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Abstract

This paper introduces the covering path problem on a grid (CPPG) which finds the cost-

minimizing path connecting a subset of points in a grid such that each point that needs to be

covered is within a predetermined distance of a point from the chosen subset. We leverage

the geometric properties of the grid graph which captures the road network structure in many

transportation problems, including our motivating setting of school bus routing. As defined

in this paper, the CPPG is a bi-objective optimization problem comprised of one cost term re-

lated to path length and one cost term related to stop count. We develop a trade-off constraint

which quantifies the trade-off between path length and stop count and provides a lower bound

for the bi-objective optimization problem. We introduce simple construction techniques to

provide feasible paths that match the lower bound within a constant factor. Importantly, this

solution approach uses transformations of the general CPPG to either a discrete CPPG or con-

tinuous CPPG based on the value of the coverage radius. For both the discrete and continuous

versions, we provide fast constant-factor approximations, thus solving the general CPPG.

Keywords: covering path problem; grid optimization; school bus routing; location routing

problem

1. Introduction
School bus routing is an activity performed by school districts across the United States, with

annual costs over $20 billion ([38]). The core subproblem in school bus routing considers an area

where children are to be picked up by a bus. The goal is to identify bus stops such that each child
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is sufficiently close to a stop and a bus route such that the total cost/time of the bus is minimized.

Both travel and stops incur cost and time for the bus. Our goal in this paper is to find high quality

solutions to the sub-problem quickly. This will allow decision makers to interactively change

parameters, such as the area assigned to a bus or the definition of “sufficiently close”, to evaluate

the extent to which such changes impact total cost.

The covering path problem (CPP) that has been studied in the literature captures many ele-

ments of the core sub-problem in school bus routing. The CPP is a variant of the traveling sales-

man problem (TSP), in which the vehicle is not required to visit every point and the path does not

end at the starting point. Like the TSP, the CPP is NP-hard on general graphs ([11]). We develop

efficient solution methods for the CPP when the problem is restricted to a grid graph. This is an

important restriction that naturally arises when routing school buses in many urban and suburban

settings where the underlying road network resembles a grid.

Definition 1 (CPP). Consider a graph G = (V,E) with edge weights le for e ∈ E and node

weights tv for v ∈ V , a coverage region R, and a coverage radius k > 0. The CPP finds a set of

stops V1 ⊆ V such that for every point x ∈ R, there exists v1 ∈ V1 at a distance at most k, and

the minimum cost path P connecting the nodes in V1. Given scalars L ∈ R and T ∈ R and any

function C(L, T ), the cost of path P is given by

Cost(P ) = C(L, T ) = C(
∑
e∈P

le,
∑
v∈V1

tv). (1)

A point v1 ∈ V1 is referred to as a stop and a path connecting all nodes in V1 is referred to

as a covering path. Point A is said to cover point B if and only if the distance between A and

B is no more than k. The two cost terms L and T are referred to as path length and stop count,

respectively. In the CPP literature, the coverage regionR is typically a set of nodes to be covered

(which may be the set V ) and the stops V1 are chosen from that node set. In our work for school

bus routing, we interpret the coverage region as the area in which students live and choose bus

stops from a discrete subset of nodes in the area.

This paper is motivated by a collaboration with a public school district focused on improving

service and lowering cost for bus transportation. The underlying road network for the district

resembles a grid and our goal is to leverage this structure to obtain robust transportation solutions,

thus allowing the school district to (1) employ simple strategies to identify bus stop locations

and plan bus routes and (2) embed these strategies and associated cost approximations in broader
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decision frameworks, covering decisions such as student assignments to schools.

The School Bus Routing Problem (SBRP) has been extensively studied in the literature (e.g.,

[15], [29], [31]). The SBRP itself is a composite of five subproblems: data preparation, bus stop

selection, bus route generation, school bell time adjustment, and route scheduling. As noted ear-

lier, students are often not picked up at their homes, but rather are assigned to bus stops within a

set walking distance, thus the SBRP is studied as a combination of routing and covering. Existing

SBRP literature typically does not specify the underlying graph structure of the road network. The

joint subproblem of bus stop selection and bus route generation is modeled with integer program-

ming models ([5], [15], [19], [31]). As the joint subproblem is NP-Hard, finding solutions can be

challenging for implementation in practice. Later work designs heuristics to tackle the computa-

tional complexity, such as genetic algorithm ([16]), tabu search ([30]) and randomized adaptive

search procedure ([34]). Heuristics for the combined problem of bus stop selection and route gen-

eration mainly follow two strategies: the location-allocation-routing (LAR) strategy ([4]) and the

allocation-routing-location (ARL) strategy ([5]). The LAR strategy sequentially selects bus stops,

assigns students to bus stops, and designs bus routes. The ARL strategy first groups students into

clusters, selects stops and generates routes for each cluster, and then assigns students to bus stops.

These strategies solve routing and location problems sequentially. In our work, we aim to solve

these two subproblems simultaneously by leveraging the grid structure of the underlying graph.

This study of the CPP in a stylized grid setting is a first step in our analysis of the joint problem

of route design and bus stop selection. Our solution approach is particularly useful in a setting

where the decision maker cares about both the number of stops and route length and wants to

interactively adjust the weight assigned to either when designing routes. Our approach quickly

provides a high quality solution to the decision maker. In the conclusion, we discuss next steps to

use these results in a stylized setting to address more complex settings with multiple vehicles and

other generalizations.

Motivated by the SBRP in which students are typically located along streets and bus stop

locations are selected from intersections, we define the following notation. A unit grid graph, also

known as a square grid graph ([39]), is a graph whose nodes correspond to integer points in the

plane with the x-coordinates from 0 to m and y-coordinates from 0 to n. Two nodes in the grid

graph are connected if and only if they are end points of an edge of distance 1. Given that students

live on streets that correspond to edges of the grid graph and walk primarily along the streets, we

use the l1 norm to measure the distance between any two points. The l1 norm is the shortest path
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length between two points traveling only along edges in the grid graph. We show in our analysis

that the grid structure leads to strong approximation results (in some cases near-optimal) for the

optimization problem with a linear objective function of the number of stops and the route length.

We define the unit grid formally below.

Definition 2 (Unit Grid). Given m,n ∈ N+, let Dint be the set of integer points (x, y) with

0 ≤ x ≤ m and 0 ≤ y ≤ n. Let E be the set of grid edges connecting nodes (x, y) in Dint with

adjacent grid nodes. G = (Dint, E) defines a m× n unit grid.

The vertices of the unit grid, V , are equivalent to the set Dint, the set of integer points in the

grid. In a unit grid, le = 1 for e ∈ E and tv = 1 for v ∈ V . We further define Dedge to be all

points on the edges E of the grid. Observe that Dedge includes not only the vertices V but also all

points on the edges E. CPPG can now be specialized from the definition of CPP as follows:

CPPG (Covering Path Problem on a Grid). Solve CPP given m × n unit grid G = (V,E)

withR = Dedge and V1 ⊆ Dint.

In practice, it may be hard for decision makers to provide an exact cost function C(L, T ).

Thus, we look to solve the optimization problem of minimizing C(L, T ) without specifying the

form of the function C(·, ·). In order to do so, we consider a related decision version of the CPPG.

By fully characterizing the decision problem, we can quantify the trade-off between the path length

L and the number of stops T , thereby efficiently solving the bi-objective optimization problem.

Decision version of CPPG. Given L, T ∈ R, determine if there exists a set of stops V1 and a

covering path P such that
∑

e∈P le ≤ L and
∑

v∈V1 tv ≤ T .

CPPG with coverage radius k

�𝑘𝑘 =
2𝑘𝑘
2

integer half-integer

Solve continuous 
CPPG with �𝑘𝑘

Solve discrete 
CPPG with �𝑘𝑘 − 1

2

Figure 1: Solution approach for CPPG

To solve the CPPG, we first show that one

can reduce the CPPG with any coverage radius

k > 0 to one of two cases: k as integer or half-

integer. Recall that the coverage region in the

CPPG is the set of points on the edges Dedge.

We show that: (1) when k is an integer, cov-

ering Dedge is equivalent to covering the rect-

angle D = {(x, y), 0 ≤ x ≤ m, 0 ≤ y ≤ n}

with coverage radius k; (2) when k is a half-

integer, covering Dedge is equivalent to cov-

ering integer points Dint with coverage radius

k − 1
2 . The transformation then leads to two variations of the CPPG: the continuous CPPG in
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which we cover all points in the rectangular grid D and the discrete CPPG in which we cover all

integer points in Dint (see Figure 1 for illustration). The continuous CPPG falls into a stream of

continuous facility location and routing models which have been shown to offer computational

simplicity compared to their discrete counterparts. We show that insights from the continuous

CPPG can be used for the discrete CPPG which can be viewed as a CPP on a grid graph in which

only a finite number of points must be covered. We develop efficient methods to find feasible, high

quality solutions for both variations, thus solving the original problem.

We solve both covering path problem variants in a bi-objective setting: i.e., we minimize

a function of the path length L and stop count T . Similar covering tour problems have been

studied in the literature: [25] seek to minimize two objectives–tour length and coverage radius

and [36] study the trade-off between fixed cost and uncovered demand in a stochastic setting by

characterizing the Pareto frontier. We solve the bi-objective problems by identifying the set of

all non-dominated solutions (or Pareto frontier) with an inequality that quantifies the trade-off

between path length and stop count. Our approach allows us to find high quality solutions quickly

which is necessary in an interactive setting where the decision maker evaluates different weights

on length and number of stops. By high quality, we mean solutions that are within a fixed ratio of

the optimal solution. By quickly, we mean polynomial time.

The remainder of this paper is organized as follows. In Section 2 we review related work on

the CPP and optimization problems on grid graphs. In Section 3 we establish the transformations

needed for the approach in Figure 1 and formally introduce the continuous and discrete CPPG.

In Section 4 we present a relaxation of the continuous CPPG that leads to foundational results

which are used in Sections 5 and 6 for the continuous and discrete CPPG, respectively. Finally,

we conclude in Section 7 with next steps to apply these results to the SBRP.

2. Literature Review
We review two relevant streams of related research: covering tour and path problems and opti-

mization problems on grid graphs.

2.1 Covering tour and path problems

[11] introduces the CPP and shows its NP-hardness from a reduction of the TSP when the coverage

radius equals to zero. The covering tour problem (CTP) is similar to the CPP, requiring the path

to start and end at the same point. The CPP can be reduced to the CTP by adding a dummy node

that is connected to all other nodes with zero cost but not covered by any other nodes. Existing
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work formulates the CTP as an integer linear program (ILP), beginning with [12] and builds corre-

sponding solution approaches. [20] study the polyhedron of the ILP and provide a branch-and-cut

algorithm. [22] present an ILP formulation and heuristics for the multi-vehicle CTP. The CTP can

also be treated as a generalized traveling salesman problem (GTSP) ([18]): given several sets of

nodes, the GTSP seeks to determine a shortest tour passing at least once through each set. Recent

work continues on designing solution approaches for the CTP and multi-vehicle CTP; such as

branch and price ([24]), column generation ([28]) and adaptive large neighborhood search ([27]).

The CTP has also been studied in the bi-objective setting. [25] introduce the bi-objective CTP

which aims to minimize both the tour length and the coverage radius. [36] study the stochastic bi-

objective CTP and discuss the fundamental trade-off between fixed cost and uncovered demand.

Different from previous work, we develop polynomial solution methods that exploit the underlying

grid structure to obtain provable bounds.

Combining facility location and route design has also been broadly studied in other related

problems. The location-routing problem (LRP) pays special attention to the underlying issue of

vehicle routing (see [1], [17], [32] for reviews). There have been several different formulations of

the capacitated LRP in recent work ([7], [9], [10]) where the coverage distance is relaxed and the

distance to nodes not on a path becomes a cost to minimize. In the ringstar problem ([26]), the

objective function combines location and routing costs with a linear combination of path cost and

access cost from assigning nodes to facilities.

