP index is a Radon–Nikodym derivative of νF (ν0,·) with respect to νG(ν0,·).
The notation ≪ below means “is absolutely continuous with respect to”.

Proposition 4. Under PCL-indexability, νF (ν0,·) ≪ νG(ν0,·), with m(·) being a Radon–Nikodym derivative of
νF (ν0,·) with respect to νG(ν0,·), viz.,

νF (ν0,·)(S) =

∫

S

m(x) νG(ν0 ,·)(dx), S ∈ B(R). (60)

Proof. The result that νF (ν0,·) satisfies (60) follows from (2) and Remark 9, whereas νF (ν0,·) ≪ νG(ν0,·) follows
directly from (60).

By standard results on differentiation of LS measures (cf. Doob (1994, section X.4)), the above ensures that
m(·) is νG(ν0,·)-a.s. the derivative of the signed measure νF (ν0,·) with respect to the measure νG(ν0,·), denoted by
dνF (ν0,·)/dνG(ν0,·), or of F (ν0, ·) with respect to G(ν0, ·), denoted by dF (ν0, ·)/dG(ν0, ·).

7.5 Relations between marginal project metrics.

This section presents relations between marginal metrics under threshold policies as functions of the threshold.
The following result gives counterparts of Lemmas 18 and 19 for marginal metrics f(x, ·) and g(x, ·). Note that
the LS integrals below are well defined, since g(x, ·) is a function of bounded variation on R (see Lemma 17)
and m(·) is continuous under PCL-indexability. The result refers to the finite signed measure νg(x,·) determined

by g(x, ·) through νg(x,·)(z1, z2] , g(x, z1) − g(x, z2) for finite z1 < z2.

Lemma 21. Under PCL-indexability,

(a) m(·) is νg(x,·)-integrable, i.e., the integral
∫

|m| d|νg(x,·)| is finite;

(b) f(x, z2) − f(x, z1) =
∫

(z1,z2] m(z) g(x, dz), for −∞ 6 z1 < z2 6 ∞.

Proof. (a) This part follows from Lemma 18 using that, by (28), νg(x,·) = β ∆a=1
a=0 νG(κa(x,·),·).

(b) Using part (a), Lemma 19 and (28), we obtain

∫

(z1,z2]

m(z) g(x, dz) = β
a=1

∆
a=0

∫

(z1,z2]

m(z) G(κa(x, ·), dz)

= β
a=1

∆
a=0

{F (κa(x, ·), z2) − F (κa(x, ·), z1)} = f(x, z2) − f(x, z1).
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8 Further relations between MP metrics.

This section builds on the above to present further relations between MP metrics that will play a key role
in the proof of the verification theorem. The next result shows that the MP index satisfies certain linear
Volterra–Stieltjes integral equations.

Lemma 22. Suppose the project is PCL-indexable and let x ∈ X and z ∈ R. Then

(a) m(x, z) − m(z) =
∫

z<b<x

g(x,b)
g(x,z) m(db), if x > z;

(b) m(x, z) − m(z) = −
∫

x6b6z

g(x,b)
g(x,z) m(db), if x 6 z;

Proof. (a) From Lemmas 10, 21, and the dominated convergence theorem, we have

f(x, x−) − f(x, z) = lim
yրx

f(x, y) − f(x, z) = lim
yրx

∫

(z,y]

m(b) g(x, db) =

∫

(z,x)

m(b) g(x, db).

Consider the case z > −∞. Using the latter identity, integration by parts, and Lemma 16(c) gives

f(x, z) = f(x, x−) −

∫

(z,x)

m(b) g(x, db)

= f(x, x−) − [m(x)g(x, x−) − m(z)g(x, z)] +

∫

(z,x)

g(x, b) m(db)

= m(z)g(x, z) +

∫

(z,x)

g(x, b) m(db).

(61)

The result now follows by dividing each term by g(x, z).
In the case z = −∞, the result follows from the limiting argument

f(x, −∞) − m(−∞)g(x, −∞) = lim
z′→−∞

f(x, z′) − m(z′)g(x, z′)

= lim
z′→−∞

∫

(z′,x)

g(x, b) m(db) =

∫

(−∞,x)

g(x, b) m(db),

where we have used Lemma 10(b), (PCLI1), (61) and (PCLI2).
(b) Consider the case z < ∞. Arguing as in part (a), we obtain

f(x, z) = f(x, x−) +

∫

[x,z]

m(b) g(x, db)

= f(x, x−) + m(z)g(x, z) − m(x)g(x, x−) −

∫

[x,z]

g(x, b) m(db)

= m(z)g(x, z) −

∫

[x,z]

g(x, b) m(db).

