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Abstract

In applications of offline reinforcement learning to observational data, such as in healthcare or
education, a general concern is that observed actions might be affected by unobserved factors, inducing
confounding and biasing estimates derived under the assumption of a perfect Markov decision process
(MDP) model. Here we tackle this by considering off-policy evaluation in an partially observed MDP
(POMDP). Specifically, we consider estimating the value of a given target policy in an unknown POMDP
given observations of trajectories with only partial state observations and generated by a different and
unknown policy that may depend on the unobserved state. We tackle two questions: what conditions
allow us to identify the target policy value from the observed data and, given identification, how to best
estimate it. To answer these, we extend the framework of proximal causal inference to our POMDP setting,
providing a variety of settings where identification is made possible by the existence of so-called bridge
functions. We term the resulting framework proximal reinforcement learning (PRL). We then show how
to construct estimators in these settings and prove they are semiparametrically efficient. We demonstrate
the benefits of PRL in an extensive simulation study and on the problem of sepsis management.

1 Introduction

An important problem in reinforcement learning (RL) is off policy evaluation (OPE), which is defined as
estimating the average reward generated by a target evaluation policy, given observations of data generated by
running some different behavior policy. This problem is particularly important in many application areas such
as healthcare, education, or robotics, where experimenting with new policies may be expensive, impractical,
or unethical. In such applications OPE may be used in order to estimate the benefit of proposed policy
changes by decision makers, or as a building block for the related problem of policy optimization. At the same
time, in the same applications, unobservables can make this task difficult due to the lack of experimentation.

As an example, consider the problem of evaluating a newly proposed policy for assigning personalized
curricula to students semester by semester, where the curriculum assignment each semester is decided based
on observed student covariates, such as course outcomes and aptitude tests, with the goal of maximizing
student outcomes as measured, e.g., by standardized test scores. Since it may be unethical to experiment with
potentially detrimental curriculum plans, we may wish to evaluate such policies based on passively collected
data where the targeted curriculum was decided by teachers. However, there may be factors unobserved in the
data that jointly influence the observed student covariates, curriculum assignments, and student outcomes;
this may arise for example because the teacher can perceive subjective aspects of the students’ personalities or
aptitudes and take these into account in their decisions. While such confounding breaks the usual Markovian
assumptions that underlie standard approaches to OPE, the process may well be modeled by a partially
observed Markov decision process (POMDP). Two key questions for OPE in POMDPs are: when is policy
value still identifiable despite confounding due to partial observation and, when it is, how can we estimate it
most efficiently.

In this paper we tackle these two questions, expanding the range of settings that enable identification and
providing efficient estimators in these settings. First, we extend an existing identification result for OPE in
tabular POMDPs [Tennenholtz et all 2020] to the continuous setting, which provides some novel insight
on this existing approach but also highlights its limitations. To break these limitations, motivated by these
insights, we provide a new general identification result based on extending the proximal causal inference
framework |Miao et all |2018al |Cui et al., 2020} Kallus et al., 2022] to the dynamic, longitudinal setting.
This permits identification in more general settings. And, unlike the previous results, this one expresses the



value of the evaluation policy as the mean of some score function under the distribution over trajectories
induced by the logging policy, which allows for natural estimators with good qualities. In particular, we prove
appropriate conditions under which the estimators arising from this result are consistent, asymptotically
normal, and semiparametrically efficient. In addition, we provide a tractable algorithm for computing the
nuisance functions that allow such estimators to be computed, based on recent state-of-the-art methods
for solving conditional moment problems. We term this framework proximal reinforcement learning (PRL),
highlighting the connection to proximal causal inference. We finally provide a series of experiments, on both
a synthetic toy scenario and a complex scenario based on a sepsis simulator, which empirically validate our
theoretical results and demonstrate the benefits of PRL.

2 Related Work

First, there is an extensive line of recent work on OPE under unmeasured confounding. This line of work
considers many different forms of confounding, including confounding that is i.i.d. at each time step
let all, [2021] Bennett et all 2021} [Liao et al., [2021], occurs only at a single time step [Namkoong et al., 2020],
satisfies a “memorylessness” property |Kallus and Zhou, [2020], follows a POMDP structure |Tennenholtz et al.,
2020, [Nair and Jiang}, 2021} [Oberst and Sontag, 2019} Killian et all) [2022]|, may take an arbitrary form [Chen
and Zhang, 2021, |Chandak et al.,2021], or is in fact not a confounder [Hu and Wager, 2023|. These works
have varying foci: [Namkoong et al|[2020], Kallus and Zhou| [2020], /Chen and Zhang| [2021] focus on computing
intervals comprising the partial identification set of all hypothetical policy values consistent with the data and
their assumptions; Oberst and Sontag| [2019], Killian et al.|[2022] focus on sampling counterfactual trajectories
under the evaluation policy given that the POMDP follows a particular Gumbel-softmax structure;
et al|[2021], |Gasse et al.| [2021] focus on using the offline data to warm start online reinforcement learning;
Liao et al.|[2021] study OPE using instrumental variables; [Chandak et al| [2021] show that OPE can be
performed under very general confounding if the behavior policy probabilities of the logged actions are known;
[Hu and Wager| [2023| consider hidden states that do not affect the behavior policy and are therefore not
confounders but do make OPE harder by breaking Markovianity thereby inducing a curse of horizon; and
[Tennenholtz et al.|[2020], [Nair and Jiang [2021] study conditions under which the policy value under the
POMDP model is identified.

Of the past work on OPE under unmeasured confounding, Tennenholtz et al.|[2020], Nair and Jiang
[2021] are closest to ours, since they too consider a general POMDP model of confounding, namely without
restrictions that preserve Markovianity via i.i.d. confounders, knowing the confounder-dependent propensities,
having unconfounded logged actions, or using a specific Gumbel-softmax form. Tennenholtz et al.| [2020
consider a particular class of tabular POMDPs satisfying some rank constraints, and [Nair and Jiang] [2021
extend these results and slightly relax its assumptions. However, both do not consider how to actually
construct OPE estimators based on their identification results that satisfy desirable properties such as
consistency or asymptotic normality, and they can only be applied to tabular POMDPs. This work presents
a novel and general identification result and proposes a class of resulting OPE estimators that possesses such
desirable properties.

Another area of relevant literature is on proximal causal inference (PCI). PCI was first proposed by
Miao et al.| [2018a], showing that using two conditionally independent proxies of the confounder (known as
a negative control outcome and a negative control action) we can learn an outcome bridge function that
generalizes the standard mean-outcome function and controls for the confounding effects. Since then this
work has been expanded, including by alternatively using an action bridge function which instead generalizes
the inverse propensity score [Miao et al.,2018b|, allowing for multiple fixed treatments |Tchetgen Tchetgen|
, performing multiply-robust treatment effect estimation [Shi et a1.|, , combining outcome and
action bridge functions for semiparametrically efficient estimation [Cui et al.l7 , using PCI to estimate
the value of contextual-bandit policies or generalized treatment effects [Kallus et al., 2022],
or estimating bridge functions using adversarial machine learning [Kallus et al., 2022, [Ghassami et al.| 2022].
In addition, the OPE for POMDP methodologies of |Tennenholtz et al.|[2020], [Nair and Jiang| [2021] discussed
above were said to be motivated by PCI. This work relates to this body of work as it proposes a new way of
performing OPE for POMDPs using PCI, and it also proposes a new adversarial machine learning-based
approach for estimating the bridge functions.




At the intersection of work of OPE and PCI is the concurrent work of [Ying et al.|[2021], which considers
PCI in multi time step scenarios, given two proxies at each time step similar to what we consider in Section [£.2]
Unlike us they only consider the problem of estimating treatment effects for fixed vectors of treatment at
each time step, optionally conditional on observable context at ¢ = 1, as opposed to evaluating policies that
can adaptively treat based on the context available so far.

Finally, there is an extensive body of work on learning policies for POMDPs using online learning. For
example, see [Azizzadenesheli et al.| [2016], Katt et al.|[2017], Bhattacharya et al.| [2020],Yang et al.| [2021],
Singh et al.|[2021], and references therein. This work is distinct in that we consider an offline setting where
identification is an issue. At the same time, this work is related to the online setting in that it could potentially
be used to augment and warm start such approaches if there is also offline observed data available.

3 Problem Setting

A POMDP is formally defined by a tuple (S, A, O, H, Po, Pr, Pr), where S denotes a state space, A denotes
a finite action space, O denotes an observation space, H € N denotes a time horizon, Py is an observation

kernel, with Pg)(~ | s) denoting the density of the observation O; given the state S; = s at time ¢, Pg is a
reward kernel, with P}(%t )(- | s,a) denoting the density of the (bounded) reward R; € [—Rmax, Rmax] given the

state Sy = s and action A; = a at time ¢, and Py is a transition kernel, with P}t)(~ | s,a) denoting the density
of the next Sy;1 given the state S; = s and action A; = a at time t. Note that we allow for the POMDP to
be time inhomogeneous; that is, we allow the outcome, reward, and transition kernels to potentially depend
on the time index. Finally, we let Oy denote some prior observation of the state before ¢ = 1 (which may be
empty), and we let Tf”“ and 73 denote the true and observed trajectories up to time ¢ respectively, which we
define as

T0 = Téull = OO
( (OlvAlle)a(027A27Rt)a"'7(Ot7AtaRt))
fllll ( (517017AlaRl)a(S2702,A27Rt)a---7(St7Ot7At7Rt))-

Let 7 be some given randomized logging policy, which is characterized by a sequence of functions
wél), WIEH), where 7Tb (a | S;) denotes the probability that the logging policy takes action a € A at
time t given state S;. The logging policy together with the POMDP define a joint distribution over the
(true) trajectory 7H! given by acting according to m; let Py, denote this distribution. All probabilities and
expectations in the ensuing will be with respect to P; unless otherwise specified, e.g., by a subscript.

Our data consists of observed trajectories generated by the logging policy: D = {TH , I({Q), . 77'};)},

where each TI({) is an i.i.d. sample of 7y (which does not contain S;), distributed according to Py. Importantly,

we emphasize that, although we assume that states are unobserved by the decision maker and are not included
in the logged data D, the logging policy still uses these hidden states, inducing confounding.

Implicit in our notation Wét)(a | S¢) is that the logging policy actions are independent of the past given
current state S;. Similarly, the POMDP model is characterized by similar independence assumption with
respect to observation and reward emissions, and state transitions. This means that P, satisfies a Markovian
assumption with respect to S;; however, as S; is unobserved we cannot condition on it and break the past
from the future. We visualize the directed acyclic graph (DAG) representing P, in Fig. [I} In particular, we
have the following conditional independencies in Py: for every t,

Ot 1L 7 full ‘S

Rt tfulivOt | Stht

St+1 uis thuliaOth | St)At
At 1T full |St

Now, let m. be some deterministic target policy that we wish to evaluate, which is characterized by a
sequence of functions wél), e ,ng) where 7re (Ot7 Ti—1) € A denotes the action taken by policy m, at time ¢

given current observation O; and the past observable trajectory 7._1. We visualize the POMDP model under
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Figure 1: Graphical representation of the POMDP model under the logging policy m,. The red arrows make
explicit the dependence of 7, on the hidden state. Dashed circles denote variables unobserved in our data.

......

Figure 2: Graphical representation of the POMDP model under the evaluation policy .. The red arrows
make explicit the dependence of 7, on the current observation and previous observable trajectory, and the
blue nodes and arrows make explicit the dependence of the observable trajectories on the data.

such a policy that only depends on observable data in Fig. [2l Note that we allow 7T((3t) to potentially depend

on all observable data up to time ¢; this is because the Markovian assumption does not hold with respect
to the observations Oy, so we may wish to consider policies that use all past observable information to best
account for the unobserved state. We let P, denote the distribution over trajectories that would be obtained
by following policy 7, in the POMDP. Then, given some discounting factor v € (0, 1], we define the value of
policy m. as

H
vy(me) =Y 7 T Ep, [Ri],

t=1

The task OPE under the POMDP model is to estimate v, (m.) (a function of P.) given D (drawn from Pj).

4 Identification Theory

Before considering how to actually estimate v.,(7.), we first consider the problem of identification, which is
the problem of finding some function 1 such that v, (7.) = ¥(Ps), and is a prerequisite for identificaiton.
This is the first stepping stone because Py is the most we could hope to ever learn from observing D. If
such a 9 exists, then we say that v, (7.) is identified with respect to P;. In general, such an identification
result is impossible for the OPE problem given unobserved confounding as introduced by our POMDP model.
Therefore, we must impose some assumptions on P for such identification to be possible.

To the best of our knowledge, the only existing identification result of this kind was presented by
Tennenholtz et al.| [2020] (with a slight generalization given by [Nair and Jiang] [2021)), and is only valid in
tabular settings where states and observations are discrete. We will proceed first by extending this approach
to more general, non-tabular settings. However, we will note that there are some restrictive limitations to
estimation based on this approach. So, motivated by the limitations, we develop a new and more general
identification theory which extends the PCI approach to the sequential setting and easily enables efficient



estimation.

4.1 Identification by Time-Independent Sampling and Its Limitations

For our generalization of Tennenholtz et al.[[2020], we will consider evaluating policies 7. such that Wét) (O, 1t)
only depends on O1.; and A;.;_1; that is, wét) can depend on all observed data available at time ¢ except for
Oy and past rewards. First, for each t € {1,..., H}, let Dy = (O;_1, 04, O¢41, At, Rt), and for any such tuple
D = (0,0',0",A,R) define o(D) = O, o' (D) = 0, 0" (D) = O"”, a(D) = A, and r(D) = R. In addition,
define the shorthand ﬂgt)(Du) =7l (o'(D¢)y...,0(D1),a(D¢—1),...,a(Dy)). Furthermore, let Pi,q denote
the measure on D;.y in which each tuple Dy is sampled independently according to its marginal distribution
in P,. Note that under this measure the overlapping observations between these tuples (e.g. o' (D;) and
0(D¢+1)) may take different values. Then, given these definitions, we have the following result.

Theorem 1. Under some regularity conditions detailed in Appendix there exist functions p*) defined by
conditional moment restrictions under Py, such that for every t € {1,..., H]} we have

EPe [Rt] = EPmd T(Dt) H ]l{a(DS) = 7T(t) (Dl:s)}p(S) (O(DS)?G’(DS)) OH(DS—I))‘| .

Furthermore, under the conditions of |Tennenholtz et al| (2020, Theorem 1], these regularity conditions are
satisfied, and the above is identical to their identification quantity.

Since Pinq is a function of Py, and v,(m.) is a function of Ep, [R],...,Ep, [Ru], Theorem [1] gives a
valid identification quantity for v (7). The full details of the regularity conditions and nuisance functions
governing this result are not very important to this paper, so they are deferred along with the proof of this
theorem to Appendix [A] For our purposes, the main takeaway of Theorem [I]is that there exists a natural
generalization of [Tennenholtz et al. [2020, Theorem 1| to non-discrete settings; while that result was originally
expressed as a sum over all possible observable trajectories, we show that it can instead be expressed as the
expectation of a simple, estimable quantity whose existence does not depend on discreteness. Unfortunately,
the expectation that naturally arises is under Pj,q rather than P,. This means that empirical approximations
of this expectation given n i.i.d. samples from P, would require averaging over n® terms, introducing a
curse of dimension. Furthermore, this expectation clearly does not have many of the desirable properties
for OPE estimating equations held by many OPE estimators in the simpler MDP setting, such as Neyman
orthogonality [Kallus and Ueharal [2020, [2022].

4.2 Identification by Proximal Causal Inference

We now discuss an alternative way of obtaining identifiability, via a reduction to a nested sequence of
proximal causal inference (PCI) problems of the kind described by |Cui et al.|[2020]. These authors considered
identifying the average treatment effect (ATE), and other related causal estimands, for binary decision making
problems with unmeasured confounding given two independent proxies for the confounders, one of which is
conditionally independent from treatments given confounders, and the other of which is independent from
outcomes given treatment and confounders. We will in fact leverage the refinement of the PCI approach by
Kallus et al.| [2022], which has strictly weaker assumptions than |Cui et al. [2020].

Our reduction works by defining random variables Z; and W; for each ¢ € [H]| that are measurable w.r.t.
the observed trajectory 7, as well as defining random variables U, for each t € [H] such that S; is measurable
w.r.t. U;. We respectively refer to Z; and W; as negative control actions and negative control outcomes,
and we refer to Uy as confounders. All triplets (Z;, Wi, U;) must be satisfy certain independence properties
outlined below. Any definition of such variables that satisfy these independence properties is considered a
valid PCI reduction, and we will have various examples of valid PCI reductions for our POMDP model at the
end of this section.

To formalize these assumptions, we must first define some additional notation. Let P; denote the measure
on trajectories induced by running policy m. for the first ¢t — 1 actions, and running policy 7, henceforth.
Note that according to this definition, P, = Py, and P. = P ;. In addition, let Ef and P be shorthand



PCI Problem under P;:

Figure 3: Visual summary of the interventional distributions and corresponding conditional independence
assumptions on proxies for our Proximal RL theory. Above: Visual representation of the interventional
distribution P;, which is the distribution over trajectories obtained by following the evaluation policy . for
the first ¢ — 1 actions, and then taking all subsequent actions following 7,. Below: Probabilistic graphical
representation of the corresponding Proximal Causal Inference decision-making problem at time ¢ under
P/, with outcome variable Y; = ¢(R:, Di11.57) for arbitrary ¢. The variables Z; and W; are conditionally
independent action-side and outcome-side proxies for the true (unobserved) confounder Us.

for expectation and probability mass under P;* respectively. We visualize these intervention distributions in
the first part of Fig. 3

Next, for each t € {1,..., H} we define E; = wgt)(Ot,n_l), and Dy = (Z;, Wy, Ay, E¢, Rt). In addition, we
will refer to any random variable Y; as an outcome variable at time t if it is measurable w.r.t. (Ry, Dit1.1)-
For any such variable and a € A, we use Y;(a) to denote a random variable with the same distribution that Y;
would have if, possibly counter to fact, action a were taken at time ¢ instead of A;. We note that under Py,
we can interpret Y;(a) as the outcome that would be obtained by applying 7. for the first ¢t — 1 actions, the
fixed action a at time ¢, and then 7, henceforth (as opposed to the factual outcome Y; obtained by applying
me for the first ¢ — 1 actions and 7, henceforth). We also note that according to this notation Y;(A;) = Y;
always.

Given these definitions, we are ready to present our core assumptions. Our first assumption is that the
confounders U, are sufficient to induce a particular conditional independence structure between the proxies
Z; and Wy, as well as the observable data. Specifically, we assume the following:

Assumption 1 (Negative Controls). For each t € [H] and a € A, and any outcome variable Y; that is
measurable w.r.t. (R, Dyy1.1), we have

ZtaAt J_I_’Pt* thEta)/t(a) ‘ Ut :

We note that these independence assumptions imply that the decision making problem under P;* with
confounder Uy, negative controls Z; and Wy, action A;, and outcome (R, Dyy1.5) satisfy the PCI problem



structure as in (Cui et al|[2020]. We visualize this structure for the problem at time ¢ in Fig. 3| In addition, it
requires that the action-side proxy Z; is conditionally independent from the next action E; that would have
been taken under Wét). Note also that we may additionally include an observable context variable X;, which
may be useful for defining more efficient reductions. In this case, the conditional independence assumption in
Assumption [I] should hold given both U; and X;, and in everything that follows Z;, W}, and U; should be
replaced with (Z, X3:), (Wy, Xt), and (Uy, X¢) respectively, as in |Cui et al|[2020]. However, we omit X; from
the notation in the rest of the paper for brevity.
Next, our results require the existence of some bridge functions, as follows.