Recently, attention has been given to continuous facility location problems with access costs.

[6] introduce a problem that is related to our work. They consider facility location with backbone

network costs, where the objective function is a linear combination of fixed costs from installing

facilities, backbone network costs from connecting facilities and access costs from connecting

customers to facilities. The fixed costs in [6] are equivalent to our fixed costs of stops and the

backbone network is equivalent to our covering path. In our problem, the access cost is modeled

as a coverage constraint where each stop covers points within a given distance, consistent with

how the problem is viewed by the school district. Our use of the l1 norm to calculate distance

is also consistent with the practical problem. In this setting, we develop a solution approach

that provides high quality approximation solutions when the objective function is increasing and

convex. Our solution approach characterizes the boundary of all feasible solutions and uses this

characterization to solve the optimization problem.
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2.2 Optimization on grid graphs

Some of the most fundamental combinatorial optimization problems have been well studied on

grid graphs and other graphs with special metrics and topological structures. For the Hamiltonian

Cycle Problem, [23] prove its NP-hardness on general grid graphs and [37] show the problem can

be solved in polynomial time on a simple grid graph (e.g., a grid without holes). For the TSP, [3]

provides a polynomial-time approximation scheme for problems on grid graphs but the algorithm

is computationally challenging for large instances. Recent advances in the TSP also indicate

potential benefits of working on structured graphs. [2] give a 6
5 -approximation polynomial-time

algorithm for the TSP on a simple grid graph. [21] provide a (32 − ε)-approximation polynomial-

time algorithm for the graph TSP where edge cost is measured by the shortest path length on a

unit graph. Their algorithm follows the structure of Christofides heuristic by cleverly choosing

a random spanning tree (not always the minimum spanning tree) in the first step. The results

improve the 3
2 -approximation due to [8] for this TSP variant. [35] later improve the approximation

ratio to 7
5 together with a derandomized algorithm using forest representations of hypergraphs.

[33] study the facility location problem with barriers using the l1 norm to measure distance. In

general, the grid assumption provides a unified geometric structure with fewer degrees of freedom.

Such structures can be easier to analyze with the help of geometric and combinatorial techniques.

Motivated by these results, our paper looks to leverage the grid structure to solve the CPP.

Our contribution in this paper is to provide a polynomial algorithm for the CPPG that exploits

the underlying grid structure to obtain high quality solutions for an objective function that accounts

for both the number of stops and the path length. This bi-objective scenario naturally arises as the

core problem in school bus routing.

3. Characterizing CPPG Problem Settings
In this section, we present preliminaries for our CPPG solution approach in Figure 1. On a unit

grid graph, when k < 1, CPPG has a trivial solution where all nodes in V are stops, i.e., V1 = V .

Thus, for the rest of the paper we assume that k ≥ 1. We show that one can round the coverage

radius k down to the nearest integer or half-integer and maintain the coverage properties. When

this rounding results in an integer value, the CPPG can be solved with the continuous CPPG and

when the rounding results in a half-integer value, the CPPG can be solved with the discrete CPPG.
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3.1 Rounding the coverage radius

Recall the rectangular region D = {(x, y) | 0 ≤ x ≤ n, 0 ≤ y ≤ m} in R2 with a grid graph with

the set of points on the edges Dedge = {(x, y) | (x, y) ∈ D,x ∈ Z or y ∈ Z} and integer point

set Dint = {(x, y) | 0 ≤ x ≤ n, 0 ≤ y ≤ m,x, y ∈ Z}. Without loss of generality, we assume

m ≥ n > 0. The following proposition shows that to solve the CPPG, it is sufficient to model k

as either integer or half-integer.

Proposition 1. In the CPPG, a covering path with coverage radius k is also a covering path with

coverage radius b2kc2 .

Proof of Proposition 1. Let V1 ⊆ Dint be the set of stops in a covering path with coverage

radius k. Given two points x and F , let ||x− F ||1 represent the l1 distance between x and F .

For each point x ∈ Dedge, let

dist(x) = minF∈V1 ||x− F ||1

be the distance from x to its nearest stop. All points in Dedge are covered with radius k if and only

if maxx∈Dedge
{dist(x)} ≤ k. We prove that the value of maxx∈Dedge

{dist(x)} is an integer or a

half-integer. Therefore, maxx∈Dedge
{dist(x)} ≤ b2kc2 .

Let a, b ∈ Dint be two connected integer points in the grid graph. Given that all stops are

located at integer points, dist(a) and dist(b) must be integers. Because a and b are connected,

|dist(a) − dist(b)| ≤ ||a − b||1 = 1, which leads to three cases when we consider
−→
ab, the edge

connecting a and b.

Case 1: dist(a) = dist(b) = c ∈ Z. For x ∈
−→
ab, the function dist(x) takes maximum value

of c+ 1
2 (which is a half-integer) at the midpoint of edge

−→
ab.

Case 2: dist(a) − dist(b) = 1. For x ∈
−→
ab, the function dist(x) is linear on edge

−→
ab and

takes maximum value at point a.

Case 3: dist(a)−dist(b) = −1. This case is symmetric to Case 2 and dist(·) takes maximum

value at point b.

In summary, the maximum function value of dist(·) is either an integer or a half-integer on

each edge. Therefore, the coverage property remains unchanged after rounding k down to b2kc2 .

Proposition 1 states that the coverage radius k can be reduced to b2kc2 , which is the largest

integer or half-integer less than or equal to k. When b2kc2 is an integer, we expand the coverage
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region from Dedge to the full rectangle D so that the problem falls into the stream of continuous

facility location; when b2kc2 is a half-integer, we restrict the coverage region to integer points Dint

and the problem can be viewed as a CPP on a grid graph in which we only cover a finite number of

points. By replacing Dedge with D and Dint, we are able to obtain tighter approximation results

for both the optimization and decision versions of the CPPG.

3.2 Solving the CPPG with integer coverage radius

As a first step, we show that when the coverage radius k is an integer, solving the CPPG with

coverage region Dedge is equivalent to solving the CPPG with coverage region D.

Proposition 2. Given a positive integer k, covering all points on the edges, Dedge, with radius k

is equivalent to covering all points in the rectangle, D, with the same radius.

Proof of Proposition 2. Given thatDedge ⊂ D, covering all points inD with radius k naturally

covers all points in Dedge with radius k. To prove the other direction, it suffices to show that if

dist(x) ≤ k ∀x ∈ Dedge, then dist(x) ≤ k ∀x ∈ D. We call y ∈ D a mid-integer point

if one of its coordinates is an integer and the other a half-integer; i.e., y is the midpoint of two

integer points with distance 1. Given x ∈ D, let yx ∈ D be the closest mid-integer point to

x. We have ||x − yx||1 ≤ 1
2 . Since yx is a mid-integer point, dist(yx) must be a half-integer.

Together with the fact that yx ∈ Dedge, we have dist(yx) ≤ k − 1
2 . From the triangle inequality,

dist(x) ≤ dist(yx) + ||x − yx||1 ≤ (k − 1
2) + 1

2 ≤ k. Thus, all points in the rectangle D are

covered with radius k.

With Proposition 2, when k is an integer, we solve the CPPG by defining an equivalent problem

called the continuous CPPG, where the coverage region is expanded to the rectangle D.

C-CPPG (Continuous CPPG). Solve CPP given anm×n unit gridG = (V,E) withR = D

and V1 ⊆ Dint.

3.3 Solving the CPPG with half-integer coverage radius

When the coverage radius k is a half-integer, we show that solving the CPPG with coverage region

Dedge is equivalent to solving the CPPG with coverage region Dint, the set of integer points.

Proposition 3. Given a half-integer k, covering all points in the edges, Dedge, with radius k is

equivalent to covering the integer points, Dint, with radius k − 1
2 .
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Proof of Proposition 3. For any integer point z ∈ Dint, dist(z) is an integer less than or equal

to k. Since k is a half-integer, dist(z) ≤ k − 1
2 . For any x ∈ Dedge, let zx be the nearest integer

point to x. From the triangle inequality, dist(x) ≤ dist(zx) + ||x − zx||1 ≤ (k − 1
2) + 1

2 = k.

Given that all x ∈ Dint are within distance k − 1
2 of stops, all x ∈ Dedge must be within distance

k of stops.

With Proposition 3, when k is a half-integer, we solve the CPPG by defining an equivalent

problem called the discrete CPPG, where the coverage region is restricted to the integer points

Dint, equivalent to the node set V .

D-CPPG (Discrete CPPG). Solve CPP given an m× n unit grid G = (V,E) withR = Dint

and V1 ⊆ Dint.

3.4 A relaxation of the C-CPPG

To develop solution approaches for the C-CPPG and D-CPPG, we define a relaxation of the C-

CPPG, RC-CPPG, where the set of stops V1 can be selected from all points in D (rather than

Dint). The three key elements in the definition of each problem we study in the paper (potential

stop locations, coverage region and coverage radius) are presented in Table 1. Note in Table 1,

that choosing stop locations from the set of integers Dint is equivalent to choosing from the node

set V in the unit grid.

RC-CPPG (A Relaxation of the C-CPPG). Solve CPP given an m×n unit grid G = (V,E)

withR = D and V1 ⊆ D.

In Section 4, we show that the optimization problem defined for the RC-CPPG can be solved

to near-optimality. The continuity in the relaxed problem (both in potential stop locations and

coverage region) allows for more accurate analysis and tighter bounds for the optimization and

decision problems. The analysis approach developed for the RC-CPPG is applied to the C-CPPG

in Section 5 and D-CPPG in Section 6 to obtain tight bounds.

4. Analysis of the RC-CPPG
The RC-CPPG falls into the regime of continuous facility location ([14]). [6] study a similar

problem of finding a minimum cost path that covers a convex polygon. The objective function

in [6] is a linear combination of fixed cost, path cost and access cost. Both [6] and our work
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Setting/Problem CPPG C-CPPG D-CPPG RC-CPPG
Potential stop locations Dint Dint Dint D

Coverage region Dedge D Dint D

Coverage radius k > 0 k ∈ N+ k ∈ N+ k > 0

Table 1: Differences in CPPG problem settings

handle the continuity of the coverage region with combinatorial and geometric approaches. While

our paper only considers covering a rectangle with minimum fixed cost and path cost, we obtain

stronger approximation results (in some settings near-optimal) by leveraging the structure of the

l1 norm and the grid graph.

The remainder of this section is organized as follows. We introduce the trade-off constraint

which quantifies the trade-off between the path length L and number of stops T and provides

lower bounds for the set of feasible solutions to the optimization problem. We then construct a

family of feasible paths called “up-and-down paths” that provide an upper bound that matches the

lower bound obtained from the trade-off constraint. Finally, we present a polynomial algorithm

that solves the optimization problem with a linear objective function in a near-optimal fashion.

The proof techniques and results in this section are used in Sections 5 and 6 with slight changes.

4.1 Trade-off constraint for the RC-CPPG

Figure 2: Geometric interpretation of function
f(·)

We show in this section that one can not min-

imize path length L and stop count T simul-

taneously in the bi-objective CPPG. To mini-

mize stop count (Corollary 1), the overlap in

coverage region for consecutive stops is min-

imized, resulting in longer path lengths. To

minimize path length (Corollary 2), traver-

sals across the region are minimized which in-

creases the overlap of coverage regions, result-

ing in more stops.

In the RC-CPPG and other CPPG variants,

the parameter pair (L, T ) is feasible if there

exists a covering path with at most T stops and path length at most L. The set of all feasible

pairs forms the feasible region. Note that if (L, T ) is a feasible pair, then both (L, T + 1) and
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(L + ∆L, T ) are feasible pairs, where ∆L > 0. We explore the functional form of the trade-

off between L and T to characterize the boundary of the feasible region. We define a trade-off

function and use this function to solve the optimization version of the RC-CPPG. Our analysis

of the boundary in the form of a trade-off between path length and stop count uses two functions

based on L and T :

• the average distance between consecutive stops on a path of lengthLwith T stops, d = L
T−1 .