(62)

In the case z = ∞, the result follows from the limiting argument

f(x, ∞) − m(∞)g(x, ∞) = lim
z′→∞

f(x, z′) − m(z′)g(x, z′)

= − lim
z′→∞

∫

[x,z′]

g(x, b) m(db) = −

∫

[x,∞)

g(x, b) m(db),

where we have used Lemma 10(c), (PCLI1), (62) and (PCLI2). This completes the proof.

The next result shows that m(x, z) − m(z) and m(x) − m(z) have the same sign.
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Lemma 23. Suppose the project is PCL-indexable. Then, for any state x and threshold z,

sgn(m(x, z) − m(z)) = sgn(m(x) − m(z)).

Proof. If x > z, we use Lemma 22(a) and (PCLI1, PCLI2) to obtain

sgn(m(x, z) − m(z)) = sgn

∫

z<b<x

g(x, b) m(db) = sgn(m(x) − m(z)) > 0.

If x 6 z, we use Lemma 22(b) and (PCLI1, PCLI2) to obtain

sgn(m(x, z) − m(z)) = − sgn

∫

x6b6z

g(x, b) m(db) = sgn(m(x) − m(z)) 6 0.

We need a final preliminary result, showing that m(x, z)−λ and m(x)−λ have the same sign when threshold
z is taken from the set Zλ defined in (32).

Lemma 24. Suppose the project is PCL-indexable. Then, for any x ∈ X, λ ∈ R and z ∈ Zλ,

sgn(m(x, z) − λ) = sgn(m(x) − λ). (63)

Proof. Let x ∈ X, λ ∈ R and z ∈ Zλ. We distinguish three cases. In the case {y ∈ X : m(y) = λ} 6= ∅, we have
m(z) = λ (see (32)), and hence (63) holds by Lemma 23.

If λ < m(y) for every y, then (see (32)) z < ℓ if ℓ > −∞, and z = −∞ if ℓ = −∞, so m(z) = m(ℓ) > λ, with
strict inequality if ℓ > −∞ (as then ℓ ∈ X). We can now write, using Lemma 22(a),

m(x, z) − λ = m(x, z) − m(z) + m(z) − λ =

∫

(z,x)

g(x, b)

g(x, z)
m(db) + m(ℓ) − λ > 0, (64)

where the inequality follows from (PCLI1) if m(ℓ) > λ. If m(ℓ) = λ then ℓ = −∞, and by the assumptions the
integral in the right-hand side of (64) is positive, yielding the inequality and (63).

If λ > m(y) for every y, then (see (32)) z > u if u < ∞, and z = ∞ if u = ∞, so m(z) = m(u) 6 λ, with
strict inequality if u is finite (because then u ∈ X). We can now write, using Lemma 22(b),

m(x, z) − λ = m(x, z) − m(z) + m(z) − λ = −

∫

b>x

g(x, b)

g(x, z)
m(db) + m(u) − λ < 0, (65)

where the inequality follows from (PCLI1) if m(u) < λ. If m(u) = λ then u = ∞, and by the assumptions the
integral in the right-hand side of (65) is positive, which yields (63).

9 Proving Theorem 1.

We are now ready to prove Theorem 1.

Proof. Proof of Theorem 1. Let ζ(·) be a generalized inverse of the MP index m(·). For any x ∈ X and λ ∈ R,
we have ζ(·) ∈ Zλ and, using (PCLI1) and Lemma 63,

sgn ∆a=1
a=0Vλ(x, z) = sgn(f(x, ζ(λ)) − λg(x, ζ(λ))) = sgn(m(x, ζ(λ)) − λ) = sgn(m(x) − λ). (66)

The outermost identity in (66) and Lemma 1(a) imply that ζ(·) satisfies (20), whence the project is thresholdable
with (see Remark 4(i)) optimal value V ∗

λ (x) = Vλ(x, ζ(λ)). We thus obtain

sgn ∆a=1
a=0V ∗

λ (x) = sgn(m(x) − λ), (67)

which shows (cf. Definition 1) that the project is indexable with Whittle index m(·).
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10 How to establish condition (PCLI3).

This section presents conditions under which PCL-indexability condition (PCLI3) can be established by simpler
means than direct verification.

10.1 Piecewise differentiable F (x, ·) and G(x, ·).

We start with the case that metrics F (x, ·) and G(x, ·) are piecewise differentiable. Denote by F ′
2(x, z) and

G′
2(x, z) their partial derivatives with respect to z. Below, S̊ denotes the interior of a set S.

Assumption 2. For each state x there is a countable partition {Si(x) : i ∈ N(x)} of R with each Si(x) being
either a left-semiclosed interval or a singleton, such that:

(i) F (x, ·) =
∑

i∈N(x) Fi(x, ·)1Si(x)(·) and G(x, ·) =
∑

i∈N(x) Gi(x, ·)1Si(x)(·), with Fi(x, ·) and Gi(x, ·) being

both differentiable on S̊i(x).