Assumption 2 (Bridge Functions Exist). For each t € [H] and a € A, and any given outcome variable
Y; = ¢(Ry, Diy1.1), there exists functions ¢) and h(&?) satisfying

Ef[¢®(Z, A) | Uy Ay =a) = P (Ay=a |U)™Y as.
and BRSO Wy, A) | Up, Ay = o] = Ef[I{E, = A}Y; | Up, Ay =a]  as..

Implicit in the assumption is that P;(A; = a | Uy) > 0. We refer to the functions ¢*) as action bridge
functions, and h*?) as outcome bridge functions. These may be seen as analogues of inverse propensity scores
and state-action quality functions respectively. As argued previously by Kallus et al.| [2022], assuming the
existence of these functions is more general than the approach taken by |Cui et al,|[2020], who require complex
completeness conditions. We refer readers to Kallus et al|[2022] for a detailed presentation of conditions
under which the existence of such bridge functions can be justified, as well as concrete examples of bridge
functions when the negative controls are discrete, or the negative controls and Y; are defined by linear models.

In the case of both Assumptions|l| and 2] the assumption depends on the choice of proxies Z; and W, and
on the choice of confounders U;. In addition, the parts of (O, 74—1) that ﬂét) may depend on determines what
variables F; is a function of, so the evaluation policy . also affects the validity of Assumption [I] For now we
just emphasize this important point, and present our main identification theory, which is valid given these
assumptions. However, we will provide some concrete examples of feasible and valid choices of (Z;, W5, Uy)
that satisfy Assumption [I] for different kinds of policies 7. in Section [£:3] In addition, we provide an in-depth
examination of the additional conditions under which Assumption [2] holds for an example tabular setting in

Section [4.4]

Theorem 2. Let Assumptions and@ hold. Define ¢ and h(Y) as any solutions to the following equations
(which are assumed to hold almost surely)

E; [0 (20, A) | Wi, Ay = a] = PE(A = a | W)™ Va e A, (1)
E; [h(t)(Wt,At) | Zy, Ay = a] —E; []I{Et — ANY, | Zi, Ay = a} Va € A, 2)
where Yg = Ry, and for every t < H we recursively define

Yier = Reea+5( D2 BOW,a) + 002, A40) (1{A: = BV = BO(W,, A1) (3)
acA

Also, let ny = Hi;ll 1{Es = As}q¥(Z,, As). Then, we have v, (me) = Ep, [pr(Tr)], where

H

Ypr(TH) = Z’Yt_l (77t+1Rt + M Z KO Wy, a) — neg® (Zy, A)hD (W, At)) . (4)
t=1 ac A

Since Ep, [¥pr(7x)] is fully defined by Py, this is a valid identification result. As detailed in our proof, the
existence of solutions to Egs. and is guaranteed given our assumptions. Comparing with Theorem
this result has many immediate advantages; it is written as an expectation over Py, and so may be analyzed
readily using standard semiparametric efficiency theory, and although Egs. and may appear complex
given that they are expressed in terms of the intervention distributions P;, this can easily be dealt with
as discussed later. We also observe that Eq. has a very similar structure to the Double Reinforcement
Learning (DRL) estimators for the MDP setting |Kallus and Ueharal, [2020], where h(Y) and ¢ are used
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Table 1: Summary of some valid PCI reductions for our Proximal RL theory. For each, we provide the explicit
reduction in terms of the triplet (Z;, Wy, U,), and we summarize what kinds of policies can be evaluated under

the respective reduction (i.e. what is the allowed input to ﬂgt)). For the second row, recall that k¥’ = min(k, t),
and for the third row, recall that O; = (O™, OP""), where O™ 1L OP" | &,.

in place of inverse propensity score and quality function terms respectively. This is very promising, since
DRL estimators enjoy desirable properties such as semiparametric efficiency in the MDP setting [Kallus and
Ueharal [2020]. Indeed, in Section [5| we show that similar properties extend to estimators defined based on
Eq. .

At a high level, the proof of Theorem [2| works by defining a series of of outcome variables Y; such that, for
each PCI problem at time ¢ € [H] under distribution P; and with outcome variable Y7, the policy value obtained
by intervening at time ¢ with . is equal to Ep_[R; + YRiy1 + ... +v2 ' Ry]. In the base case of t = H this
property is trivially satisfied with Y; = R;, since under Pj; all prior actions prior to time H are taken following
me. Conversely, for t < H, we establish via backward induction that this holds with Y; defined according to
Eq. . Intuitively, this works because the term multiplied by v in Eq. is the doubly robust influence
function for the PCI problem at time ¢, so Ef[Y;_1] = Ep_[R;—1] + vE;,[Y;]. Similarly, ¢pr(7g) is the
doubly robust influence function for the PCI problem at ¢t = 1, and so Ep, [¢pr(7a)] = E5[Y1] = ... = vy (7).
That is, we recursively apply the improved identification theory of [Kallus et al.| [2022] to a nested sequence
of PCI problems. In each step of the induction, we apply Assumptions [I] and [2] with the specific outcome
variable Y;. We provide full proof details in Appendix [B] where we also present a slightly more general result
that allows for alternatives to ¥pgr that instead resemble importance sampling or direct method estimators
for the MDP setting.

4.3 Specific Proximal Causal Inference Reductions and Resulting Identification

Next, we provide some discussion of how to actually construct a valid PCI reduction; that is, how to choose Z;,
Wy, and U, that satisfy Assumption[I] We provide several options of how this reduction may be performed,
and discuss in each case the assumptions that would be required of the POMDP and . for identification based
on our results. In all cases that we consider below, we would need to additionally justify Assumption [2] which
implicitly requires some additional completeness conditions on the choices of Z;, Wy, and U;. Furthermore,
we note that the practicality of any given reduction would depend heavily on how well-correlated Wy and Z;
are for each ¢, which in turn would impact how easily the required nuisance functions ¢* and A®) could be
fit. We summarize these reductions in Table [T}

4.3.1 Current and previous observation

Perhaps the most simple kind of PCI reduction would be to define U; = Sy, W; = Oy, and Z; =
(O¢—1,A4—1,Ri—1). That is, we use the current hidden state as confounders, and we use both the ob-
servation of S; as well as the previous observation, action, reward triple as proxies for O;. For this definition
we define Ay = Ry = 0. Tt is easy to verify that this is a valid PCI reduction (i.e. satisfying Assumption
as long as Wét) depends on (¢, O¢) via O; only. In addition, it is easy to verify that this reduction remains
valid if we replace Z; with O;_1, which gives us a very simple and elegant reduction, at the slight cost of
fewer treatment-side proxies.

This kind of reduction may be relevant in applications where the current observation of the state is
considered to be rich enough for decision making, but where nonetheless it is possible that confounding is
present. One example of such a setting is a noisy observation setting, where Oy is a direct observation of S;
that may be corrupted with some probability, as discussed in more detail in Section [6] Another example
where such a reduction may be desirable is when we wish to consider policies that are functions of O; only



for reasons of simplicity / interpretability. For example, if we wish to evaluate an automated policy for sepsis
management, we may wish that the policy is a simple function of the patient’s current state that can be
understood and audited by doctors.

4.3.2 Current and k-prior observation

An alternative to the previous reduction would be to define to define Uy = (S;, Si—rr41), Wi = Oy, and
Zy = O¢_ys, for some integer k > 2, where k&’ = min(k,t). Note that in this reduction we can no longer

include any action or reward in Z;, as this would break Assumption [1|in general given the definition of P;.

This reduction allows for any policy where wét) depends on (¢, O;) via the data from the k-most recent time

steps; i.€. (Op—p/s1:t, Ar—kr41:0—15 Re—pr1:0-1)-

This kind of reduction would be useful in applications where it is necessary to consider policies that
consider a past history of observations, rather than only the most recent observation. For example, if we were
considering the task of training an robot to act within an environment that it can only observe part of at each
time step through its camera, it may be necessary to consider policies that use several recent observations to
build a more accurate map of the environment. However, one limitation of this reduction compared to the
previous is that it uses two states as its confounder, which may make Assumption [2] more difficult to satisfy.
In addition, since Z; and W; are separated in time, if k is large they may be weakly correlated, making bridge
functions more difficult to fit.

4.3.3 Two views of current observation

Finally, we consider a different kind of reduction, which is valid when we have two separate views of the
observation; that is, we can partition each observation Oy as O, = (O, OP""), where OP™ 1L OP"™ | &,.
In this case, we can define Uy = Sy, W, = OP"™, and Z; = OP". This allows us to evaluate any policy where
7Y may depend on all of 7, except for Og:rtiv.

This kind of reduction could be appealing in many settings. First of all, it may be useful for the same
kinds of applications as the previous kind of reduction, as it allows us to consider policies defined on a history
of past observations without incurring the costs of the same costs in terms of satisfying Assumption [2| or
estimating bridge functions. This reduction could be particularly useful when there are some observation
variables that cannot be used directly for decision making. For example, in the personalized education
example considered in Section [T} there may be certain testing-based metrics that were specifically collected
with the logged data, but that would not be available when a policy was deployed. Similarly, in robotics
settings as discussed earlier, there may be cheap sensors that are always available, and expensive sensors that
are only available in the logged data [Pan et al.,[2020|. In this case, we could include all such unavailable
covariates in O, and the remaining covariates in OP"", and this would allow policy evaluation with no
effective restriction on the kinds of policies considered. Similarly, if certain sensitive covariates were not
allowed to be included in policies e.g. for ethical reasons, such covariates could be included in OY™".

4.4 Example: Tabular POMDPs Using Previous and Current Observation as
Proxies

Finally, we conclude this section with a discussion of our key identification assumptions for a simple tabular
case, where we use the previous and current observations as proxies for the unobserved state as described in

Section [£.3.1] That is, we consider settings where Uy = S;, Z; = Oy—1, Wy = Oy, and S and O are both finite.

As argued previously, this choice of proxies satisfies Assumption 1| as long as Tét) depends on Oy, 14— via

Oy only. However, it remains to also justify Assumption [2] The following proposition allows us to rewrite the
bridge equations for this simple setting in terms of some conditional probability matrices under the POMDP
and evaluation policy .

Proposition 1. Let P® (O | S) denote the |O] by |S| matriz of the distribution of Oy given S; in the
POMDP, and let Pe(t)(S’ | S) denote the |S| by |S| matrix of the distribution of Si—1 given Sy under rollout by
7e. In addition, for any outcome variable Yy = ¢(R¢, Diy1.1) and a € A, let Ef[1{E; = A:}Y: | S, a] denote
the |S|-length vector of values of 1{E; = A;}Y; given Sy and A; = a under P}, and let P} (a|S)™! denote



the |S|-length vector of values of P(Ay = a | S;)~1 under P;}. Then, using prozies Zy = Oy_1 and Wy = O,
and confounders Uy = Sy, the bridge equations in Assumption[d for each t correspond to solving

PO(S'[8)TPY(0[8) ¢ (0,a) = Pi(a|S)™  VaeA

and

POO|8)"Th"(0,a) = E{[1{E, = A}Y; | S,a]  Va€ A,
where ¢ (0, a) and ht?) (0, a) are the |O|-length vector of values of ¢)(Z;,a) and h(t:®) (W, a) respectively.

This proposition follows trivially by applying the fact that Z, = O;_1, Wy = Oy, and U; = S, and
explicitly expanding out the conditional expectations in the bridge equations in terms of Pe(t)(S' | S) and
P(t)(O | S) given the Markovian property of the POMDP conditioned on the unobserved states.

A trivial corollary of the proposition is that, if |O| > |S|, and P®)(O | S) and Pe(t)(S’ | S) are both
full-rank, then the above equations are always solvable for all a € A, no matter the outcome variable Y;. This
follows by using any pseudo-inverse for Pe(t)(S’ |S)TPU(0 |S)" and PM(O | S)". The conditions that
|O| > |S| and that P® (O | S) is full rank are independent of the behavior or evaluation policies, and they
essentially require that all distributions over states imply different distributions over observations; that is,
there are no “invisible” aspects of S; that don’t affect O,. Conversely, the assumption that Pe(t)(S’ | S) is full
rank depends on the evaluation policy 7.. However, it may be justified for all possible evaluation policies, for
example if the |S| by |S| conditional probability matrix defining the transition kernel Péf) (St | Si—1,A:-1 =a)
were invertible for every a € A. In other words, we can justify Assumption [2] under some basic conditions on
the underlying POMDP, which may be reasoned about on a problem-by-problem basis.

Finally, although the above analysis is specific to our example setting, the intuition is very general; in
order for Assumption [2] to hold, we need that the proxies are sufficiently well correlated with the confounders
(e.g. that PM(0O | S) and Pe(t)(S' | S) are full rank), and that they contain at least as much information as
the confounders (e.g. that we also have |O| > |S]).

5 Policy Value Estimators

Now we turn from the question of identification to that of estimation. We will focus on estimation of v., ()
based on the identification result given by Corollary [8] We will assume in the remainder of this section that
we have fixed a valid PCI reduction that satisfies Assumptions[I]and 2] A natural approach to estimating
vy (7e) based on Corollary [8| would be to use an estimator of the kind

I — G
o (me) = — 3 Por(riy)., (5)
i=1

where 1/1/);{ is an approximation of ¢pr using plug-in estimators for the nuisance functions A*) and ¢*) for
each t. Specifically, to eschew assumptions on the nuisance function estimators aside from rates, we will use a
cross-fitting estimation technique |Chernozhukov et al.| [2016, |Zheng and van der Laan) 2011]. Namely, fixing
K >2 foreachk=1,...,K: (1) fort =1,..., H, we fit estimators R(&%) and G*) only on the observed
trajectories ¢ = 1,...,n with ¢ # k — 1 (mod K); (2) and then for i = 1,...,n with i = k — 1 (mod K), we
set JD\R(TI(L})) to be ¢DR(TI(L})) where we replace h(), ¢ with A% G5 Then we use these to construct
an estimator by taking an average as in Eq. . We discuss exactly how we fit nuisance estimators given
trajectory data in Section[5.3] Until then, for Sections [5.1 and [5.2] we keep this abstract and general: we will
only impose assumptions about the rates of convergence of nuisance estimators and that we used cross-fitting
so that T}}) is independent of At (%) whenever i = k — 1 (mod K).

5.1 Consistency and Asymptotic Normality
We first consider conditions under which the estimator 13’(7") (m) is consistent and asymptotically normal. For
this, we need to make some assumptions on the quality of our nuisance estimators.
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Assumption 3. Consistent and bounded nuisance estimates: letting ¥ represent q(t)(Zt7At) or
R (W, a) for any t € [H] and a € A, we have that for each k € [K]:

1% — Wy p, = 0,(1)
2. [ UW | = 0,(1)
3 P00 < 00

Nuisance estimation rates: The following stochastic bounds hold over the sampling distributions for
constructing the estimators ¢%) and h*) for all t € [H] and k € [K]:

4. For each t € [H|, a € A, and k € [K], we have

189 (2, A0) = 4022, Al I (Za, @) = O (Za, @), = 03~ 2)
5. foreacht € [H], t' <t,a€ A, and k € [K], we have
165 (Zer, Avr) = ¢ (Zur, A 2,2, IR (Ze, @) = O (Z1,0)|2,m, = 0p(n™?)
6. for eacht € [H], t' <t, and k € [K], we have

16 F(Zy, Ap) — ¢ (Zer, Ao |2, 100 (Ze, Ar) — 4D (Ze, Ar)|l2p, = 0p(n7H?)

Essentially, Assumption [3| requires that the nuisances ¢* and h(*) are estimated consistently in terms of
the Lo p, functional norm for each ¢, and that the corresponding product-error terms converge faster than
n~1/2 rate. This could be achieved, for example, if each nuisance by itself were estimated at a op(n_l/ 4) rate,
which notably permits slower-than-parametric rates and is obtainable for many non-parametric machine-
learning-based methods [Chernozhukov et al.| [2016]. In particular, there is a very established line of work on
establishing rates like these for conditional moment problems, like those defining ¢(*) and h(¥), in terms of
projected error (e.g. obtaining rates for |E[h®R) (W, A,) — h® (Wi, Ay) | Zi, Ad||2,) using e.g. sieve methods
[Chen and Pouzo, 2009, |2012] or minimax methods with general machine learning classes [Dikkala et al., [2020].
These can be translated to corresponding rates for the actual Ly error (e.g. |[A0F) (W, A)) — b (Wy, Ay)|l2)
given assumptions on so-called “ill-posedness” measures (see e.g. |Chen and Pouzo| [2012],) which can be
used to ensure our required rates. Alternatively, there exist methods that can directly obtain Ly error rates
for such conditional moment problems, by leveraging so-called “source conditions” |Carrasco et al., |2007,
Definition 3.4], for example using regularized sieve methods |[Florens et al. 2011], neural nets with Tikhonov
regularization |Liao et all 2020], or kernel methods with spectral regulariztion [Wang et all 2022]. Also
note that the product-rate condition allows for some trade off where, if some nuisances can be estimated
faster, then other nuisances can be estimated even slower than op(n_l/ 4). In addition, we require a technical
boundedness condition on the uniform norm of the errors and of the true nuisances themselves. Given this,
we can now present our main consistency and asymptotic normality theorem.

Theorem 3. Let the conditions of Theorem [ be given, and assume that the nuisance functions plugged
into @S”) (me) are estimated using cross fitting. Furthermore, suppose that the nuisance estimation for each

cross-fitting fold satisfies Assumption[3 Then, we have

Vol (o) — vy (me)) = N(0,0D5) in distribution,
where  ohp = Ep,[(¥pr(Tr) — vy(me))?]

The key step in proving Theorem [3]is to establish that ¢¥pr enjoys Neyman orthogonality with respect
to all nuisance functions, and in particular characterizing the unique product structure of the bias. Having
established this, we proceed by applying the machinery of theorem 3.1 of |Chernozhukov et al.| [2016]. We
refer the reader to the appendix for the detailed proof.

One technical note about this theorem is that there may be multiple ¢(*) and A that solve Eqs.
and , which creates some ambiguity in both Assumption and the definition of ¥pg (75). This is important,
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since the ambiguity in the definition of ¥pgr (7x) affects the value of the asymptotic variance o3. In this
case, we implicitly assume that Assumption [3| holds for some arbitrarily given solutions ¢(*) and h® for
each t € [HJ, and that o2y is defined using the same ¢(*) and h(® solutions. Thus, our consistency result in
Theorem [3] holds even when bridge functions are non-unique.