Intuitively, when d is large, the overlap between regions covered by consecutive stops is

small which is associated with fewer stops.

• f(d) = d(2k − d
2) represents the maximum area of the region covered by a stop that is not

covered by the previous stop on the path.

The function f(·) is an approximate measure of the area of the unique coverage region for

consecutive stops. To minimize the number of stops T , one strives to maximize this area. Thus,

this function plays an important role in the trade-off analysis governed by the choice of L and T

through d = L
T−1 .

We show the geometric interpretation of function f(·) in Figure 2. The region covered by any stop

is a diamond under the l1 norm. If two consecutive stops Fi and Fi+1 are separated by distance

d, f(d) is an upperbound of the area of the region covered by Fi+1 but not Fi (shaded region in

Figure 2). Therefore, f(d) can be interpreted as the maximum area covered by stop Fi+1 but not

by the union of stops with lower index. If d > 2k, then Fi and Fi+1 serve disjoint regions and

f(d) = 2k2, which is the size of the diamond region covered by Fi+1.

Theorem 1 characterizes the trade-off between L and T .

Theorem 1 (Trade-off constraint for the RC-CPPG). If (L, T ) is a feasible pair for the RC-

CPPG with T > 1, then

(T − 1)f
( L

T − 1

)
≥ N − 2k2, (trade-off constraint)

where f(·) is a function of the average distance between consecutive stops, d, defined as:

f(d) =


d(2k − d

2) if d ∈ (0, 2k]

2k2 if d ∈ (2k,∞),

(2)

and N = mn is the area of rectangle D.
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Moreover, when L
T−1 ≤ 2k (which is shown in Section 4.3 to hold for an optimal path), the

trade-off constraint is equivalent to

2kL− L2

2(T − 1)
≥ N − 2k2. (3)

Proof of Theorem 1. Let F1−F2−· · ·−FT be a covering path where {Fi}Ti=1 is the set of stops.

Denote by di the distance between Fi and Fi+1. The total path length is L =
∑T−1

i=1 di. Let Si be

the region covered by Fi and |Si| its area. Note that N ≤ | ∪Ti=1 Si| ≤ |S1|+
∑T−1

i=1 |Si+1 − Si|.

We first show that |Si+1 − Si| ≤ f(di) through the following lemma.

Lemma 1. For k > 0 and (a, b) ∈ R2, let B
(
(a, b), k

)
= {(x, y) | |x− a|+ |y − b| ≤ k} be the

diamond region covered by (a, b) ∈ R2 with radius k. For p, q ∈ R,

|B
(
(0, 0), k

)
∩ B
(
(|p|+ |q|, 0), k

)
| ≤ |B

(
(0, 0), k

)
∩ B
(
(p, q), k

)
|. (4)

Proof of Lemma 1. WLOG, we assume that p ≥ q ≥ 0 (else, we replace (p, q) with (|p|, |q|)

and (|p|, |q|) with (|q|, |p|) if necessary, neither operations changes |B
(
(0, 0), k

)
∩ B
(
(p, q), k

)
|).

We now show that

B
(
(0, 0), k

)
∩ B
(
(|p|+ |q|, 0), k

)
⊆ B

(
(0, 0), k

)
∩ B
(
(p, q), k

)
, (5)

and therefore prove inequality (4).

Since p ≥ q ≥ 0, |p| + |q| = p + q. For (x1, y1) ∈ B
(
(0, 0), k

)
∩ B
(
(p + q, 0), k

)
, we show

that (x1, y1) ∈ B
(
(p, q), k

)
and therefore (x1, y1) ∈ B

(
(0, 0), k

)
∩ B
(
(p, q), k

)
.

If x1 ≤ p, then |x1 − p|+ |y1 − q| ≤ (p− x1) + (q + |y1|) ≤ |x1 − p− q|+ |y1| ≤ k.

If x1 > p, then |x1−p|+|y1−q| ≤ (x1−p)+(q+|y1|) = (x1+|y1|)+(q−p) ≤ |x1|+|y1| ≤ k.

Therefore, |x1 − p| + |y1 − q| ≤ k and (x1, y1) ∈ B
(
(p, q), k

)
. Thus (5) follows, implying

(4).

When di is fixed, Lemma 1 implies that the most efficient way to minimize |Si ∩ Si+1| is to

locate Fi and Fi+1 either vertically or horizontally within the grid.

From inequality (4), |Si ∩ Si+1| must be at least |B
(
(0, 0), k

)
∩ B
(
(di, 0), k

)
|. Together with

the fact that |Si+1| = 2k2, we have,

|Si+1 − Si| = |Si+1| − |Si ∩ Si+1| ≤ 2k2 − |B
(
(0, 0), k

)
∩ B
(
(di, 0), k

)
|. (6)
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For 0 ≤ di < 2k, B
(
(0, 0), k

)
∩ B

(
(di, 0), k

)
is a diamond region centered at

(
di
2 , 0

)
of radius

k − di
2 with area 2

(
k − di

2

)2. With f(di) defined in (2) we obtain

|B
(
(0, 0), k

)
∩ B
(
(di, 0), k

)
| = 2

(
k − di

2

)2
= 2k2 − di

(
2k − di

2

)
= 2k2 − f(di).

When di ≥ 2k, |B
(
(0, 0), k

)
∩ B
(
(di, 0), k

)
| = 0. Thus f(di) = 2k2.

Inequality (6) is then equivalent to |Si+1 − Si| ≤ f(di). We thus obtain

N ≤ |S1|+
T−1∑
i=1

|Si+1 − Si| ≤ 2k2 +

T−1∑
i=1

f(di). (7)

Since f(·) is a concave function (see (2)), we have

N − 2k2 ≤
T−1∑
i=1

f(di)

≤ (T − 1)f
(∑T−1

i=1 di
T − 1

) (
from the concavity of f(·)

)
= (T − 1)f

( L

T − 1

)
.

(8)

Note that if L
T−1 ≤ 2k, (T − 1)f( L

T−1) = (T − 1) · L
T−1(2k − L

2(T−1)) = 2kL− L2

2(T−1) . In this

case, the trade-off constraint is equivalent to 2kL− L2

2(T−1) ≥ N − 2k2. Thus (3) follows.

Theorem 1 provides a lower bound on the feasible region for L and T which we use to show

the feasible paths defined in Section 4.2 are near-optimal. We show the trade-off constraint is

almost tight in the sense that given a pair (L, T ) that satisfies the trade-off constraint at equality

we can always find a feasible pair (L
′
, T
′
) where L is close to L

′
and T is close to T

′
.

4.2 Near-optimal paths

We define a group of paths called “up-and-down paths”. One can consider the up-and-down path

as a special case of the swath path ([13]) which is shown to be near-optimal for the TSP in zones

of different shapes. In defining an up-and-down path, we use the term “traversal” to represent the

vertical line connecting points (s, 0) and (s,m). An up-and-down path connects a set of traversals

and the separation between consecutive traversals is a function of d as in Definition 3. Once the

path is defined, stops are located as described in Definition 3.

Definition 3 (Type-d up-and-down path). For d ∈ (0, 2k], define r = 2k− d
2 . In the RC-CPPG,
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a type-d up-and-down path connects the following points sequentially (as shown in Figure 3):

(0, 0)→ (0,m)→ (r,m)→ (r, 0)→ (2r, 0)→ (2r,m)→ (3r,m)→ (3r, 0)→ · · · .

For an odd traversal connecting (2ir, 0) to (2ir,m) for i = 0, 1, · · · (i ≤ n
2r ), we establish

stops at (2ir, jd) for j = 0, 1, · · · for jd ≤ m. For an even traversal connecting
(
(2i+ 1)r,m

)
to(

(2i+ 1)r, 0
)

for i = 0, 1, · · · (i ≤ n
2r ), we establish stops at

(
(2i+ 1)r, jd+ d

2

)
for j = 0, 1, · · ·

for jd+ d
2 ≤ m. Finally, we establish a stop at point (·,m) for each traversal to ensure coverage

(which may not always be necessary as discussed in the proof of Proposition 4).

Figure 3 illustrates a type-d up-and-down path where the black dots are the locations of se-

lected stops. The points (x, y), (xh, yh), (xl, yl) are used in the proof of Proposition 4.

Proposition 4 shows the feasibility of the up-and-down path and Proposition 5 computes the

corresponding costs.

Proposition 4 (Feasibility of the up-and-down path). For any point (x, y) ∈ D, there exists a

stop that covers (x, y) on a type-d up-and-down path.

Proof of Proposition 4. Assume that (x, y) lies between traversals i and i+ 1. Let (xh, yh) be

the highest stop on these two traversals with yh ≤ y and (xl, yl) be the lowest stop on these two

traversals with yl ≥ y (see Figure 3 for illustration). From the alternating pattern of stop locations,

we can pick (xh, yh) and (xl, yl) such that they are on adjacent traversals. Since the separation

between traversals i and i+ 1 is at most 2k− d
2 (equal to 2k− d

2 except for the rightmost one), we

have |xh − xl| ≤ 2k − d
2 . With the alternating pattern of stop locations on traversals i and i + 1,

we have |yh − yl| ≤ d
2 .

Since yh ≤ y ≤ yl and x is always between xh and xl, we have

||(x, y)− (xh, yh)||1 + ||(x, y)− (xl, yl)||1 = ||(xh, yh)− (xl, yl)||1 ≤
(

2k − d

2

)
+
d

2
= 2k.

This implies that (xh, yh) or (xl, yl) (and possibly both) covers (x, y).

Proposition 5 (Cost of up-and-down path for the RC-CPPG). For d ∈ (0, 2k], the path length

of a type-d up-and-down path is at most mn
2k−d/2 + 3m and the stop count is at most

(
n

2k−d/2 +

2
)(

m
d + 2

)
. As d→ 0, the path length approaches mn

2k + 3m = mn
2k +O(m); if d = 2k, the stop

count is at most (nk + 2)(m2k + 2) = mn
2k2

+O(m).
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Figure 3: Up-and-down path for the RC-CPPG

Proof of Propsition 5. In a type-d up-and-

down path, the separation between consecu-

tive traversals (except the rightmost one) is

2k− d
2 , yielding at most n

2k−d/2 + 2 traversals.

Two parts contribute to the path length: length

from the traversals and length from traver-

sal connections. The first part is bounded by(
n

2k−d/2 + 2
)
m and the second part is at most

n. Since m ≥ n, the total path length is at

most
(

n
2k−d/2 + 2

)
m+ n ≤ mn

2k−d/2 + 3m.

The distance between consecutive stops on

one traversal is d (except for the topmost one).

Given that the number of stops on a single traversal is at most md +2, the total stop count is at most(
n

2k−d/2 + 2
)(

m
d + 2

)
.

Theorem 2 (Tightness result for the RC-CPPG). In the RC-CPPG, for any (L, T ) satisfying

the trade-off constraint at equality, there exists a feasible up-and-down path of length L
′

with T
′

stops such that

L
′ − L ≤ 3m+ 2k, (9)

and
T
′

T
≤
(

1 +
2k2

N − 2k2

)(
1 +

4k

n

)2
. (10)

Note that whenm,n are large, (9) and (10) suggest that both L
′

L and T
′

T can be arbitrarily close

to 1. We show in Section 4.3 how this claim can be used to obtain a near-optimal solution for the

optimization problem.

Proof of Theorem 2. We discuss two cases based on the value of d: d ≤ 2k and d > 2k. When

d ≤ 2k, we show that a type-d up-and-down path is near-optimal; and when d > 2k, a type-2k

up-and-down path is near-optimal.

Case 1: d ≤ 2k.

If d = L
T−1 ∈ (0, 2k], the trade-off constraint at equality is (T − 1)f

(
L

T−1
)

= N − 2k2. We

can rewrite L and T as functions of d,

T = T (d) =
N − 2k2

f(d)
+ 1 =

N − 2k2

d(2k − d/2)
+ 1 (from (2))
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and

L = L(d) = d(T (d)− 1) =
N − 2k2

2k − d/2
.