(ii) F ′
2(x, z) = m(z)G′

2(x, z) for z ∈ S̊i(x) and i ∈ N(x).

We need two preliminary results. Denote by TVF (x,·)(I) and TVG(x,·)(I) the total variation of F (x, ·) and

G(x, ·) on an interval I, and by D(x) , R \ ∪i∈N(x)S̊i(x) the set of interval endpoints for partition {Si(x) : i ∈
N(x)}. Recall that V(I) denotes the functions of bounded variation on I.

Lemma 25. Let (PCLI1, PCLI2) and Assumption 2 hold. Let x be a state and I a finite open interval where
both F (x, ·) and G(x, ·) are differentiable. Then F (x, ·) ∈ V(I) and

∫

I

F (x, dz) =

∫

I

m(z) G(x, dz).

Proof. Since G(x, ·) is bounded nonincreasing by Lemmas 10(a) and 11(a), and m(·) is continuous, by standard
results

∫
I

|m|(z) G(x, dz) is finite. Furthermore, using Assumption 2(ii),
∫

I

|m|(z) G(x, dz) =

∫

I

|m|(z)G′
2(x, z) dz = −

∫

I

|F ′
2|(x, z) dz = −TVF (x,·)(I)

(cf. Carter and van Brunt (2000, theorem 6.1.7)). Hence, F (x, ·) ∈ V(I) and
∫

I

m(z) G(x, dz) =

∫

I

m(z)G′
2(x, z) dz =

∫

I

F ′
2(x, z) dz =

∫

I

F (x, dz).

In the next result, Vloc(R) denotes the class of functions of locally bounded variation on R, i.e., having
bounded variation on every finite interval.

Lemma 26. Under (PCLI1, PCLI2) and Assumption 2, F (x, ·) ∈ Vloc(R).

Proof. Let I = (z1, z2) with −∞ < z1 < z2 < ∞ and K(I) , max{|m|(z) : z ∈ [z1, z2]}, which is finite by
continuity of m(·). The total variation TVF (x,·)(I) of F (x, ·) on I is finite, since

TVF (x,·)(I) =
∑

z∈D(x)∩I

|∆2F (x, z)| +
∑

i : S̊i(x)∩I 6=∅

∫

S̊i(x)∩I

|F ′
2|(x, z) dz

=
∑

z∈D(x)∩I

|m|(z)|∆2G(x, z)| +
∑

i : S̊i(x)∩I 6=∅

∫

S̊i(x)∩I

|m|(z)|G′
2|(x, z) dz

6 K(I)

{ ∑

z∈D(x)∩I

|∆2G(x, z)| +

∫

i : S̊i(x)∩I 6=∅

|G′
2|(x, z) dz

}

= K(I) TVG(x,·)(I) 6 K(I) TVG(x,·)(R) < ∞,

where we have used Assumption 2 and Lemmas 16(a), 25 and 17.
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We can now give the main result of this section.

Proposition 5. Under (PCLI1, PCLI2) and Assumption 2, (PCLI3) holds.

Proof. Let −∞ < z1 < z2 < ∞. We have

F (x, z2) − F (x, z1) =

∫

(z1,z2]

F (x, dz) = ∆2F (x, z2) +

∫

(z1,z2)

F (x, dz)

=
∑

z∈D(x)∩(z1,z2]

∆2F (x, z) +
∑

i : S̊i(x)∩(z1,z2) 6=∅

∫

S̊i(x)∩(z1,z2)

F ′
2(x, z) dz

=
∑

z∈D(x)∩(z1,z2]

m(z) ∆2G(x, z) +
∑

i : S̊i(x)∩(z1,z2) 6=∅

∫

S̊i(x)∩(z1,z2)

m(z) G′
2(x, z) dz

=

∫

(z1,z2]

m(z) G(x, dz),

where we have used Lemma 26, Assumption 2 and Lemmas 16(a), 25 and 12.

10.2 Piecewise constant G(x, ·).

We next consider the case that the resource metric G(x, z) is piecewise constant in the threshold variable z,
with a finite or denumerable number of pieces.

Assumption 3. For each state x, G(x, ·) =
∑

i∈N(x) Gi(x)1Si(x)(·), where {Si(x) : i ∈ N(x)} is a countable

partition of R with each Si(x) being either a left-semiclosed interval or a singleton.

Note that Assumption 3 does not refer to the reward metric, so it is not evident that this case reduces to
that in Section 10.1. Yet, we will show that Assumption 3 implies Assumption 2.

The following result can be used to verify Assumption 3 through analysis of state trajectories {Xt}∞
t=0 under

threshold policies. Parts (a, c) characterize when G(x, ·) is constant on an interval. Parts (b, d) ensure that
F (x, ·) is constant over the same intervals that G(x, ·). For a Borel set S, denote by TS , min{t > 0: Xt ∈ S}
the first hitting time to S, with TS , ∞ if S is never hit.