Finally, we briefly consider how this variance grows in terms of H. Since ¢pgr(7H) consists of a sum
of H terms, each of which is multiplied by 7; = Hz;lo q(sl)(ZS/7 AI{Ey = Ay}, we can generally bound
the efficient asymptotic variance by Zil Hi:l 169 (Zs, A)|loo (1gD (Zs, A |2 + Y aca A (Wy,a)||2 +
ld®(Zy, A || so||AD (W, Ap)|l2). Therefore, assuming that all functions h®) (W;, 4;) and ¢ (Z,, A;) have
|| - lloo norm of the same order H grows, the asymptotic variance should grow roughly as O(H?) as H — 0.
On the other hand, if the inverse problems for ¢* and h®*) grow increasingly ill-conditioned as ¢ increases,
then the norms of these functions may grow, in which case the growth of asymptotic variance may be worse
than quadratic.

5.2 Semiparametric Efficiency

We now consider the question of semiparametric efficiency of our OPE estimators. Semiparametric efficiency is
defined relative to a model M, which is a set of allowed distributions such that P, € M. Roughly speaking, we
say that an estimator is semiparametrically efficient w.r.t. M if it is regular (meaning invariant to Op(1/y/n)
perturbations to the data-generating process that keep it inside M), and achieves the minimum asymptotic
variance of all regular estimators. We provide a summary of semiparametric efficiency as it pertains to
our results in Appendix [D] but for the purposes of this section it suffices to say that, under conditions we
establish, there exists a function e € Lo p, (Th), called the “efficient influence function” w.r.t. M, and that
an estimator ﬁg") (me) is efficient w.r.t. M if and only if \/ﬁ(ﬁg") (me) —vy(me)) =n~1/250 z/Jeff(Tl(L;)) +o0,(1),
that is, asymptotically it looks like simple sample average of this function.

One complication in considering models of distributions on 7y is that technically the definition of v (7e)
depends on the full distribution of 7f!. In the case that the distribution of 7 corresponds to the logging
distribution induced by some behavior policy and underlying POMDP that satisfies Assumption [2] it is
clear from Theorem [2] that using any nuisances satisfying the required conditional moments will result in
the same policy value estimate v, (7). However, if we allow for distributions on 75 that do not necessarily
satisfy such conditions, as is standard in the literature on policy evaluation, it may be the case that different
solutions for (") and ¢(*) result in different values of Ep[¢ypr(7#)]. To avoid such issues, we consider a model
of distributions where the nuisances and corresponding policy value estimate are uniquely defined, as follows.

Definition 1 (Model and Target Parameter). Define MS)) as the set of all distributions on T, and for each
t > 1 recursively define:

Lomp= Hi;ll qus)(Zs,AS)]l{As = Es}
2. Pip(Ar | Wi) =Epnep | Wi, A Pp(Ar | Wh)
(Tt,Pg)(Wt;At) = EP[nt,Pg(ZtaAt) | Wt,At] for all g € L2,P(ZtaAt)

o

4. MY = MY 0 {P: Ty p is invertible and P;p(A, | W)™ € Lo p(Wi, Ay)}
5. W (Ze, Ar) = T, A (Prp(A | W)Y

where (1-3) are defined for P € MEH), and (5) for P € M. Furthermore, let T{'p denote the adjoint of
T: p, define Yy = Ry, and for each t € [H] and P € Mét) recursively define

6. Mt,P(ZmAt) = E’P[nt,P]l{At = Et}Y;&,P | Ztht}
7. W (Wi, A) = (T7p) ™ (ep(Ze, Ay))
8. Vip = Laca Y (Wi 0) + ¢ (2, 4)) (1{4, = E}Yip — b (Wi, A1)

9. Yi1p=Ri1+typ
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where the latter is only defined for t > 1. Finally, let Mpcr = ./\/lgH), and for each P € Mpcr define

S hY a)] .

acA

V(P) =Ep

We note that this definition is not circular, since 7, » = 1 for every P, and so we can concretely define
the first set of quantities in the order they are listed above for each t € [H]| in ascending order, and the
second set in descending order of . We note that in the case that P = Py, it is straightforward to reason
that 7 p,, qgg, hgz, and Y; p, agree with the corresponding definitions in Theoremand Corollary E T p,
and T} p, correspond to standard conditional expectation operators under Py, P/'p, (At | W) = Pr(A: | Wy),
and V(Pp) = vy (me). Therefore, Mpcy is a natural model of observational distributions where the required
nuisances are uniquely defined, and V(P) is a natural and uniquely defined generalization of v.(7.) for
distributions P that do not necessarily correspond to actual logging distributions satisfying Assumption

Finally, we assume the following the following on the actual observed distribution P.

Assumption 4. For every sequence of distributions P, that converge in law to Py, there exists some integer
N such that for alln > N and t € [H] such that Ty p, and T} p are invertible. Furthermore, for all such
sequences and t € [H] we also have

1. liminfn_mo ianf(Zt,At)Hl,'PnZl ||Tt,7?nf(Zta At)”l,P“ >0

1P, >0

2. liminf,, o0 infygw,, a0 », >1 | T5p, 9(Wi, Ar)|
8. limsup,, o [|Pf'p, (At | W) Moo < 00.

In addition, for each t € [H]| the distribution Py satisfies
4. infyjpz, a0)12.0,>1 1T2,P, f(Z2, Ad) 2,5, > 0

5. inf‘lQ(WmAt)HQ,’Pnzl ”Tt}tPng(Wt’ At)HQ,Pb >0.

The condition that T} p, and thPn are invertible for large n ensures that the model Mp¢y is locally
saturated at Py, and the additional conditions ensure that the nuisance functions can be uniformly bounded
within parametric submodels. These are very technical conditions used in our semiparametric efficiency
proof, and it may be possible to relax them. We note also that in discrete settings, these conditions follow
easily given P, € Mpcy, since in this setting the conditions can be characterized in terms of the entries or
eigenvalues of some probability matrices being bounded away from zero, which by continuity must be the
case when P, is sufficiently close to P,. Importantly, the locally saturated condition on Mpcy at P, means
that the relevant tangent space is unrestricted. (See Appendix for a discussion of issues with the tangent
space in past work in the absence of local saturation.)

Given this setup, we can now present our main efficiency result.

Theorem 4. Suppose that Py, is the observational distribution given by a POMDP and logging policy that
satisfies the conditions of Theorem@, and let Assumption be given. Then, Ypr(TH) — v, (7e) is the efficient
influence function for V(P) at P = Py.

Finally, the following corollary combines this result with Theorem [3] which shows that under the
same conditions, if the nuisances are appropriately estimated then the resulting estimator will achieve the
semiparametric efficiency bound relative to Mpcy.

Corollary 5. Let the conditions of Theorems@ and be given. Then, the estimator ﬁfyn)(ﬂ'e) 15 semipara-
metrically efficient w.r.t. Mpcy.

5.3 Nuisance Estimation

Finally, we conclude this section with a discussion of how we may actually estimate ¢*) and h(*). The
conditional moment equations Eqs. and defining these nuisances are defined in terms of the intervention
distributions P}, which are not directly observable. Therefore, we provide the following lemma, which re-frames
these as a nested series of conditional moment restrictions under P;.
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Lemma 1. Let the conditions of Theorem @ be given. Then, for any collection of functions ¢V, ..., ¢
and RV ... W) | these functions satisfy Egs. and for every t € [H] if and only if for every t € [H]
we have

Ep

b

m <g(Wt,At)q(t)(Zt,At) - Z g(Wt,a)>] =0 YV measurable g
acA

and  Ep, [ntf(Zt, Ay) (h(t)(Wt, A) —1{E, = At}Y}ﬂ =0 Y measurable f |

where 1, and Y; are defined as in Theorem @

We can observe that the moment restrictions defining ¢ for each t depend only on ¢t for t' < t, and
those defining h() for each ¢t depend on h(*) for ¢ > ¢ and on ¢*") for every t” # ¢. This suggests a natural
order for estimating these nuisances, of ¢!) through ¢(#) first, and then h(!) through A(!). We now take
this approach, solving an estimate of the continuum of moment conditions in each round. (An alternative
approach may be to jointly solve for all 2H nuisances together.) Set

U@ (q,g) =i <Q(Wt,At)Q(Ztht) - Z g(Wt’a)>

acA
U0 ) = 0 (2 Ae) (W, A0) = 1{B = A} )

where #; and Y; are estimated by plugging in the preceding nuisance estimators (in the ordering described
above). Following Bennett and Kallus [2023], the continuum of moment conditions {q : Ep, U4 (¢, g) = 0 Vg}
or {h: Ep, UMM (h, f) = 0 Vf} can be efficiently solved using a regularized, variational reformulation of
the optimally weighted generalized method of moments |[Hansen| [1982], known as the variational method of
moments (VMM). This gives our following proposed estimators for solving for this nuisance bridge functions:

Proposition 2. Our VMM estimators for the nuisance functions ¢V, ... ¢ and KV, ..., h) take the
form

1
¢" = argmin sup E,[U9(q,9)] — 2B [UD (G, 9)*] + R (q) — R¥H)(g),
4€Q® geg® 4

1 -
h = argmin sup E,[UD(h, f)] — B, [U"D (b, £)*] + R (h) — RED(f),
hEH® feF® 4

and can be sequentially solved for in the order ¢V through ¢'™) then h™) through h™V, where QM and H®
are hypothesis classes for the functions ¢) and hY) respectively, G and F*) are some critic function classes
corresponding to the set of moments we are enforcing, R4V, R@H R and R are reqularizers, and
d® and b9 are some prior estimates of ¢V and h) which are arbitrarily defined and need not necessarily
be consistent.

There are many existing methods for solving empirical minimax equations of these kinds for different
kinds of function classes Q® and H(t), as well as different kinds of corresponding critic classes ¢® and
F® . In particular, in Appendix [F| we provide a detailed derivation and description of an efficient process for
solving these equations when the two critic classes are given by Reproducing Kernel Hilbert Spaces (RKHSs),
and we regularize them using squared RKHS norm. Note that this approach is very generic, and allows for
any function classes Q) and H® that we can efficiently minimize convex losses over.

6 Experiments

Finally, we present a series of experiments to demonstrate our method and theory. We present two sets of
experiments. First, we present a simple toy scenario, where we explore the behavior of the methodology and
provide a “proof of concept” of our theory. Second, motivated by the findings of of our first experiments, we
benchmark our methodology in a confounded variation of the more complex “sepsis simulator” environment of
Oberst and Sontag| [2019], which is a better reflection of real application. For full details of all experiments,
see our code at https://github.com/CausalML/ProximalRL.
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Figure 4: Results of our Proximal RL experiment on the NOIsYOBS environment with €,0isc = 0.2. In the
top, middle, and bottom rows we display results for 7€V, rhard and 7oPtm respectively. On the left we
display the mean policy value estimate of each method, where the solid black line corresponds to the true
policy value, and the shaded regions correspond to one standard deviations of the policy value estimates.
On the right we display the corresponding mean squared error of these estimates, where the shaded regions

correspond to 95% confidence intervals for these values.

6.1 Experiment 1: Toy Scenario
6.1.1 Experimental Setup

For our first experiment, we consider a simple POMDP, which we refer to as No1syOBs, which is a time-
homogeneous POMDP with three states, two actions, and three observation values. We denote these by
S = {s1,82,83}, A = {a1,a2}, and O = {01,02,03}. We detail the state transition, reward, and initial
state distribution of the POMDP in Appendix [G] The observation emission process for No1syOBSs is given
Pg)(oi | s5) = 1{i = j}(1 — 3enoise/2) + €/2, where €poise is a parameter of the POMDP. This models a noisy
observation of the state, since we observe the correct state with probability 1 — €p0ise, Or a randomly selected
incorrect state otherwise. Thus if €,0i5c = 0 there is no confounding, and greater €45 indicate more noisy
measurements.

We collected logged data using a time-homogeneous behavioral policy W?OISYOBS, with a horizon length
H = 3. We considered three different evaluation policies 76, ghard ‘and 7oPtm which are all also time-
homogeneous and depend only on the current observation, and are detailed in Appendix [G} These polices
are so named because 7% and 7% are are designed to have high and low overlap with the logging policy
respectively, and 7oPU™ is the optimal policy when epoise is sufficiently small. Therefore these cover a wide
range of different kinds of policies. In all cases, we set v = 1.

We performed policy evaluation with the following methods: (1) Ours is the efficient estimator discussed
in Section [} with nuisance estimation performed using the sequential procedure described in Section (2)

MeanR is a naive unadjusted baseline given by + 3" | Zf: 1 vtREi); (3) MDP is a model-based baseline
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given by fitting a tabular MDP to the observed data, treating the observations as states, and computing
the value of 7, on this model; and (4) TIS is a baseline based on the result in Theorem [1} with estimated
plugged-in nuisances and replacing the expectation under Pj,q with its empirical analogue. We provide more
detail about each of these methods in Appendix [G] In the case of our method, we used a simplified version of
the “current and previous observation” PCI reduction given by the first row of Table [T} where Z, = O;_; and
Wy = Oy, which is valid since we are considering evaluation policies that only depend on O;.

6.1.2 Results

We now present results policy evaluation for for the above scenario and policies, using both our method and the
above benchmarks. Specifically, for each n € {200,500, 1000, 2000, 5000, 10000}, 7, € {measy, ghard goptim}
and € € {0,0.2} we repeated the following process 100 times: (1) we sampled n trajectories with horizon
length H = 3, behavior policy WEO'SYOBS and noise level e,0i5c = €; and (2) estimated vy (7.) using these n
trajectories for each method.

In Fig. 4| we display results for the confounded case where €poise = 0.2 (i.e., POMDP setting). Here, we
see that our method is consistent, while the MDP method, which is only designed to work in MDP settings,
is not. The only exception is for estimating the value of 75*Y, however this is only because MDP just
happens to have very small bias for estimating this policy. While our method is consistent, it does have more
variance than the MDP benchmark as it tackles a much more complex estimation problem. As expected, the
unadjusted MEANR benchmark is inconsistent as it only estimates the value of the logging policy. Finally,
despite our identification theory in Section [{.I] the TIS method in general performs very poorly. This is
unsurprising, since as discussed in Section the identification result (as an expectation over Pi,q) may
not lend itself to good estimation by plugging in empirical estimates into the identification formula. For
comparison, in Appendix |G| we present additional results for the unconfounded case, €yoise = 0 (i.e., MDP
setting), where we see that the MDP baseline becomes consistent due to the absence of confounding and that
our method remains consistent and has less variance than in the POMDP setting shown here but still more
than the MDP baseline, which is expected as it still solves a more complex estimation problem in order to
adapt to both the MDP and POMDP settings.

6.2 Experiment 2: Sepsis Management
6.2.1 Experimental Setup

Next, we consider a more “real world”-inspired scenario. Specifically, we consider a scenario based on the sepsis
management simulator of |Oberst and Sontag| [2019]. Their environment considers the active management of
sepsis for patients, whose state is described by heart rate, blood pressure, oxygen concentration, glucose level,
and whether the patient is diabetic. At each time step, the action taken consists of three binary components:
whether to place the patient on/off antibiotics, whether to place them on/off vasopressors, and whether to
place them on/off a ventilator, giving a total of 8 unique actions. After taking each action, we receive a
reward based on the number of components of the state taking values within safe ranges, with a maximum
reward of 1 if all indicators are safe and the patient is off all three treatments, and a minimum reward of —10
if three more more indicators are unsafe, with various intermediate values. The system uses almost identical
parameters as in [Oberst and Sontag| [2019] with some minor modifications, and we provide a more detailed
description in the appendix.

In order to introduce confounding, we only observe a censored version of the state; for each patient, with
25% probability we do not observe whether or not that patient is diabetic (i.e. in all observations for that
patient the “diabetic” indicator is set to “False” regardless of whether the patient is diabetic or not). That is,
the true state contains both an indicator of whether the patient is diabetic or not and whether their diabetes
status is censored, but for the observed state we instead only observed a possibly censored diabetes indicator.
Since all other components of the state are discrete, this means that both state and observation spaces are
discrete (i.e. tabular), with a total state space size of |S| = 2880, and observation space size of |O| = 1440.

We experimented on this scenario over a time horizon of H = 3 and a discount factor of v = 1. We
first constructed our behavioral policy 7, by computing the optimal policy in the true POMDP #*, and
defining 7, by introducing e-greedy sampling to 7* with € = 0.1; that is, we defined m, = 0.97* 4+ 0.17mupis,
where mynif is a policy that takes all 8 actions with equal probability. Then, we sampled 10,000 observational
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Method 01 () Bias RMSE Improvement Acc.

OURs (best hyper.) —2.370+£0.597 —0.096 0.599 82%

OuURs (auto hyper.) —2.45940.182 —0.184 0.258 100%
MDP —1.261 £0.054 1.014 1.015 0%
MEeANR —1.799+£0.025 0.476 0.477 —

Table 2: Results of our Proximal RL experiments on the sepsis management environment. For reach method,
we list the average policy value prediction (with one standard deviation error), along with the empirical bias
and root mean squared error. In addition, for each method other than MEANR, we list the method’s accuracy
of predicting whether vy (m.) > v1(mp) or not. For reference, the true policy values were vy (m.) = —2.275 and
vy (mp) = —1.799.

trajectories using 7y, and defined 7. to be the predicted optimal policy fit on these trajectories using dynamic
programming on a simple count-based tabular MDP model, treating the observations O; as the true states S;.
Note that since the observations O; are confounded, we expect that 7, should not necessarily be an estimate
of the actual optimal policy 7*.

Next, given the fixed policies m, and 7. coming from the first stage of the experiment, we repeated the
following procedure 50 times: (1) we sampled 10,000 observational trajectories using 7,; and (2) we estimated
v1(m.) using those trajectories as input for all methods. We performed policy evaluation with our method, as
well as the MEANR and MDP benchmarks, as in the previous experiment. In the case of our method, we
experimented with a large range of hyperparameter values, as detailed in the appendix. In addition, we used
the proxies Z; = (G¢—1, X¢) and Wy = (Gy, Xy), where O, = (G, X) is a partition of the observation into
information about diabetes (G) and non-diabetes information (X); see appendix for more details.

Finally, since we had observed in our prior experiments that our method could be sensitive to hyperpa-
rameter values, and also since we lack ground truth so cannot set these “fairly” using e.g. cross-validation, we
experimented with the following heuristic procedure automatic hyperparameter selection: (1) we first estimate
the policy value using all 81 different possible hyperparameter values; (2) we throw away all estimates that take
values outside of the range of observed reward values; and (3) we take the median of the remaining estimates.
This heuristic is based on the observation from our prior experiments that, as long as hyperparameter values
are within reasonable ranges, our method typically gives estimates that are either fairly accurate, or wildly
out-of-bound. We estimated policy value using this heuristic separately for each of the 50 experimental
replications.

6.2.2 Results

We present the main results of this second experiment in Table [2| There we present results for our method
with the single best set of hyperparameters out of all tested (in terms of mean squared error across the 50
replications), as well using the automatic hyperparameter selection heuristic described above. We can first
observe that using the single best hyperparameter setup gives policy value predictions that are approximately
unbiased, but with very high variance. Qualitatively, this variance seems to be partially explained by unstable
predictions in a minority of cases. On the other hand, our automatic hyperparameter heuristic gives estimates
results in slightly higher bias, but much lower variance, and therefore much lower mean squared error. This
strong performance of our heuristic versus choosing the best single set of hyperparameters is extremely
encouraging, since unlike picking a “best” hyperparameter combination, the heuristic is actually feasible in
practice, as it does not require any ground truth information for hyperparameter selection. Finally, as in the
prior experiments, the benchmark methods, which either do not take into account confounding (MDP), or
are completely non-causal (MEANR), both give extremely biased estimates with low variance.