Consider a type-d up-and-down path and let L
′

and T
′

be the path length and stop count. From

Proposition 5 we have

L
′ ≤ mn

2k − d/2
+ 3m =

(N − 2k2) + 2k2

2k − d/2
+ 3m

≤ L(d) + 3m+
2k2

2k − d/2

≤ L(d) + 3m+ 2k.

(11)

For stop count, from Proposition 5 we know

T
′ ≤

( n

2k − d/2
+ 2
)(m

d
+ 2
)

=
n

2k − d/2

(
1 +

2(2k − d/2)

n

)
· m
d

(
1 +

2d

m

)
≤ N

d(2k − d/2)

(
1 +

4k

n

)(
1 +

2d

m

)
≤ T (d)

(
1 +

2k2

N − 2k2

)(
1 +

4k

n

)(
1 +

4k

n

)
(recall that d ≤ 2k and m ≥ n)

= T (d)
(

1 +
2k2

N − 2k2

)(
1 +

4k

n

)2
.

(12)

Case 2: d > 2k.

If d = L
T−1 > 2k, from the trade-off constraint we have

T ≥ N − 2k2

f(2k)
+ 1 = T (2k), L ≥ 2k(T − 1) ≥ L(2k).

From the analysis of Case 1, the cost of a type-2k up-and-down path satisfies (9) and (10) for

L = L(2k) and T = T (2k). Since we are only increasing L and T in Case 2, (9) and (10) still

hold when d > 2k.

4.3 Optimization problem for the RC-CPPG

The optimization version of the CPPG finds a feasible parameter pair (L, T ) that minimizes the

objective function C(L, T ). This is equivalent to minimizing C(L, T ) over the feasible region

defined by the trade-off constraint. Lemma 2 guarantees the convexity of the feasible region,

where the cost function C(·, ·) is increasing and convex.
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Lemma 2. For given N and k, the trade-off constraint (T − 1)f( L
T−1) ≥ N − 2k2 defines a

convex region.

Proof of Lemma 2. Since f(·) is concave, it is the minimum of a set of linear functions; i.e.,

f(d) = mini{aid + bi}. Therefore, the trade-off constraint is equivalent to mini{aiL + bi(T −

1)} ≥ N − 2k2. Note that aiL+ bi(T − 1) ≥ N − 2k2 defines a halfspace in R2 for each i. Thus,

(T − 1)f( L
T−1) ≥ N − 2k2, which is the intersection of halfspaces, must be convex.

Given an increasing and convex function C(L, T ), consider the following subproblem:

minimize C(L, T )

subject to (T − 1)f
( L

T − 1

)
≥ N − 2k2

T ≥ 2, L > 0.

(13)

The problem minimizes a convex function over a convex set; therefore, it can be solved in polyno-

mial time. Let (L∗, T ∗) be an optimal solution to the subproblem and d∗ =min{ L∗

T ∗−1 , 2k}, with a

corresponding type-d∗ up-and-down path. Theorem 3 provides a theoretical guarantee of the cost

of up-and-down path for the case where C(L, T ) is linear.

Theorem 3. If C(L, T ) = αL + βT with α, β > 0 and m ≥ n ≥ 16k
ε for ε ∈ (0, 1), a type-d∗

up-and-down path provides a (1 + ε)-approximation solution for the RC-CPPG.

Proof of Theorem 3. Let (L∗, T ∗) be an optimal solution to subproblem (13). Then αL∗+βT ∗

is a lower bound for the optimal function value. Since (L∗, T ∗) satisfies the trade-off constraint at

equality, from Theorem 2 we know there is a feasible pair (L
′
, T
′
) such that L

′ − L∗ ≤ 3m+ 2k

and T
′

T ∗ ≤
(
1 + 2k2

N−2k2
)(

1 + 4k
n

)2.

From (3), we have 2kL∗ − (L∗)2

2(T ∗−1) ≥ N − 2k2 and L∗ ≥ N−2k2
2k = mn

2k − k. Therefore,

L
′

L∗
≤ 1 +

3m+ 2k

L∗

≤ 1 +
(

3m+ 2k
)( 2k

mn− 2k2

)
≤ 1 +

3m+ 2k

8m/ε− k

(
since n ≥ 16k/ε

)
≤ 1 +

5m

7m/ε
≤ 1 + ε.

(14)
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From Theorem 2, we have

T
′

T ∗
≤
(

1 +
2k2

N − 2k2

)(
1 +

4k

n

)2
≤
(

1 +
2k2

256k2/ε2 − 2k2

)(
1 +

ε

4

)2
≤
(

1 +
ε2

127

)(
1 +

ε

4

)2
≤ 1 + ε.

(15)

Thus αL
′
+ βT

′
is at most (1 + ε) times the optimal solution because both L

′

L∗ and T
′

T ∗ are at most

1 + ε.

With Theorems 1 and 2, we are able to solve two special cases where the objective only

depends on one of the two costs; i.e., C(L, T ) = C(L) or C(L, T ) = C(T ).

Corollary 1 (Minimum path length in the RC-CPPG). If C(L, T ) = C(L), the optimal solution

is achieved with L∗ = N
2k +O(m).

Let (L, T ) be a feasible pair. If L
T−1 ≤ 2k, inequality (3) implies L ≥ N−2k2

2k = N
2k − k. If

L
T−1 > 2k, L > 2k(T − 1) ≥ 2k · N−2k2

2k2
= N

k − 2k ≥ N
2k + O(m). We can construct a type-d

up-and-down path that achieves this bound when d→ 0 (see Proposition 5).

Corollary 2 (Minimum stop count in the RC-CPPG). If C(L, T ) = C(T ), the optimal solution is

achieved with T ∗ = N
2k2

+O(m).

Since f(d) ≤ 2k2 for all d > 0, we know from the trade-off constraint that

T ≥ N − 2k2

f( L
T−1)

+ 1 ≥ N − 2k2

2k2
+ 1 =

N

2k2
. (16)

We can construct a type-2k up-and-down path that achieves the bound N
2k2

+O(m) (see Proposition

5).

The optimal paths to minimize stop count and path length follow the same up-and-down pat-

tern with different parameters. Note that we can not minimize path length and stop count si-

multaneously: the path length minimizing path aims to minimize traversals which requires more

stops while the stop count minimizing path forms a tessellation which decreases the separation

between traversals (r = 2k − d
2 ) thus increasing path length. The structure of the optimal paths

also coincides with that of the optimal solutions in [6] when the access cost is measured by the l1

norm.
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In summary, we introduce a trade-off constraint to quantify the trade-off between path length

L and stop count T in a covering path for the RC-CPPG. We construct a family of feasible paths

that traverse the rectangle in an up-and-down pattern. For the optimization problem, we show the

costs of the up-and-down paths match the lower bound derived from the trade-off constraint. The

optimal solution can be found quickly through a simple algorithm based on a convex relaxation

of the optimization problem. This simple approach used to solve the RC-CPPG is extended in

Sections 5 and 6 to solve the C-CPPG and D-CPPG, respectively. With Proposition 1, this then

gives a complete solution approach to the CPPG.

5. Analysis of the C-CPPG
In this section, we focus on the C-CPPG where the coverage radius k is an integer and the rectangle

D is covered by stops selected from Dint. The C-CPPG is a special case of the RC-CPPG where

the stop locations are chosen from Dint rather than D. Therefore, the feasible region in the C-

CPPG is a subset of that in the RC-CPPG and the trade-off constraint for the RC-CPPG is valid

for the C-CPPG. We strengthen the trade-off constraint to provide a tighter lower bound for the

feasible region in the C-CPPG. We then generalize the up-and-down path by mixing two types of

up-and-down paths. We show the costs of the generalized paths match the tighter lower bound

within a constant factor. Finally, we present a constant-factor approximation algorithm for solving

the optimization problem with a linear objective function. Since the results follow directly from

those in Section 4, we present proofs in the Appendix and highlight the differences here.

5.1 Stronger trade-off constraint for the C-CPPG

Given that stop locations are restricted to integer points, the distance between consecutive stops

d must be integer. Hence, we strengthen f(·) with a piecewise-linear function fLB−C(·) which

connects all points on f(·) with integer input values; i.e.,

fLB−C(d) =


(t+ 1− d)f(t) + (d− t)f(t+ 1) if d ∈ [t, t+ 1), t ∈ [2k − 1];

2k2 if d ≥ 2k.

(17)

Essentially, fLB−C(·) is the piecewise-linear function connecting

(
1, f(1)

)
→
(
2, f(2)

)
→ · · · →

(
2k, f(2k)

)
→
(
∞, f(2k)

)
. (18)
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Since fLB−C(d) = f(d) when d is integer, fLB−C(·) also represents the maximum area of the

region covered by a stop that is not covered by previous stops. From (2), f(·) is a concave function.

Therefore, fLB−C(·) must be a concave function satisfying fLB−C(·) ≤ f(·). This implies that

constraint (19) is stronger than the trade-off constraint for the RC-CPPG.

Theorem 4 (Trade-off constraint for the C-CPPG). In the C-CPPG, if (L, T ) is a feasible pair

with T > 1, then

(T − 1)fLB−C

( L

T − 1

)
≥ N − 2k2. (19)

Moreover, the boundary of (19), (T − 1)fLB−C
(

L
T−1

)
= N − 2k2 is a polyline connecting

( N∗
f(1)

,
N∗

f(1)

)
→
(2N∗

f(2)
,
N∗

f(2)

)
→ · · · →

( iN∗
f(i)

,
N∗

f(i)

)
→

· · · →
(2kN∗

f(2k)
,
N∗

f(2k)

)
→
(
∞, N∗

f(2k)

)
,

(20)

in the (L, T ) plane, where N∗ = N − 2k2.

Compared to Theorem 1, we replace the function f(·) with fLB−C(·) to strengthen the trade-

off constraint. The boundary of the feasible region in the C-CPPG, defined by (20), connects

several points on (3). For both the trade-off constraint and the boundary of the feasible region, we

replace a smooth function with a piecewise-linear one. Lemma 3 establishes a basic property of

the piecewise-linear function which is useful in the study of the boundary of (19).

Lemma 3. Let 0 < a1 < · · · < an < an+1 =∞ and 0 < b1 < · · · < bn = bn+1 be nonnegative

increasing sequences. Let g(·) be a piecewise-linear function defined on [a1,∞) corresponding

to the polyline connecting (a1, b1) → (a2, b2) → · · · → (an, bn) → (an+1, bn+1). If g(·) is a

concave function, for any constant C > 0, Y · g(XY ) = C is a polyline connecting the following

points (a1C
b1

,
C

b1

)
→
(a2C
b2

,
C

b2

)
→ · · · →

(anC
bn

,
C

bn

)
→
(an+1C

bn+1
,
C

bn+1

)
. (21)

Moreover, Y g(XY ) is a convex function and (21) corresponds to a convex piecewise-linear function.

For the boundary of (19), note that fLB−C(·) is a piecewise-linear concave function (derived

from the concavity of f(·)). From Lemma 3 and (18) we know (T − 1)fLB−C( L
T−1) = N − 2k2

is equivalent to polyline (20).
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5.2 Near-optimal mixed up-and-down path for the C-CPPG

When stops are restricted to integer points, the up-and-down path defined in Section 4 is not suf-

ficient because the distances between consecutive stops, d, and the separation between traversals,

2k − d
2 , may not be integers. Having obtained the stronger trade-off constraint for the C-CPPG

in Theorem 4, we now define mixed up-and-down paths that are then shown to be close to any

feasible parameter pair on the boundary of (19). The mixed up-and-down path is conducted with

a part of the rectangle covered by a type-d up-and-down path as in Section 4 and a part of the

rectangle covered by a type-(d+ 2) up-and-down path. We restrict d to be an even integer in [2k]

for each path that comprises the mixed path scheme.

Definition 4 (Mixed up-and-down path). In the C-CPPG, for even values of d ∈ [2k − 2] and

γ ∈ [0, 1), we divide them×n rectangle into two rectangles of sizes dγne×m and d(1− γ)ne×m.