Lemma 27. Let (PCLI1) hold. For any state x and finite z1 < z2,

(a) G(x, ·) is constant on [z1, z2] iff P
z1
x {T(z1,z2] < ∞} = 0;

(b) if G(x, ·) is constant on [z1, z2], then so is F (x, ·);

(c) G(x, ·) is constant on [z1, z2) iff P
z1
x {T(z1,z2) < ∞} = 0;

(d) if G(x, ·) is constant on [z1, z2), then so is F (x, ·).

Proof. (a) Since G(x, ·) is nonincreasing on R by Lemma 11(a), it is constant on [z1, z2] iff G(x, z1) = G(x, z2),
which occurs, by Lemma 9(b), iff ∫

(z1,z2]

g(y, z2) µ̃z1
x (dy) = 0. (68)

Now, under (PCLI1), (68) holds iff µ̃z1
x (z1, z2] = 0, which occurs iff P

z1
x {T(z1,z2] < ∞} = 0.

(b) If G(x, ·) is constant on (z1, z2] then µ̃z1
x (z1, z2] = 0, which, along with Lemma 9(a), yields

F (x, z1) − F (x, z) =

∫

(z1,z]

f(y, z) µ̃z1
x (dy) = 0, z ∈ (z1, z2].

Hence, F (x, ·) is also constant on [z1, z2].
(c) Let {zn}∞

n=0 be increasing with z1 < zn < z2 and limn→∞ zn = z2. Then G(x, ·) is constant on [z1, z2)
iff G(x, ·) is constant on [z1, zn] for each n, which by part (a) occurs iff µ̃z1

x (z1, zn] = 0 for each n. By continuity
from below, such will be the case iff µ̃z1

x (z1, z2) = 0, i.e., iff P
z1
x {T(z1,z2) < ∞} = 0.

(d) The proof of this part follows along the lines of that for part (b).
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Note that, e.g., part (c) says that G(x, ·) is constant on [z1, z2) iff the project state never hits (z1, z2) under
the z1-policy starting from x. Parts (b, d) ensure that F (x, ·) is of the form F (x, ·) =

∑
i∈N(x) Fi(x)1Si(x)(·).

Lemma 28. Assumption 3 implies Assumption 2.

Proof. The result follows immediately from Lemma 27(d).

Verification of Assumption 3 for a given model may be a nontrivial task, as it requires knowledge of G(x, ·).
Instead, we will draw on Lemma 27 to show that it suffices to verify the following assumption, which only
involves analyzing project state trajectories under threshold policies.

Assumption 4. For each x there is a countable set D(x) giving the endpoints of a partition of R into left-
semiclosed intervals or singletons, such that P

z
x{{Xt}∞

t=0 ⊆ D(x)} = 1 for any z.

Note that Assumption 4 ensures that, starting from X0 = x, the project state trajectory {Xt}∞
t=0 lies in

D(x) under any threshold policy.

Lemma 29. Assumption 4 implies Assumption 3.

Proof. The result follows immediately from Lemma 27(c), using the points in D(x) to define the endpoints of
the partition {Si(x) : i ∈ N(x)}.

We thus obtain the following result.

Proposition 6. Under (PCLI1, PCLI2) and Assumption 3 or 4, (PCLI3) holds.

Proof. The result follows directly from Lemmas 28 and 29 and Proposition 5.

11 Metrics and index computation.

This section gives recursions for approximately computing the project metrics and index, in cases they cannot
be evaluated in closed form.

For a state x, threshold z and k = 0, 1, . . . , consider the k-horizon metrics

Fk(x, z) , E
z
x

[
k∑

t=0

βtr(Xt, At)

]
and Gk(x, z) , E

z
x

[
k∑

t=0

βtc(Xt, At)

]
. (69)

The function sequences {Fk(·, z)}∞
k=0 and {Gk(·, z)}∞

k=0 are determined by the following value iteration recur-
sions: F0(x, z) , r(x, 1{x>z}), G0(x, z) , c(x, 1{x>z}) and, for k = 0, 1, . . .,

Fk+1(x, z) , r(x, 1{x>z}) + β

∫
Fk(y, z) κ1{x>z}(x, dy), (70)

Gk+1(x, z) , c(x, 1{x>z}) + β

∫
Gk(y, z) κ1{x>z}(x, dy). (71)

Consider further the k-horizon marginal metrics fk(x, z) and gk(x, z), given by f0(x, z) = ∆a=1
a=0r(x, a),

g0(x, z) = ∆a=1
a=0c(x, a) and, for k > 1,

fk(x, z) = ∆a=1
a=0{r(x, a) + β

∫
Fk−1(y, z) κa(x, dy)}, (72)

gk(x, z) = ∆a=1
a=0{c(x, a) + β

∫
Gk−1(y, z) κa(x, dy)}. (73)

Finally, consider the k-horizon MP metric mk(x, z) , fk(x, z)/gk(x, z) and the k-horizon MP index mk(x) ,
mk(x, x), which are defined when gk(x, z) 6= 0 and gk(x, x) 6= 0, respectively.