Next, we note that in practice we are often more concerned about predicting whether 7. is an improvement
on 7, or not, rather than the exact policy value of m.. Accurately answering this question is important in many
applications, where the baseline policy , reflects current best practices or business as usual, and 7, represents
a proposed new policy. For example, here we could think of 7, representing how physicians currently manage
sepsis, and 7, as a proposed automated algorithm for sepsis management. We have v (7.) & —2.275 and
v1(mp) & —1.799, so we would like any method of policy evaluation to be able to correctly predict that the new
proposed algorithm (7.) is worse than standard physician care (7). Specifically, we evaluate each method
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by what percentage of the time the policy value estimate is smaller than the observational mean reward
(MEANR), as the latter is an unbiased estimate of vq (7). We list these results in the final column in Table
We note that our method with the best hyperparameters usually correctly predicts that 7, is worse than
mp, and with our automatic hyperparameter selection heuristic this prediction is always correct. On the
other hand, the MDP benchmark, which fails to take into account confounding from the censored diabetes
measurements, always incorrectly predicts that 7w is an improvement on 7.

7 Conclusion

In this paper, we discussed the problem of OPE in an unknown POMDP as a model for the problem
of offline RL with general unobserved confounding. First, we analyzed the recently proposed approach
for identifying the policy value for tabular POMDPs |Tennenholtz et al) |2020]. We showed that while
it could be placed within a more general framework and extended to continuous settings, it suffers from
some theoretical limitations due to the unusual form of the identification formulation, which brings its
usefulness for constructing estimators with good theoretical properties into question. Motivated by this, we
proposed a new framework for identifying the policy value, by sequentially reducing the problem to a series of
proximal causal inference problems. Furthermore, we extended this identification framework to a framework
of estimators based on double machine learning and cross-fitting |[Chernozhukov et al.| [2016], and showed
that under appropriate conditions such estimators are asymptotically normal and semiparametrically efficient.
Finally, we constructed a concrete algorithm for implementing such an estimator, and provided an empirical
proof of concept of our theory by applying algorithm in a toy synthetic setting with confounding due to
noisy measurements, as well as a complex spepsis management setting with confounding due to missing
measurements of diabetes.

Perhaps the most significant scope for future work on this topic is in the development of more practical
algorithms. Indeed, although our experiments were only intended as a proof of concept of our methods
and theory, they also show that our actual proposed estimators can often have high variance even in a
simple toy POMDP with a moderate number (e.g., 1000) of trajectories. There may be ways to improve
on this; for example it may be beneficial to solve the conditional moment problems defining the ¢ and
h(®) functions simultaneously rather than sequentially as we proposed, which may result in cascading errors.
Another important topic for future work would be to explore hyperparameter optimization strategies, such as
the heuristic method we proposed for our sepsis experiments; although we found this heuristic worked well
empirically, it may introduce other challenges such as dealing with post-selection inference.

Another area where there is significant scope for future work is on the topic of semiparametric efficiency.
Extending our model to allow for multiple nuisances, in a way where the parameter of interest is still
well-defined, is an important open challenge. Additional issues are discussed in Appendix [E1]

Finally, in terms of future work, there is the problem of how to actually apply our theory as well as
policy value estimators in real-world sequential decision making problems involving unmeasured confounding.
Although our work is largely theoretical, we hope that it will be impactful in motivating progress toward
solving such real-world challenges in practice.
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A Identification by Time-Independent Sampling

In this appendix, we present a general identification result given by Theorem [6] Then, we present a
specialization of this result to the discrete setting in Lemma [2] We do not provide a separate proof of
Theorem [T} since it follows immediately from Lemma [2] We also note that in this section we will use the
notation Z; = o(Dy), W, = o'(D;), and X; = 0" (D;), which is not to be confused with the Z; and W; notation
used in our PCI identification theory.

First, before we present these results, we establish the following completeness assumption which they
depend on, and is the missing technical assumption referenced by Theorem

Assumption 5 (Completeness). For eacht € {1,...,H} and a € A, if Ep,[g(S:) | Ot, Ay = a] = 0 almost
surely for some function g, then g(S;) =0 almost surely.

This assumption is fundamental to this identification approach, and essentially requires that O; captures
all degrees of variation in S;. In the case that states and observations are finite, it is necessary that O; have
at least as many categories as S; for this condition to hold. Given this, we are ready to present our first
identification result.

Theorem 6. Let Assumption @ hold, and suppose that for each t € {1,...,H} there exists a function
p®) S x Ax SR, such that for every measure f on Wy that is absolutely continuous with respect to Py
and every a € A, we have almost surely
(t) 1 df
E | [ p"(Zi, A, 2)df (z) | Wi, Ay = a| = P(Ay = a | W) P, (W), (6)
where df /dPy denotes the Radon-Nikodym derivative of f with respect to Py. Then, for each s € {1,...,H}
we have

Ep, [RS] =Ep,,,

R, H 1{A; = E}p'" (2, Ay, Xt—l)]
t=1

We note that this result identifies v.,(m.) for any given v, since by construction Pi,q is identified with
respect to Py, and this allows us to express v, (7e) as a function of Pinq. Note that implicit in the assumptions
is that P(A¢ = a | W) > 0.

We call this result a time-independent sampling result, since it is written as an expectation with respect to
Pind, where data at each time point is sampled independently. We note that the moment equations given by
Eq. @ in general are very complicated, and it is not immediately clear under what conditions this equation
is even solvable. In the tabular setting, we present the following lemma which provides an analytic solution
to Eq. @ and makes clear the connection to |[Tennenholtz et al.| [2020].

Lemma 2. Suppose that Oy is discrete with k categories for every t, and without loss of generality let the
support of O; be denoted by {1,...,k}. In addition, for each t € {1,...,s} and a € A, let Q“*) denote the
k x k matriz defined according to

QU = Pp,(Or=x| Ay =0a,0,1 =).
Then, assuming Q4 is invertible for each t and a, Eq. @ 1s solved by

(t,a)y—1
N (- ) o I
P (Z’a)x) P(Ot,1 :Z,At :CI,) '

Furthermore, plugging this solution into the identification result of Theorem[ is identical to Theorem 1 of
Tennenholtz et al| [2020].

We also note that, in the case that the matrices Q(*%) defined above are invertible, it easily follows that
Assumption [5] holds, as long as S; has no more than k categories.
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Proof of Theorem [0 We will prove this result for arbitrary fixed s € [H]. Define
Yo =Rs
Y = 6" (Zega, Arpr, Weg, Bga, X0, Yen) Vi€ [s—1],
where
(b(t)(z, a,w,e,x,y) = p(t)(z7a,x)]l{a =ecly.
Now, by these definitions we need to prove that
Ep,[Rs] = Ep,,, [Y0] -

where Yy = ¢!V (Z1, A1, Wi, Ex, Xo, Y1)

We will proceed via a recursive argument. In order to set up our key recursion, we first define some
additional notation. First, let P} denote the intervention distribution introduced in Section FIEI, and let P74,
denote the measure on D;.y defined by a mixture between Pf, | and Pi,q, where

1. {Wreo1}, {X1e-1} {A1-1}, and {Ry.4+—1} are jointly sampled from P}

2. {Z,.... Zu}t, {Wh,...,Wu}, {Xt,.... Xu} {At,..., An}, and {Ry, ..., Ry} are jointly sampled from
Pind~

Given this setup, the inductive relation we would like to prove is

[¢(t)(Zt7At7 Wt7 Et,thlay;ﬁ)] = EP*

ind, t+1[

Ep- Y] Vtels] (7)

ind,t

We note that if Eq. ( . holds, then via chammg this relation and the recursive definitions of Y;, we
would instantly have our result, since Ep: l[gb (Zl,Al,Wl,El,WO,Yl)] = Epx  [Yo] = Ep,,,[Yo], and
Ep; . .., [Rs] = Ep [R,]. Therefore, it only remains to prove that Eq. (7)) holds.

Next, by the assumption on ¢(*) in the theorem statement, we have

dP,
pD(Zy, A, Xi 1) (*’) (W)

d ind,t+1

d
Py (WHE Pt {/ fe—1( Zt;At7 ‘ Wi, Ay —a}
d 1ndt+1

APjg s41 1
<d‘””’> 1) (gt ) (WPt = a | W)

ind,t+1 dpb

Wt7At =a

Eps,.

:P(At:a|Wt)_1,

where in this derivation f;—; denotes the density of X;_; under P, ;, which we note is the same as the
density of Wy under Py, ;.. Given this, applying the independence assumptions of our POMDP framework
we have

Epx

ind,t

[P(Ar=a|S)~" | Wi, Ar = d]
1nd,t[P(At =a | StaWt)il | Wy, Ay = a]

(St:S|Wt,At:CL

/P )ds
P(Ai=a | W, Se =s)
/ P(A = a| Wi, 8 = s)P(Sy =5 W)
P(A;=a| Wt,St =s)P(Ay =a | W)
=PAy=a| W)}
=Ep: , p(Zs, A, Xy 1) <d,Pd*Pb> (W) | Wi, Ay =a
ind,t+1

St, Ay =a| Wi, Ay =a

=Ep,. l]EP:nd‘t

dP
P (Zr, A Xi) <db> (W)

ind,t+4+1
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Given this, it then follows from Assumption [5] that

dPp,
pD(Zy, Ay, Xi 1) (*’) (W)

Epsx
"
dpind,tJrl

ind,t Si, Ay =a :P(At:a|5t)’1,

which holds almost surely for each a € A, and therefore also holds replacing a with A;.
Finally, applying this previous equation, we have

Ep,t,d t [¢(t) (Zta At, Wt, Et, Xt—l, )/t]
(t)(Zt, Ay, Xy 1)1{A; = E,}YY]

=Ep-
dP,
P(t)(ZtaAt»thl) (db> (Wt)

e 1P

St7Ata Wta Eta }/t

- Epl*nd t [Epnt)<1 t

ind,t+1
aP;,
dPp,
= E,Pit\d,t [Eplﬁldt p(t)(Zt’At’thl) <db> (Wt) ’ Sthh
ind,t+1
ar;,
[ dPy,
=Ep;,,, |P(A:c]S)7 (ﬁ) (Wo)1{A, = Et}Yt}
i P(A | Si, Wy, By, Yy) (APig i1
= * ’ 1{E; =alY: (E
Pt Z P(A; | Sy) P, (W)I{E; = a}Yi(Ey)
[(dPy,
= E/Pi,;d,t < d;;)t+1) (Wf)}/f(Et):|
= Epi*nd,wrl [Y;] ?

where the third and sixth equalities follow from the independence assumptions of the POMDP given S;.
In this derivation we use the potential outcome notation Y;(a) to denote the value Y; would have taken
if we intervened on the t’th action with value a (and the subsequent values of X; and R, are possibly
changed accordingly; note that this intevention does not change the values of Z; or W, since these represent
observations at time ¢ — 1 and ¢ respectively.) The final equality follows because replacing Y; with Y;(F};)
effectively updates the mixture distribution Pia SO that A;, Xy, and R; are included in the set variables
sampled according to P/, |, rather than in the set of those sampled according to Pi,q. Furthermore, integrating
over the Radon-Nikodym derivative (P}, 4, 1/dPs)(Wr) effectively further updates the mixture distribution
so that W; is also included in the set sampled according to Py, |, since the distribution of W; under Py is the
same as the distribution of Wy under P ,. That is, these two terms effectively replace integration under
ma,c With integration under Py ;.- This establishes Eq. (7)), and therefore as discussed above the theorem

follows by recursion.
O

Proof of Lemma[3 First we establish the required property of this definition of p®). Since observations are
tabular, the required property is equivalent to

_ W)

(
Zf ) Zthta ) - P(Wt)

z€O

Wi, Ay =a P(A [ W)t

fW)
7P(At:a,0t:Wt)’
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almost surely for every discrete probability distribution f over the observation space. Now, recalling that
Q;) =P(Oy =z | Ay = a,0,_1 = y), plugging the definition of p(*) into the LHS above, we have

lZf )0 (Zy, Ay ) | Wi, Ay = a
xz€O
=E Zf POy =Zy, Ay =a)” 1(Q(t’a))z,x Wi, Ay =a
zeO
— Z f Ot 1=z, At = CL) (Ot—l =z | Ot = Wt,At = a)(Q(t’“));i
z,z€0
_ Z f(z =W |01 =2,A, =a)P (Ot71:Z|At:a)(Q(t,a))—1
2.2€0 Otl—ZAt—a) (Otht|At:a) ZT
-y f@)P(Or1=2] A =a) QUL (@)1
t2e0 P(Ot_l = Z,At = G)P(Ot = Wt | At = a)
f(x) (1) (ota)) -
;PAt—a) (Ot Wt|At:a ZQ Q
= W, ==z
;9 Wt7At_a) { ! }

B f<wt>
P(At :CL,Ot :Wt) ’

which establishes the required property of p.
Now, for the second part of the theorem, we first note that in terms of our notation and under our (w.l.o.g.)
assumption that the target policy is deterministic, [Tennenholtz et al.|[2020, Theorem 1] is equivalent to

Ep, [Rs] = > (Hﬂ{at Ey(o1:, v 1)}>

01::s€0%,a1.,€A®

: Z EPb[Rs | Os =05, A5 = 05,051 = Z}
z€O
P(Oé = Oy | As = avOs—l = Z)Q(01:57a'1:s)za

where F;(01.¢,a1.4—1) denotes the action taken by 7. given O1.4 = 014, and Ay1.4—1 = a1.4—1, andwe define

S

Q(01:5,01:5) = H o t+1(01:5—t+1,A1:s—141)

=1
Ei(01:4,01:¢) 2,20 = Z(Q(t’at));;P(Ot =2,0;-1 =041 | Aim1 = a4-1,040 = 2')
zeO
E1(o1:t, A1) = Z(Q(l’al));iP(Ol =1x).
zeO

We note that the term we refer to as 2 was called the same in [Tennenholtz et al.| [2020], and the terms we
refer to as = were called W, and we explicitly write out the matrix multiplication in the definitions of the =
terms. Next, plugging the definition of  into the above equation for Ep,_[Rs], and explicitly writing out the
sums implied by the multiplication of the =; terms, and re-arranging terms, we obtain
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Ep, [Rs] = Z (H]l{at Ey(01:4,a1:4— 1)})

01:s€0%,a1.s€A® t=1
21:.s€0°%,x0.51€0°

'pr[RS | Os =05, A5 = a5,0,1 = Zs]

’ (H(Q(mat))z_ia;th(At = at70t71 = Zt)_1>

t=1

s—1
: (H P(Ot =04, Ay =a, 01 = Zt,0t+1 = xt))

t=1

P(Og5 = 05, As = a5,05_1 = 25) P(Op = x0) .

Now, we note that (Q(mt));}mhlP(At =a;,0i 1 =2)" ! = p(t)(zt, at,z¢—1), and that summing over the
product of terms Hi;ll P(O; =04, Ay = a4,04—1 = Z4, 0141 = x¢) and P(O; = 05, As = a5,05_1 = Zs) and
P(Og = x0) is equivalent to integrating over Pinq, where z;, as, x4, and oy correspond to Z;, Ay, Xy, and Wy
respectively. Re-writing the previous equation as an expectation and simplifying based on this gives us

]E'Pb[RS ‘ WsaA‘SaZS} HIL{At Et}P (Zt;At,Xt 1)
t=1

= EPind EPind RSH]I{At = Et}p(t)(ZtaAtathl) ‘ stAst

t=1

:EPind R H]]'{At Et}p (Zt7At7Xt1)] )

where the second equation follows since the distribution of R given Wy, Ay, and Zs is the same under P, and
Pinda, and because R is independent of Hle 1{A; = Et}p(t)(Zt, Ay, Xy 1) given (W, Ag, Zs) under Pipq.
We note that the final equation is our identification result from Theorem [6] and so we conclude.

O

B Identification by Proximal Causal Inference
In this section we will present a slightly more general theorem than Theorem [2} which is the following.

Theorem 7. Let Assumptions and@ hold. For each s € {1,...,H} recursively define YS(S) = R, and

Yt(_s)1 = (b(t’s)(Zt, Wi, Ay, By, Yy) for each t < s, where the function #%) is allowed to take one of the following
three forms:

W) (26, We, A, B, YY) = 3 009 (Wi, 0)

acA
(t S) (Zt7 Wt, At,Et Y( )) = q(t)(Zt At)]].{At Et}yvt(g)
(t S)(ZhWt;At’Eta = th’s (Wi, a)

acA

+ 402, A) ({4 = BV — hEI(W,, A)) |

where K% and ¢\ are solutions to, respectively,

Ef (g (Zi, A) | Wi, Ay = a) = PF(Ay=a | W) ™' as. Yac A,
Ef[h9) (W, A) | Zy, Ay = a) = Bf[1{A4, = B}V, | Z,, Ay =a] as. VaeA,

25



which we show must exist.
Then, we have Ep_ [Rs] = ]pr[ ] for each s € {1,...,H}.

Furthermore, the following corollary makes the connection between Theorem [2] and Theorem [7] clear.

Corollary 8. Let Assumptions cmd hold, and let Yy, hY), and n; be defined as in Theorem @ Then, we
have vy(me) = Ep, [015(TH)] = Ep, [VRrey(TH)] = Ep, [YDr(TH)], where

1ﬁIS 7'H Z Y ﬁt+1 Ry

VReg(TH ) = Z hD (W1, a)

acA

Yor(TH) Z’Y -t <77t+1Rt + Z O (Wy,a) — 1:q (Zy, A)h (Wt;At)> .

acA

This corollary follows directly from Theorem |7} noting that for any collection of variables YO(S) satisfying

the conditions of Theorem [7| we have v, (m.) = Ep, [2?:1 ’ys_lYo(S)]. For 15, Yreg, and ¢¥pr the specific

result arises by using gzﬁ(t S), qbg:g), or (/)](Dt’g) respectively for each (¢, s), and we also use the fact that for every

t > 1 we have Y; = Zs:t vs=tY,®) and therefore h() = Zit s thts),

We note that 11s and ¢res have very similar structures to importance sampling and direct method
estimators for the MDP setting, where the (") terms are similar to the quality function terms, and the 7,
and v; terms are similar to the importance sampling terms. Also, as already discussed in Section UYDR
has a very similar structure to Double Reinforcement Learning (DRL) estimators for the MDP setting [Kallus
and Ueharal, |2020].

Before we present the proof of Theorem 7] we establish some additional notation and some helper lemmas.
Using similar notation to |Kallus et al.| [2022], for any t € [H] and ¢ € Lo ps (R, Dy11.1) we define the sets

QW ={ge Lopr(Z1, Av) : Bflq(Ze, A) — PE(A | U) ™" | U, Ay = a] = 0

a.s. Vae A}

H"?) = {h € Lops (Wi, A) : Ef[h(Wy, Ay) — 1{A; = E;}Y; | Up,ap = a] =0
a.s. VYae A}

QY. = {q € Lop; (Z0, Av)  Eila(Ze, Ae) — PL (A | W)™ | Wiy Ay = a] = 0
a.s. Vae A}

B = {h € Lop; (Wi, Ay)  Ef [f(W,, Ar) — 1{A; = B}, | Wi, Ay = a] = 0
a.s. Vae A},

where Y; = ¢(Rt7 Et+1:H)-
First, we will prove an important claim from Section which is that Assumption [2| implies that Egs.
and both have solutions. This claim is formalized by the following lemma.