A type-(d, γ) mixed up-and-down path covers the dγne×m rectangle with a type-d up-and-down

path and the d(1− γ)ne ×m rectangle with a type-(d + 2) up-and-down path, and connects the

two paths at the common boundary of the two rectangles.

For even values of d, both d and 2k − d
2 are integers and all stops in the mixed up-and-down

path are located at integer points. The mixed up-and-down path is always feasible since both

parts of the rectangle are covered by the type-d and type-(d+ 2) up-and-down paths, respectively.

Proposition 6 computes the costs of a mixed up-and-down path. In Section 5.3, we discuss the

selection of γ.

Proposition 6 (Cost of mixed up-and-down path). For any even d ∈ [2k − 2] and γ ∈ [0, 1),

the path length L of a type-(d, γ) up-and-down path is at most γmn
2k−d/2 + (1−γ)mn

2k−(d+2)/2 + 10m and

the stop count T is at most γmn
d(2k−d/2) + (1−γ)mn

(d+2)(2k−(d+2)/2) + 10m+ 12.

The mixed up-and-down path can be divided into three parts: the type-d up-and-down path,

the type-(d+ 2) up-and-down path and the segment connecting these two paths. We compute the

costs of each part based on Proposition 5.

Based on Proposition 6, Theorem 5 provides an approximate upper bound for the feasible

region in the C-CPPG.

Theorem 5 (Tightness result for the C-CPPG). Let fUB−C(·) be the piecewise-linear function

defined on [2,∞) that corresponds to the polyline connecting

(
2, f(2)

)
→
(
4, f(4)

)
→ · · · →

(
2i, f(2i)

)
→
(
2k, f(2k)

)
→
(
∞, f(2k)

)
.
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For any (L, T ) satisfying

(T − 1)fUB−C

( L

T − 1

)
= N − 2k2, (22)

there exists a feasible pair (L
′
, T
′
) derived from a mixed up-and-down path such that

L
′ − L ≤ 2k2

N − 2k2
L+ 10m, (23)

and

T
′ − T ≤ 2k2

N − 2k2
T + 10m+ 12. (24)

Moreover, (22) is a polyline connecting

(2N∗

f(2)
,
N∗

f(2)

)
→
(4N∗

f(4)
,
N∗

f(4)

)
→ · · · →

(2iN∗

f(2i)
,
N∗

f(2i)

)
→

· · · →
(2kN∗

f(2k)
,
N∗

f(2k)

)
→
(
∞, N∗

f(∞)

)
,

(25)

When m and n are sufficiently large, 2k2

N−2k2 can be arbitrarily close to 0. Therefore, (25)

serves as an approximate upper bound of the feasible region in the C-CPPG.

5.3 Optimization problem for the C-CPPG

Given a convex and increasing function C(L, T ), we solve the following convex subproblem:

minimize C(L, T )

subject to (T − 1)fLB−C

( L

T − 1

)
= N − 2k2

T ≥ 2, L > 0.

(26)

Let (L∗, T ∗) be an optimal solution to (26) and d∗ = L∗

T ∗ . We first consider the case where

2 ≤ d∗ < 2k. Denote S = {2, 4, · · · , 2i, · · · , 2k} to be the set of even numbers in [2k]. Let

l be the largest number in S that is no greater than d∗; let r be the smallest number in S that is

greater than d∗. Select γ ∈ [0, 1) such that d∗ = γl + (1 − γ)r (for example, if d∗ = 3 we have

l = 2, r = 4 and γ = 1
2 ). We use a type-(l, γ) mixed up-and-down path to cover the rectangle. If

d∗ < 2, we consider a type-2 up-and-down path; and if d∗ ≥ 2k we consider a type-2k up-and-

down path. Note that while d∗ = L∗

T ∗ may not be an even integer, d and d + 2 used to create the

mixed up-and-down path are always even integers.

23



Figure 4: Gap between lower bound and upper
bound

for the C-CPPG.

For the C-CPPG, (20) and (25) provide a

lower bound and an approximate upper bound,

respectively, for the feasible region. Unlike

the RC-CPPG, the bounds provided by (20)

and (25) are not tight. A gap exists because

the turning points of (20) contain that of (25)

while there are turning points of (20) not con-

tained in those of (25). Figure 4 illustrates

the gap for k = 5. The solid line connect-

ing T1, T2, · · · , T10 is the lower bound poly-

line (20); the dashed line connecting even turn-

ing points T2, T4, · · · , T10 represents the upper

bound (25). Lemma 4 shows the relative gap between (20) and (25) is at most 9
8 for k ≥ 3 (32 for

k = 1 and 7
6 for k = 2).

Lemma 4. For any point (L1, T1) on the lower bound polyline (20), there exists point (L2, T2)

on the upper bound polyline (25) such that L2
L1
≤ 11

10 for k ≥ 3 (32 for k = 1 and 7
6 for k = 2),

T2
T1
≤ 9

8 .

For the optimization problem with a linear objective function, we obtain a lower bound by

solving subproblem (26); i.e., minimizing the objective on the lower bound polyline (25). Since

the polyline (25) characterizes the costs of the mixed up-and-down paths, minimizing C(L, T ) on

(25) provides an approximate upper bound for the optimization problem. Lemma 4 implies that

the lower bound and the upper bound for the optimizarion problem have a gap of at most 3
2 . This

gap decreases as k increases. Theorem 6 formally proves approximation results for minimizing a

linear function C(L, T ).

Theorem 6. If C(L, T ) = αL+ βT with α, β ≥ 0 and m ≥ n ≥ 100k2

ε ≥ 100k
ε where ε ∈ (0, 1),

the mixed up-and-down path provides a (98 +ε)-approximation solution for k ≥ 3 (32 +ε for k = 1

and 7
6 + ε for k = 2).

Corollary 3 (Minimum stop count in the C-CPPG). If C(L, T ) = C(T ), the optimal solution is

achieved by T ∗ = N
2k2

+O(m).

Proof. The result here is the same as in Corollary 2 because the stop count minimizing path in

the RC-CPPG, a type-2k up-and-down path, is a covering path in the C-CPPG.
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Remark: For the case where C(L, T ) = C(L), we only know that the optimal solution is

between N
2k−1/2 + O(m) and N

2k−1 + O(m). A type-1 up-and-down path (which corresponds to

the lower bound N
2k−1/2 + O(m) in this setting) is infeasible since not all stops are located at

integer points.

6. Analysis of the D-CPPG
In this section we focus on the D-CPPG where the coverage radius k is an integer and both cover-

age region and stop locations are restricted to integer points in Dint. Detailed proofs are provided

in the Appendix.

6.1 Trade-off constraint for the D-CPPG

As in Section 5.1, we provide a piecewise-linear function fLB−D(·) that represents the maximum

number of integer points covered by a stop but not covered by previous stops. We define the

function value of fLB−D(·) with integer inputs:

fLB−D(d) =


d(2k + 1− d

2) + 1
2 if d ∈ [2k] is odd;

d(2k + 1− d
2) if d ∈ [2k] is even;

2k2 + 2k + 1 if d = 2k + 1.

(27)

For d ∈ (t, t+ 1), where t ∈ [2k], fLB−D(d) = (t+ 1− d)fLB−D(t) + (d− t)fLB−D(t+ 1).

Equivalently, fLB−D(·) is the piecewise-linear function connecting

(
1, fLB−D(1)

)
→
(
2, fLB−D(2)

)
→ · · · →

(
2k+ 1, fLB−D(2k+ 1)

)
→
(
∞, fLB−D(2k+ 1)

)
.

(28)

Similar to Theorems 1 and 4, we provide a trade-off constraint for the D-CPPG using function

fLB−D(·). There are two differences in the trade-off constraint for the D-CPPG, (29).

(1). We use a different piecewise-linear function fLB−D(·). The function fLB−D(d) counts

the maximum number of integer points covered by stop Fi+1 but not Fi given that the two stops

are at distance d.

(2). On the right hand side of the trade-off constraint (29) we use 2k2 + 2k+ 1 instead of 2k2

in (19) since the number of integer points covered by one stop is 2k2 + 2k + 1 in the D-CPPG.

Theorem 7 (Trade-off constraint for the D-CPPG). In the D-CPPG, if (L, T ) is a feasible pair
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with T > 1, then

(T − 1)fLB−D

( L

T − 1

)
≥ N − (2k2 + 2k + 1). (29)

Moreover, the boundary of (29), (T − 1)fLB−D( L
T−1) = N − (2k2 + 2k+ 1), is a piecewise-

linear convex function connecting

( N∗∗

fLB−D(1)
,

N∗∗

fLB−D(1)

)
→
( 2N∗∗

fLB−D(2)
,

N∗∗

fLB−D(2)

)
→ · · ·

→
( (2k + 1)N∗∗

fLB−D(2k + 1)
,

N∗∗

fLB−D(2k + 1)

)
→
(
∞, N∗∗

fLB−D(2k + 1)

)
,

(30)

where N∗∗ = N − (2k2 + 2k + 1).

The fact that (30) is the boundary of (29) follows from Lemma 3 and the fact that fLB−D(·)

is a concave piecewise-linear function. The proof of Theorem 7 follows the same structure as

Theorem 4, see Appendix 9.1 for details.

6.2 Near-optimal mixed discrete up-and-down path for the D-CPPG

Similar to Definition 3, we define the type-d discrete up-and-down path for the D-CPPG. In Defi-

nition 3, the distance between consecutive stops along a traversal is d and the separation between

traversals is 2k − d
2 . As with the C-CPPG, we restrict d to even integers, except d = 1. For

d = 1, 2, 4, 6, · · · , 2k− 2, 2k, the type-d discrete up-and-down path traverses the coverage region

Dint in a up-and-down fashion but the separation between traversals changes as described in Def-

inition 5. For d = 2k + 1, we introduce the zigzag path which has a different pattern than the

up-and-down path. We show that the zigzag path minimizes stop count in Corollary 5 and that a

suitable combination of zigzag path and up-and-down path provides a high quality approximation

solution in Theorem 9.

Definition 5 (Type-d discrete up-and-down path). We define the type-d discrete up-and-down

path in the D-CPPG for d = 1, 2, 4, 6, · · · , 2k − 2, 2k, 2k + 1.

• In a type-1 discrete up-and-down path, the distance between consecutive stops is 1 along

each traversal and the separation between traversals is 2k + 1.

• In a type-d discrete up-and-down path where d is an even number in [2k], the distance

between consecutive stops along a traversal is d and the separation between traversals is

2k + 1− d
2 .
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• We create type-(2k+1) discrete up-and-down paths (zigzag paths) with a four step process,

shown in Figure 5. As is done in [6] to minimize stops, we first form a tessellation. Let A =

{(a, b) ∈ Z2| ka+(k+1)b
2k2+2k+1

∈ Z} and let BZ
(
(a, b), k

)
be the set of integer points covered by

(a, b). Note that
⋃

(a,b)∈A BZ
(
(a, b), k

)
= Z2 and BZ

(
(a1, b1), k

)
∩BZ

(
(a2, b2), k

)
= ∅ for

any (a1, b1) 6= (a2, b2) in A. The stops in A along with their coverage define a tessellation of

Z2 as shown in Figure 5(a). We choose all points (a, b) ∈ A such that BZ
(
(a, b), k

)
∩D 6= ∅.

Let A1 be the set of chosen stops. Next we determine the visit order for the stops in A1 using

rotated traversals (Figure 5(b)). Traversal i is the line segment connecting all stops (a, b) in

A1 satisfying ka+(k+1)b
2k2+2k+1

= i. Similar to Definition 3, we first connect these traversals in an

up-and-down fashion which determines the order of stop connection. The tessellation may

contain stops outside the grid; therefore, in the third step, we project those stops back to the

grid. For each stop in A1 lying outside the rectangle D, we replace it with its projection

onto the rectangle (Figure 5(c), black dots after projection are new stop locations). In the

final step, the stops are connected using the grid lines according to the order defined in step

2 (Figure 5(d)).