The next result shows, in parts (a, c), that Fk(·, z), Gk(·, z), fk(·, z) and gk(·, z) converge linearly with rate
γ in the w-norm ‖ · ‖w (see (6) and Remark 2(ii)). Parts (b, d) bound their w-norms. Note that M , γ and w
are as in Assumption 1(ii), and Mγ as in (8).
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Lemma 30. For any threshold z and integer k > 0,

(a) ‖Fk(·, z) − F (·, z)‖w 6 Mγγk and ‖Gk(·, z) − G(·, z)‖w 6 Mγγk;

(b) ‖Fk(·, z)‖w 6 Mγ and ‖Gk(·, z)‖w 6 Mγ ;

(c) ‖fk(·, z) − f(·, z)‖w 6 2Mγγk and ‖gk(·, z) − g(·, z)‖w 6 2Mγγk;

(d) ‖fk(·, z)‖w 6 2Mγ and ‖gk(·, z)‖w 6 2Mγ;

Proof. We only consider reward metrics, as the results for resource metrics follow similarly.
(a) (70) is a contraction with modulus γ on Bw(X) (cf. Hernández-Lerma and Lasserre (1999, remark 8.3.10)),

so (cf. Remark 2(iv)) Banach’s fixed point theorem yields the result.
(b) We first show by induction on k that |Fk|(x, z) 6 Ckw(x), where C0 , 0 and Ck , M(1 + · · · + γk−1)

for k > 1, so Ck+1 = M + γCk. For k = 0, such a result trivially holds. Assume now |Fk|(x, z) 6 Ckw(x) for
some k > 0. Then, from Assumption 1 and (70) we obtain

|Fk+1|(x, z) 6 |r|(x, 1{x>z}) + β

∫
|Fk|(y, z) κ1{x>z}(x, dy) 6 Mw(x) + β

∫
Ckw(y) κ1{x>z}(x, dy)

6 Mw(x) + γCkw(x) = Ck+1w(x),

which proves the induction step. Since Ck < Mγ , it follows that |Fk|(x, z) 6 Mγw(x).
(c) Using (23), (72), part (a) and Assumption 1(ii.b), we obtain

|fk(x, z) − f(x, z)| 6 β

∫
|Fk−1(y, z) − F (y, z)| κ1(x, dy) + β

∫
|Fk−1(y, z) − F (y, z)| κ0(x, dy)

6 βMγγk−1

∫
w(y) κ1(x, dy) + βMγγk−1

∫
w(y) κ0(x, dy) 6 2Mγγkw(x).

(d) This part follows along the same lines as part (b).

Letting g(x, z) , infk gk(x, z), consider the following strong version of condition (PCLI1):

g(x, z) > 0 for any state x and threshold z. (74)

Since gk(x, z) converges to g(x, z) (see Lemma 30(c)), condition (74) implies (PCLI1).
The following result shows that the finite-horizon MP metric mk(x, z) and MP index mk(x) converge at

least linearly with rate γ to m(x, z) and m(x), respectively.

Proposition 7. Let (74) hold. Then, for any state x, threshold z and integer k > 0,

(a) |mk(x, z) − m(x, z)| 6 2Mγγkw(x)(1 + |m|(x, z))/g(x, z);

(b) |mk(x) − m(x)| 6 2Mγγkw(x)(1 + |m|(x))/g(x, x).

Proof. (a) From

mk(x, z) − m(x, z) =
fk(x, z) − f(x, z)

gk(x, z)
−

gk(x, z) − g(x, z)

gk(x, z)
m(x, z),

Lemma 30(c) and gk(x, z) > g(x, z) > 0, we obtain the stated inequality.
(b) This part follows by setting z = x in part (a).

12 Examples.

This section illustrates application of the proposed approach to two models.
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12.1 Optimal web crawling.

This is the model analyzed in Avrachenkov and Borkar (2018) under the average-reward criterion, which we
analyze below under the discounted criterion. The project has reward and resource consumption r(x, a) , xa
and c(x, a) , Ca with C > 0, and the following dynamics. When Xt = x and At = 0, Xt+1 = ℓ + αx, for
certain parameters 0 < α < 1 and ℓ = (1 − α)b with b > 0; if At = 1, Xt+1 = ℓ. The state space is X , [ℓ, u],
with u , ℓ/(1 − α).