Lemma 3. Under Assumption and for each t € [H| and ¢ € Lo pr(Ry, Diy1.1) we have QW C Q(D?S and
H® € Hp?.
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Proof of Lemmal3, First, suppose that ¢¥) € Q). Then we have

Ef[q( (Zi, Ar) | Wi, Ay = a] = E?[Ef[q (Zt,At) | U, Wi, Ay = a] | Wy, Ay = d]
= E;[Ef [¢"(Ze, Ar) | Up, Ay = a] | Wy, Ay = d
=E; [P/ (A =a|U)” ! | Wi, Ay = al

/ * Ut—U‘Wt,At
At—a\Ut )
P At—a|Wt,Ut—u)P*(Ut—u|Wt)

P* At—a|Ut—u)P*(At—a\Wt)
=P (e =a| W) [ (0= 0| Woduta)

=P/ (Ay=a| W)™

2 dp(u)

dp(u)

)

where in the second and sixth equalities we apply the independence assumptions from Assumption [T} in the
third equality we apply the fact that ¢(*) € Q®), and the fifth equality follows from Bayes’ rule. Therefore,

¢ € QQ,.
Second, suppose that h®*) € H*#) Then we have
E;[WD (Wi, Ay) | Zi, A = a] = Ef[Ef R (W, Ay) | Uy, Zy, A = al | Zi, Ay =
E:[h(t (Wt,At) | Ut,At = a] ‘ Zt7At = a]
E¢[¢(Re, Dipr:n) | Ur, Av = al | Z, Ay = d
t[0(Re, Disr:nr) | U, Zey Ay = al | Zy, Ay = a
¢(RtaDt+1:H) | Zyy Ap = a]7
where in the second and fourth equalities we apply the independence assumptions from Assumption [T} and in

; : (t,¢)
the third equality we apply the fact that h(!) € H®). Therefore, h® € H ;%
O

Next, we establish the following pair of lemmas, which allow us to establish that <b%’s) and ¢g;;) satisfy
an important recursive property in the case that ¢ € Q® or h() € H) respectively.

Lemma 4. Suppose that ¢V € Q®) | let Y; = &(Rt, Diy1.1r), and let Assumption be given. Then, we have
E;[¢"(Zi, A)I{A; = E}Yi] = Ef, [Vi].

Lemma 5. Suppose that h) € H®®) | let Y, = O(Ry, Diy1.1), and let Assumption be given. Then, we have

E; | Y nD (Wi a)

acA

= ]E:H[Yt] .
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Proof of Lemmal[j) Given that ¢'¥) € Q®, we have
E¢" (Zi, A)1{A, = E}Y))
=E;[B;[¢"(Ze, Ar) | Uy, Ay, B, Yi(1), .. Ye(m)|1{ A, = E,}Y]
= E;[E; ¢ (2, Ar) | U, AJ1{A; = Et}m

= E;[P; (A | U)""1{A, = E,}Y)]

=E{ [P/ (A | Up) T 1{A; = E}Yi(Er)]

))]I{Et = a}tY(Ey)

. Pi(Ar =a | Uy B Y (1), ..., Y (m
:]Et Z L : P*(i4 t_at‘U) '
acA t = t
=E; Z]I{Et = a}Y,(Ey)
acA
:]E:[Yt(Et)]
=E; v,

where in the second and sixth equalities we apply the independence assumptions from Assumption [1} in the
third equality we apply the fact that ¢ € Q)| in the fourth equality we apply the fact that Y; = Yi(As),
and in the final equality we apply the fact that by definition intervening on the ¢’th action with E; under P}
is by definition equivalent to P/ ;. O

Proof of Lemma[3. Given that h(+%) € Q)| we have
> h(t)(Wt,a)] =E; [Ef | > h(Wi,a)

acA L Lac A

=E; |E; | > hO(W, Ay)
L Lac A

=E; |Ef | > 1{E = A},
L Lac A

=E; |Ef | 1{E,

L Lac A

=E; |E; | > 1{E = a}Yy(Ey)
L Lac A

— B | S 1{E, = alvi(B)
Lac A

= E: [Yt(Et)]
= EIH[Yt]

Ut7At =a

|

Ut,At =a

|

Ut,At =a

a}Yi(Ey)

|

U

where in the second and sixth equalities we apply the independence assumptions from Assumption [T} in the
third equality we apply the fact that h(*) € H(®?) in the fourth equality we apply the fact that Y; = Y;(A,),
and in the final equality we apply the fact that by definition intervening on the ¢’th action with E; under P}
is by definition equivalent to P/ ;.

O

Now, by the previous two lemmas, we would be able to establish identification via backward induction, if it

were the case that the functions ¢(*) and h(t*) used for identification were actually members of Q® and H®¢)
(for ¢ such that ¢(Ry, Dyy1.5) = Y;(S)). However, instead we assumed that ¢(*) € Q ~and A € H((f f),

some additional care must be taken. The next lemma and its corollaries allow us to remedy this issue.
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Lemma 6. Let ¢(Y) € Q(Otb)s and h(t) € Hffb’f) be chosen arbitrarily, for some given Yy = ¢(R¢, Diy1.1). Then
we have

E; (¢ (Zi, A)1{A; = E;}Y;] = B} lz RO (W, a)] :
acA

Proof of Lemma[f We have

E; (¢ (Zs, A)1{A; = B}V = Ef [¢W(Z, A)E; [1{A; = E;}Y3 | Zi, Af]]

il
= Ef[q“)(Zt,At)lEZ‘[ t)(WtaAt) \ ZtaAt]]
=E;[¢" (2, A)hD) (W, Ay)]
= E;[E;[q"(Zs, Ay) | Wi, At (W, Ay)]
= E; [P (A | W) T RO (W, Ay))]

* 7 (Ae = a | Wy) (t)
=E — = h\Y (W,

' %P*(At*ﬂwt) (W, a)
= ]E? Z h(t)(Wt )1

a€A

O

Corollary 9. Suppose that ¢(t) ¢ Q let Yy = ¢(Ry, Dyy1.5), and let Assumptions and be given. Then,

we have

obs’?
E; g (Z,, A)1{ A, = E}Y;] = Ej 4 [Vi].

Corollary 10. Suppose that h(Y) € H tbf), let Yy = ¢(Ry, Dis1.1y), and let Assumptions and be given.

Then, we have
B} | X A (W)
acA

=Eia[Ye].

Corollary [9] follows because from Assumption [2] there must exist some A" € H®#) and by Lemma [3| we
know that h(¥) ¢ Hffb’f), so therefore applying Lemma |6| and then Lemma [5( we have

Ef (¢ (Z:, A)1{A, = E,}Y;] = EF [Z h(t)(Wt,a)] E;, (V7).
a€cA

Corollary [10| follows by an almost identical logic, since by Assumption [2| there must exist some ¢ € Q®)
and by Lemma [3{ we also know that ¢ e Qc(fb)s. Therefore, applying Lemma |6{ and then Lemma [4| we have

> a>] = Ef[qW(Z, A)U{A; = E,}Y] = B, [Vi] .
ac A

These corollaries are sufficient to construct our inductive proof for our main identification result, in the
case of qb(t ) and ¢g"fg) However, for the case of cZ)(t %) we need to establish one final lemma before presenting
our main proof.

Lemma 7. Suppose that either ¢(*) € ng)s and h®) € Ly p+ (Wi, Ay) or h®) € Hgtl;f) and ¢ € Ly p+(Zy, Ay).
In addition, let Yy = ¢(R¢, Dit1.1), and let Assumptions and be given. Then, we have

E; [¢"(Z0, A)(1{A, = B}Y; — DO (W, Ay)) + Y b (W, a) | = By [V
acA
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Proof of Lemma[7 First consider the case where ¢ e QSD)S and h(*) € Ly p; (Wi, Ar). In this case, we have

E;

¢ (20, A)(1{A, = BE}Y; — WO (W, A)) + > h(t)(Wtaa)l
acA

= ]Eft[q(t)(Zt’ AN1{A; = E.} 3] + E}

Z h(t)(th CL)]

acA
— E;[¢"(Z:, A)hD (W, Ay)]

> h(Wy,a)

acA

=Ej, Vi) + Ef —E; (¢ (Zs, A)hD (W, Ay)]

(®

ohs We can further establish

where in the second equality we apply Corollary @ Now, given ¢() € Q
E; [0 (Z2, ADR® (Wi, A)] = B [Ef g (Z0, Ay) | We, AJRO (W, )]

= B} [P/ (4 | W) " hO (W, 40)]

=E; | Y h(W, Ay)
Lac A
Thus, plugging this into the previous equation we have

E; ¢ (Zi, A)({A, = E}Y:, — WO (Wi, Ap)) + > WD (Wh,a) | = Ef, [Vi]

acA

Next, instead consider the case where h(*) € H((ftf) and ¢() € Lo p;(Zy, Ay). In this case, we have

E; [¢\7(Z;, A)(1{A; = E}Y; — hD(W,, Ay)) + Z W (W, a)

acA

= E; [¢9(Z, AE; [1{A; = B} = hO (Wi, A)) | Z0, Ad| +E;

Z h(t)(Wt7 CL)]

acA
= 0 + E:+l [Y;] )
where the second equality follows from Corollary |10/ and the fact that h®) e Hg%f). Therefore, under either

conditions we have our desired result.
O

Now that we have established these preliminary lemmas, we are ready to present the main proof.

Proof of Theorem[7 First, we have assumed Assumptions |lfand [2} as well as the fact that ¢ e Qc(fb)s and
h® e Hgtk;f), so it follows from Corollaries |§| and m and Lemma [7| that for any of the choices of (b%H’S),

(bg:gl’s), or qﬁg;{rl’s) for defining each Yt(s) term (for t < s) we have

E;k [¢(t7s)(Ztv Wt? At7 Et7 Yt(S))] = E;tk+1 [Yt(S)] )
which holds for every ¢ < s. Furthermore, plugging in the recursive definition of Yt(f)h the previous equation
is equivalent to
E; (Y]] = Ef ),
which again holds for every ¢t < s. Therefore, by backward induction we have
Ei[Ys"] = Efy [Rd].
However, by construction P{ = Py, and the distribution of R, under P;,; is the same as under P, so

therefore we have Ep, [YO(S)] = Ep, [R;], as required.
O
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C Proof of Consistency and Asymptotic Normality

We will prove this theorem by appealing to |Chernozhukov et al.| [2016, Theorem 3.1]. Therefore, this proof
will consist of establishing the conditions of this theorem. We will first present a lemma establishing the
Newman orthogonality property of this influence function, which not only is a condition of |Chernozhukov
et al.|[2016, Theorem 3.1] but an important property in its own right, before presenting the rest of the proof.

In what follows below, for any generic quantity ¥ that depends on our nuisance functions, we will use
the notation ¥ to refer to the value of ¥ using the estimated nuisance functions ¢(*) and h® in place of
¢® and A" respectively for each ¢ € [H], and define AU = ¥ — W, In addition, for any r € [0,1] we let
U, refer to the value of ¥ using the nuisances g, (¢) = ¢! + rAq® and A" = h® + rARL® in place of
¢® and h(® respectively for each t € [H], and define A, ¥ = ¥|, — ¥. We note that according to these
definitions, U = U|y, ¥ = ¥|;, and AU = A, ¥. In what follows below we will treat Ag¥) and AA®) as
non-random square integrable functions with the same signature as ¢ and h®) respectively for each t € [H],
which may take arbitrary values. This is in contrast to previous sections, where U was treated as a random
quantity with respect to the sampling distribution of the n i.i.d. behavior trajectories. Finally, we note
that it is trivial to verify that for any pair of quantities ¥ and ¥’ we have A,.(U + ¥') = A, ¥ + A, ¥’  and
A (TT) = (A D)V + T(A,T) + (A T)(A,P'), which we will frequently apply in the derivations below
without further explanation.

Lemma 8. Under the conditions of Theorem@ as well as the additional assumption that ||¢V)(Z;, Ay)|| < oo
and ||[hD) (W, Ay)|| < oo for each t € [H], ¥pr satisfies Neyman orthogonality with respect to the nuisances
q® and K for all t € [H]. More concretely, for any arbitrary functions Aq\(Z;, Ay) and ALY (Wi, Ay) for
each t € [H| that have finite supremum norm, we have

0

S Ener(rl] =0.

r=0

Proof of Lemma[8 First, we note that

Yor(TH)|r = Z hD (W1, a) + ¢V (21, Ay) (11{A1 = E1}Y1, — h{D (W, A1)> ;
acA

where
Vi, = Ri1+7 (Z WO (Wi, a) + 4 (Ze, A1) (1{AL = E}Yi, = BO(W,, A»))
acA
forallt € {2,3,...,H}, and
Yir. = Ry .

Therefore, we have

0

or

Yor(ta)lr = Y ALY (Wi, a) — ¢ (Zy, A ARD (W7, Ay)
r=0 acA

+ (24D, 40) (1{41 = B}y — hO (11, 4p))

0
+qM (21, A)T{A, = By} o

Yi,.
r=0

Now, following an identical argument as in Lemma @ for any t € [H] and arbitrary functions h and § with he
same signature as h® and ¢(*) we have

E: Z B(Wt, a) — q(t)(Zt7 At)il(Wt, At) =0 (8)
acA
E; [d(Z0 A0) (1{A: = B0 — HO(W, A4)) | = 0. (9)
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In addition, it is straightforward to argue via backward induction on ¢ that

0
El" [q(t)(Ztht)]l{At = Et)} 5

}/t,r:| = 07
r=0

for every ¢t € [H]. For the base case where t = H, this is straightforward since Yy, = Ry, which doesn’t
depend on 7. Otherwise, for the inductive case, we first note that following Lemma [ for any ¢t < H we have

0
Y;&—l,r:| = Ez |:

0
Ef |:q(t1)(Zt—17At—1)]l{At—l =E,_1)} Ir 5

}/t—l,r:| ’

r=0 r=0

and furthermore we have

9
or

Yior, =7 ) AR (Wi, a) — 14" (Z;, A) ARD (W, Ay)
0 acA

+98¢9(Z1, A0) (1{A = E}Yio = KO(Wi, Ay

r=

0
+ 74 (Zy, A)1{A; = Ey} ar

Yir.
r=0
Now, given Egs. (8) and @ it immediately follows that the first three terms have mean zero under E;.
Furthermore, the final term also has mean zero by the inductive assumption. This completes the backward
induction, and therefore putting the above together we have

0
EPb |:6'7’

It only remains to argue that we can swap the order of differentiation and integration in this equation.
By the mean value theorem, we have

,(/JDR(TH)T:| =0.

r=0

.- 0
Yon(mm)l = onlTer) _ Oy e,
r or r=p!
for some r’ € (0,7). Therefore, it follows that
= Ep, lWon(rm)li] = Im Ep, | = por(rw)
or| . Py [YDOR(TH) ] = o Eep, | 5 . pR(TH)|r| -

Now, clearly %’r:r’ Ypr(TH)|r converges point-wise to %|r:0 Ypr(7H)|r as ¥’ — 0. Furthermore, it follows

trivially from the definitions of qﬁt) and h&t) that %|r=w qﬁt) = Aq¢®, and %’r:r’ hg) = AR® for every
t € [H] and ' € [0,1]. Therefore, for any ' € [0, 1] we have

0
‘ ol _, Yor(TH)|r N
< Z AR (W1, a)
ac€A

186D (Z1, A oo (V3 1o + 15D (W1, A1) oo + [ARD (W5, A1)]loc)

+ (199 (21, AD)lloe + 187 (21, A1)

9

or
Now, by assumption we know that ¢, h(!), Ag(¥), and AR® all have bounded supremum norm, so therefore
% +—s (YpR(TH))r is uniformly bounded in supremum norm over r’ € ]0,1], as long as we can uniformly
bound ||Y ,||ec and || % Yi,

er

)

~ (|Ah<1><W1,A1>|oo +]

r=r’

oo- Therefore, our final result would follow by the dominated convergence

|r:7"

32



theorem as long as we can show these two bounds. In order to show this, bote that for any ¢ < H and
r’ € ]0,1] we can bound

¥irlloo < [Bell +7 30 (1K (Weir ) oo + [ AR (Zes1,0) 1)
acA

+t <||q(t+1)(Wt+1a A1) oo + 11A¢(Zy41, At+1)||00>

(Iesrlloo + 1D Wi, @)oo + 186" (Zera, Avn) o)

and

Yir

r=r’

9
or -
< 3 IARTD (W, )|
ac A

+ ’Y||Aq(t+1)(Zt+1,At+1)Hoo
' <||Yt+1,r'||oo + R (Wigr, Ao + ||Ah(t+1)(Wt+1vAt+1)||°°)

7 (10 (Zer, A oo + 180 (Zisr, Avi) o)

) )

or
and for t = H we have ||Yg,|loc = ||Rr|loo and || %‘r:r/ YHWHOO = 0 for all 7’. Therefore, given this and
the fact that all rewards are bounded by assumption, it follows from backward induction that ||¥7 ,/|c and
I %|r:r’ Y1 .r|loc are uniformly bounded over r’ € [0,1]. Thus, the final result follows by the dominated
convergence theorem as discussed above.

}/t-i-l,r

’

- (|Ah<t+l><wt+l,At+l>||w n H

r=r

O

Proof of Theorem[3 We will establish this proof based on directly applying [Chernozhukov et al.| [2016],
Theorem 3.1]. We note that this theorem immediately implies Theorem [3| as long as we can establish that
its conditions hold. We will proceed by establishing these conditions one by one. Specifically, we need to
establish their Assumption 3.1 and Assumption 3.2.

We note that |(Chernozhukov et al.| [2016, Theorem 3.1] considers linear scores, where the parameter of
interest 6 is the solution to

E[(r1;6,€)] = E[* (115 €)0 + ¢° (1115 €)] = 0, (10)

where ¢ represents the nuisance functions, and ¢ (7g;60,¢) = ¥*(7g;€)0 + ¥ (7;€). In our case, the
notation above corresponds to our quantities of interest as follows: 6 = v, (7.) is the target policy value;
E=qW .. ¢ hD R (1 €) = —1; and P (1373 €) is equal to pr(7) with the true nuisances
replaced with €.