We show in Corollaries 4 and 5 that the type-1 discrete up-and-down path and type-(2k + 1)

discrete up-and-down path minimize path length L and stop count T , respectively.

Propositions 7 and 8 establish the feasibility of discrete up-and-down path and compute its

costs, respectively.

Proposition 7 (Feasibility of discrete up-and-down path). For d = 1, 2, 4, · · · , 2k, 2k+1, a type-d

discrete up-and-down path covers all integer points in the rectangle D.

Proposition 8 (Cost of discrete up-and-down path). The cost of discrete up-and-down path is

summarized in Table 2.

Cost/Path type type-1 type-2t, t = 1, 2, · · · , k type-(2k + 1)

L N
2k+1 +O(m) N

2k+1−t +O(m) (2k+1)N
2k2+2k+1

+O(km)

T N
2k+1 +O(m) N

2t(2k+1−t) +O(m) N
2k2+2k+1

+O(m)

Table 2: Cost of discrete up-and-down path
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Figure 5: Stop location and path pattern of type-(2k+1) discrete up-and-down path (zigzag path)

28



Similar to Proposition 5, the costs of type-1 and type-2t discrete up-and-down paths are cal-

culated based on the distance between consecutive stops and separation between traversals. For

type-(2k + 1) discrete up-and-down path, the distance between (almost all) consecutive stops is

2k + 1 and almost every stop covers a set of distinct 2k2 + 2k + 1 integer points. Thus, the stop

count and path length are N
2k2+2k+1

+O(m) and (2k+1)N
2k2+2k+1

+O(km), respectively.

Theorem 8 (Tightness of trade-off inequality in the D-CPPG). Define the following piecewise-

linear function fUB−D(·) with turning points defined as

fUB−D(d) =


2k + 1 if d = 1;

d(2k + 1− d
2) if d = 2, 4, · · · , 2k;

2k2 + 2k + 1 if d ≥ 2k + 1.

(31)

For any point (L, T ) satisfying

N = (T − 1)fUB−D

( L

T − 1

)
, (32)

there exists a feasible pair (L
′
, T
′
) such that L− L′ = O(km) and T − T ′ = O(km).

Moreover, (32) is a polyline connecting

( N

fUB−D(1)
,

N

fUB−D(1)

)
→
( 2N

fUB−D(2)
,

N

fUB−D(2)

)
→ · · · →

( 2iN

fUB−D(2i)
,

N

fUB−D(2i)

)
→ · · ·

→
( 2kN

fUB−D(2k)
,

N

fUB−D(2k)

)
→
( (2k + 1)N

fUB−D(2k + 1)
,

N

fUB−D(2k + 1)

)
→
(
∞, N

fUB−D(2k + 1)

)
.

(33)

For each point (L, T ) on (33), we construct a feasible mixed discrete up-and-down path that

combines two different types of discrete up-and-down paths to cover Dint. We show that the costs

of the mixed discrete up-and-down path are close to that of (L, T ). Therefore, (33) serves as an

approximate upper bound of the feasible region in the D-CPPG.

6.3 Optimization problem for the D-CPPG

The following lemma shows the relative gap between polylines (30) and (33), which are the lower

bound and approximate upper bound of the feasible region of the D-CPPG, respectively.

Lemma 5. In the D-CPPG, for any point (L1, T1) on the lower bound polyline (30), there exists

(L2, T2) on the approximate upper bound polyline (33) such that L2
L1
≤ 11

10 ,
T2
T1
≤ 11

10 .
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The following theorem follows from Lemma 5, providing approximation ratio for optimization

problem with linear objective.

Theorem 9 (Approximation ratio for the optimization problem). If C(L, T ) = αL + βT is

a linear function and m ≥ n ≥ O(kε ) where ε ∈ (0, 1), the mixed discrete up-and-down path

provides a
(
11
10 +O(ε)

)
-approximation solution.

Corollary 4 (Minimum path length in the D-CPPG). If C(L, T ) = C(L), the optimal solution

is achieved with L∗ = N
2k+1 +O(m).

Proof. From (30), L ≥ N−(2k2+2k+1)
fLB−D(1) = N−(2k2+2k+1)

2k+1 for any covering path. A type-1

discrete up-and-down path achieves this bound.

In comparison with Corollary 1, the (2k + 1) in the denominator is the maximum number of

integer points covered by Fi+1 but not by Fi given that the two stops are at distance 1. Locating

a stop at each integer point of a traversal maximizes the separation between traversals, thus min-

imizing path length. Unlike in the C-CPPG, with a separation of 2k + 1 (rather than 2k) we can

derive a feasible path for d = 1.

Corollary 5 (Minimum stop count in the D-CPPG). If C(L, T ) = C(T ), the optimal solution

is achieved with T ∗ = N
2k2+2k+1

+O(m).

In Corollary 2, the optimal solution is T ∗ = N
2k2

+ O(m). Here, we replace the denominator

2k2 with (2k2 + 2k + 1), which is the number of integer points covered by a single stop in the

D-CPPG.

Proof. From (29) and (27), T − 1 ≥ N−(2k2+2k+1)
2k2+2k+1

for any feasible T , that is, T ≥ N
2k2+2k+1

.

A type-(2k + 1) discrete up-and-down path achieves this bound.

6.4 Summary of results

In this subsection, we summarize the approximation results. Recall that N = mn is the grid size

and k is the coverage radius. CPPG is trivially solvable when k < 1 because a stop must be set

at every grid vertex. Thus, we can assume that k ≥ 1. As detailed in Figure 1, CPPG can be

solved by either solving C-CPPG or D-CPPG based on the value of k. For each of these settings

we provide a feasible path where the parameters of the path are determined in polynomial time by

solving a convex relaxation of the original optimization problem. Table 3 summarizes our results

for the three CPPG variants under different objective functions.

30



Objective RC-CPPG C-CPPG D-CPPG

L

N
2k +O(m)

(1 + ε)-approximation

N
2k− 1

2

+O(m) ∼ N
2k−1 +O(m)

(1 + 1
4k−2)-approximation (1110 for k ≥ 3)

N
2k+1 +O(m)

(1 + ε)-approximation

T

N
2k2

+O(m)

(1 + ε)-approximation

N
2k2

+O(m)

(1 + ε)-approximation

N
2k2+2k+1

+O(m)

(1 + ε)-approximation

αL+ βT (1 + ε)-approximation (98 + ε)-approximation for k ≥ 3 (1110 + ε)-approximation

Table 3: Summary of approximation results

Observe that the only setting for which we do not have a 1 + ε approximation is when mini-

mizing L for C-CPPG. Our approximation is weakest (32 ) for k = 1 but strengthens as k increases.

For k = 3, we obtain an 9
8 -approximation for CPPG for the general objective function and the

approximation gets even stronger for larger values of k. As a result, in the worst case, we have a
3
2 -approximation for CPPG (when k = 1) but for larger values of k we are guaranteed much better

results.

7. Conclusion
The core sub-problem in school bus routing is to select bus stops and a bus route connecting the

stops such that no student is too far from a stop and the total bus route duration, including travel

and stopping time, is minimized. Motivated by the grid road structure of many American cities,

we model the problem as one of obtaining a minimum cost covering path where the underlying

network is a grid and distances are measured with the l1 metric. Although the problem is known

to be NP-hard on general graphs, we exploit the underlying grid structure to obtain strong approx-

imations in polynomial time. Our solution approach is likely to be particularly useful as part of a

decision support system where decision makers interactively build school bus routes by changing

various input parameters.

We also feel that our results on complete unit grid graphs can become important building

blocks for solution procedures on general grids. As long as the general grid can be constructed as

the union of a few rectangular grids, our constructive approach can be used to find a solution that is

31



unlikely to be too far from optimal. Our approach can also be used in the multi-vehicle setting that

accounts for bus capacity. As long as we can divide the overall region into a union of rectangular

grids (that relate to bus capacity), our constructive approach can be used to obtain a high quality

solution for the capacitated multi-vehicle problem. In ongoing work, we are exploring ways to

generalize the insights and results of this paper to address the many additional complications of

school bus routing. We continue to work with the school district to provide solutions that are

robust and easy to implement, and embed our results in to larger decision making frameworks for

broader questions of school assignment.
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8. Proof of Analytical Results in Section 5: Continuous CPPG

8.1 Proof of Lemma 3

Since g
(
X
Y

)
is a linear function of X

Y when X
Y ∈ [ai, ai+1), Y g

(
X
Y

)
is a linear function of X and

Y under the same condition. Therefore, given X
Y ∈ [ai, ai+1) and constant C > 0, Y g

(
X
Y

)
= C

is a line segment connecting
(
aiC
bi
, Cbi

)
and

(ai+1C
bi+1

, C
bi+1

)
. Summing over all cases of i ∈ [n] ,

Y g
(
X
Y

)
= C is equivalent to polyline (21).

Furthermore, when g(·) is a piecewise-linear concave function, g(·) can be reformulated as

the minimum of finite linear functions; i.e., g(x) = mini{aix + bi}. Therefore, Y g
(
X
Y

)
= C is

equivalent to mini{aiX + biY } = C, which must be a piecewise-linear convex function.

8.2 Proof of Theorem 4

We follow the same steps as in the proof of Theorem 1 until inequality (7),

N ≤ |S1|+
T−1∑
i=1

|Si+1 − Si| ≤ 2k2 +

T−1∑
i=1

f(di).

Since stops are located at integer points in the C-CPPG, all di must be integers. From (17),

fLB−C(di) = f(di). Together with the concavity of fLB−C(·) we have

N−2k2 ≤
T−1∑
i=1

f(di) =
T−1∑
i=1

fLB−C(di) ≤ (T−1)fLB−C

(∑T−1
i=1 di
T − 1

)
= (T−1)fLB−C

( L

T − 1

)
.

For the boundary of (19), note that fLB−C(·) is a piecewise-linear concave function. From

Lemma 3 and (18), (T − 1)fLB−C
(

L
T−1

)
= N − 2k2 is equivalent to polyline (20).

8.3 Proof of Proposition 6

The mixed up-and-down path can be divided into three parts: the type-d up-and-down path, the

type-(d+ 2) up-and-down path and the segment connecting these two paths. We estimate the cost

of the type-d and the type-(d+ 2) paths based on Proposition 5.

From Proposition 5, the path length and stop count of the type-d up-and-down path covering

a dγne × m rectangle is at most
( mdγne
2k−d/2 + 3m

)
and

( dγne
2k−d/2 + 2

)(
m
d + 2

)
, respectively; the

path length and stop count of the the type-(d+ 2) up-and-down path covering a d(1− γ)ne ×m

rectangle is at most
(
md(1−γ)ne
2k−(d+2)/2 + 3m

)
and

(
d(1−γ)ne

2k−(d+2)/2 + 2
)(

m
d+2 + 2

)
, respectively.

Note that the length of the segment connecting these two paths is at most 2m, the total path
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length of a type-(d, γ) up-and-down path is at most

( m dγne
2k − d/2

+ 3m
)

+
( m d(1− γ)ne

2k − (d+ 2)/2
+ 3m

)
+ 2m

≤ m(γn+ 1)

2k − d/2
+
m((1− γ)n+ 1)

2k − (d+ 2)/2
+ 8m

=
γmn

2k − d/2
+

(1− γ)mn

2k − (d+ 2)/2
+

m

2k − d/2
+

m

2k − (d+ 2)/2
+ 8m

≤ γmn

2k − d/2
+

(1− γ)mn

2k − (d+ 2)/2
+ 10m.