The evaluation equations for the reward and resource metrics under the z-threshold policy are

F (x, z) =

{
βF (ℓ + αx, z) if x 6 z

x + βF (ℓ, z) if x > z
and G(x, z) =

{
βG(ℓ + αx, z) if x 6 z

C + βG(ℓ, z) if x > z.

To solve such equations in closed form, let h(x) , ℓ + αx, and recursively define h0(x) , x and ht(x) ,
h(ht−1(x)) for t > 1, so ht(x) = u − (u − x)αt. Let τ(x, z) , min{t > 0: ht(x) > z}, with τ(x, z) , ∞ if
ht(x) 6 z for all t. Through elementary arguments we obtain

F (x, z) =

{
βτ(x,z)(hτ(x,z)(x) + βF (ℓ, z)) if x 6 z

x + βF (ℓ, z) if x > z
with F (ℓ, z) =

βτ(ℓ,z)hτ(ℓ,z)(ℓ)

1 − βτ(ℓ,z)+1
,

G(x, z) =

{
βτ(x,z)(C + βG(ℓ, z)) if x 6 z

C + βG(ℓ, z) if x > z
with G(ℓ, z) =

βτ(ℓ,z)C

1 − βτ(ℓ,z)+1
.

Note that, since the u-threshold policy is never active, we have F (x, u) ≡ 0 and G(x, u) ≡ 0.
Further, the marginal metrics are given by f(x, u) = x, g(x, u) = C > 0, and

f(x, z) = x + βF (ℓ, z) − βF (h(x), z) = x + βF (ℓ, z) − βτ(x,z)(hτ(x,z)(x) + βF (ℓ, z)),

g(x, z) = C + βG(ℓ, z) − βG(h(x), z) = C + βG(ℓ, z) − βτ(x,z)(C + βG(ℓ, z))

= (1 − βτ(x,z))(C + βG(ℓ, z)) > 0.

As for the MP index m(·), since τ(x, x) = 1 for ℓ 6 x < u, we have, for such x and t = 1, 2, . . .,

m(x) ,
f(x, x)

g(x, x)
=

x − βh(x) + β(1 − β)F (ℓ, x)

(1 − β)(C + βG(ℓ, x))
=

x − βh(x) + β(1 − β)Ft(ℓ)

(1 − β)(C + βGt(ℓ))
, ht−1(ℓ) 6 x < ht(ℓ),

with Ft(ℓ) , βtht(ℓ)/(1 − βt+1) and Gt(ℓ) , βtC/(1 − βt+1). Further, m(u) , f(u, u)/g(u, u) = u/C.

Proposition 8. The above optimal web crawling project model is PCL-indexable.

Proof. It is shown above that g(x, z) > 0, hence condition (PCLI1) holds. The MP index m(·) is piecewise
affine right-continuous, increasing within each piece, since

d

dx
m(x) =

1 − αβ

(1 − β)(C + βGt(ℓ))
> 0, ht−1(ℓ) < x < ht(ℓ), t = 1, 2, . . .

As for continuity of m(·), we need to check that, for t = 1, 2, . . ., m(ht(ℓ)−) = m(ht(ℓ)), i.e.,

ht(ℓ) − βht+1(ℓ) + β(1 − β)Ft(ℓ)

(1 − β)(C + βGt(ℓ))
=

ht(ℓ) − βht+1(ℓ) + β(1 − β)Ft+1(ℓ)

(1 − β)(C + βGt+1(ℓ))
,

which is straightforward to verify algebraically. We further need to check that m(ht(ℓ)) → m(u) as t → ∞,
which also follows immediately. This establishes condition (PCLI2).
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For checking condition (PCLI3), we apply the results in Section 10.2, since the resource metric G(x, z) is
piecewise constant in the threshold z for fixed x, as it is immediate that, for z < x,

G(x, z) =






βt+1

1 − βt+1
C, x > z, ht−1(ℓ) 6 z < ht(ℓ), t > 1

βs+t+1

1 − βt+1
C, x 6 z, hs−1(x) 6 z < hs(x), ht−1(ℓ) 6 z < ht(ℓ), 1 6 s 6 t.

Thus, Assumption 3 holds, and hence Proposition 6 implies that (PCLI3) holds.

Hence, Theorem 1 gives that the model is threshold-indexable with index m(·). Note further that the index
m(·) converges as β → 1 to the limit

m(x) =
(t + 1)(x − h(x)) + ht(ℓ)

C
, ht−1(ℓ) 6 x < ht(ℓ), t > 1,

which is precisely the average-reward Whittle index derived in Avrachenkov and Borkar (2018).

12.2 Optimal dynamic transmission over a noisy channel.

This is the model in Liu and Zhao (2010), which motivated the proposal of a previous incomplete version of the
PCL-indexability conditions for real-state projects in Niño-Mora (2008). This section completes the analysis in
Niño-Mora (2008), and further proves satisfaction of (PCLI3), which was not considered there.