Let Z(c,c, ") denote the set of all possible nuisances ¢ such that, for all t € [H], a € A and ¥ €

{gW(Z,, A), kD (Wy, a)}, we have:
[A¥[le < c
AWy p, < ¢
1AM (Zy, A)ARD (Wy, a)||2.p, < ¢
I8¢ (Zer, Ap) AW ||o.p, < " WE <t

In addition, let &y denote the value of the true nuisances

trajectories 7'}11 ), . ,r}}’ ). We note that by Assumption |3 there must exist some constant ¢* and sequences
c, €o(1) and ¢’ € o(n=1/?) such that P(¢, € E(c*,c),,c”)) — 1 as n — oo, and let =, = Z(c*, ), c/). We

also note that according to the above definitions ¥pr(7H) = ¥°(7H; &), and & € Z,, for all n.

and let én denote the estimated nuisances using n
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First, let us establish |Chernozhukov et al. [2016, Assumption 3.1|. For (i) and (ii) we note that v, ()
satisfies Eq. trivially given Theorem [2} and that this score is linear in 6. For (iii) we note that following
an almost identical argument as in the proof of Lemma [§] by applying the dominated convergence theorem, it
is trivial that E[¢)pr(7y)] is twice Gateaux differentiable for any £ — & € E,,, since for all such directions we
have ||Aq®)(Z;, Ay)||oo < 00 and ||ALY (W, Ap)|lso < 0o. Condition (iv) holds trivially with nuisance set =,
for any sequence J,,, since by Lemma [8| we have exact Neyman orthogonality. Finally, (v) holds trivially for
any co € (0,1) and ¢; € (1, 00), since %(7x; &) is constant.

Next, let us establish (Chernozhukov et al. [2016, Assumption 3.2]. For (i), we note that by Assumption
we have that én € =, with probability approaching one. For (ii), we note that given the definition of Z,, and
the fact that rewards are bounded, it trivially follows that for any q > 2 we have

sup ([0 (;6)llgp, < sup [[9°(7m; €)oo < 00,
£e2(c*) EEE(cY)

from which (ii) follows trivially, since we showed that part (v) of (Chernozhukov et al.| [2016, Assumption 3.2
holds for any arbitrary ¢; € (1,00). For (iii), we can first note that clearly

sup |Ep, [V (74 &)] — Ep, [ (73 60)]| = 0,
§EE(c¥)

since ¥“ is constant. Second, we note that for any é € =,, we have

1 (Th3 05 (), §) — Y (TH; v (Te), S0) |2,
= 18 () a.p,
< 3 [anamal, )+ e Al ([, an],
acA o
+118¢D (Z1, A1) 2z, ([P0 W1, AD|| + M)

AY;
L lavil, )

)

+ 1847 (Z1, A1) 2.7, (HAM“(Wl,Al)HW + ||AY1||2,pb)
s 7b
< MAle, + ¢ (ch + [ AYilly 5,) + (" + AVl o)y + (€ + 1 AYilly 5, )l

and furthermore for each 1 < ¢t < H we have

[AY:—1l5 p,
503 |anOwea), 41002 A (HAh@(Wt,At)Hm + |AYt||2,pb)

+718¢D (Z1, Adllep, ([BOWe, 4|+ il )

+ ’Y||Aq(t)(Zt,At)|

o (0w a0, + 1%L
< YAle, + e + [AYEly p,) +9(c” + [1AY2]l e +v(e, + 1Ay p, ) -

Now, as argued in the proof of Lemma (8] it easily follows by backward induction on ¢ that ||Y;]eo < oo.
and | AV (1y;€)]2.p, < 55" for all € € =,, where the sequence 85" € o(1) does not depend on ¢. Thus, we
have

Therefore, given the above equation it easily follows again by backward induction on ¢ that ||AY;||2,p, < s

S [[6 7150 (7). €) = s s ) o), < 080

Similarly, recalling that

H
Yor(TH) = Z’Ytil (mHRt + e Z WD (W, a) — ﬂtq(t)(Zt,At)h(t)(Wt,At)> ;

t=1 acA
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for any f € =, we also have

H
4, 02
=> 9 1ﬁ77t+1,r (Rt + > WP (W, a) — ¢ (Zy, A)hP (W, At))
" acA

H
4 0
+D_ D AT g e AR (W, a)

t=1acA

H
4 0
+§ ’Yt lgnt,r (Aq(t)(ZtaAt)hr(WtaAt)+Ah(t)(WmAt)qa(«t)(ZhAt)) s
t=1

and
0 (s)
Ent,r = Z Aq (Zsa As)br(s)
sE(t]
0? /
5ahr =2 D, AdN(Z A)AG) (Zy, A)bi(s, ')
selt] s'€[t]\{s}
where

bo(s) = H{E; = A} [] 1{Ew = An}al™ (Zn, An)
helt\{s}
b(s,s) = I{Es = AJ{Ey = Ay} [  1{Ew= A} (Zn, An).
helt]\{s,s"}

Therefore, it easily follows from the above and the definition of =,, that for all é € 2, we have

<k

oo

2
Haﬂw%m;&w

82 b "
ﬁ (TH§§|T) §k20n7

1, Py

for some constants k; and ko that don’t depend on é or on r. Therefore, we can apply the dominated
convergence theorem to obtain

sup ‘prw(TH§ 'U'y(ﬂ-e)a T§ + (1 - 7")50)| S kQC,/'; .
Te(ovl)vgeEn

Putting the above together, we have condition (iii) with 4, = maX(&(Ll), kav/nelt). Finally, condition (iv)
follows since by assumption the variance of ¥pgr(7y) is non-zero.

Therefore, we have established the conditions of |(Chernozhukov et al.|[2016, Theorem 3.1], so applying
this theorem we have

VA () =y 7)) = = > von(riy) + 1)

which by the central limit theorem and Slutsky’s theorem converges in distribution to N'(0,03R).

D Background on Semiparametric Efficiency Theory

In this appendix we provide a brief review of semiparametric efficiency theory, as relevant for the theory in
this paper. We will consider a random variable X € X', a model (set of distributions) M, where each P € M
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defines a distribution for X, and some scalar parameter v : M — R. Also let u denote some dominating
measure such that P < u for every P € P, and denote the corresponding density as dP/du. Given i.i.d.
observations X1, ..., X, sampled from some P, € M, semiparametric efficiency theory concerns itself with
the limits on the estimation of v(FPp), given that the estimator is required to be consistent and “well behaved”
(defined concretely below) at all P in a neighborhood of Py in the model M.

D.1 Definitions

Definition 2 (Influence function of estimators). An estimator sequence v, (X1.,) is asymptotically linear
(AL) with influence function (IF) p,(X) if

V(0 (X1.n) — v(Py)) = % S 0y (X) + 0p(1)
=1

where Ep,[¢p, (X)] = 0.

Definition 3 (One-dimensional submodel and its score function). A one-dimensional submodel of M passing
through P is a set of distributions {P. : e € U} C M, where:

1. Py=P
2. The score function s(X;e€) = (d/de)log((dP./du)(X)) exists
3. There exists u > 0 s.t. [ sup| <, [s(X;€)[(dP./du)(X)dpu(X) < oo and E[sup.| <, 5(X;€)?] < co.

Also, we define s(X) = s(X;0), which we refer to as the score function of the submodel at Py, Note that by
property (3) we have s(X) € Lo p(X). We also note that these conditions on the parametric sub-model are
slightly stronger than those in some related work; these are needed to prove our semiparametric efficiency
results with full rigor, and our definitions below should be interpreted w.r.t. such well-behaved submodels.

Definition 4 (Tangent space). The tangent space of M at Py is the linear closure of the score function at
Py of all one-dimensional submodels of M passing through Py.

Note that the tangent space is always a cone, since we can always redefine any one-dimensional parametric
submodel replacing € with any scalar multiple of e.

Definition 5 (Pathwise differentiability). A functional v : M — R is pathwise differentiable at Py wrt M
if there exists a mean-zero function ¥p,(X), such that any one-dimensional submodel {P.} of M passing
through Py with score function s(X) satisfies

dv(P:)

UL = Blun, (X)s(X)]

e=0

The function ¢p,(X) is called a gradient of v(Py) at Py wrt M. The efficient IF (EIF, or canonical
gradient) of v(Py) wrt M is the unique gradient ¢p, (X) of v(Fy) at Py wrt M that belongs to the tangent
space at Py wrt M.

Finally, we define regular estimators, which are those whose limiting distribution is robust to local changes
to the data generating process. This is what we alluded to above by “well behaved” estimators. Note that
restricting attention to regular estimators excludes pathological behavior such as that of the super-efficient
Hodges estimator.

Definition 6 (Regular estimators). An estimator sequence 0y, is called regular at Py for v(Py) wrt M if
there exists a limiting probability measure L such that, for any one-dimensional submodel {P.} of M passing
through Py, we have

Vi(on(X1n) = 0(Pryym)) = L

i distribution as n — oo, where Xy., are distributed i.i.d. according to Pl/\/ﬁ.

Note that this property holds even if {P,} is chosen adversarially in response to ¥y,.
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D.2 Characterizations

The following characterizes some important equivalences based on the above definitions. The following are
based on [Van Der Vaart| [1991, Theorm 3.1].

Theorem 11 (Influence functions are gradients). Suppose that 0,(X1.n) is an AL estimator of v(Py) with
influence function ¥p,(X), and that v(Py) is pathwise differentiable at Py wrt M. Then 0, (X1.,) s a regular
estimator of v(Py) at Py wrt M if and only if ¥p,(X) is a gradient of v(Py) at Py wrt M.

Corollary 12 (Characterization of the EIF). The EIF wrt M is the projection of any gradient wrt M onto
the tangent space wrt M.

D.3 Strategy to calculate the EIF

Given the above, the following is a natural strategy to calculate the EIF:

1. Calculate a gradient ¥ p,(X) of the target parameter v(Fp) wrt M
2. Calculate the gradient space wrt M
3. Either:

(a) Show that ¢p,(X) already lies in the above tangent space, or
(b) Project ¢¥p,(X) onto the tangent space

The first part of the above can often be done by explicitly computing the derivative of v(P.) wrt €, and
re-arranging this into the form E[¢)p, (X)s(X)] for some function ¢p, (X).

D.4 Optimalities

Finally, we describe the optimal properties of the EIF ﬁpo (X). We define the efficiency bound as the
variance of the EIF, varp, [1)p, (X )], which has the following interpretations. First, the efficiency bound gives a

lower-bound on the risk of any estimator in a local asymptotic minimax sense [Van der Vaart, 2000, Theorem
25.20].

Theorem 13 (Local Asymptotic Minimax (LAM) theorem). Let v(Fy) be pathwise differentiable at Py wrt
M, with the EIF ¢p,(X). Then, for any estimator sequence U,(X1.n), and any symmetric quasi-convez loss
function I : R — [0, 00), we have

I E ! o (X1:n) — 0(Py ) /e
meN,{P§?E?~~,{P§m>}nLH;Okselg)z] Pff)ﬁ[ (Vi {in(Xum) = v(Prym) )]

> / H(w)dN (0, var p, [, (X))

where {Pe(l)}, ce, {Pe(m)} are one-dimensional submodels of M passing through Py.

In other words, if we allow for adversarial local perturbations to the data generating process that are
consistent with M, then the worst-case risk of any estimator (not necessarily regular) is lower-bounded
by that of a regular and asymptotic estimator whose influence function is the EIF. This interpretation
follows because, given the above definition of regular estimators and the central limit theorem, the limiting
distribution of such a regular and AL estimator is N'(0, varp, [’LZ)pO (X)]) under any such local perturbations.
Note that this theorem also implies the following, possibly easier-to-interpret corollary.

Corollary 14. Under the same assumptions as Theorem[I3, we have

inf lim inf sup Eq [l (\/ﬁ{@n(Xl:n) - U(Q)})]
0>0 n2% Qe M, drv(Q,Po)<s

> / 1(u)dN(0, var p, [Prp, (X)) |

where drv(-,-) is the total variation distance, and N (u,c?) denotes a normal distribution with mean pu and
variance o>.
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Second, the efficiency bound gives a lower-bound on the risk of any regular estimator, in a strict non-
minimax sense |[Van der Vaart, 2000, Theorem 25.21].

Theorem 15 (Convolution Theorem). Let [ : R — [0,00) be a symmetric quasi-convex loss function. Let
v(Py) be pathwise differentiable at Py wrt M with EIF ¢p,(X), and let 0,(X1.,) be a regular estimator
sequence for v(Py) at Py wrt M, with limiting distribution L. Then, we have

/ Hw)dL(u) > / )N (0, varp, [, (X)) -

Equality holds obviously when L = N(0, varp, [{)p, (X)]), which as discussed above follows when o, (X1.,)
is regular and AL with influence function given by the EIF.

We note that in our interpretations of both the LAM and Convolution Theorems, we argued that if an
estimator is regular and AL with influence function 1/~)p0 (X) then it will achieve the corresponding bound.
The following final theorem shows that the latter property alone is both necessary and sufficient [Van der,
Vaart], 2000, Theorem 25.23].

Theorem 16. Let v(Py) be pathwise differentiable at Py wrt M, and let {p,(X) be the EIF. Then an
estimator sequence is efficient (regular wrt M and with limiting distribution N (0, varp,[1p,(X)])) if and only
if it is AL with influence function ¥p,(X).

E Semiparametric Efficiency Theory for Proximal RL Estimator

Here, we detail the missing theory for our semiparaparametric efficiency theory in Section [5.2] In particular,
we provide some additional minor lemmas that are needed to prove Theorem [4 and then end this appendix
with the theorem’s proof.

First, for any u > 0 let us define the following, which is a set of random variables indexed by some ¢
satisfying a particular boundedness condition.

-Fbounded(u) = {f&(TH) . sup er/(TH)”oo < o0

le'|<u

L Gotem) = folrm)

€

and sup
le/|<u

< ooy (11)
2,Po
(

In particular, we would like to show that qet) and hg) belong to this set for some v > 0. This is formalized
by the following lemma.

Lemma 9. Let Assumption be given. Then there exists u > 0 such that qét)(Zt, At) € Foounded(u) and
h?)(Wt, At) € Foounded(w) for every t € [HJ.

This condition allows us to apply dominated convergence theorem arguments in computing the path
derivative of V(P.). In particular, we do not assume that qét) or hg) are differentiable w.r.t. €, so the second
part of the definition of Fiounded(u) lets us deal with finite-difference terms.

Before we prove Lemma [0 we must first establish some helper lemma. First, the following establishes
that the set Fpounded is closed w.r.t. addition and multiplication.

Lemma 10. Let Foounded(u) be defined as in Eq. for each, and suppose that fo(Tg) € Fooundea(w) and
e (TH) € Fhounded (u) fO?" some u > 0. Then fe (TH) + e (TH) € Fhounded (u) and fe (TH)ge (TH) € fbounded(u)-

Proof of Lemma[I0 Let ¢1,cq,dy,dy < 0o be constants such that

1
sup || fe(tr) |l < 1 sup ||= (fe(tu) — fo(Ta)) <d
le|<w le|<u Il € 2,Po

1
sup [|ge(7a) |0 < 2 sup ||= (9e(7r) — go(Tr)) <dy.
le|<u le|<u Il € 2,Po
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First consider the case of fc(7y) + ge(7r). It easily follows from the triangle inequality that
sup || fe(7a) 4+ 9e(Ta) [|oo < 1 + 2

le|<u
Sup L (elrn) + 9 m) = Golr) + g0(70)) <dy+dy,
el<u || € 2,Po

which clearly establishes that fc(7r) 4+ 9c(Tr) € Foounded (&)-
Now, consider the case of fc(7r)ge(Tr). For the first required bound, we clearly have

sup || fe(7a)ge(Ta)|| o0 < c102.

el<u

The second required bound requires slightly more work. There, we have

1
sup || = (fe(7a)ge(tar) — fo(Tr)g0(TH))
le|<u Il € 2,Po
1
< sup || = (fe(Tr)ge(Tr) — fo(Ta)ge(TH))
le|<uw [l € 2,P,
1
+ sup ||~ (fo(Tr)ge(tar) — fo(Tr)go(TH))
le|<u || € 2,Po
1 1
< ¢y sup ||= (fe(ta) — fo(ta)) +c1 sup || = (9e(Tr) — go(TH))
le|<u | € 2,7 le|<u Il € 2,Po
S Cle -+ CldQ .
Therefore, we also have f.(7g)g.(TH) € Foounded (4)- O

Next, the following lemmas allow us to bound functions in the range of (T;)~' and (T;,.)~".

Lemma 11. Under the conditions of Theorem[]], there exists some u > 0 and constants Cy,Cy < 00 such
that for every t € [H], and functions f*(Z;, A;) and g* (Wi, Ay) indexed by €, we have

sup [[(Te.) " g: (W, Ar) e < C1 sup [|gZ(We, Ar)l|so

lel<u jel<u
sup [|(Ty0) ™ £ (Ze, Av)lloo < Ca sup [1£2(Ze, Ar) oo
jel<u jel<u

Proof of Lemma[I]], For the first required bound, we have
sup [[(Tv,e) ™ g: (Wi, Ar)lloo

le|<u

= sup ]Eﬁ[f(ZhAt)(ﬂ,e)_lg:(wt,At)]
le|<u,||f(Z¢,Ae) |1, P. <1

= sup Eelgr (Wi, A) (T} )~ f (2, Av)]
le|<w,|| f(Z¢,Ap) 11, P <1

< sup [lge (Wi, Ar)loo sup I(T5) ™ f(Ze, A . -
el <u 1£(Ze.AD) P <1

where the first equality follows from the fact that the 1- and co-norms are dual, the second equality follows
from the fact that the inverse of the adjoint is the adjoint of the inverse, and the inequality follows from
Hoélders inequality. Next, we can further bound

I(T7) ™ f(Ze, Al 2.

sup (T7) ™ f(Ze, Al p. = sup
1f(Ze, A )1, P <1 b f(Zi,Ar) ”f(Zt’At)”l,Pe
W, A
sup lg(We, A1, P,

gy 1T gWe, Ay |1,

-1
inf T gWi, A .
(Ig(wt)AW21|| " (W »nm)
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Now, we have from Assumption [4] that

liminf inf T g(Wy, A >0.
= |\g<wt7}x?>||1,7=621” 8o A7

Therefore, the above must be bounded by some C, for sufficiently small €, which establishes the first required
bound.
The second required bound follows from an almost-identical argument, except that here we instead apply
the assumption that
lim inf

inf T f(Z, A
e=0 ||f(Z¢, A1, p.>1 ” t, f( t t)

1P > 0.