(34)

And the total stop count is at most

( dγne
2k − d/2

+ 2
)(m

d
+ 2
)

+
( d(1− γ)ne

2k − (d+ 2)/2
+ 2
)( m

d+ 2
+ 2
)

≤
( γn+ 1

2k − d/2
+ 2
)(m

d
+ 2
)

+
( (1− γ)n+ 1

2k − (d+ 2)/2
+ 2
)( m

d+ 2
+ 2
)

≤
( γn

2k − d/2
+ 3
)(m

d
+ 2
)

+
( (1− γ)n

2k − (d+ 2)/2
+ 3
)( m

d+ 2
+ 2
)

≤ γmn

d(2k − d/2)
+

(1− γ)mn

(d+ 2)(2k − (d+ 2)/2)
+
(3m

d
+

2γn

2k − d/2
+

3m

d+ 2
+

2(1− γ)n

2k − (d+ 2)/2
+ 12

)
≤ γmn

d(2k − d/2)
+

(1− γ)mn

(d+ 2)(2k − (d+ 2)/2)
+ (3m+ 2n+ 3m+ 2n+ 12)

≤ γmn

d(2k − d/2)
+

(1− γ)mn

(d+ 2)(2k − (d+ 2)/2)
+ 10m+ 12.

(35)

8.4 Proof of Theorem 5

fUB−C(·) is a concave function because of the concavity of f(·). From Lemma 3, equation (22) is

equivalent to polyline (25). For any point (L, T ) on (25), we discuss two cases based on whether

the point lies on the last segment of (25); i.e.,
(
2kN∗

f(2k) ,
N∗

f(2k)

)
→
(
∞, N∗

f(∞)

)
.

Case 1: If (L, T ) is not on
(
2kN∗

f(2k) ,
N∗

f(2k)

)
→
(
∞, N∗

f(∞)

)
, there exists γ ∈ [0, 1) and t ∈ [k−1]

such that

L = γ
2tN∗

f(2t)
+ (1− γ)

(2t+ 2)N∗

f(2t+ 2)
, (36)

and

T = γ
N∗

f(2t)
+ (1− γ)

N∗

f(2t+ 2)
+ 1. (37)
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From f(d) = d(2k − d
2) for d ≤ 2k, we have

L = γ
2tN∗

f(2t)
+ (1− γ)

(2t+ 2)N∗

f(2t+ 2)
=

γN∗

2k − t
+

(1− γ)N∗

2k − (t+ 1)
, (38)

and

T = γ
N∗

f(2t)
+ (1− γ)

N∗

f(2t+ 2)
+ 1 =

γN∗

2t(2k − t)
+

(1− γ)N∗(
2t+ 2

)(
2k − (t+ 1)

) . (39)

Compare (38) to (34), (39) to (35), together with the fact that N = N∗
(
1 + 2k2

N−2k2
)
, the costs of

a type-(2t, γ) mixed up-and-down path satisfy (23) and (24).

Case 2: If (L, T ) lies on
(
2kN∗

f(2k) ,
N∗

f(2k)

)
→
(
∞, N∗

f(∞)

)
, from f(∞) = f(2k), we have L ≥

2kN∗

f(2k) and T = N∗

f(2k) . From the analysis of Case 1, the costs of a type-2k up-and-down path satisfy

(23) and (24). Since we only increase L and T in Case 2, inequalities (23) and (24) still hold.

8.5 Proof of Lemma 4

Note that the turning points of (20) contains that of (25), it suffices to consider the extreme case

where (L1, T1) =
( (2t+1)N∗

f(2t+1) ,
N∗

f(2t+1)

)
, a turning point of (20) but not of (25), where t is an integer

such that 0 ≤ t ≤ k − 1. We choose (L2, T2) based on the value of t.

Case 1: if t = 0, we take (L2, T2) =
(
2N∗

f(2) ,
N∗

f(2)

)
. Then L2

L1
= 2f(1)

f(2) = 4k−1
4k−2 ≤

11
10 for k ≥ 3

(32 for k = 1 and 7
6 for k = 2), T2T1 = f(1)

f(2) < 1.

Case 2: if t > 0, let (L2, T2) = 2k−t
(2k−t)+(2k−t−1)

(
2tN∗

f(2t) ,
N∗

f(2t)

)
+ 2k−t−1

(2k−t)+(2k−t−1)
( (2t+2)N∗

f(2t+2) ,
N∗

f(2t+2)

)
.

Clearly (L2, T2) lies on the line segment connecting
( (2t)N∗
f(2t) ,

N∗

f(2t)

)
and

( (2t+2)N∗

f(2t+2) ,
N∗

f(2t+2)

)
, there-

fore also on polyline (25). From f(d) = d(2k − d
2) for d ≤ 2k, we have

L2 =
2k − t

(2k − t) + (2k − t− 1)

2tN∗

f(2t)
+

2k − t− 1

(2k − t) + (2k − t− 1)

(2t+ 2)N∗

f(2t+ 2)

=
2N∗

(2k − t) + (2k − t− 1)

=
(2t+ 1)N∗

f(2t+ 1)
= L1,

(40)
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and

T2 =
2k − t

(2k − t) + (2k − t− 1)

N∗

f(2t)
+

2k − t− 1

(2k − t) + (2k − t− 1)

N∗

f(2t+ 2)

=
1

2(2k − (2t+ 1)/2)

(N∗
2t

+
N∗

2t+ 2

)
=

1

2(2k − (2t+ 1)/2)
· 2(2t+ 1)N∗

2t(2t+ 2)

=
N∗

(2t+ 1)(2k − (2t+ 1)/2)
· (2t+ 1)2

2t(2t+ 2)

=
N∗

f(2t+ 1)
· (2t+ 1)2

2t(2t+ 2)

=
(
1 +

1

2t(2t+ 2)

)
T1

≤ 9

8
T1.

(41)

In summary, L2
L1
≤ 11

10 for k ≥ 3 (32 for k = 1 and 7
6 for k = 2) and T2

T1
≤ 9

8 .

8.6 Proof of Theorem 6

For each point (L1, T1) on (20), from Lemma 4, there exists (L2, T2) on (25) such that L2
L1
≤ 11

10

for k ≥ 3 (32 for k = 1 and 7
6 for k = 2), T2T1 ≤

9
8 . From Theorem 5, there exists a feasible pair

(L3, T3) such that L3 − L2 ≤ 2k2

N−2k2L2 + 10m and T3 − T2 ≤ 2k2

N−2k2T2 + 10m+ 12.

When m ≥ n ≥ 100k
ε , L3

L2
≤ 1 + 2k2

N−2k2 + 10m
L2

. Since (L2, T2) lies on (25) and L2 ≥ 2N∗

f(2) =

N∗

2k−1 ,

L3

L2
≤ 1 +

2k2

N − 2k2
+

10m

L2

≤ 1 +
2k2

N − 2k2
+

10(2k − 1)m

N∗

≤ 1 +
2k2

10000k2/ε2
− 2k2 +

20km

100km/ε− 2k2

≤ 1 +
ε

4
+
ε

4

≤ 1 +
ε

2
.

(42)
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From (25), T2 ≥ N∗

f(2k) = N∗

2k2
, we have,

T3
T2
≤ 1 +

2k2

N − 2k2
+

10m

T2

≤ 1 +
2k2

10000k2/ε2 − 2k2
+

20k2m

N∗

≤ 1 +
ε

4
+

20k2m

100km/ε− 2k2

≤ 1 +
ε

4
+
ε

4

≤ 1 +
ε

2
.

(43)

In summary, L3
L1

= L3
L2
· L2
L1
≤ 11

10(1 + ε
2) ≤ 11

10 + ε for k ≥ 3 (32 for k = 1 and 7
6 for k = 2) and

T3
T1

= T3
T2
· T2T1 ≤

9
8(1 + ε

2) ≤ 9
8 + ε.

9. Proof of Analytical Results in Section 6: Discrete CPPG

9.1 Proof of Theorem 7

Let F1 − F2 − · · · − FT be a covering path where {Fi}Ti=1 are the stops. Denote di the distance

between Fi and Fi+1, andL =
∑T−1

i=1 di the path length. Let Si be the set of integer points covered

by Fi and fLB−D(·) be the lower bound function defined in (27). Similar to (7) we have

N ≤ |S1|+
T−1∑
i=1

|Si+1 − Si|.

It suffices to show |Si+1 − Si| ≤ fLB−D(di) and fLB−D(·) is concave.

For the first claim, recall the definition in Lemma 1 that B
(
(a, b), k

)
= {(x, y) | |x−a|+ |y−

b| ≤ k}. Denote BZ
(
(a, b), k

)
= B

(
(a, b), k

)
∩Z2 the set of integer points in B

(
(a, b), k

)
, similar

to Lemma 1, we prove the following lemma.

Lemma 6. For any k > 0 and (p, q) ∈ Z2,

|BZ
(
(0, 0), k

)
∩ BZ

(
(|p|+ |q|, 0), k

)
| ≤ |BZ

(
(0, 0), k

)
∩ BZ

(
(p, q), k

)
|.

Assume WLOG that p ≥ q ≥ 0. From inequality (5) we know the following subset property

of intersections

BZ
(
(0, 0), k

)
∩ BZ

(
(|p|+ |q|, 0), k

)
⊆ BZ

(
(0, 0), k

)
∩ BZ

(
(p, q), k

)
. (44)
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Therefore, Lemma 6 is correct.

Lemma 6 implies that |Si+1 ∩ Si| ≥ |BZ
(
(0, 0), k

)
∩ BZ

(
(di, 0), k

)
|, hence,

|Si+1 − Si| = |Si+1| − |Si+1 ∩ Si| ≤ (2k2 + 2k + 1)− |BZ
(
(0, 0), k

)
∩ BZ

(
(di, 0), k

)
|. (45)

Next we show that

|BZ
(
(0, 0), k

)
∩ BZ

(
(d, 0), k

)
| = (2k2 + 2k + 1)− fLB−D(d) (46)

for any integer d and that fLB−D(·) is concave.

Note that

|BZ
(
(0, 0), k

)
∩ BZ

(
(d, 0), k

)
| = |{(x, y)| |x|+ |y| ≤ k, |x− d|+ |y| ≤ k, x, y ∈ Z}|, (47)

we discuss two cases based on the value of d to prove (46).

Case 1: If d ≥ 2k + 1, the coverage area do not overlap; the right-hand side of (47) is 0.

Case 2: If d ≤ 2k, for given x, the number of possible y satisfying (47) is 2 ·min{k− |x|, k−

|x− d|}+ 1. Note that both |x| and |x− d| are no more than k, the range of x is [d− k, k] and the

total number of solutions to (47) is

|{(x, y)| |x|+|y| ≤ k, |x−d|+|y| ≤ k, x, y ∈ Z}| =
k∑

x=d−k
(2min{k−|x|, k−|x−d|}+1). (48)

Now we prove the size of intersection satisfies

A =
k∑

x=d−k
(2min{k − |x|, k − |x− d|}+ 1) = (2k2 + 2k + 1)− fLB−D(d). (49)

We define a threshold value that determines the minimum function in (49). Note that min{k −

|x|, k − |x − d|} = k − |x| if and only if |x| ≥ |x − d|; i.e., x ≥ d
2 ; otherwise, if x < d

2 , the

minimum takes k − |x − d|. This threshold value d
2 is in [d − k, k] since d ≤ 2k. Since the

threshold value d
2 is a integer or half-integer, we further separate Case 2 into two subcases based

on the integrality of d2 .

Case 2.1: d is an odd number in [2k]. Because d
2 is a half-integer, we separate A into two
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parts: x in [d− k, d−12 ] and x in [d+1
2 , k].

A =

d−1
2∑

x=d−k
(2min{k − |x|, k − |x− d|}+ 1) +

k∑
x= d+1

2

(2min{k − |x|, k − |x− d|}+ 1)

=

d−1
2∑

x=d−k

(
2(k − |x− d|) + 1

)
+

k∑
x= d+1

2

(
2(k − |x|) + 1

)

=

d−1
2∑

x=d−k

(
2(k + x− d) + 1

)
+

k∑
x= d+1

2

(
2(k − x) + 1

)
(break down absolute value)

= A1 +A2.

(50)

A1 counts for the summatation over x in [d− k, d−12 ] and A2 over x in [d+1
2 , k].