A user dynamically attempts to send packets over a noisy channel. In each period t, the channel can be
in either state 1 (good), in which an transmission attempt succeeds, or 0, in which it fails. State transitions
are Markovian, with probabilities p and q for transitions 1 → 0 and 0 → 1, satisfying ρ , 1 − p − q > 0. The
user cannot observe the channel state, and bases decisions on the belief state Xt ∈ X , [0, 1], the posterior
probability that the channel state is 1. If Xt = x and action At = 1 is taken (attempt to transmit) then Xt+1

takes the values q + ρ and q with probabilities x and 1 − x. If action At = 0 is taken, Xt+1 = q + ρx. The
reward and resource functions are r(x, a) , ax and c(x, a) , a. The cost per transmission attempt is λ.

The λ-price problem Pλ in (4) is to find a transmission policy maximizing the expected total β-discounted
value. To apply the present framework we need to evaluate the project metrics. Under the z-policy, the reward
and resource metrics are determined by the functional equations

F (x, z) = βF (q + ρx, z)1{x6z} + (x + βxF (q + ρ, z) + β(1 − x)F (q, z))1{x>z},

G(x, z) = βG(q + ρx, z)1{x6z} + (1 + βxG(q + ρ, z) + β(1 − x)G(q, z))1{x>z},

and the marginal metrics are given by

f(x, z) = x − β(F (q + ρx, z) − xF (q + ρ, z) − (1 − x)F (q, z)),

g(x, z) = 1 − β(G(q + ρx, z) − xG(q + ρ, z) − (1 − x)G(q, z)).

Provided g(x, x) 6= 0, the MP index is

m(x) =
x − β(F (q + ρx, x) − xF (q + ρ, x) − (1 − x)F (q, x))

1 − β(G(q + ρx, x) − xG(q + ρ, x) − (1 − x)G(q, x))
.

The following analysis uses the map h(x) , q+ρx and iterates ht(x), with h0(x) = x and ht(x) = h(ht−1(x))
for t > 1, so ht(x) = h∞ − (h∞ − x)ρt → h∞ , q/(1 − ρ) as t → ∞. It further uses the backward iterates
h−t(z) = h∞ − (h∞ − z)ρ−t for t > 1. Four cases need be considered.

Case I: z < q. In this case the belief state is above threshold at times t > 1. The metrics are

F (x, z) =
β(q + (1 − β)ρx) + (1 − β)(1 − βρ)x1{x>z}

(1 − β)(1 − βρ)
, f(x, z) = x

G(x, z) =
β + (1 − β)1{x>z}

1 − β
, g(x, z) = 1.

Thus, condition (PCLI1) holds for any x when z < q, and the MP index is m(x) = x for x < q.
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Case II: q 6 z < h∞. Consider the subcase ht−1(q) 6 z < ht(q) for t > 1. The metrics can be given
in closed form in terms of Gt(q) , G(q, ht−1(q)), Gt(q + ρ) , G(q + ρ, ht−1(q)), Ft(q) , F (q, ht−1(q)) and
Ft(q + ρ) , F (q + ρ, ht−1(q)), which are readily evaluated. Thus, for x > z,

F (x, z) = x + β(xFt(q + ρ) + (1 − x)Ft(q))

f(x, z) = x − β(h(x) + βh(x)Ft(q + ρ) + β(1 − h(x))Ft(q) − xFt(q + ρ) − (1 − x)Ft(q))

G(x, z) = 1 + β(xGt(q + ρ) + (1 − x)Gt(q))

g(x, z) = 1 − β(1 + βh(x)Gt(q + ρ) + β(1 − h(x))Gt(q) − xGt(q + ρ) − (1 − x)Gt(q)).

For x 6 z, letting s 6 t + 1 be such that hs−1(x) 6 z < hs(x), we have

F (x, z) = βs(hs(x) + βhs(x)Ft(q + ρ) + β
(
1 − hs(x)

)
Ft(q))

f(x, z) = x − β(βs−1[hs(x) + βhs(x)Ft(q + ρ) + β(1 − hs(x))Ft(q)] − xFt(q + ρ) − (1 − x)Ft(q))

G(x, z) = βs(1 + βhs(x)Gt(q + ρ) + β
(
1 − hs(x)

)
Gt(q))

g(x, z) = 1 − β(βs−1[1 + βhs(x)Gt(q + ρ) + β(1 − hs(x))Gt(q)] − xGt(q + ρ) − (1 − x)Gt(q)).