O

Lemma 12. Under the conditions of Theorem there exists some u > 0 and constants C’f), Céz) < 00 such
that for every t € [H], and functions f*(Z;, Ay) and gX (Wi, Ay) indezed by €, we have

S 2 *
lst\K11p> Lt (Wi, Ay)l|2,p, < CF )FFP g2 (W, Ar) 2,2
e|<u e|<u

‘ﬁfnuzw*VﬂzhA»mposcﬁﬂﬂguﬁﬂzuAampw

Proof of Lemma[I3. The proof of this is very similar to that of Lemma except using Py instead of Pe.
For the first required bound, we have

sup [[(Th0) ™" g2 (We, Ao) 2.7,

le|<u

= sup Eolf(Ze, At)(Ty0) ' gl (We, Ap)]
‘eléuvllf(ZhAt)HZ?’oSl

= sup Eolg; (W4, At)(Tf,o)_lf(Zh Ay

le|<u, |l f (Z1,Ae)ll2,p9 <1

< sup [lge (Wi, Ar) 2,7, sup I(T70) = f (20, Ad) |2, -
el <u 1£(Ze.AD) 2,70 <1

where the first equality follows from the fact that the 2-norm is self-dual, the second equality follows from
the fact that the inverse of the adjoint is the adjoint of the inverse, and the inequality follows from Cauchy
Schwartz. Next, we can further bound

I(Tyo) ' f(Ze, Ad)

* — 277)0
sup (Tr)  f(Ze, A)ll2p, = sup
1F(Ze,A0) 12, pg <1 b " HZA | f(Ze, Ab)ll2,p,
W,, A
sup lg(Wi, Ai)ll2,p,

swian 1T 0g(We, Ay ll2, 2,

—1
inf T og(Wy, A .
(wm&mHZ%Zng<t tmz%)

But we know from Assumption [4] that this term is finite, which gives us our first required bound.
The second required bound follows from an almost-identical argument, except that here we instead apply
the fact that inf) sz, a,), 5, >1 1Tt.0f(Zt, At)||2,p, > 0, which also follows from Assumption
O

Now, given the previous lemma, as well as the definition of Fyounded(u) and Lemma the following

lemmas establish that qgt)(Zt, A;) and hgt)(Wt, A;) lie within this set for some u > 0. This will along with
Lemma [14] will allow us to compute the derivative of V(P.) in the main proof of Theorem

Lemma 13. Under the conditions of Theorem there exists some u > 0 such that for every t € [H] we have
supjo <o 1687 (Zt, Ad) |l oo < 00 and supyo<,, |1 (Ze, Ap)|| e < o0
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Proof of Lemma[I3. First consider the case of qe(t). First, by Assumption [4|it must be the case that for some
u > 0 and some constant C3 < oo, we have

sup ||Pt>':e(At ‘ Wt)71||00 < 037

lel<u
simultaneously for every ¢ € [H]. Now, let u > 0 be such that the above holds, as well as as Lemma and

let C7 and C5 be defined as in Lemma Note that clearly for |¢|] < u we have P, € Mpci, so let us restrict
our attention to such e. Next, note that for any |e] < u we have

a(Zy, Ar) = T, Py (A | W) 71,

and so given Lemma [TI] we have
16$7(Z, A) oo < CoCsy.

We note that this bound does not depend on ¢, so therefore we have our desired result for qe(t).

Next, for hit), we note that
424, Ar) = (T} ) e (Ze, Ar) -

Therefore, we can proceed with a near-identical argument again using Lemma as long as we can uniformly

bound ||pi,e(Ze, At)lloo Over |e| < w for each t. First, note that given the above bound for ¢! and the
definition of p ., for each t € [H] we have

||Ut,e(Zt7At)||oo < (0203)t_1||yt,6||oo .

Therefore it is sufficient to uniformly bound Y; . for each ¢. We will do this by backward induction on ¢. For
the base case where t = H, we trivially have | Yz ¢|lcoc < Rmax, Where Rpax is a bound on the absolute value
of all rewards. Now, suppose that ||Y;11,cljco < Cy 41 for some Cy 441 that doesn’t depend on e. Then we
have

Veelloo < Rmax + (Al + (CsCo)) AT (Wi, Ara)lloo +7(C3Co) Vit elloo
Now, by the inductive hypothesis Y; 1 . is uniformly bounded and therefore so is py11,e(Zi+1, Aet1), and

therefore following an identical argument as above as for bounding ¢! we have that ||h£t+1)(Wt+1, A1) |00

is uniformly bounded. Specifically, by Lemma [T1] we have

pe41,e(Zir1, Arg1) oo < (C3C2)' Capga
[ (Wigt, At oo < C1(C3C2) Clapsr

and therefore Y; . is uniformly bounded. This completes the induction, so therefore we conclude that we have
a uniform bound on ||h£t)(Wt,At)||oo over |e| < u.
O

Now, we are finally ready to provide the proof of Lemma [9}

Proof of Lemma[9 Let u, Cy, Ca, and C3 be defined as in the proof of Lemma [I3] and define

1
(5£q’t) (Zt, At) - E (qgf)(Zh At) - qét)(Zt’ At))

1
SO, 4) = L (KW, ) — K (W, 4))

Now, given Lemma |13[it is sufficient to prove that 5£q’t)(Zt, A;) and 6£h’t)(Wt, At) are uniformly bounded
over |e| < u, in 2-norm. We will prove this for each 5£q’t)(Zt,At) term via forward induction on ¢, and
then for each 5§h’t)(Wt, A) term via backward induction on ¢t. Furthermore, noticing that 5§q’t)(Zt, At) =
(Th0) "' T1,00Y (24, Ay) and 689 (Wi, Ay) = (Tg ) T 80D (Wi, Ay), for each ¢ € [H], it follows from
Lemma [12] that it is sufficient to show

sup Tt’0§£q’t)(Zt, Ap) < 0.

le[<u

< oo and sup
2,Po le|<u

Ty 000 (W, Ay)

2,Po
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First, we can show that show that

1 1
Tt,ode(q’t)(zt, At) = (Tt eq5 (Zt, At) T; oqo (Zt, At)) - (Tt e— T} 0) (Zt,At)
= (P{fe(At | W)™ = Pro(Ar | W) ™)

1
= = (Bdmca®(Ze, ) | W, Al] = Eolneoa® (Z2, A) | Wi, Al])

a | =

(Pre(Ae [ W)™t = Plo(As [ W) 7H)
1
— (Ec — Eo) 1,00 (Z1, A) | Wi, Af]
1
~Ee |3 (e = ) (20 A | Wi A (12)

We will proceed by bounding the three terms in Eq. one by one. for the first, we have

| =

(P (A | W)™ = Pro(A | W) )

_ [ Pre(Ad ] W)™t — Pro(Ay | W)~ (Ptfe(At | We) — Pro(A | Wt))
Py (A | W) — Pro(Ar | W) €

)

Py, Ay | W) —
(e (A | W)+ 1= ) Py (e | W) oA | W)

€

Pro(Ar | Wt))

where the second equation follows from the mean value theorem, for some a € (0, 1) that may depend on ¢,

Ay, and Wy. Now, clearly ||(aPy (A¢ | Wi) + (1 — a)Po(As | Wi))"?|lee < C3. Furthermore, we have
P(Ae | We) = Eelne,e | Wi, A Pe(Ar | W)

In addition, applying the mean value theorem again we have

= ||Per (A | Wi)ser (Ar | Wi)ll2,p,
2,Po

< lser (A, We)

Hi (Pu(A | Wi) — PolA, | W)

+ [[ser(Ar)

for some €’ € (0,1). Therefore, since by our definition of score functions in Appendix |§| score functions have
uniformly bounded euclidean norm, it follows that P.(A: | W) € Fhounded ().

Now, in the base case where t = 1 we have P (A; | W) = P.(A; | W;), and otherwise in the inductive case
where ¢ > 1, by the inductive assumption and Lemma [10|it easily follows that E[n; . | Wi, Ai] € Fhounded (),
and therefore by Lemma [10[so is P’ (A; | W;). In either case, this implies the required bound for the first

term of Eq. .
For the second term of Eq. , by the mean value theorem we have

1
- (Ee — Eo) [m,oqét)(Zt,At) | Wy, Ay

= Ee’[ (Tt 1, 2t ‘ Wt7At)77t ()qo (ZtyAt) | Wt»At]
= Ee’[ (Tt laZt7Wt7At)77t Oqo (Zt7At) | WtaAt]
Ee [ser (W, At)m,OQ(() )(Zn Ay) | Wy, Ay,

where € € (0,¢) and may be measurable w.r.t. the other random variables inside the expectation. Now, by

Lemma (13| we have |\nt,0q(()t)(Zt, Ap)llso < 00. Furthermore, by our definition of score functions in parametric
submodels in Appendix?we have sup|6 < [se(Tt—1, Zt, Wt, Ar)ll2,p, < 00 and sup||<,, [|8¢(Wi, Ar)ll2,p, < o0.

Finally, for the third term of Eq. , in the base case that t = 1 we have 1, . = 7: o = 1, so this term
vanishes. Otherwise, in the inductive case where ¢t > 1, by the inductive assumption and Lemma [10] we know
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that %(nt,e —1o,e) € Fhounded(w). Therefore, combined with the fact that q(()t)(Zt7 At) is bounded, it follows
that this third term is uniformly bounded over |e| < w.

Therefore, we have completed the process of forward induction and proved that qgt)(Zt, At) € Fhounded (4)
for all t € [H]. Now, we proceed to the backward induction to prove that hgt)(Wt, At) € Foounded (u) for all
t € [H]. Proceeding similarly as above, we have

1
T 5(h’t)(Wt, At) = . (]l{Et = At}Y;S,E - ]l{Et = At}Yt,o)

t,eYe
1
€

(Ee - ]Eo) [m,ohﬁt)(Wt, At) \ L, At]

- E. % (77t,e - Ut,o) hﬁ”(Wt, Ap) | Zy, Ay
The second two terms can be bounded in infinity norm uniformly over |e| < u following an identical argument
as for the second two terms in Eq. , so we only need to bound the first term. In the base case, where t = H,
we have Yy . = Yy o = Ry, so this first term simply disappears. Otherwise, in the inductive case where
t < H, we note that Y; . = R; + v, where €, . is defined in terms of addition and multiplication of terms
of the kind Ry, 1{Ey = Ay}, qétl)(Z,y7 Ay), and hgt,)(Wt/,At/), for ' > t. Therefore, noting that rewards by
assumption are bounded, it follows from the inductive assumption and Lemma that Y, € Foounded (),
and therefore this first term is bounded.

This completes the backward induction, and establishes that hit)(Wt, At) € Foounded(u) for all t € [H], so
therefore we can conclude.

O

E.1 Discussion of Issues with Tangent Spaces in Past Work

Here we will discuss the problems with tagnent spaces proposed in past work on proximal causal inference.
Given that this past work has considered the simpler setting where H = 1, we will omit all suffixes and
prefixes involving ¢ in the discussion here. Let T': Lo(Z, A) — Lo(W, A) be the conditional operator defined
according to

Tf(Z,A)=E[f(Z,A) | W,A] Vf,

whose adjoint T™* : Ly(W, A) — Lo(Z, A) satisfies
T"g(W,A) =E[g(W,A) | Z,A] vg.

In |Cui et al.|[2020], the authors propose to use the tangent space, which, in terms of our notation and
definitions of ¢ and h, is defined by the restrictions

Elq(Z, A))(s(A| W)+ s(Z | W, A)) | W, A] € Range(T)
E[(1{F = A}R— h(W,A))s(W,R | Z,A) | Z, A] € Range(T™).
However, this choice of tangent space is never fully justified in terms of the model under consideration. In

Kallus et al.| [2022], the authors do justify the necessity of these restrictions by noting that if ¢. and h, are
differentiable with respect to € within a given submodel, then we must have

0

Bl 5| azawa

= 0| RAIW) - Els(Z | W, A)g(Z,4) | WA
€le=0

P(A|W)~'s(A | W) —Els(Z | W, A)q(Z, A) | W, 4]
E[(s(A | W)+ s(Z | W, A))q(Z, A) | W, A],

and

0

he(W, 4) | Z, A] — E[s(W,R | Z, A)YL{E = A}R — h(W, A)) | Z,A].
e=0
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Unfortunately, there are still some problems in this choice of tangent space. Firstly, although they are
clearly necessary conditions for differentiability of the nuisances, it is not clear that they are sufficient
conditions; that is, it is not clear that for a given score function satisfying these conditions we can actually
construct a parametric submodel for which the nuisances are defined and differentiable. Note that this
is contrast to many other areas of work involving semiparametric efficiency theory, where the tangent set
restrictions simply correspond to some conditional independence assumptions, in which case it is trivial to
see that the tangent set restrictions invoked are both necessary and sufficient, since the partitioning of the
score function immediately implies the independence structure of corresponding parametric submodels.

Secondly, it is not clear that diferentiability of the nuisances is even necessary — indeed we showed how to
prove that ¥pr(7y) is a gradient of the policy value without ever assuming or requiring that the nuisance
functions were differentiable — nor is it clear what impact if any this requirement of nuisance differentiability
would have on the actual model of interest.

Thirdly, Kallus et al|[2022] consider a more general model in which h and ¢ are not necessarily uniquely
determined, in which case the above restrictions would actually have to hold for all valid h and g functions,
and it is not immediately clear that requiring this restriction for a single chosen h and ¢ is sufficient.

Finally, under a model in which the allowed distributions all actually correspond to observational
distributions for latent variable models with hidden confounders satisfying the PCI, which the past work
implies are the only kinds of distributions under consideration, there are additional necessary restrictions
on the score functions. For example, let L = (Z,A), and Q = (W, R), then from the PCI independence
assumptions is clear that the observed distribution must take the form

P(L,Q) = /P P(L | S)P(Q | S)du(S).

for some latent variable S. It is easy to show that this implies that for any differentiable submodel on the full
data (L, @, S) we have

JO(s(8) +s(L | 5)+S(Q [ SHP(S)P(L | S)P(Q | S)du(S)
JPS)P(L | S)P(Q | S)du(S)

/a )+ 5(L]8)+5(Q| S)P(S | LQ)dy(S)
E[s(S) + s(L | $) + 5(@| 5) | L.Q].

s(L, Q) =

Therefore, there must exist functions fy, fo, and f3 such that
s(Z,A,W,R) = E[f1(5) + fo(Z, A; S) + fs(W, R; S) | Z, A, W, R],

which satisf
’ E[f1(9)] =E[f2(Z,A;S) | S] =E[fs(W,R;S) | S] =0.

It is not clear that the previously proposed tangent spaces ensure this condition, for example.

Given these above issues, we took care to define assumptions to avoid such issues, by ensuring that we
consider a model that is locally saturated at Py, which guarantees that the tangent set is all square integrable
functions. Achieving this involves ensuring that the nuisances are uniquely determined locally near P, and
defining the parameter of interest is not defined in terms of the actual policy value, and rather in terms of
the nuisances and the identification quantity; that is, we ensure that the parameter of interest corresponds to
the target policy value for distributions that actually come from an underlying valid PCI model satisfying
our assumptions, and otherwise is still an unambiguous and well-defined quantity as long as the nuisances are
uniquely defined.

E.2 Proof of Semiparametric Efficiency Theorem

Before we present the main proof we present the following lemma based on the dominated convergence
theorem, which we will apply heavily.
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Lemma 14. Let P, be a parametric submodel, and suppose that function f.(tg) indexed by € converges
point-wise to f(tm) as € — 0. Suppose in addition that it is uniformly bounded for small €; that is,
limsup,_,o || fe(Ta)|lco < 00. Then, we have

lim 1 (Eelfe(t)] — Eolfe(ta)]) = Eols(ta) f (7a)]

e—0 €
Proof of Lemma[I4 Let pu(7r) be a dominating measure for all measures in the parametric submodel, and
let p.(Ty) = (dP./dp) (7). Then, we have

+ Elf(r)] = Bal o)) = [ 5 (pelrir) = polri)) )

€

— /pe/(TH)Sel(TH)fe(TH)d/‘(TH)’

where in the second equality we apply the mean value theorem, and € € (0,€). Then, given the boundedness
condition on pe (7r)se (Tp) for parametric submodels assumed in Appendix E as well as the uniform
boundedness and point-wise convergence assumed on f., applying the dominated convergence theorem gives
us

lim = (Ec[f. ()] — Eolf.(r)]) = / po(rar)so(mi) fo(ri)dpu(rir)

e—0 €
= Eo[s(ru) f(Tr)],

as required. O

Proof of Theorem [ Following Appendix @I, in order to prove this theorem we need to: (1) derive the tangent
space of Mpcr at Pp; (2) justify that ¢pr lies within this tangent space; and (3) show that ¢¥pg is a gradient
of vy(m.). For the first two parts, we note that by the conditions of Theorem [4] it easily follows that any
parametric submodel P, passing through Pj, at € = 0 must lie within Mpcy for sufficiently small €, so therefore
the tangent space is simply the set of all square integrable functions. Given this, ¢pg clearly lies within this
tangent space. Therefore, we only need to justify that it is a gradient. That is, we need to show that for
every parametric submodel

oV (P.)
Oe

o Ep, [s(7r) (Wpr(TH) — vy (7e))]

where s(7y) is the score function of the parametric submodel. Note that we have not assumed that the

nuiances qgt) and hgt) are differentiable, so we must proceed with caution.
First, note that

Lvry —vry)

€

1 1
= Ec |3 h(Wh0)| ~ K Zhé”wvl,a)]
acA acA
1 1
= (B —Eo) | >_ A (W1,0)| +Eo | 3 ~(h(W1,0) — b (W1, )
acA acA

Now, since hgl)(Wl, A1) € Foounded () for sufficiently small u, it trivially follows that hgl)(w, a) converges to
h(()l)(w, a) for every w, a. Combining this fact along with Lemma |13[and Lemma this implies that the first
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term above converges to Eo[s(7m) Y ,c4 hgl)(Wl, a)]. For the second term, we have

Eo

3 §<h9><w1, a) = by (W, a))]

acA

1
—E, {Po(fh W) L0 (w, 4y) - hg”(wl,Al))]
1
= Bo [af! (22, A LW, D) - 1 (W, 40)

1
= ~(Bo — EJ) [q" (21, AR (W1, Ay) |

+ % (IEE [qg”(zl,Al)hQ)(Wl,Al)] —E, [qé”(Zl,Al)hg”(Wl,Al)D

= L(Eo — o) [ (20, A)nO (W1, 41)]
+ % (B [ (20, A{Ey = A1}Y1 ] — Bo [ (20, A)1{Ey = A1}Yio))
= %(]Ee —Eo) [Q((Jl)(ZLAl) (]l{El = A1}V — hgl)(Wl,z‘h))]
+Eo [qél)(Zl, ANI{E; = A1}% (Y1,e— Y1,0)} .
Now, again applying Lemmas [9] and [T4] the first term above converges to
Eo[s(r)a5" (Z1, A1) (1{Ex = A1}Y1 o — hD (Wh, Ay))].

Combining this with the previous result and the fact that s(7x) has mean zero, as well as Lemma [4] we get

oV (Pe)

e |~ Eols(ma) (Wor(TH) = 0y(7))] + lim Ey ﬁ (Y1, — 3/1,0)} -

Therefore, all that remains to show is that the second term above vanishes. We will argue this by backward
induction, by showing that for all ¢t < H we have

A _
ll_r)% Eiyq L (Yie — Y;S,O):| =0. (13)

First, for the base case t = H, this is trivial, since Yz = Ry for all e. Next, suppose that Eq. holds
for all t > s, for some s < H. We will argue that it also holds for ¢t = s — 1. Specifically, plugging in the
definitions of Y; . and Y,_1,0, we have

E [ = (Yso1,e — Y:S—LO):| = ’YE* - Z (h S) (W, a) — hés)(VVs,a))]
aeA

* ]' S S
+ ’Y]Es g (qg )(Zsa As)As,e - Q(() )(Zsa AS)AS,O>

* [ s 1 s S
] L P H UM PR UAVE)]

)

= .
+ 7ES € (qgs)(Zs, As)As e q(() )(Zs’ As)As O)

(1
(g _ )
6 (qe (ZS?AS) qO (ZsaAS)) As7e:|

| E: [q(f’(ZmA {E. = A} SE—YS,@} |
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where Ay . = 1{E; = AS}YS’E—h(S)(WS, As). Now, by Lemmathe second term is equal to IES+1[ (Ys,e—Ys0)],
which converges to zero by the inductive hypothesis. Furthermore, since EX[A; ¢ | Zs, As] = 0, we can derive

1
* | = (s) _ (s)
E; L (qe (Zs, As) — qq (ZS,AS)) As,e]
1 s
=K} L ( (s)(ZS,A ) — )(ZS,AS)) (As,e — As,o)]
1 s
= Eo {m,o (420 ) — ’<Zs~4s>) (Ao = AS*O)]

E (AG € As,O)

& )
)

2,Po

where the inequality follows from Cauchy Schwartz. Also, by Lemma@we have qf(,s)(Zt, At) € Foounded (1)

for some u > 0, and further by Lemma we have A . € Fhounded(®). In addition, by Lemma [13| we have
[I7t.0llcc < 00. Therefore, the first term also converges to zero. Thus, putting the above together, we have
lime_,0 EX E (Yoo1,e— stl,o)] = 0, which proves the inductive case, and therefore our proof is complete.