Note thatA1 is the sum of an arithmetic sequence with first term is 2(k+(d−k)−d)+1 = 1,

last term is 2(k + d−1
2 − d) + 1 = 2k − d and common difference 2, we have

A1 =
1

2

(
1 + (2k − d)

)((2k − d+ 1)− 1

2
+ 1
)

=
(2k − d+ 1)2

4
.

(51)

Similarly, A2 is the sum of an arithmetic sequence with first term is 2(k− d+1
2 ) + 1 = 2k− d,

last term is 2(k − k) + 1 = 1 and common difference -2, we have

A2 =
1

2

(
(2k − d) + 1

)((1− (2k − d)

−2
+ 1
)

=
(2k − d+ 1)2

4
.

(52)

Combining (51) and (52) we have

A = A1 +A2 =
(2k − d+ 1)2

2
. (53)

Note that fLB−D(d) = d(2k + 1− d
2) + 1

2 when d is odd, we have

A+ fLB−D(d) =
(2k − d+ 1)2

2
+ d(2k + 1− d

2
) +

1

2
= 2k2 + 2k + 1.

Therefore, the size of intersection A = (2k2 + 2k + 1)− fLB−D(d) for odd d.

Case 2.2: d is an even number in [2k]. Because d
2 is an integer, we separate A into two parts:

11



x in [d− k, d2 ] and x in [d+2
2 , k].

A =

d
2∑

x=d−k
(2min{k − |x|, k − |x− d|}+ 1) +

k∑
x= d+2

2

(2min{k − |x|, k − |x− d|}+ 1)

=

d
2∑

x=d−k

(
2(k − |x− d|) + 1

)
+

k∑
x= d+2

2

(
2(k − |x|) + 1

)

=

d
2∑

x=d−k

(
2(k + x− d) + 1

)
+

k∑
x= d+2

2

(
2(k − x) + 1

)
(break down absolute value)

= A3 +A4.

(54)

A3 counts the summatation over x in [d− k, d2 ] and A4 over x in [d+2
2 , k].

A3 is the sum of an arithmetic sequence with first term is 2(k + (d − k) − d) + 1 = 1, last

term is 2(k + d
2 − d) + 1 = 2k − d+ 1 and common difference 2, we have

A1 =
1

2

(
1 + (2k − d+ 1)

)((2k − d+ 1)− 1

2
+ 1
)

=
(2k − d+ 2)2

4
.

(55)

Similarly,A4 is the sum of an arithmetic sequence with first term is 2(k− d+2
2 )+1 = 2k−d−1,

last term is 2(k − k) + 1 = 1 and common difference -2, we have

A2 =
1

2

(
(2k − d− 1) + 1

)((1− (2k − d− 1)

−2
+ 1
)

=
(2k − d)2

4
.

(56)

Combining (55) and (56), we have

A = A3 +A4 =
(2k − d+ 2)2

4
+

(2k − d)2

4
. (57)

Note that fLB−D(d) = d(2k + 1− d
2) when d is even,

A+ fLB−D(d) =
(2k − d+ 2)2

4
+

(2k − d)2

4
+ d(2k + 1− d

2
) = 2k2 + 2k + 1.

Therefore, the size of intersection A = (2k2 + 2k + 1)− fLB−D(d) for even d.

Now we prove the concavity of fLB−D(·). Define ∆fLB−D(d) = fLB−D(d+1)−fLB−D(d),
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it suffices to show ∆fLB−D(d) is non-increasing for integer d. When d is an even number in [2k],

∆fLB−D(d) = 2k+ 1− d; when d is an odd number in [2k], ∆fLB−D(d) = 2k− d. Combining

the fact that ∆fLB−D(d) = 0 for all d > 2k, ∆fLB−D(d) is non-increasing and fLB−D(·) is a

piecewise-linear concave function.

9.2 Proof of Proposition 7

We prove the feasibility of a discrete up-and-down path based on its type.

Case 1: For type-1 discrete up-and-down path, each stop along a traversal covers itself together

with its left and right k columns of the grid. Since the separation between traversals is 2k + 1, all

integer points in the grid are covered.

Case 2: For type-2t discrete up-and-down path, where t ∈ [k], we follow the proof of Propo-

sition 4. For any integer point (x, y), assume that (x, y) lies between traversals i and i + 1. Let

(xh, yh) be the highest stop on these two traversals with yh ≤ y and (xl, yl) be the lowest stop on

these two traversals with yl ≥ y (see Figure 3 for illustration). From the alternating pattern of stop

location, we can always pick (xh, yh) and (xl, yl) such that they are on different traversals. Since

the separation between traversals i and i+ 1 is at most 2k+ 1− d
2 (equal to 2k+ 1− d

2 except for

the rightmost one), we have |xh − xl| ≤ 2k + 1 − d
2 . Also, recall the alternating pattern of stop

locations on traversals i and i+ 1, we have |yh − yl| ≤ d
2 .

Since yh ≤ y ≤ yl and x is always between xh and xl, we have

||(x, y)−(xh, yh)||1+ ||(x, y)−(xl, yl)||1 = ||(xh, yh)−(xl, yl)||1 ≤ (2k+1− d
2

)+
d

2
= 2k+1.

This implies at least one of ||(x, y)−(xl, yl)||1 and ||(x, y)−(xh, yh)||1 is at most k. Thus, (xl, yl)

or (xh, yh) covers (x, y).

Case 3: For type-(2k + 1) discrete up-and-down path, the coverage constraint is satisfied due

to the tessellation property of coverage regions in the zigzag path.

9.3 Proof of Proposition 8

For type-1 discrete up-and-down path, the separation between consecutive traversals is 2k+ 1 and

each traversal has m stops. Therefore, both stop count and path length are N
2k+1 +O(m).

For type-2t discrete up-and-down path, t ∈ [k], the distance between consecutive traversals,

distance between consecutive stops on one traversal are 2k+ 1− t and 2t, respectively. Therefore,

the stop count is N
2t(2k+1−t) +O(m), and path length is N

2k+1−t +O(m).
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For type-(2k+ 1) discrete up-and-down path, since the coverage regions of stops do not over-

lap, the stop count is N
2k2+2k+1

+ O(m). Note that distance between connected stops is 2k + 1,

the path length is (2k+1)N
2k2+2k+1

+O(km).

9.4 Proof of Theorem 8

Note that fUB−D(·) is a concave piecewise-linear function, from Lemma 3 we know that equa-

tion (32) is equivalent to polyline (33). To illustrate the tightness result, we construct a feasible

covering path for each point on (33) such that the cost is close enough to this point.

The turning points of the boundary of (32) are: T (d) = N
fUB−D(d) , L(d) = Nd

fUB−D(d) , where

d = 1, 2, 4, · · · , 2k − 2, 2k, 2k + 1. Therefore, the boundary point (L, T ) must lie on a line

segment connecting two consecutive turning points with the following form

L = γL(d1) + (1− γ)L(d2), T = γT (d1) + (1− γ)T (d2), (58)

where d1 and d2 are consecutive terms in the set {1, 2, 4, · · · , 2k − 2, 2k, 2k + 1}.

Besides, the path length and stop count of a type-d discrete up-and-down path are L(d) +

O(km) and T (d) + O(km), respectively. Let (L
′
, T
′
) be the costs of a mixture of type-d1 and

type-d2 discrete up-and-down path where the type-d1 path covers a m by γn grid and the type-d2

path covers the other m by (1−γ)n grid. An additional path cost of order O(m) connects the two

discrete up-and-down paths. The stop count of this path is

L
′

= γ
(
L(d1) +O(km)

)
+
(
1− γ

)(
L(d2) +O(km)

)
= L+O(km), (59)

and the path length is

T
′

= γ
(
T (d1) +O(km)

)
+
(
1− γ

)(
T (d2) +O(km)

)
= T +O(km). (60)

To sum up, the gap between (L
′
, T
′
) and (L, T ) is of order O(km).

9.5 Proof of Lemma 5

Note that fUB−D(d) = fLB−D(d) for d = 1, 2, 4, · · · , 2k − 2, 2k, 2k + 1, the turning points of

(33) is a subset of that of (30). Therefore, it suffices to consider (L1, T1) as a turning point of (30)

but not (33); i.e., (L1, T1) =
( (2t+1)N
fLB−D(2t+1) ,

N
fLB−D(2t+1)

)
, where t ∈ [k − 1].
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Let

L2 = γ
2tN

fUB−D(2t)
+ (1− γ)

(2t+ 2)N

fUB−D(2t+ 2)
,

and

T2 = γ
N

fUB−D(2t)
+ (1− γ)

N

fUB−D(2t+ 2)
,

where γ =
fUB−D(2t)

fUB−D(2t)+fUB−D(2t+2) ∈ (0, 1). Then (L2, T2) lies on polyline (33).

Moreover,

L2 = γ
2tN

fUB−D(2t)
+ (1− γ)

(2t+ 2)N

fUB−D(2t+ 2)

=
fUB−D(2t)

fUB−D(2t) + fUB−D(2t+ 2)

2tN

fUB−D(2t)
+

fUB−D(2t+ 2)

fUB−D(2t) + fUB−D(2t+ 2)

(2t+ 2)N

fUB−D(2t+ 2)

=
2(2t+ 1)N

fUB−D(2t) + fUB−D(2t+ 2)

=
2fLB−D(2t+ 1)

fUB−D(2t) + fUB−D(2t+ 2)
L1,

(61)

and

T2 = γ
N

fUB−D(2t)
+ (1− γ)

N

fUB−D(2t+ 2)

=
fUB−D(2t)

fUB−D(2t) + fUB−D(2t+ 2)

N

fUB−D(2t)
+

fUB−D(2t+ 2)

fUB−D(2t) + fUB−D(2t+ 2)

N

fUB−D(2t+ 2)

=
2N

fUB−D(2t) + fUB−D(2t+ 2)

=
2fLB−D(2t+ 1)

fUB−D(2t) + fUB−D(2t+ 2)
T1.

(62)

Note that

fUB−D(2t) + fUB−D(2t+ 2)− 2fLB−D(2t+ 1)

= fLB−D(2t) + fLB−D(2t+ 2)− 2fLB−D(2t+ 1)

= 2t(2k + 1− t) + (2t+ 2)(2k − t)− 2(2t+ 1)(2k + 1− 2t+ 1

2
)− 1

= −2,

(63)
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we have,

L2

L1
=
T2
T1

=
2fLB−D(2t+ 1)

fUB−D(2t) + fUB−D(2t+ 2)

=
2fLB−D(2t+ 1)

2fLB−D(2t+ 1)− 2

= 1 +
1

fLB−D(2t+ 1)− 1
.

(64)

From (27), fLB−D(·) is an increasing function and

fLB−D(2t+ 1) ≥ fLB−D(3) = 3(2k + 1− 3

2
) +

1

2
= 6k − 1 ≥ 11.

This, together with (64), proves L2
L1
≤ 11

10 ,
T2
T1
≤ 11

10 .

9.6 Proof of Theorem 9

Similar to the proof of Theorem 6, we first solve the optimization problem of minimizing C(L, T )

subject to (T−1)fLB−D( L
T−1) = N−(2k2+2k+1); i.e., minimizingC(L, T ) over polyline (30).

Let (L∗, T ∗) be the optimal solution, αL∗ + βT ∗ is a lower bound for the optimal function value.

From Lemma 5, there exists (L1, T1) on polyline (33) such that L1
L∗ ≤

11
10 and T1

T ∗ ≤
11
10 . Applying

Theorem 8, there exists a feasible pair (L
′
, T
′
) such that L

′ − L1 ≤ O(km), T
′ − T1 ≤ O(km).

When m,n ≥ O
(
k
ε

)
, both L∗ and T ∗ are at least O

(
km
ε

)
. Therefore,

L
′

L∗
=
L
′

L1
· L1

L∗
≤
(
1 +O(ε)

)
· 11

10
=

11

10
+O(ε).

Similar results holds for L
′

L∗ and (L
′
, T
′
) is a

(
11
10 +O(ε)

)
-approximation solution.
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