Hence, for q 6 x < h∞, and provided g(x, x) > 0, the MP index is

m(x) =
x − β(h(x) + βh(x)Ft(q + ρ) + β(1 − h(x))Ft(q) − xFt(q + ρ) − (1 − x)Ft(q))

1 − β(1 + βh(x)Gt(q + ρ) + β(1 − h(x))Gt(q) − xGt(q + ρ) − (1 − x)Gt(q))
.

Case III: h∞ 6 z < q + ρ. In this case, the project metrics are given by

F (x, z) =
x

1 − β(q + ρ)
1{x>z}

f(x, z) =
x

1 − β(q + ρ)
1{h(x)6z} +

(1 − βρ)x − βq

1 − β(q + ρ)
1{h(x)>z}

G(x, z) =
1 − β(q + ρ − x)

1 − β(q + ρ)
1{x>z}

g(x, z) =
1 − β(q + ρ − x)

1 − β(q + ρ)
1{h(x)6z} +

(
1 − β + β

(1 − βρ)x − βq

1 − β(q + ρ)

)
1{h(x)>z}.

Hence, for h∞ 6 x < q + ρ, as h(x) 6 x, the MP index is m(x) = x/(1 − β(q + ρ − x)).

Case IV: z > q + ρ. Finally, in this case we have F (x, z) = x1{x>z}, f(x, z) = x, G(x, z) = 1{x>z}, and
g(x, z) = 1, and therefore, for x > q + ρ, the MP index is m(x) = x.

Proposition 9. The above optimal channel transmission model is PCL-indexable.

Proof. Consider (PCLI1). The stronger result g(x, z) > 1 − β holds, which is trivial in cases I, III and IV. In
case II, for ht−1(q) < z < ht(q), g(·, z) is piecewise linear càglàd (left-continuous with right limits) with t + 1
increasing pieces, which follows from Gt(q + ρ) > Gt(q) and

∂

∂x
g(x, z) =






β(1 − (βρ)t+1)(Gt(q + ρ) − Gt(q)), for 0 < x < h−t(z)

β(1 − (βρ)s)(Gt(q + ρ) − Gt(q)), for h−s(z) < x < h−s+1(z), s = 2, . . . , t

β(1 − βρ)(Gt(q + ρ) − Gt(q)), for h−1(z) < x < 1.

Hence, g(x, z) > g(0+, z) for 0 < x 6 h−t(z), g(x, z) > g(h−s(z)+, z) for h−s(z) < x 6 h−s+1(z) with 2 6 s 6 t,
and g(x, z) > g(h−1(z)+, z) for h−1(z) < x 6 1. Now, it can be verified that g(0+, z) = 1, and, using
that (∂/∂z)g(h−s(z)+, z) = β(ρ−s − βs)(Gt(q + ρ) − Gt(q)) > 0, g(h−s(z)+, z) > g(ht−s−1(q)+, ht−1(q)) for
s = 1, . . . , t. One can then show through algebraic and calculus arguments that g(ht−s−1(q)+, ht−1(q)) > 1 − β
for each such s, and thus establish satisfaction of (PCLI1).
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As for condition (PCLI2), it is also easily verified in cases I, III and IV, viz., for x ∈ [0, q) ∪ [h∞, 1]. Its
verification in case II involves algebraic and calculus arguments.

Regarding (PCLI3), we use the sufficient conditions given in Section 10.2. Thus, taking

D(x) , {ht(x) : t > 0} ∪ {ht(q) : t > 0} ∪ {h∞, q, q + ρ},

Assumption 4 holds, whence Lemma 29 and Proposition 6 imply (PCLI3).

Thus, Theorem 1 gives that the model is threshold-indexable with Whittle index m(·).

13 Concluding remarks.

This paper has presented PCL-based sufficient conditions for indexability along with optimality of threshold
policies, for general restless bandits in a real-state discrete-time discounted setting, demonstrating their validity.
This extends the approach previously developed by the author for discrete-state bandits. As for the value of the
proposed approach relative to prevailing approaches based on first proving optimality of threshold policies (in
a strong sense; see Section 2.4 and Section 4), the main example demonstrating it is the recent work in Dance
and Silander (2019), which deploys the sufficient conditions presented here to establish threshold-indexability
of an important model that has not yielded to prevailing approaches, the Kalman filter target tracking bandit.
Furthermore, the proposed approach applies to the larger class of threshold-indexable projects, whereas the
conventional approach applies to the more restricted class of strongly threshold-indexable projects. We further
stress that two of the three sufficient conditions for threshold-indexability, viz. (PCLI2, PCLI3), are necessary
(see Section 3).

Among the issues raised by this paper we highlight that further work is required to facilitate application
of the proposed conditions to relevant model classes, by providing simpler means of checking their satisfaction
than direct verification. Steps in that direction are already taken in this paper with condition (PCLI3). See
Section 10. It would also be desirable to identify properties of model primitives implying PCL-indexability.
Extending the results to the average-reward criterion is another goal for further research.
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