O

< cimalle |1 (4920 4) = (22, 0)

‘ 1

2,Po

F Nuisance Estimation

First in this appendix we provide a proof of Lemma [l} Then, we provide a meta-algorithm approach for
actually estimating nuisances following this lemma, which we implement in our experiments.

F.1 Proof of Nuisance Estimation Lemma

The proof of this lemma follows in a very straightforward way by successively applying Lemma [l The details
are as follows.

Proof of Lemma[]. We will first deal with the case of ¢(*). We first note that Eq. is equivalent to

E; [o(Wi. A1) (0 (Z A) = B (A | W) 7)] =0,

for all measurable g. Next, following the same argument as in Lemma [6] the above is equivalent to

E;

g(Wi, AP (2, Ay) — Zg(Wt,a)]O Vg.
acA

Next, we can argue by backward induction that for all s € [t] we have

H q Zs aA ]I{Es/ = As’} < (WtaAt) (Zt At) Zg(Wtaa)>]

acA

s'=s

g(Wi, A (Zy, Ay) — Zg(Wna)
acA

The base case is trivially true, and the inductive case follows by applying Lemma 4] Therefore, noting that
Hq ZsaA 1{Es’:As’}7

we can put the above together to conclude that Eq. is equivalent to

( (Wt;At) (Zt,At) Zg(Wna))] = Vg .

acA

Ep

b

47



Finally, we can deal with the case of h(*) almost identically. We can first note that Eq. is equivalent to
E; [f(Z 4) (RO(We, A) - 1B, = A}Yi)| =0 vy,
and applying an almost identical backwards induction argument this is equivalent to

Ep, |mef (Ze, 4) (O (Wi, A) = 1{E, = A}Yi) | =0 v,
which in turn is equivalent to

Ep, {m (h“)(Wt,At) 1B, = At}Yt) ‘Zt,At} —0.

F.2 Meta-Algorithm for Nuisance Estimation with Kernel Critics

We now consider a very general meta-algorithm for implementing the estimators in Proposition [2 for kernel
critics. In particular, let us assume that the kernel classes G*) and F*) are RKHSs, and the critic regularizers
are R(-) = (a/4)| - |%, where || - ||k is the corresponding RKHS norm for that critic. Then, this gives
the kernel VMM, for which Bennett and Kallus| [2023] established good theoretical properties in terms of
consistency, asymptotic normality, and efficiency. This also admits a simple closed-form for the inner sup in
the min-max problems above.

The resulting sequential estimation procedure is summarized in Algorithm [T} The algorithm estimates
the functions ¢(*) in ascending order and then estimates h(*) in descending order, in each case using plug-in
estimates of the previously estimated nuisances. We let K(¢*) and K("*) denote the kernel functions for the
critic function classes G and F®), respectively, where the former is defined on pairs of (Wi, Ay) tuples, and
the latter on pairs of (Z;, A;), and let al@t and o) denote the corresponding hyperparameters for the
critic regularizers. We note that any or all of the above inputs may be data-driven, and we emphasize again
that the prior estimates ¢(*) and h(® may come from any methodology and need not necessarily be consistent.
In particular, we can start by inputting the zero functions for these (or any other fixed functions), and then
run the procedure again using the previous output as input for the prior estimates.

We provide a derivation of this algorithm below. We note that it is a meta-algorithm, since it requires
some additional procedures to solve the minimization problems over ¢ € Q) and h € H® at the end of
CoMpPUTEQ and COMPUTEH respectively. However, solving such problems is very standard and well studied,
so we do not consider it explicitly here. In this algorithm we let VECTOR denote a function which converts
a set into a vector with the elements ordered arbitrarily. Finally, in the case that the data is discrete, this
algorithm is very efficient in terms of how it scales with n; the overall computational cost will be linear in n,
since the maximum possible lengths of V(@) and V{**) are bounded for each t € [H].

F.3 Derivation of Meta-Algorithm
Following [Bennett and Kallus [2023], the kernel VMM estimators work by solving

¢ = argmin J, (g; ol ") + R (g),
q€ Q)

where

Jn(g; @ @) = supE,,
g

s <Q(Wt7At)Q(Zt>At) -y g(Wt,a)ﬂ

acA

2
1 -
- E]En nt2 (g(Wt7At)q(t)(Zt7At) - Z g(Wtaa)>
acA

+al gl o
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Algorithm 1 Sequential VMM for PCI-POMDP Nuisance Estimation

(1) (n)

Input: Data D = (15,..., 7" ), nuisance function classes Q) and H"), kernel functions K (%" and K1),

hyperparameters (%" and o*), prior estimates ¢ and ﬁ(t), and optional regularization functions

R(‘Lt) and R(h’t), for all ¢ S [H}

Output: Nuisance estimates §) and h® for all t € [H]

1:

2:

3:

4:

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

20:

21:

22:

1 v
forte{l,...,H} do
V@ « Vecror({(W",a) | i € [n],a € A})
G «— CoMPUTEQ (W, Zy, Ay, vt o) Rt olet) 0 Kat) )
iy 0 AY = BPVYO (207, A7) v
w%) —0 Vi
forte {H,H—-1,...,1} do
vVt Vector({(2”, A1) | i € [n]})
= 1A = BN RY + ) vi
h(®) « CoMPUTEH (W;, Zy, Ay, VD) 40 R o (t) B8 F(hit) g )
o) = Laea MWD, a) + 020, 40) (uf? = O, 47)) v

return ¢V, ..., ¢, iL(l)7 ce h(H)

procedure COMPUTEQ(W, Z, A, V, Q, R, «, ¢, K, 1)
Lij(@) < 0 (a(Zi, A)E (Wi, A), V) = Coea K(Wiya), V) Vi, j.q
Qij % D ohe1 Liei(@) Lie i (@) + K (Vi, V;) Vi, j
pi(q) < 30 Lii(q) Viyq
return argmin, ¢ p()TQ 1p(q) +R(q)

procedure CoMPUTEH(W, Z, A, V, H, R, «, h, K,n, 1)
Lij(h) < niK((Zi, Ai), V;) (h(Wi, Ai) — i) Vi, j, b
iy 230 Liei(h) Ly (h) + K (V;, V;) Vi, j
pilh) = L0 Lialh) Vih
return argming,c,, p(h)T Q7 p(h) + R(h)
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where E,, is the empirical expectation using the n observed trajectories, and || - || x@.» is the RKHS norm
with kernel K (2", First, by Representer Theorem, we only need to optimize over ¢ of the form

N(Wy;A)
g= Y BECOSWi;A);).
j=1
Now, plugging this into the above equation for J,(q; o), we obtain

Tu(aso) = sup 87 pla) ~ 18705,

where @ and p(q) are defined as in function COMPUTEQ in Algorithm Given @ is invertible, it is
straightforward to verify that the above is maximized by 8 = 2Q~1p(q), giving J,,(¢; ar) = p(q)TQ1p(q)-
Therefore, the kernel VMM solution is given by

" = argmin p(q)" Q" "p(q) + R (q),
qEQ(t)
which verifies the correctness of COMPUTEQ.
Next, for COMPUTEH, following an almost identical argument as above the kernel VMM estimator is
given by

A = argmin J,, (h; aD) + RUD ()
heH®)

where

Tn(h; D) = sup By e f(Ze, Ae) (R(Wi, Ag) — )]

1
- Z]E” [ntzf(Ztv Ap)? (R(Wy, Ay) — Nt)z} + oD fll gennr 5

where p; = 1{E; = A;}Y;. Again, by the Representer Theorem, we only need to optimize over f of the form

N(Z,A¢

)
f = Z BjK(h7t)(S(ZtaAt)ja')7
j=1
and plugging this in to the above gives us
1
In(hi o) = sup BT p(h) — 187 Q8B,

where p(h) and Q are defined as in CoMPUTEH. This is clearly minimized by 8 = 2Q~*p(h), and plugging
this into the original objective gives us

WV = argmin p(h) Q™" p(h) + RV (h)
heH®
which verifies the correctness of COMPUTEH.

Finally, for the main part of the algorithm, we observe that it works by sequentially estimating each ¢(*)
for increasing t according to COMPUTEQ), using an estimate of 7; given by plugging in our estimates of q®)
for t' < t, and then sequentially estimating each h®) for decreasing ¢ according to CoMPUTEH, using an
estimate of 7; given by plugging in our estimates of ¢(*) for # < t and an estimate of p; by plugging in our
estimates of q(t/) and h(t) for ¢’ > t. We note that in the computation of the estimate of e, we use the fact
that

pe = W{Ey = Ay} (Ry 4+ ywy)

where wy = 0, and for ¢ < H we have

we = N (Wiga,a) + 4" (Zesr, Avpr) (Nt+1 — hUHD (Wi, At+1)) '
acA
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Figure 5: Graphical representation of the NoisyOBs POMDP scenario used in our Proximal RL experiments.
Red dashed edges / blue solid edges represent the transitions under actions a1 / as respectively, and the
numeric label for each edge indicates the corresponding reward. Note that all transitions and rewards in
NoisyOBs are deterministic, and do not depend on the time index. In each state s; we receive observation o;
with probability 1 — €noise, Or observatoin o; with probability enoise/2, for each j # i.

Table 3: Details of the policies under consideration for our Proximal RL experiments in the NOIsYyOBS
POMDP scenario. The first table summarizes the probability distribution of the logging policy ﬂé\IOISYOBS,
where each row gives the probability distribution over actions for the corresponding state. The next three tables
similarly summarize the evaluation policies 78V, ghard and 7oPHm respectively, which are all deterministic
policies that depend on the current observation only. Note that none of these policies depend on the time

index.

G Additional Details for Experiment 1

G.1 Environment Details

We describe here the details of the NO1syOBS environment. First, in Fig. p| we describe the state transition
and reward structure of this POMDP. Second, the initial state is drawn according to the following process:
for each logged trajectory we first sample a prior state Sy equal to s1, s2, or s3 with probabilities 0.5, 0.3,
and 0.2 respectively, a prior observation Oy ~ Po(- | Sp), and a prior action Ag ~ mN°YOBs(. | S5). Then,
the initial state S7 is given by transitioning from Sy with Ap.

G.2 Policy Details

In Table we fully describe both the behavior policy mp O1SYOBS a5 well as the evaluation policies ¢y, rhard,

and wSP"™ used in our experiments.

G.3 Method Details

Here we provide more detail about each of the methods used in our experiments.

G.3.1 Ours

Our method is an implementation of the estimator described in Section [5] using 5-fold cross-fitting, and with
nuisance estimation following Algorithm [I] As described in Section [6] we use the PCI reduction given by
setting Z; = O;_1 and W; = Oy, and we did not include an explicit X;.

For every t € [H] we set the inputs to the algorithm as follows: H®) and Q") were the set of all tabular
functions; all regularization functions were set as R(f) = Al f||2,n, for some fixed hyperparameter A; all values
of a(®?) and a("*) were set a to a common hyperparameter «; and the kernels K (%t and K" were set as
in Bennett and Kallus| [2023|, using the same process of combining three Gaussian kernels with automatically
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easy hard optim
Te Te Te

noise =0 | (1074,107%)  (1072,1072) (107%,1072)
€noise = 0.2 | (1074,107%)  (1072,107%) (107%,107%)

Table 4: Summary of hand-chosen hyperparameter combinations for each setting. Each tuple gives the chosen
value for a and A respectively.

calibrated bandwidths based on the variance of the data. Furthermore, the inputs to the kernel functions
were given by concatenating one-hot embeddings of Z; and A; or Wy and A;.

For each setting (given by combination of 7. and €yeise), we experimented with hyperparameter values
given by o € {1072,1074,107%,107%}, and A € {1,1072,107%,1075}. In all cases, we set all values of (%)
and o™ to the same «, and similarly we set all values of A(%") and A*) to the same \. In each setting, we
performed grid search by experimenting with all of the above combinations of a and A, and hand-selected
and presented results for a combination of (c, A) for which the algorithm performed well. Our hand-selected
(a, \) for each setting is summarized in Table

We emphasize that this process is not meant to simulate what would be done in real applications, where
the true target policy value is unknown. Rather, our intention is demonstrate the proof of concept of our
theory, and show that an algorithm such as Algorithm [T] can produce accurate policy value estimates when the
hyperparameters are well-calibrated. We leave the problem of automatically selecting such hyperparameters
in a data-driven way to future work.

G.3.2 MeanR
This baseline is extremely simple, given by = > | Zil ’yf‘Rii).

G.3.3 MDP

For this baseline we first fit an MDP model to the observed observation, action, next observation counts in D,
treating observations as states. Then, we compute the value of 7, on this count-based tabular MDP model,
using dynamic programming.

G.34 TIS

This is given by estimating the time-independent sampling identification quantity defined by Theorem [f]
and Lemma [2] by estimating the required probability matrices directly from the observed counts, and
replacing the expectation over Pj,q with its empirical analogue, based on summing over all nf/ combinations
of separately sampling an observed trajectory at each time step, and then normalizing by multiplying by

n

G.4 Results for the MDP Setting

Figure [6] presents the results of our experiment in an MDP setting without any confounding. Namely, where
we set €noise = 0. We can observe that this makes MDP baseline consistent and highly accurate. Our estimate
remains consistent, has lower variance than in the POMDP setting shown in Fig. 4] but still more than the
MDP baseline. The MEANR and TIS baselines still perform badly even in the MDP setting, as expected.

H Additional Details for Experiment 2

H.1 Environment and Policy Details

We used the exact sepsis simulator environment as in |[Oberst and Sontag| [2019], except with the following
modifications:

1. We replaced their initial state distribution with a uniform distribution over all non-terminal states.
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2. As described in the main text, each patient initially (at ¢ = 1) has a 20% chance of having their diabetes
status censored, in which case the observed value of diabetes is always False for that patient (regardless
of whether they actually have diabetes or not)

3. We used a slightly different reward function, in order to make rewards less sparse. As in the original
simulator, this is based on a count of the number of core indicators (heart rate, blood pressure, oxygen
concentration, and glucose level) taking values within safe bounds. Specifically, rewards are defined as
follows: (1) if all four indicators are safe and the patient is not on any of the three treatments, they
receive a reward of 1; (2) if all four indicators are safe but they are on some treatment they receive
a reward of 0; (3) if exactly one indicator is unsafe they receive a reward of —1; (4) if exactly two
indicators are unsafe they receive a reward of —2; and (5) if three or more indicators are unsafe they
receive a reward of —10. In addition, as in the original simulator, in the case of (1) or (5) they enter a
cured or dead terminal (absorbing) state respectively. However, in our version of the simulator, in these
cases they continue to receive the reward of 1 or —10 respectively for all future time steps.

For full exact details of the environment, as well as the exact details of how we generated 7, and 7,
(which was sketched out in the main text), we refer readers to our code release.

H.2 Method Details
H.2.1 Benchmarks

The MEANR and MDP benchmarks were implemented identically as in the prior experiment. See the prior
appendix section for details.

H.2.2 Owur Method

Our method is again an implementation of the estimator described in Section [5], this time using 2-fold
cross-fitting, and again with nuisance estimation following Algorithm [I} As described in the main text in
Section if we partition Oy = (Gy, X;), where G is the (possibly censored) indicator of whether the patient
is diabetic, and X; is all other aspects of Oy, then we use the PCI reduction given by setting Z; = (Gy—1, X¢),
and Wy = (G, X;). Note that since the (censored) diabetes observation doesn’t change over time, this
means that G;_1 = G; so both proxies are identical, but this is consistent with our assumptions since G; is
deterministically determined by the full state S, so G; and G;_; are conditionally independent given S;.

For every ¢ € [H] we set the inputs to the algorithm as follows: H(*) and Q) were some particular neural net
classes described below; the regularization functions were set as R(®(g) = \,||q|l2., and R"Y (k) = A, || h|2.n
for all ¢, for some fixed hyperparameters A\, and A, that don’t depend on ¢; the values of al@?) and o™t were
set to common hyperparameters o, and oy, respectively that don’t depend on ¢; and the kernels K(¢*) and
K1) were set as in Bennett and Kallus| [2023], using the same process of combining three Gaussian kernels
with automatically calibrated bandwidths based on the variance of the data. Furthermore, the inputs to the
kernel functions were given by concatenating embeddings of (G, X¢, A;) based on the following featurizations
that were concatenated together:

1. The G; was encoded as a single 0 or 1 valued variable
2. We extracted 13 features from X; as follows:

(a) 0or 1-valued variables indicating whether heart rate was abnormally high, heart rate was abnormally
low, blood pressure was abormally high, blood pressure was abormally low, oxygen level was
abornally low, and glucose level was abnormal (6 features)

(b) 0 or 1-valued variables indicating whether there were exactly one, or exactly two, main indicators
with unsafe values (2 features)

(¢) The glucose level, normalized in range of 0 to 1 (1 feature)

(d) 0 or 1-valued binary variables indicating whether the patient is currently on each of the three
treatments (3 features)

(e) 0 or 1-valued variable indicating whether the patient is in an absorbing state (1 feature)
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3. A; was encoded as a vector of three 0 or 1-valued binary variables indicating whether each treatment
type was used or not

We used the following neural net class for each of the H*) and Q") classes: (1) we first separately
passed the A; and (X, G;) embedings described above through linear layers with outputs of sizes 10 and 50
respectively; (2) we then passed these two vectors through a bi-linear layer with 50 outputs; (3) we passed
the output of the bi-linear layer through a linear layer with 50 outputs again; and (4) we passed the previous
outputs through a final linear layer with 1 output. In addition, we used GeLU [Hendrycks and Gimpel, 2016]
nonlinearities in between all linear and bi-linear layers.

For more thorough details of our method implementation, we refer readers to our code release.

H.3 Hyperparameter Details

We experimented with separately setting the hyperparameters Ay, Aq, an, and a4 for our method, each taking
values in the set {1072,1073,107%}. This gave a total of 81 different total hyperparameter configurations
that we experimented with. Out of those different configurations, the single best configuration (in terms
of overall MSE), which we presented results for, was given by A\, = 1074, A\, = 1072, ay, = 1072, and
oy = 107%. On the other hand, our automatic hyperparameter heuristic separately selected from these 81
different configurations, by taking a median of the predictions after discarding out-of-bound values, on each
of the 50 replications.
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